OBSERVER'S HANDBOOK 1985

CONTRIBUTORS AND ADVISORS

Alan H. Batten, Dominion Astrophysical Observatory, Victoria, BC, Canada V8X 4M6 (The Nearest Stars).
Roy L. Bishop, Department of Physics, Acadia University, Wolfville, NS, Canada B0P 1X0 (Editor).
Terence Dickinson, R.R. 3, Odessa, ON, Canada K0H 2H0, (The Planets).
David W. Dunham, International Occultation Timing Association, P.O. Box 7488, Silver Spring, MD 20907, U.S.A. (Lunar and Planetary Occultations).
Alan Dyer, Queen Elizabeth Planetarium, 10004-104 Ave., Edmonton, AB, Canada T5J 0K1 (Messier Catalogue, Deep-Sky Objects).
Fred Espenak, Infrared and Radio Astronomy Branch, NASA-Goddard Space Flight Centre, Greenbelt, MD, U.S.A. 20771 (Eclipses).
Marie Fidler, The Royal Astronomical Society of Canada, 136 Dupont St., Toronto, ON, Canada M5R 1V2 (Observatories and Planetaria).
Victor Gaizauskas, Herzberg Institute of Astrophysics, National Research Council, Ottawa, ON, Canada K1A 0R6 (Solar Activity).
Robert F. Garrison, David Dunlap Observatory, University of Toronto, Box 360 Richmond Hill, ON, Canada L4C 4Y6 (The Brightest Stars).
Ian Halliday, Herzberg Institute of Astrophysics, National Research Council, Ottawa, ON, Canada K1A 0R6 (Miscellaneoús Astronomical Data).
William Herbst, Van Vleck Observatory, Wesleyan University, Middletown, CT, U.S.A. 06457 (Galactic Nebulae).

Helen S. Hogg, David Dunlap Observatory, University of Toronto, Box 360 Richmond Hill, ON, Canada L4C 4Y6 (Foreword).
Barry F. Madore, David Dunlap Observatory, University of Toronto, Box 360 Richmond Hill, ON, Canada L4C 4Y6 (Galaxies).
Brian G. Marsden, Smithsonian Astrophysical Observatory, 60 Garden St., Cambridge, MA, U.S.A. 02138 (Comets, Asteroids).
Janet A. Mattei, American Association of Variable Star Observers, 187 Concord Ave., Cambridge, MA, U.S.A. 02138 (Variable Stars).
Peter M. Millman, Herzberg Institute of Astrophysics, National Research Council, Ottawa, ON, Canada K1A 0R6 (Meteors, Fireballs and Meteorites).
Anthony F. J. Moffat, Département de Physique, Université de Montréal, Montréal, PQ, Canada H3C 3J7 (Star Clusters).
John R. Percy, Erindale College and Department of Astronomy, University of Toronto, Toronto, ON, Canada M5S 1A1 (Sky Month by Month).
P. Blyth Robertson, Earth Physics Branch, Energy, Mines and Resources Canada, Ottawa, ON, Canada K1A 0Y3 (Meteorite Impact Sites).
Akio Senda, International Lunar Occultation Centre, Geodesy and Geophysics Division, Hydrographic Department, Tsukiji-5, Chuo-ku, Tokyo, 104 Japan (Total and Grazing Lunar Occultations).
Ken Tapping, Herzberg Institute of Astrophysics, National Research Council, Ottawa, ON, Canada K1A 0R6 (Radio Sources).
Gordon E. Taylor, H.M. Nautical Almanac Office, Royal Greenwich Observatory, Herstmonceux Castle, Hailsham, East Sussex, England BN27 1RP (Planetary Appulses and Occultations).
Joseph F. Veverka, Department of Astronomy, Cornell University, Ithaca, NY, U.S.A. 14853 (Planetary Satellites).

Charles E. Worley, U.S. Naval Observatory, Washington, DC, U.S.A. 20390 (Double Stars).

OBSERVER'S HANDBOOK 1985

EDITOR

ROY L. BISHOP

SEVENTY-SEVENTH YEAR OF PUBLICATION

© THE ROYAL ASTRONOMICAL SOCIETY OF CANADA 136 DUPONT STREET, TORONTO, ONTARIO M5R 1V2

IN PRAISE OF CELESTIAL OBSERVING

We who have worked on the Observer's Handbook for many years are glad that you read it. We hope that you also study it and use it, for it is a true pathway to the heavens and the beautiful and exciting sights therein. You can learn a great deal of astronomy from reading, but the aspects of it that are likely to remain longest in your memory are some of the sights you yourself see in the skies.

The year 1985 is sure to bring forth a verbal flood of such memories. These recollections will come from the people who had the good fortune to see Halley's comet at its last return in 1910. In am among them. As a child of four then, my scientific description of the comet is of limited value, but the awesome delight of my family in the event made a profound impression on me.

Halley's comet was one of a series of sky phenomena of great importance in my life, as it must have been to many others. Fifteen years later came another which helped to turn me to astronomy as a lifetime career-the total eclipse of the sun on January 24, 1925. This I viewed with other Mount Holyoke College students from the vantage point of a golf course in Connecticut, standing with painfully cold feet in deep snow, with my eyes gazing on a spectacle so revealing and beautiful as to defy description. Eclipse chasers understand why it may be worth going halfway round the world for those few glorious minutes.

Other events, memorable but of less scientific importance, came along. On a clear August night the Perseid meteors held me fascinated with their brilliant blue-white streaks across the sky. Just with my naked eyes I watched a star in Perseus fade to less than half its normal brilliance, the eclipsing binary Algol, the Demon Star. On some nights the sky lit up with the undulating brilliant red or green arcs or draperies of the Aurora Borealis.

Then on October 4, 1957, a new type of sky object astonished us when Sputnik, the first artificial satellite of Earth, moved across the sky, and we suddenly and firmly entered the Space Age. Thousands of pieces of man-made material now circle our planet. Some of them are easily visible from time to time, but it is beyond the small confines of this annual Handbook to guide us to them.

A year or so after the Observer's Handbook for 1985 comes into the hands of its readers, millions of sky watchers will reminisce about Halley's comet, but this time the talk will be about the return of 1985-86. To an observer located under a really dark sky, how will Comet Halley look at this approach? We will soon know.

Helen Sawyer Hogg

COVER PHOTOGRAPH

With its shifting symmetry and haunting light, the Moon is a celestial object of singular beauty. The cover photograph is by Réal Manseau of Drummondville, Quebec. (February 26, 1982; f/6.7, 200 mm Newtonian reflector, 6 s exposure on ASA 100 Fujichrome.)

EDITOR'S COMMENTS

The existence and usefulness of the Observer's Handbook owes much to the several people who voluntarily contribute their time and expertise (see the inside front cover). On behalf of The Royal Astronomical Society of Canada, I especially wish to acknowledge the past contributions of Yoshio Kubo (Total and Grazing Lunar Occultations) and John Galt (Radio Sources, and a contributor to this Handbook for 20 years), and welcome Akio Senda and Ken Tapping, respectively, who have taken over these sections.

The 1985 edition has grown by 8 pages. Among the several changes and additions are: The tables of orbital and physical elements of the planets have been updated using the 1985 Astronomical Almanac. Joseph Veverka has made several revisions to the table of planetary satellites. On the suggestion of Leo Enright (Sharbot Lake, Ont.), the "Telescope Parameters" table has been expanded to include "light grasp". The compilation entitled "Some Astronomical and Physical Data" has been reorganized and expanded. Information, including two maps, has been added to cover the arrival of Halley's Comet in the inner solar system in 1985. Robert Garrison has revised the parallax and radial velocity data in "The Brightest Stars" table. Alan Batten has completely revised the section "The Nearest Stars". Anthony Moffat has expanded the "Star Clusters" section to include material on two representative clusters. Ken Tapping has revised and expanded the section "Radio Sources". The six all-sky maps at the end of the Handbook have been revised, and, as a further step in extending the geographical range of usefulness of the Observer's Handbook, a new star map, "The Southern Sky", has been added. In the latter instance, I wish to thank Larry Bogan (Acadia University, N.S.) for advice on deep-sky objects in the southern sky.

As always, the Nautical Almanac Offices of both the United States Naval Observatory and the Royal Greenwich Observatory have provided invaluable help in the form of pre-publication material from The Astronomical Almanac. Predictions of most events within the Solar System are based on this source. Randall Brooks (St. Mary's University, N.S.) prepared photographic copies of the star charts used for the maps of Pluto and the August-October track of Halley's Comet. Rosemary Freeman, Executive-Secretary of the R.A.S.C., efficiently handles the advertising and sales of this Handbook. And finally, particular acknowledgement is due to Acadia University and its Department of Physics for support in the form of many weeks of the Editor's time and continuing secretarial assistance.

Comments and suggestions are always welcome, and should be sent directly to the Editor at Acadia University (address on the inside front cover). Good observing quo ducit Urania!

Roy L. Bishop, Editor

REPORTING OF SIGNIFICANT ASTRONOMICAL DISCOVERIES

Professional and amateur astronomers who wish to report a possible discovery (e.g. a new comet, nova, or supernova) should send their report to Dr. Brian Marsden of the International Astronomical Union Central Bureau for Astronomical Telegrams, 60 Garden St., Cambridge, MA 02138, U.S.A. TWX/telex/telegraphic communication is preferred (TWX number: 710-320-6842 ASTROGRAM CAM). Inexperienced observers are advised to have their observation checked, if at all possible, before contacting the Central Bureau. For an account of the history of the Bureau and its work today, see "Life in the Hot Seat", Sky and Telescope, August 1980, p. 92.

AN INVITATION FOR MEMBERSHIP IN THE ROYAL ASTRONOMICAL SOCIETY OF CANADA

The history of The Royal Astronomical Society of Canada goes back to the middle of the nineteenth century. The Society was incorporated within the province of Ontario in 1890, received its Royal Charter in 1903, and was federally incorporated in 1968. The National Office of the Society is located at 136 Dupont Street, Toronto, Ontario M5R 1V2, telephone (416) 924 7973. The business office and library are housed there.

The Society is devoted to the advancement of astronomy and allied sciences, and has members in many countries and from all walks of life. Any serious user of this HANDBOOK would benefit from membership. An applicant may affiliate with one of the twenty Centres across Canada, or may join the Society directly as an unattached member. Centres are located in Newfoundland (St. John's), Nova Scotia (Halifax), Quebec (Montreal (2), and Quebec), Ontario (Ottawa, Kingston, Toronto, Hamilton, Niagara Falls, Kitchener-Waterloo, London, Windsor, and Sarnia), Manitoba (Winnipeg), Saskatchewan (Saskatoon), Alberta (Edmonton and Calgary), and British Columbia (Vancouver and Victoria). Contact the National Office for the address of any of the Centres.

Members receive the publications of the Society free of charge: the OBSERVER's handbook (published annually in November), and the bimonthly journal and NATIONAL NEWSLETTER which contain articles on many aspects of astronomy. The membership year begins October 1, and members receive the publications of the Society for the following calendar year. Annual fees are currently $\$ 20$, and $\$ 12.50$ for persons under 18 years. Life membership is $\$ 300$. (To cover higher mailing costs, these fees are to be read as U.S. dollars for members outside of Canada. Also, persons wishing to affiliate with one of the Centres are advised that some Centres levy a small surcharge.)

SUGGESTIONS FOR FURTHER READING

Burnham, Robert. Burnham's Celestial Handbook, Volumes 1, 2 and 3. Dover Publications, Inc., New York, 1978. A detailed, well-presented, observer's guide to the universe beyond the solar system.
Dickinson, Terence. Nightwatch. Camden House Publishing Ltd., Camden East, Ontario, 1983. An attractive, comprehensive, introductory guide to observing the sky.
Harrison, E. R. Cosmology. Cambridge University Press, Cambridge, 1981. An elegant, stimulating introduction to the structure of the universe.
Hogg, Helen S. The Stars Belong To Everyone. Doubleday Canada Ltd., Toronto, 1976. Superb introduction to the sky.

Newton, Jack, and Teece, Philip. The Cambridge Deep Sky Album. Cambridge University Press, Cambridge, 1983. A photographic introduction to the Universe beyond the Solar System through a small telescope.
Norton, A. P. Norton's Star Atlas. Sky Publishing Corp., 49 Bay State Road, Cambridge, MA 02238-1290. A classic. Contains 8700 stars to magnitude 6.3.
Rükl, A. Moon, Mars and Venus. Hamlyn Publishing Group Ltd., Toronto and New York, 1976. A compact, detailed, lunar atlas.
Sherrod, P. C. A Complete Manual of Amateur Astronomy. Prentice-Hall, New Jersey, 1981. A comprehensive guide to observational astronomy for amateurs.
Sky and Telescope. Sky Publishing Corp., 49 Bay State Road, Cambridge, MA 02238. A monthly magazine containing articles on all aspects of astronomy.

Texereau, J. How To Make A Telescope. Doubleday and Co., New York, 1963. The best guide to making a Newtonian telescope.
Tirion, W. Sky Atlas 2000.0. Sky Publishing Corp., 49 Bay State Road, Cambridge, MA 02238-1290. A large format, modern, detailed atlas. Contains 43000 stars to magnitude 8.0.

VISITING HOURS AT SOME CANADIAN OBSERVATORIES AND PLANETARIA

Compiled By Marie Fidler

OBSERVATORIES

Algonquin Radio Observatory, Lake Traverse, Ontario K0A 2L0.
Group tours by appointment only. Small groups welcome any day; notice helpful but not essential. Telephone (613) 735-0141 and ask for Ross Austin or Richard Murowinski.
Burke-Gaffney Observatory, Saint Mary's University, Halifax, Nova Scotia B3H 3C3.

October-April: Saturday evenings, 7:00 p.m.
May-September: Saturday evenings, 9:00 p.m.
Monday evening or daytime tours by arrangement. Phone 429-9780, ext. 184.
Canada-France-Hawaii Telescope, Mauna Kea, Hawaii, U.S.A. 96743.
R.A.S.C. members visiting "Big Island" are welcome to day-time visits of the CFHT installations. For appointment please phone (808) 885-7944.
David Dunlap Observatory, Richmond Hill, Ontario L4C 4Y6.
Tuesday mornings throughout the year, 10:00 a.m.
Saturday evenings, April through October, by reservation. Telephone (416) 884-2112.

Dominion Astrophysical Observatory, Victoria, B.C. V8X 4M6.
May-August: Daily, 9:15 a.m.-4:15 p.m.
September-April: Monday to Friday, 9:15 a.m.-4:15 p.m.
Public observing, Saturday evenings, April-October inclusive.
Dominion Radio Astrophysical Observatory, Penticton, B.C. V2A 6K3.
Conducted Tours: Sundays, July and August only, 2:00-5:00 p.m.
Visitors' Centre: Open year round during daylight hours.
For information please phone (604) 497-5321.
Hume Cronyn Observatory, University of Western Ontario, London, ON, N6A 3K7.
For tour and program information please phone (519) 679-3184.
National Museum of Science and Technology, 1867 St. Laurent Blvd., Ottawa, Ontario. K1A 0M8.

Evening tours, by appointment only. Telephone (613) 998-4566.
September-June: Group tours: Mon. through Thurs. Public visits, Fri. (2nd Fri. French)
July-August: Public visits: Tues.(French), Wed., Thurs.(English).
Observatoire astronomique du mont Mégantic, Notre-Dame-des-Bois, P.Q. J0B 2E0.

Telephone (819) 888-2822 for information on summer programs.
Gordon MacMillan Southam Observatory, 1100 Chestnut St., Vancouver, BC, V6J 3J9.

Open clear weekends and holidays (noon through 10:30 p.m.), and open 6 days per week during July and August (closed on non-holiday Mondays). Free admission. For information call (604) 738-2855.
University of British Columbia Observatory, 2219 Main Mall, Vancouver, B.C. V6T 1W5.

Free public observing, Saturday evenings: phone (604) 228-6186. Tours: phone (604) 228-2802.

PLANETARIA
Alberta's Mobile Astronomy Project, Provincial Museum of Alberta, 12845-102 Avenue, Edmonton, Alberta T5N 0M6.

This planetarium travels throughout Alberta from September to June, with school group shows given daily and public shows given Monday, Tuesday and Thursday evenings. For locations and times, telephone (403) 427-1778.

Calgary Centennial Planetarium, 701-11 Street S.W., P.O. Box 2100, Calgary, Alberta T2P 2M5.

For program information, telephone (403) 264-4060 or 264-2030.
Doran Planetarium, Laurentian University, Ramsey Lake Road, Sudbury, Ontario P3E 2C6.

Phone (705) 675-1151, ext. 223 or 557 for information.
Dow Planetarium, 1000 St. Jacques Street W., Montreal, P.Q. H3C 1G7.
Live shows in French and in English every open day. Closed 3 weeks in September after Labour Day. For general information telephone (514) 872-4530.

Edmonton Space Sciences Centre, Coronation Park, 11211-142 Street, Edmonton, Alberta T5M 4A1.

Features planetarium Star Theatre, IMAX film theatre, and exhibit galleries. Public shows daily in both theatres. Phone 455-0119 for program information. Also contains Science Bookstore: phone 451-6516.
The Halifax Planetarium, The Education Section of Nova Scotia Museum, Summer Street, Halifax, N.S. B3H 3A6.

Free public shows take place on some evenings at $8: 00$ p.m. and group shows can be arranged. For information, telephone (902) 429-4610.
The Lockhart Planetarium, 394 University College, 500 Dysart Road, The University of Manitoba, Winnipeg, Manitoba R3T 2M8.

For group reservations, telephone (204) 474-9785.
H.R. MacMillan Planetarium, 1100 Chestnut Street, Vancouver, B.C. V6J 3J9.

Public shows daily except Monday.
For show information telephone (604) 736-3656.
Manitoba Planetarium, 190 Rupert Avenue at Main Street, Winnipeg, Manitoba R3B 0N2.

For information call (204) 943-3142.
McLaughlin Planetarium, 100 Queen's Park, Toronto, Ontario M5S 2C6.
Public shows Tues.-Fri. 3:00 and 7:45. Additional shows on weekends and during summer. School shows and evening courses. Sky information (416) 978-5399. For show times and information call (416) 978-8550.

Ontario Science Centre, 770 Don Mills Road, Don Mills, Ontario M3C 1T3. Open daily except Christmas Day from 10:00 a.m. to 6:00 p.m. Telephone (416) 429-4100.

University of Prince Edward Island Planetarium, Charlottetown, P.E.I. C1A 4P3 For show information telephone (902) 892-4121.

SYMBOLS

SUN, MOON, AND PLANETS

© The Moon generally	2f Jupiter
$\$$ Mercury	h Saturn
\uparrow Venus	\uparrow Uranus
\oplus	Ψ Neptune
\oplus Earth	\perp Pluto

SIGNS OF THE ZODIAC

γ Aries	0°	\& Leo	120°		Sagittarius	240°
\bigcirc Taurus	30°	m Virgo	150°	6	Capricornus	270°
I Gemini	60°	\simeq Libra	180°	m	Aquarius	300°
\% Cancer	90°	m Scorpius	210°	-	Pisces.	330°

THE GREEK ALPHABET

A, α	Alpha
B, β	Beta
Γ, γ	Gamma
Δ, δ	Delta
E, $\boldsymbol{\epsilon}$	Epsilon
Z, ζ	Zeta
$\mathrm{H}, \mathrm{\eta}$	Eta
Θ, θ,	Theta

P, ρ Rho
$\boldsymbol{\Sigma}, \boldsymbol{\sigma}$ Sigma
T, τ Tau
$\mathbf{Y}, \boldsymbol{v}$ Upsilon
Φ, ϕ Phi
X, χ Chi
Ψ, ψ Psi
Ω, ω Omega

CO-ORDINATE SYSTEMS AND TERMINOLOGY

Astronomical positions are usually measured in a system based on the celestial poles and celestial equator, the intersections of Earth's rotation axis and equatorial plane, respectively, and the infinite sphere of the sky. Right ascension (R.A. or α) is measured in hours (h), minutes (m) and seconds (s) of time, eastward along the celestial equator from the vernal equinox. Declination (Dec. or δ) is measured in degrees (${ }^{\circ}$), minutes (${ }^{\prime}$) and seconds (") of arc, northward (N or +) or southward (S or -) from the celestial equator toward the N or S celestial pole.

Positions can also be measured in a system based on the ecliptic, the intersection of Earth's orbit plane and the infinite sphere of the sky. The Sun appears to move eastward along the ecliptic during the year. Longitude is measured eastward along the ecliptic from the vernal equinox; latitude is measured at right angles to the ecliptic, northward or southward toward the N or S ecliptic pole. The vernal equinox is one of the two intersections of the ecliptic and the celestial equator; it is the one at which the Sun crosses the celestial equator moving from south to north.
Objects are in conjunction if they have the same longitude or R.A., and are in opposition if they have longitudes or R.A.'s which differ by 180°. If the second object is not specified, it is assumed to be the Sun. For instance, if a planet is "in conjunction", it has the same longitude as the Sun. At superior conjunction, the planet is more distant than the Sun; at inferior conjunction, it is nearer. (See the diagram on page 94.)

If an object crosses the ecliptic moving northward, it is at the ascending node of its orbit; if it crosses the ecliptic moving southward, it is at the descending node.

Elongation is the difference in longitude between an object and a second object (usually the Sun). At conjunction, the elongation of a planet is thus zero.

BASIC DATA

PRINCIPAL ELEMENTS OF THE SOLAR SYSTEM

MEAN ORBITAL ELEMENTS

Planet	Mean Distance from Sun		Period of Revolution		Eccentricity (e)	Inclination (i)	Long. of Node (8)	Long. of Perihelion (π)	Mean Long. at Epoch (L)
	A	millions of km	Sidereal (P)	Syn- odic					
				days		。			
Mercury	0.387	57.9	87.97d	116	0.206	7.0	48.2	77.2	209.5
Venus	0.723	108.2	224.70	584	0.007	3.4	76.5	131.5	66.9
Earth	1.000	149.6	356.26		0.017	0.0	0.0	102.7	114.4
Mars	1.524	228.0	686.98	780	0.093	1.8	49.4	335.7	11.7
Jupiter	5.202	778.2	11.86a	399	0.048	1.3	100.3	15.5	300.1
Saturn	9.563	1430.6	29.46	378	0.051	2.5	113.5	93.2	227.0
Uranus	19.294	2886.3	84.01	370	0.047	0.8	74.0	176.8	249.0
Neptune	30.274	4528.9	164.79	367	0.007	1.8	131.6	356.9	272.1
Pluto	39.682	5936.3	247.69	367	0.253	17.1	110.2	224.3	217.2

These elements are for epoch 1985 Jan. 15.0 UT

PHYSICAL ELEMENTS

	Object	Equat. Diam. km	Ob-lateness	$\begin{aligned} & \text { Mass } \\ & \oplus=1 \end{aligned}$	$\begin{gathered} \text { Den- } \\ \text { sity } \\ \mathrm{g} / \mathrm{cm}^{3} \end{gathered}$	Gravity $\oplus=1$	Esc. Speed km/s	Rotn. Period d	Incl.	Albed
\odot	Sun	1392000	0	332946.0	1.41	27.9	617.5	25-35*		
E	Moon	3476	0	0.012300	3.34	0.17	2.4	27.3217	6.7	0.12
¢	Mercury	4878	0	0.055274	5.43	0.38	4.3	58.646	0.0	0.106
9	Venus	12104	0	0.815005	5.24	0.91	10.4	243.017	177.3	0.65
\oplus	Earth	12756	1/298	1.000000	5.52	1.00	11.2	0.9973	23.4	0.37
ठ	Mars	6787	1/193	0.107447	3.94	0.38	5.0	1.0260	25.2	0.15
4	Jupiter	142800	1/15	317.833	1.33	2.54	59.6	$0.4101 \dagger$	3.1	0.52
万	Saturn	120000	1/9	95.159	0.70	1.08	35.6	0.4440	26.7	0.47
¢	Uranus	50800	1/30	14.500	1.30	0.91	21.3	0.65	97.9	0.51
	Neptune	48600	1/40	17.204	1.76	1.19	23.8	0.768	29.6	0.41
P	Pluto	3000	0 ?	0.0026?	1.1?	0.05 ?	1.2?	6.3867	118 ?	0.5?

The table gives the mean density, the gravity and escape speed at the pole and the inclination of equator to orbit.
*depending on latitude
\dagger For the most rapidly rotating part of Jupiter, the equatorial region.

SATELLITES OF THE SOLAR SYSTEM

By Joseph Veverka

Name	Diam. (km)	Mass $\left(10^{20} \mathrm{~kg}\right)$	Mean Dist. from Planet $\left(10^{3} \mathrm{~km} / \prime\right)$	Eccen- tricity	Vis. Mag.
		Density $\left(\mathrm{t} / \mathrm{m}^{3}\right)$	Rev. Period (d)	Orbit Incl $\left(^{\circ}\right)$	Viscovery Albedo

SAtellite of Earth					
Moon	3476	734.9 ± 0.7	$384.5 /$		
		3.34	27.322	$18-29$	0.11

Satellites of Mars						
I Phobos	21	$\underset{\sim 2}{(1.3 \pm 0.2) \times 10^{-4}}$	$\begin{aligned} & 9.4 / 25 \\ & 0.319 \end{aligned}$	$\begin{aligned} & 0.015 \\ & 1.1 \end{aligned}$	$\begin{gathered} 11.6 \\ 0.07 \end{gathered}$	A. Hall, 1877
II Deimos	12	$\underset{\sim}{(1.8 \pm 2} \pm \underset{\sim}{0.2}) \times 10^{-5}$	23.5/ 63 1.263	0.0005 1.8 v	12.7 0.07	A. Hall, 1877

Satellites of Jupiter						
XVI Metis	(40)	-	$128 / 42$ 0.294	${ }^{0}$	$\begin{aligned} & 17.5 \\ & (0.05) \end{aligned}$	S. Synnott, 1979
XV Adrastea	(25)	-	$\begin{aligned} & 129 / 42 \\ & 0.297 \end{aligned}$	0	$\begin{aligned} & 18.7 \\ & (0.05) \end{aligned}$	Jewitt, Danielson, Synnott, 1979
V Amalthea	170	-	$\begin{gathered} 180 / 59 \\ 0.498 \end{gathered}$	$\begin{aligned} & 0.003 \\ & 0.4 \end{aligned}$	$\begin{gathered} 14.1 \\ 0.05 \end{gathered}$	E. Barnard, 1892
XIV Thebe	(100)	-	$\begin{gathered} 222 / 73 \\ 0.674 \end{gathered}$	0.013 -	$\begin{aligned} & 16.0 \\ & (0.05) \end{aligned}$	S. Synnott, 1979
I Io	3630	$\begin{gathered} 892 \pm 4 \\ 3.55 \end{gathered}$	$\begin{gathered} 422 / 138 \\ 1.769 \end{gathered}$	$\begin{aligned} & 0.004 \\ & 0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 0.6 \end{aligned}$	Galileo, 1610
II Europa	3140	$\begin{gathered} 487 \pm 5 \\ 3.04 \end{gathered}$	$\begin{gathered} 671 / 220 \\ 3.551 \end{gathered}$	$\begin{aligned} & 0.010 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 5.3 \\ & 0.6 \end{aligned}$	Galileo, 1610
III Ganymede	5260	$\begin{gathered} 1490 \pm 6 \\ 1.93 \end{gathered}$	$\begin{gathered} 1070 / 351 \\ 7.155 \end{gathered}$	$\begin{aligned} & 0.001 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 4.6 \\ & 0.4 \end{aligned}$	Galileo, 1610

Apparent magnitude and mean distance from planet are at mean opposition distance. The inclination of the orbit is referred to the planet's equator; a value greater than 90° indicates retrograde motion.
Values in parentheses are uncertain.
Note: Pronunciations of the names of the planetary satellites are given on p. 95 .

D

Name	Diam. (km)	$\begin{gathered} \text { Mass } \\ \left(10^{20} \mathrm{~kg}\right) \\ \\ \text { Density } \\ \left(\mathrm{t} / \mathrm{m}^{3}\right) \end{gathered}$	Mean Dist. from Planet $\left(10^{3} \mathrm{~km} /^{\prime \prime}\right)$ Rev. Period (d)	Eccentricity Orbit Incl (${ }^{\circ}$)	Vis. Mag. Vis. Albedo	Discovery
IV Callisto	4800	$\begin{gathered} 1075 \pm 4 \\ 1.83 \end{gathered}$	$\begin{gathered} 1885 / 618 \\ 16.689 \end{gathered}$	$\begin{aligned} & 0.007 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 5.6 \\ & 0.2 \end{aligned}$	Galileo, 1610
XIII Leda	(15)	-	$\begin{aligned} & 11110 / 3640 \\ & 240 \end{aligned}$	$\begin{gathered} 0.147 \\ 26.7 \end{gathered}$	20	C. Kowal, 1974
VI Himalia	185	-	$\begin{aligned} & 11470 / 3760 \\ & 251 \end{aligned}$	$\begin{aligned} & 0.158 \\ & 27.6 \end{aligned}$	$\begin{gathered} 14.8 \\ 0.03 \end{gathered}$	C. Perrine, 1904
X Lysithea	(35)	-	$\begin{aligned} & 11710 / 3840 \\ & 260 \end{aligned}$	$\begin{aligned} & 0.130 \\ & 29.0 \end{aligned}$	18.4	S. Nicholson, 1938
VII Elara	75	-	$\begin{aligned} & 11740 / 3850 \\ & 260 \end{aligned}$	$\begin{aligned} & 0.207 \\ & 24.8 \end{aligned}$	$\begin{gathered} 16.8 \\ 0.03 \end{gathered}$	C. Perrine, 1905
XII Ananke	(30)	-	$\begin{aligned} & 20700 / 6790 \\ & 617 \end{aligned}$	$\begin{aligned} & 0.17 \\ & 147 \end{aligned}$	18.9	S. Nicholson, 1951
XI Carme	(40)	-	$\begin{aligned} & 22350 / 7330 \\ & 692 \end{aligned}$	$\begin{aligned} & 0.21 \\ & 164 \end{aligned}$	18.0	S. Nicholson, 1938
VIII Pasiphae	(50)	-	$\begin{aligned} & 23330 / 7650 \\ & 735 \end{aligned}$	145	$\underline{17.1}$	P. Melotte, 1908
IX Sinope	(35)	-	$23370 / 7660$ 758	${ }_{153}{ }^{0.28}$	18.3	S. Nicholson, 1914
Satellites of Saturn						
XV Atlas	30	-	$\begin{gathered} 137 / 2 \\ 0.601 \end{gathered}$	$\begin{aligned} & 0.002 \\ & 0.3 \end{aligned}$	$\begin{gathered} (18) \\ 0.4 \end{gathered}$	R. Terrile, 1980
1980S27 Prometheus	100	-	$\begin{aligned} & 139 / 23 \\ & 0.613 \end{aligned}$	$\begin{aligned} & 0.004 \\ & 0.0 \end{aligned}$	$\begin{array}{r} (13.5) \\ 0.6 \end{array}$	S. Collins, D. Carlson, 1980
1980S26 Pandora	90	-	$\begin{aligned} & 142 / 24 \\ & 0.628 \end{aligned}$	$\begin{aligned} & 0.004 \\ & 0.1 \end{aligned}$	$\begin{gathered} (14) \\ 0.5 \end{gathered}$	S. Collins, D. Carlson, 1980
X Janus	190	-	$\begin{array}{ll} 151 / 2 & 25 \\ 0.695^{*} \end{array}$	$\begin{aligned} & 0.009 \\ & 0.3 \end{aligned}$	$\begin{gathered} (14) \\ 0.6 \end{gathered}$	A. Dollfus, 1966
XI Epimetheus	120	-	$\begin{array}{cc} 151 / 2 \\ 0.695^{*} \end{array}$	$\begin{aligned} & 0.007 \\ & 0.1 \end{aligned}$	$\begin{gathered} (14.5) \\ 0.5 \end{gathered}$	J. Fountain, S. Larson, 1966
I Mimas	390	$\begin{gathered} 0.38 \pm 0.01 \\ 1.2 \end{gathered}$	$\begin{aligned} & 187 / 30 \\ & 0.942 \end{aligned}$	$\begin{aligned} & 0.020 \\ & 1.5 \end{aligned}$	$\begin{array}{r} 12.5 \\ 0.7 \end{array}$	W. Herschel, 1789
II Enceladus	500	$\begin{gathered} 0.8 \pm 0.3 \\ 1.1 \end{gathered}$	$\begin{gathered} 238 / 38 \\ 1.370 \end{gathered}$	$\begin{aligned} & 0.004 \\ & 0.02 \end{aligned}$	$\begin{array}{r} 11.8 \\ 1.0 \end{array}$	W. Herschel, 1789

*Co-orbital satellites.

Name	Diam. (km)	$\begin{gathered} \begin{array}{c} \text { Mass } \\ \left(10^{20} \mathrm{~kg}\right) \end{array} \\ \text { Density } \\ \left(\mathrm{t} / \mathrm{m}^{3}\right) \end{gathered}$	Mean Dist. from Planet $\left(10^{3} \mathrm{~km} /{ }^{\prime \prime}\right)$ Rev. Period (d)	Eccentricity Orbit Incl (${ }^{\circ}$)	Vis. Mag. Vis. Albedo	Discovery
III Tethys	1060	$\begin{gathered} 7.6 \pm 0.9 \\ 1.2 \end{gathered}$	$\begin{array}{cc} 295 / 48 \\ 1.888 \end{array}$	$\begin{aligned} & 0.000 \\ & 1.1 \end{aligned}$	$\begin{array}{r} 10.3 \\ 0.8 \end{array}$	G. Cassini, 1684
XIII Telesto	25		$\begin{gathered} 295 / 48 \\ 1.888^{\mathrm{a}} \end{gathered}$	-	$\begin{gathered} (18) \\ 1.0 \end{gathered}$	Smith, Larson, Reitsema, 1980
XIV Calypso	25		$\begin{gathered} 295 / 48 \\ 1.888^{\mathrm{b}} \end{gathered}$	-	$\begin{gathered} (18) \\ 0.7 \end{gathered}$	Pascu, Seidelmann, Baum, Currie, 1980
IV Dione	1120	$\begin{gathered} 10.5 \pm 0.3 \\ 1.4 \end{gathered}$	$\begin{array}{cc} 378 / 61 \\ 2.737 \end{array}$	$\begin{aligned} & 0.002 \\ & 0.02 \end{aligned}$	$\begin{array}{r} 10.4 \\ 0.6 \end{array}$	G. Cassini, 1684
XII 1980S6	30	-	$\begin{gathered} 378 / 61 \\ 2.737^{c} \end{gathered}$	0.005	$\begin{gathered} (17.5) \\ 0.6 \end{gathered}$	P. Laques, J. Lecacheux, 1980
V Rhea	1530	$\begin{gathered} 24.9 \pm 1.5 \\ 1.3 \end{gathered}$	$\begin{gathered} 526 / 85 \\ 4.517 \end{gathered}$	$\begin{aligned} & 0.001 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 9.7 \\ & 0.6 \end{aligned}$	G. Cassini, 1672
VI Titan	5550 \dagger	$\begin{gathered} 1345.7 \pm 0.3 \\ 1.88 \end{gathered}$	$\begin{aligned} & 1221 / 197 \\ & 15.945 \end{aligned}$	$\begin{aligned} & 0.029 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 8.4 \\ & 0.2 \end{aligned}$	C. Huygens, 1655
VII Hyperion	255	-	$\begin{gathered} 1481 / 239 \\ 21.276 \end{gathered}$	$\begin{aligned} & 0.104 \\ & 0.4 \end{aligned}$	$\begin{array}{r} 14.2 \\ 0.3 \end{array}$	W. Bond, G. Bond, W. Lassell, 1848
VIII Iapetus	1460	$\begin{gathered} 18.8 \pm 1.2 \\ 1.2 \end{gathered}$	$\begin{gathered} 3561 / 575 \\ 79.331 \end{gathered}$	$\begin{gathered} 0.028 \\ 14.7 \end{gathered}$	$\begin{gathered} 11.0 \mathrm{v} \\ 0.08 \\ -0.4 \end{gathered}$	G. Cassini, 1671
IX Phoebe	220	-	$\begin{gathered} 12960 / 2096 \\ 550.46 \end{gathered}$	$\begin{aligned} & 0.163 \\ & 186 \end{aligned}$	$\begin{gathered} 16.5 \\ 0.05 \end{gathered}$	W. Pickering, 1898

Satellites of Uranus						
V Miranda	(300)		$130 / 414$	$\begin{aligned} & 0.017 \\ & 3.4 \end{aligned}$	16.5	G. Kuiper, 1948
I Ariel	1350	$\begin{aligned} & (17) \\ & 1.3 \pm 0.5 \end{aligned}$	$\begin{array}{cc} 192 / 14 \\ 2.520 \end{array}$	$\begin{aligned} & 0.0028 \\ & 0 \end{aligned}$	$\begin{array}{r} 14.0 \\ 0.3 \end{array}$	W. Lassell, 1851
II Umbriel	1100	$\begin{aligned} & (10) \\ & 1.4 \pm 0.5 \end{aligned}$	$\begin{gathered} 267 / 20 \\ 4.144 \end{gathered}$	$\begin{aligned} & 0.0035 \\ & 0 \end{aligned}$	$\begin{array}{r} 14.9 \end{array}$	W. Lassell, 1851

${ }^{\text {a }}$ Librates about trailing $\left(\mathrm{L}_{5}\right)$ Lagrangian point of Tethys' orbit.
${ }^{\text {b }}$ Librates about leading $\left(\mathrm{L}_{4}\right)$ Lagrangian point of Tethys' orbit.

\dagger Cloud-top diameter. Solid-body diameter equals 5150 km .

Name	Diam. (km)	$\begin{gathered} \begin{array}{c} \text { Mass } \\ \left(10^{20} \mathrm{~kg}\right) \end{array} \\ \\ \text { Density } \\ \left(\mathrm{t} / \mathrm{m}^{3}\right) \end{gathered}$	Mean Dist. from Planet $\left(10^{3} \mathrm{~km} /{ }^{\prime \prime}\right)$ Rev. Period (d)	Eccentricity Orbit Incl (${ }^{\circ}$)	Vis. Mag. Vis. Albedo	Discovery
III Titania	1600	$\begin{gathered} (58) \\ 2.7 \pm 0.6 \end{gathered}$	$\begin{gathered} 438 / 33 \\ 8.706 \end{gathered}$	$\begin{aligned} & 0.0024 \\ & 0 \end{aligned}$	$\begin{gathered} 13.9 \\ 0.2 \end{gathered}$	W. Herschel, 1787
IV Oberon	1650	$\begin{gathered} (61) \\ 2.6 \pm 0.6 \end{gathered}$	$\begin{aligned} & 587 / 44 \\ & 13.463 \end{aligned}$	0.0007 0	14.1 0.2	W. Herschel, 1787
Satellites of Neptune						
I Triton	(3500)	$1300 ?$ $?$	$\begin{gathered} 354 / 17 \\ 5.877 \end{gathered}$	$\begin{aligned} & <0.0005 \\ & 160.0 \end{aligned}$	$\begin{gathered} 13.6 \\ (0.4) \end{gathered}$	W. Lassell, 1846
II Nereid	(300)	-	$5600 / 264$ 365.21	0.75 27.6	18.7	G. Kuiper, 1949
Satellite of Pluto						
I Charon	(1300)	-	$20.0 / 0.9$ 6.387	0	17	J. Christy, 1978

TELESCOPE PARAMETERS

(where $\mathrm{D}=$ diameter of aperture in millimetres)
Light Grasp (LG) is the ratio of the light flux intercepted by a telescope's objective lens or mirror to that intercepted by a human eye having a 7 mm diameter entrance pupil.

Limiting Visual Magnitude $\mathrm{m}_{1} \simeq 2.7+5 \log \mathrm{D}$, assuming transparent, dark-sky conditions and magnification $\geqslant 1 \mathrm{D}$. (See article by R. Sinnott, Sky and Telescope, 45, 401, 1973)

Smallest Resolvable Angle $\theta \simeq 120 / \mathrm{D}$ seconds of arc. However, atmospheric conditions seldom permit values less than 0 ". 5 .
Useful Magnification Range $\simeq 0.2 \mathrm{D}$ to 2D. The lower limit may be a little less, but depends upon the maximum diameter of the entrance pupil of the individual observer's eye. Also, 0.2 D provides better contrast than a lower value. The upper limit is determined by the wave nature of light and the optical limitations of the eye, although atmospheric turbulence usually limits the maximum magnification to 500 x or less. For examination of double stars, magnifications up to 4 D are sometimes useful. Note that the reciprocal of the coefficient to D is the diameter (in mm) of the telescope's exit pupil.

Values for some common apertures are:

$\mathrm{D}(\mathrm{mm})$	60	75	100	125	150	200	350	440
LG	73	110	200	320	460	820	2500	4000
$\mathrm{~m}_{1}$	11.6	12.1	12.7	13.2	13.6	14.2	15.4	15.9
$\theta\left({ }^{\prime \prime}\right)$	2.0	1.6	1.2	1.0	0.80	0.60	0.34	0.27
0.2 D	12 x	15 x	20 x	25 x	30 x	40 x	70 x	88 x
2D	120 x	150 x	200 x	250 x	300 x	400 x	700 x	880 x

SOME ASTRONOMICAL AND PHYSICAL DATA

Many of the numbers listed below are determined by measurement. Exceptions include defined quantities (indicated by three lines in the equal sign \equiv), quantities calculated from defined quantities (e.g. $\mathrm{m} / \mathrm{ly}, \mathrm{A} / \mathrm{pc}$), and numbers of mathematical origin such as π and conversion factors in angular measure. Of the measured quantities, some are known to only approximate precision. For these the equal sign is reduced to \approx. Many others are known to quite high precision. In these cases all digits shown are significant, with the uncertainties occurring after the last digit. The units, symbols, and nomenclature are based on recommendations of the International Astronomical Union, the International Union of Pure and Applied Physics, and the Metric Commission Canada.

LENGTH

1 astronomical unit (A)	$=1.49597870 \times 10^{11} \mathrm{~m}=499.004782$ light seconds
1 light year (ly)	$=9.460536 \times 10^{15} \mathrm{~m}$ (based on average Gregorian year)
	$=63239.8 \mathrm{~A}$
1 parsec (pc)	$=3.085678 \times 10^{16} \mathrm{~m}$
1 mile *	$=206264.8 \mathrm{~A}=3.261631$ light years
1 Angstrom*	$\equiv 1.609344 \mathrm{~km}$
	$\equiv 0.1 \mathrm{~nm}$

TIME

Day:	Mean sidereal (equinox to equinox)	$=86164.094 \mathrm{~s}$
	Mean rotation (fixed star to fixed star)	$=86164.102 \mathrm{~s}$
	Day (d)	$\equiv 86400$.
	Mean solar	$=86400.003 \mathrm{~s}$
Month:	Draconic (node to node)	$=27.21222 \mathrm{~d}$
	Tropical (equinox to equinox)	$=27.32158 \mathrm{~d}$
	Sidereal (fixed star to fixed star)	$=27.32166 \mathrm{~d}$
	Anomalistic (perigee to perigee)	$=27.55455 \mathrm{~d}$
	Synodic (New Moon to New Moon)	$=29.53059 \mathrm{~d}$
Year:	Eclipse (lunar node to lunar node)	$=346.6201 \mathrm{~d}$
	Tropical (equinox to equinox)	$=365.2422 \mathrm{~d}$
	Average Gregorian	$\equiv 365.2425 \mathrm{~d}$
	Average Julian	$\equiv 365.2500 \mathrm{~d}$
	Sidereal (fixed star to fixed star)	$=365.2564 \mathrm{~d}$
	Anomalistic (perihelion to perihelion)	$=365.2596 \mathrm{~d}$

EARTH
Mass $=5.974 \times 10^{24} \mathrm{~kg}$
Radius: Equatorial, $\mathrm{a}=6378.140 \mathrm{~km}$; Polar, $\mathrm{b}=6356.755 \mathrm{~km}$;
Mean, $\sqrt[3]{\mathrm{a}^{2} \mathrm{~b}}=6371.004 \mathrm{~km}$
1° of latitude $=111.133-0.559 \cos 2 \phi \mathrm{~km}$ (at latitude ϕ)
1° of longitude $=111.413 \cos \phi-0.094 \cos 3 \phi \mathrm{~km}$
Distance of sea horizon for eye h metres above sea-level $\approx 3.9 \sqrt{\mathrm{~h}} \mathrm{~km}$ (refraction inc.)
Standard atmospheric pressure $=101.325 \mathrm{kPa}\left(\approx 1 \mathrm{~kg}\right.$ above $\left.1 \mathrm{~cm}^{2}\right)$
Speed of sound in standard atmosphere $=331 \mathrm{~m} \mathrm{~s}^{-1}$
Magnetic field at surface $\approx 5 \times 10^{-5} \mathrm{~T}$
Magnetic poles: $76^{\circ} \mathrm{N}, 101^{\circ} \mathrm{W} ; 66^{\circ} \mathrm{S}, 140^{\circ} \mathrm{E}$
Surface gravity at latitude $45^{\circ}, \mathrm{g}=9.806 \mathrm{~m} \mathrm{~s}^{-2}$
Age $\approx 4.6 \mathrm{Ga}$
Meteoric flux $\approx 1 \times 10^{-15} \mathrm{~kg} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$
Escape speed from Earth $=11.2 \mathrm{~km} \mathrm{~s}^{-1}$
*Obsolete units

Solar parallax $=8^{\prime \prime} .794148$ (Earth equatorial radius $\div 1 \mathrm{~A}$)
Constant of aberration $=20^{\prime \prime} .49552$
Obliquity of ecliptic $=23^{\circ} .4412$ (1985.0)
Annual general precession $=50^{\prime \prime} .26$; Precession period $=25800 \mathrm{a}$
Orbital speed $=29.8 \mathrm{~km} \mathrm{~s}^{-1}$
Escape speed at 1 A from Sun $=42.1 \mathrm{~km} \mathrm{~s}^{-1}$

SUN

Mass $\equiv 1 \mathrm{~S}=1.9891 \times 10^{30} \mathrm{~kg}$; Radius $=696265 \mathrm{~km}$; Eff. temperature $=5770 \mathrm{~K}$
Output: Power $=3.83 \times 10^{26} \mathrm{~W} ; \mathrm{M}_{\mathrm{bol}}=4.75$
Luminous intensity $=2.84 \times 10^{27} \mathrm{~cd} ; \mathrm{M}_{\mathrm{V}}=4.84$
At 1 A, outside Earth's atmosphere:
Energy flux $=1.36 \mathrm{~kW} \mathrm{~m}^{-2} ; \mathrm{m}_{\text {bol }}=-26.82$
Illuminance $=1.27 \times 10^{5} \mathrm{~lx} ; \mathrm{m}_{\mathrm{V}}=-26.74$
Solar wind speed near Earth $\approx 450 \mathrm{~km} \mathrm{~s}^{-1}$ (travel time, Sun to Earth $\approx 5 \mathrm{~d}$)
Solar velocity $=19.75 \mathrm{~km} \mathrm{~s}^{-1}$ toward $\alpha=18.07 \mathrm{~h}, \delta=+30^{\circ}$ (solar apex)

MILKY WAY GALAXY

Mass $\approx 10^{12}$ solar masses
Centre: $\alpha=17 \mathrm{~h} 42.5 \mathrm{~min}, \delta=-28^{\circ} 59^{\prime}$ (1950)
Distance to centre $\approx 9 \mathrm{kpc}$, diameter $\approx 100 \mathrm{kpc}$
North pole: $\alpha=12 \mathrm{~h} 49 \mathrm{~min}, \delta=27^{\circ} 24^{\prime}$ (1950)
Rotational speed (at Sun) $\approx 250 \mathrm{~km} \mathrm{~s}^{-1}$
Rotational period (at Sun) $\approx 220 \mathrm{Ma}$
Velocity relative to the 3 K background $\approx 600 \mathrm{~km} \mathrm{~s}^{-1}$ toward $\alpha \approx 10 \mathrm{~h}, \delta \approx-20^{\circ}$

SOME CONSTANTS

Speed of light, $\mathrm{c} \equiv 299792458 . \mathrm{m} \mathrm{s}^{-1}$ (This, in effect, defines the metre.)
Planck's constant, $\mathrm{h}=6.6262 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Gravitational constant, G $=6.672 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$
Elementary charge, $\mathrm{e}=1.6022 \times 10^{-19} \mathrm{C}$
Avogadro constant, $\mathrm{N}_{\mathrm{A}}=6.022 \times 10^{26} \mathrm{kmol}^{-1}$
Boltzmann constant, $\mathrm{k}=1.381 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}=8.62 \times 10^{-5} \mathrm{eV} \mathrm{K}^{-1} \approx 1 \mathrm{eV} / 10^{4} \mathrm{~K}$
Stefan-Boltzmann constant, $\sigma=5.67 \times 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4}$
Wien's law, $\lambda_{\mathrm{m}} \mathrm{T}=2.898 \times 10^{-3} \mathrm{~m} \mathrm{~K}$ (per $\mathrm{d} \lambda$)
Hubble constant, $\mathrm{H} \approx 50$ to $75 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$ (depending on method of determination)
Volume of ideal gas at $0^{\circ} \mathrm{C}, 101.325 \mathrm{kPa}=22.41 \mathrm{~m}^{3} \mathrm{kmol}^{-1}$

MASS AND ENERGY

Atomic mass unit $(\mathrm{u})=1.6606 \times 10^{-27} \mathrm{~kg}=\mathrm{N}_{\mathrm{A}}{ }^{-1}=931.50 \mathrm{MeV}$
Electron rest mass $=9.1095 \times 10^{-31} \mathrm{~kg}=548.580 \mu \mathrm{u}$
Proton rest mass $=1.007276 \mathrm{u}$
Neutron rest mass $=1.008665 \mathrm{u}$
Some atomic masses:

MAGNITUDE RELATIONS

Log of light intensity ratio $\equiv 0.4$ times magnitude difference
Distance Modulus (D) \equiv apparent magnitude (m) - absolute magnitude (M)
Log of distance in ly $=0.2 \mathrm{D}+1.513435$ (neglecting absorption)
OPTICAL WAVELENGTH DATA
Bright-adapted (photopic) visible range $\approx 400-750 \mathrm{~nm}$
Dark-adapted (scotopic) visible range $\approx 400-620 \mathrm{~nm}$
Wavelength of peak sensitivity of human eye $\approx 555 \mathrm{~nm}$ (photopic)
$\approx 510 \mathrm{~nm}$ (scotopic)
Mechanical equivalent of light: 1 lm (scotopic) $\sim 580 \mu \mathrm{~W}$ at 510 nm
Colours (representative wavelength, nm): violet (420), blue (470), green (530), yellow (590), orange (610), red (660).

Some useful wavelengths (element, spectral designation or colour and/or (Fraunhofer line), nm):

H Lyman $\alpha 122$
Ca (K solar) 393
Ca (H solar) 397
Hg violet 405
H δ (h solar) 410
$\mathrm{H} \gamma$ (g solar) 434
Hg deep blue 436
$\mathrm{H} \beta$ (F solar) 486
Hg green $\quad 546$
Hg yellow 577

Hg yellow 579
$\mathrm{Na}\left(\mathrm{D}_{2}\right.$ solar) 589.0
Na (D_{1} solar) 589.6
He -Ne laser 633
$\mathrm{H} \alpha$ (C solar) 656

DOPPLER RELATIONS FOR LIGHT

$\alpha \equiv$ angle between velocity of source and line from source to observer.
$\beta \equiv \mathrm{v} / \mathrm{c}$
$\gamma \equiv\left(1-\beta^{2}\right)^{-0.5}$
Frequency: $\nu=\nu_{0} \gamma^{-1}(1-\beta \operatorname{Cos} \alpha)^{-1}$
$z \equiv\left(\lambda-\lambda_{0}\right) / \lambda_{0}=\gamma(1-\beta \operatorname{Cos} \alpha)-1$
For $\alpha=\pi\left\{\begin{array}{l}z=(1+\beta)^{0.5}(1-\beta)^{-0.5}-1(\approx \beta \text { if } \beta \ll 1) \\ \beta=\left[(1+z)^{2}-1\right]\left[(1+z)^{2}+1\right]^{-1}\end{array}\right.$
ANGULAR RELATIONS
$\pi=3.141592654 \approx(113 \div 355)^{-1}$
$1^{\prime \prime}=4.8481 \times 10^{-6} \mathrm{rad}$
Number of square degrees on a sphere $=41253$.
For $360^{\circ}=24 \mathrm{~h}, 15^{\circ}=1 \mathrm{~h}, 15^{\prime}=1 \mathrm{~min}, 15^{\prime \prime}=1 \mathrm{~s}$
Relations between sidereal time t, right ascension α, hour angle h , declination δ, azimuth A (measured east of north), altitude a, and latitude ϕ :

$$
\mathrm{h}=\mathrm{t}-\alpha
$$

$\sin \mathrm{a}=\sin \delta \sin \phi+\cosh \cos \delta \cos \phi$
$\cos \delta \sin \mathrm{h}=-\cos \mathrm{a} \sin \mathrm{A}$
$\sin \delta=\sin \mathrm{a} \sin \phi+\cos \mathrm{a} \cos \mathrm{A} \cos \phi$
Annual precession in $\alpha=3.0730+1.3362 \sin \alpha \tan \delta$ seconds
Annual precession in $\delta=20^{\prime \prime} .043 \cos \alpha$

SOME SI SYMBOLS AND PREFIXES

m	metre	N	newton ($\mathrm{kg} \mathrm{m} \mathrm{s}^{-2}$)	f	femto	10^{-15}
kg	kilogram	J	joule (N m)	p	pico	10^{-12}
s	second	W	watt ($\mathrm{J} \mathrm{s}^{-1}$)	n	nano	10^{-9}
min	minute	Pa	pascal ($\mathrm{N} \mathrm{m}^{-2}$)	μ	micro	10^{-6}
h	hour	t	tonne ($10^{3} \mathrm{~kg}$)	m	milli	10^{-3}
d	day	Hz	hertz (s^{-1})	c	centi	10^{-2}
a	year	C	coulomb (A s)	k	kilo	10^{3}
A	ampere	T	tesla ($\mathrm{Wb} \mathrm{m}^{-2}$)	M	mega	10^{6}
rad	radian	cd	candela ($\mathrm{lm} \mathrm{sr}^{-1}$)	G	giga	10^{9}
sr	steradian	1x	lux ($\mathrm{lm} \mathrm{m}^{-2}$)	T	tera	10^{12}

If declination is positive，use inner R．A．scale；if declination is negative，use outer R．A．scale，and reverse the sign of the precession in declination

	$\begin{aligned} & \text { घ8®8 } \\ & \text { ェNNN } \end{aligned}$	$\begin{aligned} & \text { M8® } \\ & \text { NָNָ } \end{aligned}$	$\begin{aligned} & \text { BNB } \\ & \text { NiN } \end{aligned}$	$\begin{aligned} & \text { 오요 } \\ & \text { 노요 } \end{aligned}$	$\begin{aligned} & 8 刃 8 \\ & \approx \approx \approx \end{aligned}$	$\begin{aligned} & \text { nep } \\ & \text { ien } \end{aligned}$	$\begin{aligned} & 8 \wp 8 \\ & a \infty \infty \end{aligned}$	옹ㅇㅇ Nヘ6o
< + +	$\begin{aligned} & \text { g8o8 } \\ & \text { Nㅡㅡㅡㅇ } \end{aligned}$	$\begin{aligned} & \text { Mol } \\ & \text { oon } \end{aligned}$	$\begin{aligned} & \text { Sol } \\ & \text { a } \infty \infty \end{aligned}$	moms nto	$\begin{aligned} & \text { 8MO } \\ & \text { নNM } \end{aligned}$	$\begin{aligned} & \text { লOO } \\ & \text { NNN } \end{aligned}$	$\begin{aligned} & \text { SO8 } \\ & \text { NOS } \end{aligned}$	
$\begin{gathered} \dot{0} . ⿷ 匚 ⿱ 口 龰 己 心 ~ \\ \text { దै } \end{gathered}$	$-\stackrel{N}{0} 0 .$	$\begin{aligned} & \forall n m \\ & n+i=1 \\ & 1 \end{aligned}$		$\begin{aligned} & \text { JmNO } \\ & 0 \forall N O \\ & 111 \end{aligned}$	$\begin{aligned} & \hat{0}-\dot{0} \\ & \underline{0}+\mathbf{o} \\ & +1 \end{aligned}$			$\begin{aligned} & \forall \text { MNO } \\ & \dot{\forall N O} \\ & +++ \end{aligned}$
\bigcirc	obo Eヘペ $+$	no NiN	o6o nのn Nヘヘ	ソOOー いいいい NヘNi	nn！ NiN	oo nn？ NiN	oo nn？ NiN	－60\％ nnnn NiviN
\bigcirc	かのた ENヘN $+$	UిO \mathcal{N}	ヘiN	Nivi	$\begin{aligned} & \text { ojn } \\ & \text { Nin } \\ & \text { Nin } \end{aligned}$	$ナ 寸$ NNN	$\begin{gathered} \text { NN } \end{gathered}$	∞ N～O nलmm ヘヘNヘ
$\stackrel{\circ}{\circ}$	$\begin{aligned} & \text { ōio } \\ & \text { ENivi } \\ & + \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { NiN } \end{aligned}$	$\begin{aligned} & \infty \infty \\ & \infty \\ & \cdots \sim 1 \\ & \cdots \sim \end{aligned}$	サツ゚ー かののの NヘNへ	$\begin{aligned} & \text { ono } \\ & \text { nNiv } \end{aligned}$	$\begin{aligned} & \text { 子N } \\ & \text { inin } \end{aligned}$	$\begin{aligned} & \text { Ñন } \\ & \text { NNN } \end{aligned}$	$\begin{aligned} & \text { ano } \\ & \text { NiNi } \end{aligned}$
－${ }^{\circ}$	$\begin{gathered} \text { ovm } \\ \text { ENNN } \\ + \end{gathered}$	$\begin{aligned} & -\infty n \\ & \cdots \infty \stackrel{y}{\infty} \\ & \text { Nin } \end{aligned}$	NSN	noi유 мंलウ்	$\begin{aligned} & \circ \infty \\ & n \stackrel{\infty}{+} \\ & \cdots \cdots i \end{aligned}$	$\begin{aligned} & \text { ñ } \\ & \text { NNi } \end{aligned}$	$\begin{aligned} & \text { FQ8 } \\ & \text { Nin } \end{aligned}$	ふ甘Nふ
		Nom	$\begin{aligned} & \text { Nm } \\ & \text { mल } \end{aligned}$	No90 サin f мलウゥ	$$	Nơ	20\％	$\begin{aligned} & \text { oon } \\ & \text { ron } \\ & \text { rin } \end{aligned}$
oo	$\begin{gathered} \text { omo } \\ \text { nNin } \\ + \end{gathered}$	SNN ウゥゥ	ñor	$\uparrow \infty \infty$ мiलin	$\begin{aligned} & \text { ®oñ } \\ & \text { NiN } \end{aligned}$	$\begin{aligned} & n 8 n \\ & \text { nir } \end{aligned}$	N゚ジ	mかn N ตกฺกฺ
$\begin{array}{l\|l} \text { ․ } \\ \text { y } \\ \text { d } \\ \text { O } \\ 0 \end{array}$	$\begin{gathered} 6 \infty \\ \text { En } \\ + \\ + \end{gathered}$	mint लंले	ci	$\begin{aligned} & \text { NNG } \\ & \underset{寸}{寸}+寸 \end{aligned}$	$\begin{aligned} & \text { ๑ল̋ } \\ & \text { Nin } \end{aligned}$	∞	$\begin{gathered} \text { No } \\ \text { No } \\ \text {-io } \end{gathered}$	
ค	o on non gヘivi $+$	$\begin{aligned} & \text { mgiv } \\ & \cdots \dot{\sim} \dot{\sim} \end{aligned}$	$\begin{aligned} & \text { NoIN } \\ & \text { サォに } \end{aligned}$	miño nini	$\begin{aligned} & \text { nov } \\ & \text { Nin } \end{aligned}$	Mơ	$\begin{array}{r} \text { Omg } \\ 000 \\ +1 \end{array}$	
in	$\begin{aligned} & \text { no } \\ & \text { ENMm } \\ & + \end{aligned}$	$\begin{aligned} & n g 8 \\ & \forall \forall i \end{aligned}$	$\begin{aligned} & n \infty \\ & \text { nin } \end{aligned}$		טNG $\cdots \cdots$	OO		$\stackrel{\infty}{\infty} \underset{1}{\infty}$
\bigcirc	$\begin{gathered} \text { ono } \\ \text { nNMサ } \\ + \\ + \end{gathered}$	$\begin{aligned} & \infty N= \\ & 0 N 寸 \\ & \forall \text { 内。 } \end{aligned}$	ono	OONか $+0 \infty \infty$ $\infty \infty \infty$	ño		$\begin{aligned} & \text { Qnす } \\ & \text { iNi } \\ & \text { iN } \end{aligned}$	NホOn NぃT下 мimin \qquad
$\begin{aligned} & i n \\ & i \\ & i \\ & \infty \end{aligned}$	๒ Nぃ மNை ベか $+$	$\begin{array}{r} +\infty \\ \sim \infty \end{array}$	$\begin{aligned} & \text { nin } \\ & \text {-in } \end{aligned}$	$\begin{aligned} & n \infty \times n \\ & \pm \pm n i n \end{aligned}$	$\begin{gathered} \text { ద®M } \\ \text { No் } \\ +1 \end{gathered}$	$\begin{aligned} & \text { nol } \\ & \text { Nin } \\ & \text { l } 11 \end{aligned}$	寸がす $0 \cdot \infty$ 11 ｜	
ن.		$\begin{aligned} & \forall n m \\ & n+m \\ & ++t \end{aligned}$		$\begin{aligned} \\ \text { MOO }\end{aligned}$ －シ～～ $+++$	$\begin{aligned} & \text { No. } \\ & \dot{0} \dot{0} \cdot \\ & 11 \end{aligned}$	$\begin{aligned} & \forall n m \\ & n \pm m \\ & \cdots \frac{1}{1} \end{aligned}$		$\begin{aligned} & \forall m N O \\ & \dot{O} \underset{\sim}{\top} 0 \\ & 111 \end{aligned}$
	$\begin{aligned} & \text { E8O8 } \\ & \text { noon } \end{aligned}$	$\begin{aligned} & \text { পoin } \\ & \text {-NN } \end{aligned}$	$\begin{aligned} & \text { sols } \\ & \text { mmt } \end{aligned}$	Modeg ナいいし	$\begin{aligned} & \text { Qeg } \\ & \text { NNm } \end{aligned}$	$\begin{aligned} & \text { Mos } \\ & \text { n士 } \end{aligned}$	$\begin{aligned} & 898 \\ & \text { nino } \\ & \text { nin } \end{aligned}$	$\begin{aligned} & \text { 용ㅇ } \\ & \text { onnd } \end{aligned}$
	$\begin{aligned} & \text { GSO8 } \\ & \text { 上NM } \end{aligned}$	$\begin{aligned} & \text { ngi } \\ & m \forall \# \end{aligned}$	$\begin{aligned} & \text { sing } \\ & \text { nin } \end{aligned}$	Mgips 	$\begin{aligned} & \text { 8is } \\ & \text { OO~ } \end{aligned}$	$\begin{aligned} & \text { Mgin } \\ & \text { nNo } \end{aligned}$	$\begin{aligned} & \text { SOQ } \\ & \text { mm } \end{aligned}$	$\begin{aligned} & \text { Mosi } \\ & \operatorname{tnn} 0 \end{aligned}$

To avoid interpolation in this table，which becomes increasingly inaccurate for large $|\delta|$ ，precession formulae may be used（see p．15）．

TIME

Time has been said to be nature's way of keeping everything from happening at once. For astronomical purposes the concern is not with defining time, but with its measurement. For this, units of time and time scales must be established and clocks devised.
There are three obvious, natural, periodic time intervals on Earth: the seasonal cycle (year); the cycle of lunar phases (month); and the day-night cycle (day). The problem of accurately subdividing these natural intervals to make time locally available at any moment was satisfactorily solved in 1657 by Christiaan Huygens who invented the first practical pendulum clock. Through successive refinements the pendulum clock reigned supreme for nearly three centuries, until it was surpassed in precision by the quartz oscillator in the 1940's. Within another 20 years the quartz clock was, in turn, superseded by the cesium atomic clock which today has a precision near one part in 10^{13} (one second in 300000 years).

The cycle of the seasons is called the tropical year and contains 365.2422 days. The cycle of lunar phases is known as the synodic month and equals 29.53059 days. The average day-night (diurnal) cycle is the mean solar day and contains approximately 86400.003 s . Other types of year, month and day have been defined and are listed along with brief definitions and durations on p. 13.

Today the second is the basic unit of time. For many decades a second meant $1 / 86400$ of the mean solar day. However, Earth's rotation on its axis is not perfectly uniform: tidal friction causes a secular slowing of about one part in 10^{12} per day; shifts of Earth's crust relative to the axis of rotation (polar wobble) produce a small quasi-periodic variation; meteorological factors cause a small periodic seasonal change; and there are random variations of a few parts in 10^{8} possibly associated with core-mantle interactions. Atoms display a permanence and stability that planets cannot, thus the second now has an atomic definition: 9192631770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the cesium 133 atom. This is known as the SI (for Systeme International) second (abbreviation s).

Although Earth's axial rotation is not sufficiently predictable to serve as a precise clock, the orbital motions of the planets and of our Moon are predictable to high accuracy. Through the dynamical equations describing these motions, a uniform time scale can be derived. This scale, known as Ephemeris Time (ET), was for many years the basis of astronomical ephemerides. Also, the definition of the SI second, mentioned above, was chosen so that it was identical to the ephemeris second to within the precision of measurement. Because atomic clocks are readily available and because of their proven precision, as of 1984 Ephemeris Time has been abandoned in favor of Terrestrial Dynamical Time (TDT). The unit of TDT is the SI second and its scale has been chosen to agree with the current ET scale.

Other time scales are in use. International Atomic Time (TAI), like TDT, runs at the SI rate but, for historical reasons, lags TDT by exactly 32.184 seconds. Another is Universal Time (UT1, or often simply UT) which is mean solar time at the Greenwich (England) meridian, corrected for polar wobble. In practice UT1 is defined in terms of Greenwich Mean Sidereal Time (GMST), the latter being defined in terms of Earth's rotation relative to the mean vernal equinox of date (see p.7). The adjective mean is used here to denote that small, periodic variations due to the nutation of Earth's axis have been averaged out, the mean equinox being affected only by the precession of the axis. GMST is the hour angle of this equinox. i.e. GMST equals the right ascension of a star (corrected for nutation) at the Greenwich meridian.

Closely related to UT1 is Coordinated Universal Time (UTC). UTC runs at the SI rate and is offset an integral number of seconds from TAI so that it approximates UT1. Because Earth's rotation is being slowed by tidal friction, UT1 now loses about one second per year relative to UTC. "Leap seconds" are inserted into UTC on June

30 or December 31 so that the difference UT1-UTC $\equiv \Delta$ UT1 does not exceed \pm 0.7 s . UTC lags TAI, and as of July 1,1983 TAI-UTC $\equiv \Delta$ AT $=22$ s (i.e. TDT UTC $=22 \mathrm{~s}+32.184 \mathrm{~s}=54.184 \mathrm{~s}$ exactly).

The world system of civil time is based on UT1. To keep clocks at various longitudes reasonably in phase with the day-night cycle and yet to avoid the inconvenience to travellers of a local time that varies continuously with longitude, a century ago Earth was divided into about 24 standard time zones, adjacent zones generally differing by one hour and each ideally 15 degrees wide (see the maps on pages 18 and 19). The zero zone is centred on the Greenwich meridian. All clocks within the same time zone read the same time. Some countries observe "daylight saving time" during the summer months. In Canada and the United States, clocks are generally set one hour ahead of standard time on the last Sunday in April and return to standard time on the last Sunday in October.

A sundial indicates apparent solar time at the observer's meridian. Not only is this, in general, different from standard time, but it is far from uniform because of Earth's elliptical orbit and the inclination of the ecliptic to the celestial equator. If the Sun is replaced by a fictitious mean sun moving uniformly along the equator, this defines Local Mean (Solar) Time (LMT). Apparent solar time can differ by up to 16 minutes from LMT depending upon the time of year (see p. 50). Also, depending upon the observer's location within his standard time zone, his standard time may differ by up to an hour or so from LMT (see p. 54).

In the same manner that GMST is defined, a Local Mean Sidereal Time (LMST) is defined for each observer's meridian. Because Earth makes one more rotation with respect to the other stars than it does with respect to the Sun during a year, sidereal time gains relative to standard time, LMT, UT1, TAI or TDT by about $3^{\mathrm{m}} 56^{\mathrm{s}}$ per day or 2^{h} per month. Also, because of precession, the mean sidereal day is about 8 ms shorter than Earth's period of rotation (see p. 13). LMST may be used to set a telescope on an object of known right ascension. The hour angle of the object equals the sidereal time less the right ascension. LMST may be available from a sidereal clock, or it can be calculated as explained on p. 20.

WORLD MAP OF TIME ZONES

Taken from Astronomical Phenomena for the Year 1985 (Washington: U.S. Government Printing Office, and London: Her Majesty's Stationery Office)

PRODUCED BY THE SURVEYS ANO MAPPING BRANCH, DEPARTMENT
OF ENERGY, MINES AND RESOURCES, OTTAWA, CANADA, 1973.

MAP OF STANDARD TIME ZONES

The map shows the number of hours by which each time zone is slower than Greenwich, that is, the number of hours which must be added to the zone's standard time to give Universal Time.

Note: Since the preparation of the above map, the standard time zones have been changed so that all parts of the Yukon Territory now observe Pacific Standard Time. The Yukon, Alaska-Hawaii, and Bering Standard Time Zones have disappeared, and all of Alaska is now on Alaska Standard Time, -9 hours. Also, the part of Texas west of longitude 105° is in the Mountain Time Zone.

RADIO TIME SIGNALS

National time services distribute Coordinated Universal Time (UTC). UTC is coordinated through the Bureau International de l'Heure in Paris so that most time services are synchronized to a tenth of a millisecond. Radio time signals available in North America include:

CHU Ottawa, Ontario $\quad 3.330,7.335,14.670 \mathrm{MHz}$
WWV Fort Collins, Colorado $2.5,5,10,15,20 \mathrm{MHz}$

The difference $\Delta \mathrm{UT} 1=\mathrm{UT} 1-\mathrm{UTC}$ to the nearest tenth of a second is coded in the signals. If UT1 is ahead of UTC, second markers beginning at the 1 second mark of each minute are doubled, the number of doubled markers indicating the number of tenths of a second UT1 is ahead of UTC. If UT1 is behind UTC, the doubled markers begin at the 9 second point.

MEAN SIDEREAL TIME 1985
The following is the Greenwich Mean Sidereal Time (GMST) on day 0 at 0^{h} UT of each month:

Jan. 0 06.6404 Apr. 0 12h5543 July 0 18.5339 Oct. 000 his792
Feb. 008.6774
Mar. 010.5173

May 014.5256
June 016.5626

Aug. 020.5709
Sep. 022.6079 Dec. 004.5875

GMST at hour t UT on day d of the month

$$
=\text { GMST at } 0^{\mathrm{h}} \text { UT on day } 0+0.065710 d+1.002738 t
$$

Local Mean Sidereal Time (LMST) = GMST - west longitude

$$
\text { (or }+ \text { east longitude) }
$$

LMST calculated by this method will be accurate to $\pm 0.2 \mathrm{~s}$ provided t is stated to $\pm 0.1 \mathrm{~s}$ or better and the observer's longitude is known to $\pm 1^{\prime \prime}$. (Note that t must be expressed in decimal hours UT. Also, to achieve $\pm 0.1 \mathrm{~s}$ accuracy in t, the correction $\Delta \mathrm{UT} 1$ must be applied to UTC. See the above section on radio time signals.)

JULIAN DATE, 1985

The Julian date is commonly used by astronomers to refer to the time of astronomical events, because it avoids some of the annoying complexities of the civil calendar. The Julian day corresponding to a given date is the number of days which have elapsed since January 1, 4713 B.C. For an account of the origin of the Julian system see: "The Julian Period", by C. H. Cleminshaw in the Griffith Observer, April 1975; "The Origin of the Julian Day System", by G. Moyer in Sky and Telescope, April 1981.

The Julian day commences at noon $\left(12^{\mathrm{h}}\right)$ UT. To find the Julian date at any time during 1985, determine the day of the month and time at the Greenwich meridian, convert this to a decimal day, and add it to one of the following numbers according to the month. (These numbers are the Julian dates for $0^{h} U T$ on the "Oth" day of each month.):

Jan. 2446065.5 Apr. 2446155.5 July 2446246.5 Oct. 2446338.5
Feb. 2446096.5 May 2446185.5 Aug. 2446277.5 Nov. 2446369.5
Mar. 2446124.5 June 2446216.5 Sep. 2446308.5 Dec. 2446399.5
e.g. $21: 36$ EDT on May $18=01: 36$ UT on May $19=$ May 19.07 UT $=$ $2446185.5+19.07=$ JD 2446204.57
The Julian dates for 0 UT January 0 for several previous years are 2440000.5 plus (for years indicated): 951(1971), 1316(1972), 1682(1973), 2047(1974), 2412(1975), 2777(1976), 3143(1977), 3508(1978), 3873(1979), 4238(1980), 4604(1981), 4969(1982), 5334(1983), 5699(1984).
Note: Anniversary and festival dates for 1985 appear on p. 23.

ASTRONOMICAL TWILIGHT AND SIDEREAL TIME

The diagram gives (i) the local mean time (LMT) of the beginning and end of astronomical twilight (curved lines) at a given latitude on a mean sidereal time (LMST, diagonal lines) at a given LMT on a given date. The LMST is also the right ascension of an object on the observer's celestial meridian. To use the diagram, draw a line downward from the given date; the line cuts the curved lines at the LMT of beginning and end of twilight, and cuts each diagonal line at the LMT corresponding to the LMST marked on the line. See pages 17 and 58 for definitions of LMT, LMST and astronomical twilight. (Diagram prepared by Randall Brooks.)

THE SKY MONTH BY MONTH

By John R. Percy*

Introduction-In the monthly descriptions of the sky on the following pages, positions of the Sun and planets are given for 0 h Dynamical Time, which differs only slightly from Standard Time on the Greenwich meridian (see p. 17). Estimates of altitude are for an observer in latitude $45^{\circ} \mathrm{N}$. Unless noted otherwise, the descriptive comments about the planets apply to the middle of the month.

The Sun-The values of the equation of time are for 0^{h} Dynamical Time ("equation of time" \equiv apparent solar time - local mean time). For times of sunrise and sunset and for changes in the length of the day, see pp. 54-57. See also p. 50.

The Moon-Its phases, perigee and apogee times and distances (rounded to the nearest 100 km), and its conjunctions with the planets are given in the monthly tables. For times of moonrise and moonset, see pp. 62-75.

Elongation, Age and Phase of the Moon-The elongation is the angular distance of the Moon from the Sun in degrees, counted eastward around the sky. Thus, elongations of $0^{\circ}, 90^{\circ}, 180^{\circ}$, and 270° correspond to new, first quarter, full, and last quarter moon. The age of the Moon is the time since the new moon phase. Because the Moon's orbital motion is not uniform, the age of the Moon does not accurately specify its phase. The Moon's elongation increases on the average by 12.2° per day, first quarter, full and last quarter phases corresponding approximately to $7.4,14.8$ and 22.1 days respectively.

The Sun's selenographic colongitude is essentially a convenient way of indicating the position of the sunrise terminator as it moves across the face of the Moon. It provides an accurate method of recording the exact conditions of illumination (angle of illumination), and makes it possible to observe the Moon under exactly the same lighting conditions at a later date. The Sun's selenographic colongitude is numerically equal to the selenographic longitude of the sunrise terminator reckoned eastward from the mean centre of the disk. Its value increases at the rate of nearly 12.2° per day or about $\frac{1}{2}^{\circ}$ per hour; it is approximately $270^{\circ}, 0^{\circ}, 90^{\circ}$ and 180° at New Moon, First Quarter, Full Moon and Last Quarter respectively. Values of the Sun's selenographic colongitude are given on the following pages for the first day of each month.

Sunrise will occur at a given point east of the central meridian of the Moon when the Sun's selenographic colongitude is equal to the eastern selenographic longitude of the point; at a point west of the central meridian when the Sun's selenographic colongitude is equal to 360° minus the western selenographic longitude of the point. The longitude of the sunset terminator differs by 180° from that of the sunrise terminator.

Libration is the shifting, or rather apparent shifting, of the visible disk of the Moon. Sometimes the observer sees features farther around the eastern or the western limb (libration in longitude), or the northern or southern limb (libration in latitude). When the libration in longitude is positive, the mean central point of the disk of the Moon is displaced eastward on the celestial sphere, exposing to view a region on the west limb. When the libration in latitude is positive, the mean central point of the disk of the Moon is displaced towards the south, and a region on the north limb is exposed to view.

The dates of the greatest positive and negative values of the libration in longitude and latitude are given in the following pages.

The Moon's Orbit. In 1985, the ascending node of the Moon's orbit regresses from longitude 55° to 36° (Taurus into Aries).

[^0]The Planets-Further information in regard to the planets, including Pluto, is found on pp. 93-108. For the configurations of Jupiter's four Galilean satellites, see the monthly tables. In these diagrams, the central vertical band represents the equatorial diameter of the disk of Jupiter. Time is shown by the vertical scale, each horizontal line denoting 0^{h} Universal Time. (Be sure to convert to U.T. before using these diagrams.) The relative positions of the satellites at any time with respect to the disk of Jupiter are given by the four labelled curves (I, II, III, IV) (see p. 9 for the key to these Roman numerals). In constructing these diagrams, the positions of the satellites in the direction perpendicular to the equator of Jupiter are necessarily neglected. Note that the orientation is for an inverting telescope. For the various transits, occultations, and eclipses of these satellites, see p. 109.

Minima of Algol-The times of mid-eclipse are given in the monthly tables and are calculated from the ephemeris

$$
\text { heliocentric minimum }=2440953.4657+2.8673075 \mathrm{E}
$$

and are rounded off to the nearest ten minutes. (The first number in the equation is the Julian date corresponding to 1971 Jan. 1.9657, an Algol minimum. The second number is the period of Algol in days, and E is an integer.)

Occultations of Stars and Planets-For information about occultations of stars and planets visible in North America, see pp. 83-92 and 124.

ANNIVERSARIES AND FESTIVALS 1985

New Year's Day		Jan.	Memorial Day (U.S.)	on. May 27
Epiphany	. Sun.	Jan. 6	Trinity Sunday.	June
Lincoln's Birthday (U.S.)	Tue.	Feb. 12	Father's Day	Sun. June 16
Valentine's Day	Thu.	Feb. 14	Canada Day	Mon. July
Washington's Birthday (U	Mon	Feb. 18	Independence Day	Thu. July
Ash Wednesday		Feb. 20	Civic Holiday	Mon. Aug.
St. David (Wales)	Fri.	Mar.	Labour Day	Mon. Sep.
St. Patrick (Ireland)	Sun.	Mar. 17	Rosh Hashanah	Mon. Sep. 16
Palm Sunday		Mar. 31	Islamic New Year	Mon. Sep. 16
Good Friday		Apr.	Yom Kippur	Wed. Sep. 25
First Day of Passover	. Sat.	Apr.	Succoth	Mon. Sep. 30
Easter Sunday		Apr.	Thanksgiving (Can.)	Mon. Oct. 14
Birthday of Queen			Columbus Day (U.S.)	Mon. Oct. 14
Elizabeth II (1926)	Sun.	Apr. 21	Halloween	Thu. Oct. 31
St. George (England)	Tue.	Apr. 23	Election Day (U.S.)	Tue. Nov. 5
Astronomy Day	Sat.	Apr. 27	Remembrance Day	Mon. Nov. 11
Mother's Day .	Sun.	May 12	Veterans' Day (U.S.)	Mon. Nov. 11
Ascension Day	Thu.	May 16	Thanksgiving (U.S.)	Thu. Nov. 28
Victoria Day.	Mon.	May 20	St. Andrew (Scotland)	Sat. Nov. 30
First Day of Ramadan	Tue.	May 21	First Sunday in Advent	Dec. 1
Shebuoth	Sun.	May 26	Christmas	Dec
Pentecost (Whit Sunday)		May 26		

Note: 1985 and 1986 calendars are on the inside back cover.

THE SKY FOR JANUARY 1985

The Sun-During January, the Sun's R.A. increases from 18 h 46 m to 20 h 58 m and its Decl. changes from $-23^{\circ} 02^{\prime}$ to $-17^{\circ} 11^{\prime}$. The equation of time changes from -3 m 24 s to -13 m 35 s . On the 3rd, Earth is at perihelion, 147088000 km from the Sun.

The Moon-On Jan. 1.0 U.T., the age of the Moon is 9.5 d . The Sun's selenographic colongitude is 21.1° and increases by 12.2° each day thereafter. The libration in longitude is maximum (west limb exposed) on Jan. $20\left(5^{\circ}\right)$ and minimum (east limb exposed) on Jan. $5\left(5^{\circ}\right)$. The libration in latitude is maximum (north limb exposed) on Jan. $22\left(7^{\circ}\right)$ and minimum (south limb exposed) on Jan. $9\left(7^{\circ}\right)$.

Mercury on the 1 st is in R.A. 17 h 09 m , Decl. $-20^{\circ} 42^{\prime}$, and on the 15 th is in R.A. 18 h 19 m , Decl. $-23^{\circ} 11^{\prime}$. On the 3rd, Mercury is at its greatest elongation west $\left(23^{\circ}\right)$ but is still extremely difficult to see before sunrise. The visibility of Mercury at greatest elongation depends on two factors: the magnitude of the elongation (which can vary greatly because of the eccentricity of Mercury's orbit) and the angle of the ecliptic to the observer's horizon. Near the vernal equinox at sunset, or the autumnal equinox at sunrise, the ecliptic (as seen by a northern observer) makes an angle of (90 - latitude +23$)^{\circ}$ with the horizon, and Mercury is easily seen at greatest elongation. Conversely, near the vernal equinox at sunrise, or the autumnal equinox at sunset, the ecliptic makes an angle of $(90-\text { latitude }-23)^{\circ}$ with the horizon, and Mercury is not likely to be seen.

Venus on the 1st is in R.A. 21 h 57 m , Decl. $-14^{\circ} 13^{\prime}$, and on the 15 th it is in R.A. 22 h 53 m , Decl. $-7^{\circ} 44^{\prime}$, mag. -4.0 , and transits at 15 h 16 m . Venus is at its greatest elongation east $\left(47^{\circ}\right)$ on the 22 nd, and so can be seen well up in the south-west, just after sunset. This very bright planet, and Mars, are 5° and 4°, respectively, north of a thin Moon on the 25 th. Note that 5° is the approximate separation of the two end stars in the bowl of the Big Dipper-not a particularly small angle.

Mars on the 15 th is in R.A. 23 h 09 m , Decl. $-6^{\circ} 1^{\prime}$, mag. +1.2 , and transits at 15 h 31 m . In Aquarius, it is well up in the south-west right after sunset, and sets about $3 \frac{1}{2} \mathrm{~h}$ later. Mars moves into Pisces later in the month. See also Venus above.

Jupiter on the 15th is in R.A. 19 h 47 m , Decl. $-21^{\circ} 27^{\prime}$, mag. -1.4 , and transits at 12 h 08 m . In Sagittarius, it is in conjunction on the 14th, and so cannot be seen this month. The four Jovian planets remain well south of the celestial equator throughout 1985.

Saturn on the 15 th is in R.A. 15 h 37 m , Decl. $-17^{\circ} 12^{\prime}$, mag. +0.8 , and transits at 7 h 58 m . In Libra, it rises about 4 h before the sun, and is low in the south by sunrise.

Uranus on the 15 th is in R.A. 17 h 00 m , Decl. $-22^{\circ} 43^{\prime}$, mag. +6.0 , and transits at 9 h 21 m . It remains in Ophiuchus all year.

Neptune on the 15 th is in R.A. 18 h 09 m , Decl. $-22^{\circ}{ }^{\prime} 9^{\prime}$, mag. +7.8 , and transits at 10 h 29 m . It remains in Sagittarius, in the vicinity of M8, 20, and 21, all year.

THE SKY FOR FEBRUARY 1985

The Sun-During February, the Sun's R.A. increases from 20 h 58 m to 22 h 47 m and its Decl. changes from $-17^{\circ} 11^{\prime}$ to $-7^{\circ} 41^{\prime}$. The equation of time changes from -13 m 35 s to -12 m 29 s , reaching a minimum of -14 m 17 s on the 11 th.

The Moon-On Feb. 1.0 U.T., the age of the Moon is 10.9 d . The Sun's selenographic colongitude is 38.0° and increases by 12.2° each day thereafter. The libration in longitude is maximum (west limb exposed) on Feb. 15 (5°) and minimum (east limb exposed) on Feb. $2\left(7^{\circ}\right)$. The libration in latitude is maximum (north limb exposed) on Feb. $19\left(7^{\circ}\right)$ and minimum (south limb exposed) on Feb. $6\left(7^{\circ}\right)$. The libration in longitude occurs because the rotation and revolution of the moon do not keep exactly in step: the rotation is nearly uniform but the revolution around the elliptical orbit is not. The libration in latitude occurs because the moon's equator is tipped by about $6 \frac{1}{2}^{\circ}$ to its orbit plane. As the moon revolves around Earth, its poles are tipped alternately towards us and away.

Mercury on the 1 st is in R.A. 20 h 08 m , Decl. $-21^{\circ} 51^{\prime}$, and on the 15 th is in R.A. 21 h 44 m , Decl. $-15^{\circ} 52^{\prime}$. It is not visible this month, being in superior conjunction on the 19th.

Venus on the 1 st is in R.A. 23 h 54 m , Decl. $+0^{\circ} 34^{\prime}$, and on the 15 th it is in R.A. 0 h 34 m , Decl. $+7^{\circ} 02^{\prime}$, mag. -4.3 , and transits at 14 h 54 m . It is high in the southwest after sunset, and sets about 4 h later. Venus is at its brightest this year on the 26th at mag. -4.3. It passes north of Mars on the 8th and 15th. Venus is the brighter of the two objects; Mars is the redder. Note the rapidity with which Venus moves from greatest elongation east, through greatest brilliancy (at the crescent phase) to inferior conjunction.

Mars on the 15 th is in R.A. 0 h 34 m , Decl. $+3^{\circ} 23^{\prime}$, mag. +1.4 , and transits at 14 h 54 m . In Pisces about 40° above the southwestern horizon just after sunset, it sets about 4 h later. See also Venus above.

Jupiter on the 15 th is in R.A. 20 h 17 m , Decl. $-20^{\circ} 04^{\prime}$, mag. -1.5 , and transits at 10 h 36 m . Moving into Capricornus early in the month, Jupiter can be seen with difficulty in the southeast just before sunrise.

Saturn on the 15 th is in R.A. 15 h 44 m , Decl. $-17^{\circ} 32^{\prime}$, mag. +0.7 , and transits at 6 h 03 m . In Libra, it rises about 6 h before the sun, and is low in the south by sunrise.

Uranus on the 15th is in R.A. 17 h 05 m , Decl. $-22^{\circ} 51^{\prime}$, mag. +6.0 , and transits at 7 h 24 m .

Neptune on the 15th is in R.A. 18 h 13 m , Decl. $-22^{\circ} 17^{\prime}$, mag. +7.8 , and transits at 8 h 32 m .

THE SKY FOR MARCH 1985

The Sun-During March, the Sun's R.A. increases from 22 h 47 m to 0 h 41 m and its Decl. changes from $-7^{\circ} 41^{\prime}$ to $+4^{\circ} 26^{\prime}$. The equation of time changes from -12 m 29 s to -4 m 03 s . Spring begins in the northern hemisphere on the 20 th at 16 h 14 m U.T., as the Sun reaches the vernal equinox. Note that, although the date of the vernal equinox varies from March 20 to 21 during the leap year cycle, it remains fixed on the average, thanks to our calendrical system.

The Moon-On Mar. 1.0 U.T., the age of the Moon is 9.2 d . The Sun's selenographic colongitude is 18.7° and increases by 12.2° each day thereafter. The libration in longitude is maximum (west limb exposed) on Mar. $14\left(7^{\circ}\right)$ and minimum (east limb exposed) on Mar. $2\left(8^{\circ}\right)$ and Mar. $30\left(8^{\circ}\right)$. The libration in latitude is maximum (north limb exposed) on Mar. $18\left(7^{\circ}\right)$ and minimum (south limb exposed) on Mar. $5\left(7^{\circ}\right)$.

The visibility and appearance of the Moon are affected by the angle of the ecliptic to the observer's horizon, as in the case of Mercury (see Mercury for January). Compare the appearance of the young and old crescent moons in March with their appearance in September.

Mercury on the 1 st is in R.A. 23 h 20 m , Decl. $-5^{\circ} 23^{\prime}$, and on the 15 th is in R.A. 0 h 43 m , Decl. $+6^{\circ} 30^{\prime}$. Being at its greatest elongation east (18° on the 17 th) and heliocentric latitude north (21st), Mercury is favourably positioned for spring. Look for it around mid-month, low in the west just after sunset. It passes 5° south of Venus on the 23rd.

Venus on the 1 st is in R.A. 1 h 03 m , Decl. $+12^{\circ} 22^{\prime}$, and on the 15 th it is in R.A. 1 h 11 m , Decl. $+15^{\circ} 25^{\prime}$, mag. -4.1 , and transits at 13 h 38 m . It is well up in the southwest just after sunset, and sets about 3 h later. It quickly moves toward the Sun later in the month, as it approaches inferior conjunction. See also Mercury above.

Mars on the 15 th is in R.A. 1 h 51 m , Decl. $+11^{\circ} 29^{\prime}$, mag. +1.6 , and transits at 14 h 20 m . Moving into Aries about mid-month, it is well up in the southwest just after sunset, and sets about 3 h later.

Jupiter on the 15th is in R.A. 20 h 41 m , Decl. $-18^{\circ} 41^{\prime}$, mag. -1.6 , and transits at 9 h 10 m . In Capricornus, it rises about $1 \frac{1}{2} \mathrm{~h}$ before the sun and is very low in the southeast at sunrise.

Saturn on the 15 th is in R.A. 15 h 45 m , Decl. $-17^{\circ} 31^{\prime}$, mag. +0.6 , and transits at 4 h 15 m . In Libra, it rises about 5 h after sunset and is low in the southwest by sunrise. On the 7th it is stationary and begins retrograde motion, moving westward with respect to the background stars. Following this motion on a week-to-week basis is a worthwhile activity for a school class, as well as for the individual interested observer.

Uranus on the 15 th is in R.A. 17 h 08 m , Decl. $-22^{\circ} 55^{\prime}$, mag. +5.9 , and transits at 5 h 37 m . On the 22 nd it is stationary and begins retrograde motion.

Neptune on the 15th is in R.A. 18 h 15 m , Decl. $-22^{\circ} 16^{\prime}$, mag. +7.8 , and transits at 6 h 44 m .

1985			MARCH UNIVERSAL TIME	Min. of Algol	Config. of Jupiter's Satellites
					$0.0{ }^{\text {d mat }}$
Fri.	d 1	h m		$\begin{array}{cc} \text { h m } \\ 1410 \end{array}$	0
Sat.	2				
Sun.	3				-
Mon.	4			1100	3.0 -
Tue.	5				,
Wed.	6				$5.0 \rightarrow 1$
Thu.	7		Mercury at ascending node	750	
		0213	(3) Full Moon		6.0
Fri.		23	Saturn stationary		
	8		Mars at ascending node		
		08	Moon at perigee (359 400 km)		
		15	Juno 0.7 N. of Moon; occultation		
Sun.	10	15	Vesta stationary	440	10:0
Mon.	11		Mercury at perihelion		11.0 \#
		23	Saturn $3^{\circ} \mathrm{N}$. of Moon		12.0 —
Tue.	12	08	Venus stationary		13.0
Wed.	13	09	Uranus $2^{\circ} \mathrm{N}$. of Moon	130	3.0
		1734	© Last Quarter		14.0
Thu.	14	12	Neptune $5^{\circ} \mathrm{N}$. of Moon		15.0-men
Fri.	15			2220	16.0 (6
Sat.	16				6.0
Sun.	17		Venus at greatest hel. lat. N.		
		02	Jupiter $5^{\circ} \mathrm{N}$. of Moon		$18.0 \text { —12/2x/ }$
		07	Mercury at greatest elong. E. (18 ${ }^{\circ}$)		$19.0-1 /$
Mon.	18			1910	
Tue.	19 20	1614	Vernal equinox; spring begins		22.0
Thu.	21		Mercury at greatest hel. lat. N.	1550	22.0
		1159	(10) New Moon		22.0 —
Fri.	22	18	Mercury $6^{\circ} \mathrm{N}$. of Moon		23.0 _
		19	Venus $12^{\circ} \mathrm{N}$. of Moon		22.0 -
		22	Uranus stationary		
Sat.	23	02	Mercury $5^{\circ} \mathrm{S}$. of Venus		(
		15	Moon at apogee (406 300 km)		-
Sun.	24	12	Mars 1.4 N . of Moon	1240	27.0
		13	Mercury stationary		27.0
Mon.	25	19	Juno at opposition		28.0
Tue.	26				29.0 _
Wed.	27			930	30.0 _
Thu.	28				"
Fri.	29	1611	D First Quarter		31.0
Sat.	30		D Frrst Quarter	620	0 (8)
Sun.	31.				

THE SKY FOR APRIL 1985

The Sun-During April, the Sun's R.A. increases from 0 h 41 m to 2 h 33 m and its Decl. changes from $+4^{\circ} 26^{\prime}$ to $+15^{\circ} 00^{\prime}$. The equation of time changes from -4 m 03 s to +2 m 52 s , and is zero on the 15th.

The Moon-On Apr. 1.0 U.T., the age of the Moon is 10.5 d . The Sun's selenographic colongitude is 36.2° and increases by 12.2° each day thereafter. The libration in longitude is maximum (west limb exposed) on Apr. $12\left(7^{\circ}\right)$ and minimum (east limb exposed) on Apr. $27\left(8^{\circ}\right)$. The libration in latitude is maximum (north limb exposed) on Apr. $14\left(7^{\circ}\right)$ and minimum (south limb exposed) on Apr. $1\left(7^{\circ}\right)$ and Apr. $28\left(7^{\circ}\right)$.

Mercury on the 1 st is in R.A. 0 h 53 m , Decl. $+9^{\circ} 06^{\prime}$, and on the 15 th is in R.A. 0 h 26 m , Decl. $+2^{\circ} 36^{\prime}$. On the 3rd, it is at inferior conjunction, and moves toward its greatest elongation west on the first of next month. As in January, though, it is less than 10° above the horizon just before sunrise, and extremely difficult to see.

Venus on the 1 st is in R.A. 0 h 46 m , Decl. $+13^{\circ} 36^{\prime}$, and on the 15 th it is in R.A. 0 h 20 m , Decl. $+8^{\circ} 26^{\prime}$, mag. -3.7 , and transits at 10 h 46 m . It reaches inferior conjunction on the 3rd, and only becomes visible (with extreme difficulty) towards the end of the month.

Mars on the 15 th is in R.A. 3 h 18 m , Decl. $+18^{\circ} 41^{\prime}$, mag. +1.7 , and transits at 13 h 45 m . Moving into Taurus about mid-month, Mars is found low in the west after sunset.

Jupiter on the 15th is in R.A. 21 h 03 m , Decl. $-17^{\circ} 20^{\prime}$, mag. -1.7 , and transits at 7 h 30 m . In Capricornus, it rises about $4 \frac{1}{2} \mathrm{~h}$ before the sun, and is low in the southeast at sunrise.

Saturn on the 15th is in R.A. 15 h 41 m , Decl. $-17^{\circ} 11^{\prime}$, mag. +0.4 , and transits at 2 h 08 m . In Libra, it rises about 4 h after sunset and is very low in the southwest by sunrise.

Uranus on the 15 th is in R.A. 17 h 07 m , Decl. $-22^{\circ} 54^{\prime}$, mag. +5.9 , and transits at 3 h 34 m .

Neptune on the 15th is in R.A. 18 h 16 m , Decl. $-22^{\circ} 15^{\prime}$, mag. +7.7 , and transits at 4 h 42 m . It is stationary on the 4th, starting retrograde motion.

1985			APRIL UNIVERSAL TIME	Min. of Algol	Config. of Jupiter's Satellites
					$0.0{ }^{\text {d }}$
Mon.	d 1	h m		h m	
Tue.	2			310	1.0
Wed.	3	14	Mercury in inferior conjunction		(17)
Thu. Fri.		22	Venus in inferior conjunction		3.0
	4				4.0
	5	01	Neptune stationary	000	-
		03	Pallas in conjunction		\%
		1132	(2) Full Moon		
		18	Moon at perigee (357000 km)		$7.0 \bigcirc$
	6				
Sun.	7			2000	
Mon.	8	07	Saturn $3^{\circ} \mathrm{N}$. of Moon		9.0 —
Tue.	9	16	Uranus $3^{\circ} \mathrm{N}$. of Moon		10.0 -
Wed.	10	19	Neptune $5^{\circ} \mathrm{N}$. of Moon	1740	¢
Thu.	11				11.0
Fri.	12	0441	© Last Quarter		12.0 ¢
Sat.	13	17	Jupiter $5^{\circ} \mathrm{N}$. of Moon	1430	
	14		Mercury at descending node		(3.0
Sun.	15				16.0
Tue.	16	00	Mercury stationary	1120	15.0 _ $40.11{ }^{12}$
Wed	17	23	Venus $10^{\circ} \mathrm{N}$. of Moon		16.0 \$
Thu.	18	04	Mercury $3^{\circ} \mathrm{N}$. of Moon		16.0 -
Fri.		21	Vesta at opposition		17.0 -
	19	17	Moon at apogee (406 500 km)	810	18.0
Sat.	20	0522	(40) New Moon		19,
Sun.	21				$19.0 x^{17}$
Mon.	22	09	Lyrid meteors	500	20.0 - ()
		11	Venus stationary		21.0
		13	Mars 00.4 S. of Moon; occultation ${ }^{1}$		22.0
Tue.	23	14	Pluto at opposition		22.0
Wed.	24		Mercury at aphelion		23.0
Thu.	25			140	24.0 , 23.0
Fri.	26				22.0
Sat.	27			2230	25.0 -
Sun.	28	0425	D First Quarter		26.0
Mon.	29) First Quarter		27.0
Tue.	30			1920	27.0 -
					28.0
					20.0
					29.0 -
					30.0 —

[^1]
THE SKY FOR MAY 1985

The Sun-During May, the Sun's R.A. increases from 2 h 33 m to 4 h 35 m and its Decl. changes from $+15^{\circ} 00^{\prime}$ to $+22^{\circ} 01^{\prime}$. The equation of time changes from +2 m 52 s to +2 m 18 s , and is maximum at +3 m 43 s on the 14th. On the 19 th there is a partial eclipse of the Sun visible in Northern Canada, the Arctic, and North East Asia. For more information, see the section on eclipses.

The Moon-On May 1.0 U.T., the age of the Moon is 10.8 d . The Sun's selenographic colongitude is 42.2° and increases by 12.2° each day thereafter. The libration in longitude is maximum (west limb exposed) on May $10\left(7^{\circ}\right)$ and minimum (east limb exposed) on May $25\left(7^{\circ}\right)$. The libration in latitude is maximum (north limb exposed) on May $11\left(7^{\circ}\right)$ and minimum (south limb exposed) on May 26 $\left(7^{\circ}\right)$. On the 4th there is a total eclipse of the Moon, not visible in North America.

Mercury on the 1 st is in R.A. 0 h 55 m , Decl. $+2^{\circ} 51^{\prime}$, and on the 15 th is in R.A. 2 h 01 m , Decl. $+9^{\circ} 23^{\prime}$. On the 1 st , Mercury is at its greatest elongation west $\left(27^{\circ}\right)$, but especially as it is south of the ecliptic all month, it is very difficult to see.

Venus on the 1 st is in R.A. 0 h 21 m , Decl. $+4^{\circ} 36^{\prime}$, and on the 15 th it is in R.A. 0 h 47 m , Decl. $+4^{\circ} 44^{\prime}$, mag. -4.2 , and transits at 9 h 16 m . It is very low in the east before sunrise, but is very bright; it is 3° north of the Moon on the 15 th.

Mars on the 15 th is in R.A. 4 h 45 m , Decl. $+23^{\circ} 00^{\prime}$, mag. +1.8 , and transits at 13 h 14 m . In Taurus, it may be seen early in the month, very low in the west just after sunset. On the 11th it passes 6° north of Aldebaran, which is reddish also, but brighter (mag. +0.7).

Jupiter on the 15th is in R.A. 21 h 16 m , Decl. $-16^{\circ} 30^{\prime}$, mag. -2.0 , and transits at 5 h 44 m . In Capricornus, it rises about 4 h before the Sun, and is low in the south just before sunrise.

Saturn on the 15 th is in R.A. 15 h 33 m , Decl. $-16^{\circ} 42^{\prime}$, mag. +0.2 , and transits at 0 h 02 m . In Libra, it is in opposition on the 15th, and so rises at about sunset and sets at about sunrise. Saturn is 8.924 A or 1335000000 km from Earth on the 15th: the closest this year. For this reason, it is at its brightest as well.

Uranus on the 15 th is in R.A. 17 h 03 m , Decl. $-22^{\circ} 49^{\prime}$, mag. +5.8 , and transits at 1 h 32 m .

Neptune on the 15 th is in R.A. 18 h 14 m , Decl. $-22^{\circ} 15^{\prime}$, mag. +7.7 , and transits at 2 h 43 m .

THE SKY FOR JUNE 1985

The Sun-During June, the Sun's R.A. increases from 4 h 35 m to 6 h 40 m and its Decl. changes from $+22^{\circ} 01^{\prime}$ to $+23^{\circ} 08^{\prime}$. The equation of time changes from +2 m 18 s to -3 m 42 s , and is zero on the 13th. On the 21st at 10 h 44 m U.T. the Sun reaches the summer solstice, and summer begins in the northern hemisphere.

The Moon-On June 1.0 U.T., the age of the Moon is 12.1 d . The Sun's selenographic colongitude is 60.7° and increases by 12.2° each day thereafter. The libration in longitude is maximum (west limb exposed) on June $7\left(7^{\circ}\right)$ and minimum (east limb exposed) on June $21\left(6^{\circ}\right)$. The libration in latitude is maximum (north limb exposed) on June $7\left(7^{\circ}\right)$ and minimum (south limb exposed) on June $22\left(7^{\circ}\right)$.

Mercury on the 1st is in R.A. 4 h 02 m , Decl. $+20^{\circ} 18^{\prime}$, and on the 15th is in R.A. 6 h 12 m , Decl. $+25^{\circ} 07^{\prime}$. Mercury is at superior conjunction on the 7th, and is not seen until very late in the month, very low in the west just after sunset. On the 26th it is 5° south of Pollux.

Venus on the 1 st is in R.A. 1 h 37 m , Decl. $+7^{\circ} 52^{\prime}$, and on the 15 th it is in R.A. 2 h 27 m , Decl. $+11^{\circ} 38^{\prime}$, mag. -3.9 , and transits at 8 h 54 m . At its greatest elongation west (46° on the 12th), Venus is low in the east just before sunrise. It is still very bright, and passes 1.9 south of the Moon on the 14th.

Mars on the 15th is in R.A. 6 h 16 m , Decl. $+24^{\circ} 16^{\prime}$, mag. +1.9 , and transits at 12 h 43 m . It is too close to the Sun to be seen.

Jupiter on the 15 th is in R.A. 21 h 18 m , Decl. $-16^{\circ} 28^{\prime}$, mag. -2.2 , and transits at 3 h 44 m . In Capricornus, it rises about 3 h after sunset and is low in the south just before sunrise. Jupiter is stationary on the 5th, beginning retrograde motion.

Saturn on the 15 th is in R.A. 15 h 24 m , Decl. $-16^{\circ} 14^{\prime}$, mag. +0.4 , and transits at 21 h 47 m . In Libra, it is low in the southeast after sunset and sets about $21 / 2 \mathrm{~h}$ before sunrise.

Uranus on the 15 th is in R.A. 16 h 58 m , Decl. $-22^{\circ} 42^{\prime}$, mag. +5.8 , and transits at 23 h 21 m . On the 6th it is at opposition, and at its least distance from us this year: 18.066 A or 2703000000 km .

Neptune on the 15 th is in R.A. 18 h 11 m , Decl. $-22^{\circ} 15^{\prime}$, mag. +7.7 , and transits at 0 h 38 m . On the 23 rd it is at opposition, 29.237 A or 4374000000 km from Earth.

THE SKY FOR JULY 1985

The Sun-During July, the Sun's R.A. increases from 6 h 40 m to 8 h 44 m and its Decl. changes from $+23^{\circ} 08^{\prime}$ to $+18^{\circ} 05^{\prime}$. The equation of time changes from -3 m 42 s to -6 m 19 s , reaching a minimum of -6 m 29 s on the 26th. On the 5th Earth is at aphelion, 152094000 km from the Sun.

The Moon-On July 1.0 U.T., the age of the Moon is 12.5 d . The Sun's selenographic colongitude is 67.3° and increases by 12.2° each day thereafter. The libration in longitude is maximum (west limb exposed) on July $5\left(6^{\circ}\right)$ and minimum (east limb exposed) on July $17\left(5^{\circ}\right)$. The libration in latitude is maximum (north limb exposed) on July $5\left(7^{\circ}\right)$ and minimum (south limb exposed) on July $19\left(7^{\circ}\right)$.

Mercury on the 1 st is in R.A. 8 h 18 m , Decl. $+21^{\circ} 12^{\prime}$, and on the 15 th is in R.A. 9 h 25 m , Decl. $+14^{\circ} 27^{\prime}$. It can be seen very low in the west after sunset, reaching greatest elongation east $\left(27^{\circ}\right)$ on the 14 th, but becoming increasingly difficult to see later in the month.

Venus on the 1 st is in R.A. 3 h 31 m , Decl. $+16^{\circ} 06^{\prime}$, and on the 15 th it is in R.A. 4 h 33 m , Decl. $+19^{\circ} 21^{\prime}$, mag. -3.7 , and transits at 9 h 02 m . It rises about 3 h before the Sun and is well up just before sunrise. Even though it is closer to the Sun in angular separation than last month, the ecliptic is inclined at a steeper angle to the horizon, and so Venus appears at a greater altitude. It passes 3° north of Aldebaran on the 15th.

Mars on the 15 th is in R.A. 7 h 42 m , Decl. $+22^{\circ} 26^{\prime}$, mag. +1.9 , and transits at 12 h 10 m . It is in conjunction on the 18 th , and is not visible this month.

Jupiter on the 15th is in R.A. 21 h 09 m , Decl. $-17^{\circ} 14^{\prime}$, mag. -2.3 , and transits at 1 h 38 m . In Capricornus, it rises about $11 / 2 \mathrm{~h}$ after sunset, and is low in the southwest just before sunrise.

Saturn on the 15 th is in R.A. 15 h 19 m , Decl. $-16^{\circ} 02^{\prime}$, mag. +0.6 , and transits at 19 h 44 m . In Libra, it is low in the south at sunset and sets about 4 h before sunrise. On the 26th it is stationary, resuming direct (eastward) motion.

Uranus on the 15 th is in R.A. 16 h 53 m , Decl. $-22^{\circ} 35^{\prime}$, mag. +5.8 , and transits at 21 h 18 m .

Neptune on the 15 th is in R.A. 18 h 07 m , Decl. $-22^{\circ} 16^{\prime}$, mag. +7.7 , and transits at 22 h 32 m .

THE SKY FOR AUGUST 1985

The Sun-During August, the Sun's R.A. increases from 8 h 44 m to 10 h 41 m and its Decl. changes from $+18^{\circ} 05^{\prime}$ to $+8^{\circ} 23^{\prime}$. The equation of time changes from -6 m 19 s to -0 m 08 s .

The Moon-On Aug. 1.0 U.T., the age of the Moon is 14.0 d . The Sun's selenographic colongitude is 86.1° and increases by 12.2° each day thereafter. The libration in longitude is maximum (west limb exposed) on Aug. 1 (5°) and Aug. $28\left(5^{\circ}\right)$ and minimum (east limb exposed) on Aug. $14\left(6^{\circ}\right)$. The libration in latitude is maximum (north limb exposed) on Aug. $1\left(7^{\circ}\right)$ and Aug. $28\left(7^{\circ}\right)$ and minimum (south limb exposed) on Aug. $15\left(7^{\circ}\right)$. The Perseid meteor shower occurs close to New Moon, so it should be well visible this year.

Mercury on the 1 st is in R.A. 9 h 42 m , Decl. $+9^{\circ} 15^{\prime}$, and on the 15 th is in R.A. 9 h 06 m , Decl. $+12^{\circ} 21^{\prime}$. It is at inferior conjunction on the 10 th , and is not visible until late in the month, very low in the east before sunrise. Greatest elongation west $\left(18^{\circ}\right)$ occurs on the 28th.

Venus on the 1 st is in R.A. 5 h 53 m , Decl. $+21^{\circ} 37^{\prime}$, and on the 15 th it is in R.A. 7 h 03 m . Decl. $+21^{\circ} 35^{\prime}$, mag. -3.5 , and transits at 9 h 30 m . As it was last month, Venus is well up in the sky just before sunrise. It passes 7° south of Pollux on the 23rd.

Mars on the 15th is in R.A. 9 h 05 m , Decl. $+17^{\circ} 53^{\prime}$, mag. +2.0 , and transits at 11 h 31 m . Very late in the month, it can be seen with difficulty, very low in the east, just before sunrise.

Jupiter on the 15th is in R.A. 20 h 54 m , Decl. $-18^{\circ} 24^{\prime}$, mag. -2.4 , and transits at 23 h 16 m . In Capricornus, it is at opposition on the 4th, and so rises at about sunset and sets at about sunrise. On that date, Jupiter is at its brightest and closest: 4.067 A or 608000000 km from Earth.

Saturn on the 15 th is in R.A. 15 h 20 m , Decl. $-16^{\circ} 13^{\prime}$, mag. +0.7 , and transits at 17 h 44 m . In Libra, it is low in the south at sunset and sets about $31 / 2 \mathrm{~h}$ later.

Uranus on the 15 th is in R.A. 16 h 51 m , Decl. $-22^{\circ} 31^{\prime}$, mag. +5.8 , and transits at 19 h 14 m . It is stationary on the 23 rd , resuming its direct motion.

Neptune on the 15 th is in R.A. 18 h 05 m , Decl. $-22^{\circ} 18^{\prime}$, mag. +7.7 , and transits at 20 h 28 m .

1985			AUGUST UNIVERSAL TIME	Min. of Algol	Config. of Jupiter's Satellites
	d	h m		h m	
Thu.	1	02	Jupiter $4^{\circ} \mathrm{N}$. of Moon		
Fri.	2				O
Sat.	3			1010	
Sun.	4	12	Jupiter at opposition		3.0 C
Mon.	5				4.0
Tue.	6			700	5.0
Wed.	7				
Thu.	8	$\begin{array}{\|l\|} \hline 02 \\ 18 \\ 29 \end{array}$	Moon at apogee (404100 km) © Last Quarter		
Fri.	9			350	
Sat.	10	22	Mercury at greatest hel. lat. S. Mercury in inferior conjunction		
Sun.	11				
Mon.	12	06	Perseid meteors	040	\otimes
Tue.	13	08	Venus $5^{\circ} \mathrm{S}$. of Moon		11.0
Wed.	14	14	Ceres $1^{\circ} \mathrm{S}$. of Moon; occultation	2130	12.0
Thu.	15				13.0-
Fri.	16	1006	(10) New Moon		13.0
Sat.	17			1810	$16.0 \longrightarrow$
Sun.	18				15.0-17\%
Mon.	19				
Tue.	20	$\begin{aligned} & 04 \\ & 06 \end{aligned}$	Moon at perigee (367400 km) Mercury stationary	1500	17
Wed.	21				
Thu.	22	16	Saturn $3^{\circ} \mathrm{N}$. of Moon		$19.0 \bigcirc$
Fri.	23	01	Uranus stationary	1150	19.0-
		0436	D First Quarter		20.0 -
		08	Venus $7^{\circ} \mathrm{S}$. of Pollux		21.0
Sat.	24	05	Uranus $3^{\circ} \mathrm{N}$. of Moon		
Sun.	25	10	Neptune $5^{\circ} \mathrm{N}$. of Moon		
Mon.	26			840	$23.0-$
Tue.	27	$\begin{aligned} & 04 \\ & 12 \end{aligned}$			
Wed.	28		Jupiter $4^{\circ} \mathrm{N}$. of Moon Mercury at greatest elong. W. (18 ${ }^{\circ}$)		25.0
Thu.	29		© Full Moon	530	
Sat.	31	0927			
					,
					30.0

THE SKY FOR SEPTEMBER 1985

The Sun-During September, the Sun's R.A. increases from 10 h 41 m to 12 h 28 m and its Decl. changes from $+8^{\circ} 23^{\prime}$ to $-3^{\circ} 05^{\prime}$. The equation of time changes from -0 m 08 s to +10 m 11 s , and is zero on the 1 st . Autumn begins in the northern hemisphere on the 23 rd at 2 h 08 m U.T., as the Sun reaches the autumnal equinox.

The Moon-On Sept. 1.0 U.T., the age of the Moon is 15.6 d . The Sun's selenographic colongitude is 104.7° and increases by 12.2° each day thereafter. The libration in longitude is maximum (west limb exposed) on Sept. 24 (6°) and minimum (east limb exposed) on Sept. $10\left(6^{\circ}\right)$. The libration in latitude is maximum (north limb exposed) on Sept. $24\left(7^{\circ}\right)$ and minimum (south limb exposed) on Sept. $11\left(7^{\circ}\right)$. The Harvest Moon, the full Moon nearest the autumnal equinox, occurs on the 29th. For about a week around this date at mid-northern latitudes, the Moon rises only about 20 minutes later each evening. It therefore provides useful light in the early evening, for the harvest and other activities.

Mercury on the 1st is in R.A. 9 h 34 m , Decl. $+14^{\circ} 58^{\prime}$, and on the 15th is in R.A. 11 h 08 m , Decl. $+^{\circ} 31^{\prime}$. Mercury can still be seen early this month very low in the east before sunrise, but later in the month it approaches superior conjunction (on the 22 nd) and can no longer be seen. It passes 0.01 south of Mars on the 4th, and 1° north of Regulus on the 6th, and is the brightest of the three, being about mag. -1.3 .

Venus on the 1 st is in R.A. 8 h 28 m , Decl. $+19^{\circ} 01^{\prime}$, and on the 15 th it is in R.A. 9 h 36 m , Decl. $+14^{\circ} 56^{\prime}$, mag. -3.4 , and transits at 10 h 01 m . It rises about 3 h before the Sun, and is well up in the east just before sunrise. On the 21st, Venus passes 0.4 north of Regulus; with Mars, these two objects form an interesting grouping in the September sky.

Mars on the 15 th is in R.A. 10 h 22 m , Decl. $+11^{\circ} 28^{\prime}$, mag. +2.0 , and transits at 10 h 46 m . In Leo, it is very low in the east just before sunrise. Mars passes 0.8 north of Regulus on the 9th. See also Mercury and Venus above.

Jupiter on the 15 th is in R.A. 20 h 41 m , Decl. $-19^{\circ} 13^{\prime}$, mag. -2.3 , and transits at 21 h 02 m . In Capricornus, it can be seen low on the meridian about 3 hours after sunset.

Saturn on the 15th is in R.A. 15 h 26 m , Decl. $-16^{\circ} 46^{\prime}$, mag. +0.8 , and transits at 15 h 49 m . In Libra, it is low in the southwest just after sunset, and sets about $2 \frac{1}{2} \mathrm{~h}$ later.

Uranus on the 15 th is in R.A. 16 h 51 m , Decl. $-22^{\circ} 33^{\prime}$, mag. +5.9 , and transits at 17 h 13 m .

Neptune on the 15 th is in R.A. 18 h 04 m , Decl. $-22^{\circ} 19^{\prime}$, mag. +7.7 , and transits at 18 h 25 m . It is stationary on the 12 th , resuming direct motion.

THE SKY FOR OCTOBER 1985

The Sun-During October, the Sun's R.A. increases from 12 h 28 m to 14 h 25 m and its Decl. changes from $-3^{\circ} 05^{\prime}$ to $-14^{\circ} 20^{\prime}$. The equation of time changes from $+10 \mathrm{~m} \mathrm{11s}$ to +16 m 23 s .

The Moon-On Oct 1.0 U.T., the age of the Moon is 16.2 d . The Sun's selenographic colongitude is 110.7° and increases by 12.2° each day thereafter. The libration in longitude is maximum (west limb exposed) on Oct. $21\left(7^{\circ}\right)$ and minimum (east limb exposed) on Oct. $8\left(7^{\circ}\right)$. The libration in latitude is maximum (north limb exposed) on Oct. $21\left(7^{\circ}\right)$ and minimum (south limb exposed) on Oct. $9\left(7^{\circ}\right)$. On the 28th there is a total eclipse of the Moon, visible in E. Europe, Asia, and the Arctic. This is also the Hunters' Moon, the full moon following the Harvest Moon. The properties of the Hunters' Moon are similar to those of the Harvest Moon (see p. 40).

Mercury on the 1 st is in R.A. 12 h 53 m , Decl. $-4^{\circ} 55^{\prime}$, and on the 15 th is in R.A. 14 h 15 m , Decl. $-14^{\circ} 32^{\prime}$. Mercury is rather too low in the sky after sunset to be easily seen.

Venus on the 1 st is in R.A. 10 h 51 m , Decl. $+8^{\circ} 36^{\prime}$, and on the 15 th it is in R.A. 11 h 55 m , Decl. $+2^{\circ} 08^{\prime}$, mag. -3.4 , and transits at 10 h 22 m . It is low in the southeast just before sunrise, and passes 0.1 north of Mars on the 4th. Around the 12 th, the waning crescent Moon joins the scene.

Mars on the 15 th is in R.A. 11 h 33 m , Decl. $+4^{\circ} 15^{\prime}$, mag. +2.0 , and transits at 9 h 58 m . Moving into Virgo about mid month, it rises about 3 h before the Sun, and is well up in the southeast at sunrise. See also Venus above.

Jupiter on the 15th is in R.A. 20 h 40 m , Decl. $-19^{\circ} 16^{\prime}$, mag. -2.1 , and transits at 19 h 03 m . In Capricornus, it is low in the southeast after sunset and sets about 7 h later. It is stationary on the 3rd, resuming direct motion.

Saturn on the 15th is in R.A. 15 h 38 m , Decl. $-17^{\circ} 30^{\prime}$, mag. +0.8 , and transits at 14 h 02 m . In Libra, it is very low in the southwest just after sunset.

Uranus on the 15 th is in R.A. 16 h 55 m , Decl. $-22^{\circ} 40^{\prime}$, mag. +5.9 , and transits at 15 h 19 m .

Neptune on the 15 th is in R.A. 18 h 05 m , Decl. $-22^{\circ} 21^{\prime}$, mag. +7.8 , and transits at 16 h 28 m .

${ }^{1}$ visible from Arctic, N.E. Asia, N. Pacific

THE SKY FOR NOVEMBER 1985

The Sun-During November, the Sun's R.A. increases from 14 h 25 m to 16 h 28 m and its Decl. changes from $-14^{\circ} 20^{\prime}$ to $-21^{\circ} 46^{\prime}$. The equation of time changes from +16 m 23 s to +11 m 08 s , reaching a maximum on the 3 rd of +16 m 25 s . On the 12th there is a total eclipse of the Sun visible from the S. Pacific, Atlantic, and Indian Oceans, and Antarctica.

The Moon-On Nov. 1.0 U.T., the age of the Moon is 17.8 d . The Sun's selenographic colongitude is 128.4° and increases by 12.2° each day thereafter. The libration in longitude is maximum (west limb exposed) on Nov. 18 (8°) and minimum (east limb exposed) on Nov. $6\left(8^{\circ}\right)$. The libration in latitude is maximum (north limb exposed) on Nov. $18\left(7^{\circ}\right)$ and minimum (south limb exposed) on Nov. $5\left(7^{\circ}\right)$.

Mercury on the 1 st is in R.A. 15 h 51 m , Decl. $-22^{\circ} 41^{\prime}$, and on the 15 th is in R.A. 16 h 50 m , Decl. $-24^{\circ} 56^{\prime}$. After the autumnal equinox, the ecliptic is at a very low angle with respect to the horizon after sunset, just as it is at a high angle before sunrise. The situation is reversed near the vernal equinox. Because of this, even at its greatest elongation east of 23° on the 8th, Mercury is too low to be seen. It reaches inferior conjunction on the 28th.

Venus on the 1st is in R.A. 13 h 13 m , Decl. $-6^{\circ} 6^{\prime}$, and on the 15 th it is in R.A. 14 h 19 m , Decl. $-12^{\circ} 30^{\prime}$, mag. -3.4 , and transits at 10 h 44 m . It is very difficult to see in the southeast just before sunrise; it passes 4° north of Spica on the 3rd.

Mars on the 15 th is in R.A. 12 h 44 m , Decl. $-3^{\circ} 28^{\prime}$, mag. +1.9 , and transits at 9 h 07 m . In Virgo, it rises about 4 h before the Sun and is well up in the southeast at sunrise.

Jupiter on the 15 th is in R.A. 20 h 51 m , Decl. $-18^{\circ} 33^{\prime}$, mag. -1.9 , and transits at 17 h 12 m . In Capricornus, it is low in the south just after sunset and sets about $5 \frac{1}{2} \mathrm{~h}$ later.

Saturn on the 15 th is in R.A. 15 h 52 m , Decl. $-18^{\circ} 20^{\prime}$, mag. +0.7 , and transits at 12 h 14 m . It is in conjunction on the 23 rd , and so is not visible this month.

Uranus on the 15 th is in R.A. 17 h 02 m , Decl. $-22^{\circ} 50^{\prime}$, mag. +6.0 , and transits at 13 h 24 m .

Neptune on the 15 th is in R.A. 18 h 08 m , Decl. $-22^{\circ} 21^{\prime}$, mag. +7.8 , and transits at 14 h 30 m .

[^2]
THE SKY FOR DECEMBER 1985

The Sun-During December, the Sun's R.A. increases from 16 h 28 m to 18 h 45 m and its Decl. changes from $-21^{\circ} 46^{\prime}$ to $-23^{\circ} 03^{\prime}$. The equation of time changes from +11 m 08 s to -3 m 16 s , and is zero on the 25 th . On the 21 st at 22 h 08 m U.T. the Sun reaches the winter solstice, and winter begins in the northern hemisphere.

The Moon-On Dec. 1.0 U.T., the age of the Moon is 18.4 d . The Sun's selenographic colongitude is 133.5° and increases by 12.2° each day thereafter. The libration in longitude is maximum (west limb exposed) on Dec. $17\left(8^{\circ}\right)$ and minimum (east limb exposed) on Dec. $4\left(7^{\circ}\right)$. The libration in latitude is maximum (north limb exposed) on Dec. $15\left(7^{\circ}\right)$ and minimum (south limb exposed) on Dec. $2\left(7^{\circ}\right)$ and Dec. $29\left(7^{\circ}\right)$.

Mercury on the 1 st is in R.A. 16 h 09 m , Decl. $-19^{\circ} 18^{\prime}$, and on the 15 th is in R.A. 16 h 01 m , Decl. $-18^{\circ} 08^{\prime}$. It can be seen very low in the southeast just before sunrise, reaching greatest elongation west $\left(21^{\circ}\right)$ on the 17 th. This month Mercury passes Venus (4th), the Moon (10th), Saturn (16th), Antares (21st), and Uranus (29th).

Venus on the 1 st is in R.A. 15 h 39 m , Decl. $-18^{\circ} 36^{\prime}$, and on the 15 th it is in R.A. 16 h 53 m , Decl. $-22^{\circ} 11^{\prime}$, mag. -3.4 , and transits at 11 h 19 m . It may be seen with great difficulty in the southeast early in the month, just before sunrise, and passes 1.1 south of Saturn on the 5th. See also Mercury above: Mercury, Venus and Saturn form an interesting (but difficult) grouping during the first half of the month. Look especially on the 10 th, when the Moon joins the grouping.

Mars on the 15 th is in R.A. 13 h 54 m , Decl. $-10^{\circ} 29^{\prime}$, mag. +1.8 , and transits at 8 h 19 m . Moving into Libra late in the month, it rises about 5 h before the Sun, and is well up by sunrise. On the 2nd, Mars passes 3° north of Spica and on the 8th is occulted by the Moon.

Jupiter on the 15th is in R.A. 21 h 10 m , Decl. $-17^{\circ} 10^{\prime}$, mag. -1.7 , and transits at 15 h 34 m . In Capricornus, it is low in the south just after sunset, and sets about $4 \frac{1}{2} \mathrm{~h}$ later.

Saturn on the 15th is in R.A. 16 h 06 m , Decl. $-19^{\circ} 03^{\prime}$, mag. +0.7 , and transits at 10 h 31 m . In Scorpius, it is very low in the southeast just before sunrise. See also Mercury and Venus above.

Uranus on the 15th is in R.A. 17 h 10 m , Decl. $-23^{\circ} 00^{\prime}$, mag. +6.0 , and transits at 11 h 34 m . It is in conjunction on the 10th. See also Mercury above.

Neptune on the 15th is in R.A. 18 h 13 m , Decl. $-22^{\circ} 21^{\prime}$, mag. +7.8 , and transits at 12 h 36 m . It is in conjunction on the 25 th .

[^3]
SUN

EPHEMERIS

Date $0^{\mathrm{h}} \mathrm{UT}$		$\begin{gathered} \text { Apparent } \\ 1985 \end{gathered}$		Transit at Greenwich UT	Orientation		
		RA	Dec		P	B_{0}	L_{0}
Jan		h m	0	h m s	\bigcirc	0	\bigcirc
		1845.8	-23 02	120338	$+2.0$	-3.0	311.2
	6	1907.8	-22 32	120555	- 0.4	-3.5	245.3
	11	1929.6	-21 51	120759	- 2.8	-4.1	179.5
	16	1951.1	-20 59	120949	- 5.2	-4.6	113.6
	21	2012.4	-19 58	121123	- 7.5	-5.0	47.8
	26	2033.4	-18 47	121237	- 9.7	-5.5	342.0
	31	2054.1	-17 27	121330	-11.8	-5.9	276.1
Feb	5	2114.4	-16 00	$\begin{array}{llll}12 & 14 & 03\end{array}$	-13.8	-6. 2	210.3
	10	2134.3	-14 26	121416	-15.7	-6. 5	144.5
	15	2154.0	-12 46	121410	-17.4	-6.7	78.6
	20	2213.3	-11 01	121346	-19.0	-6.9	12.8
	25	2232.4	-911	121306	-20.5	-7.0	306.9
Mar	2	2251.2	- 718	121211	-21.8	-7.1	241.1
	7	2309.8	- 523	121104	-22.9	-7.2	175.2
	12	2328.3	- 326	120947	-23.9	-7.1	109.3
	17	2346.6	- 127	120823	-24.7	-7.0	43.4
	22	004.8	$+031$	120655	-25.4	-6.9	337.5
	27	023.0	+ 229	120524	-25.8	-6.7	271.6
Apr	1	041.2	$+426$	120354	-26.1	-6. 5	205.6
	6	059.5	+ 621	120226	-26.2	-6.2	139.6
	11	117.8	$+813$	120103	-26.2	-5.8	73.6
	16	136.2	+10 02	115948	-25.9	-5.5	7.6
	21	154.8	+1146	115842	-25.5	-5.0	301.6
	26	213.6	+13 26	115747	-24.9	-4.6	235.5
May	1	232.6	+1500	115704	-24.1	-4.1	169.5
	6	251.8	+16 28	115635	-23.1	-3.6	103.4
	11	311.2	+1749	115619	-21.9	-3.1	37.3
	16	330.9	+1902	115619	-20.6	-2.5	331.2
	21	350.8	+2008	115632	-19.1	-2.0	265.0
	26	411.0	+2105	115659	-17.5	-1.4	198.9
	31	431.3	+2153	115737	-15.7	-0.8	132.7
Jun	5	451.8	+22 31	115825	-13.8	-0.2	66.5
	10	512.4	+2300	115922	-11.8	+0.4	0.4
	15	533.2	+2318	120024	- 9.7	$+1.0$	294.2
	20	554.0	+23 26	120129	- 7.6	+1.6	228.0
	25	614.8	+23 24	120234	- 5.4	+2.1	161.8
	30	635.5	+23 11	120336	- 3.1	+2.7	95.6
Jul	5	656.2	+22 49	120431	- 0.8	+3.2	29.4
	10	716.7	+22 16	120518	$+1.4$	+3.8	323.3
	15	737.0	+21 34	120554	$+3.7$	+4.2	257.1
	20	757.2	+2043	120618	+ 5.8	+4.7	190.9
	25	817.1	+1943	120628	$+8.0$	+5.1	124.8
	30	836.7	$+1835$	120623	$+10.0$	+5.5	58.6

$\begin{aligned} & \text { Date } \\ & \text { Oh }_{\text {UT }} \end{aligned}$	Apparent 1985		Transit at Greenwich UT	Orientation		
	RA	Dec		P	B_{0}	L_{0}
	h	$\bigcirc{ }^{\circ} 1$	h m s	-	\bigcirc	${ }^{\circ}$
Aug 4	856.1	+17 19	120602	+12.0	+5.9	352.5
	915.2	+15 56	120527	+13.9	+6.2	286.4
14	934.2	+1427	120438	+15.7	$+6.5$	220.3
19	952.9	+1252	120335	+17.3	+6.7	154.2
24	1011.3	+11 12	120220	+18.9	+6.9	88.1
29	1029.6	+ 927	120054	+20.3	+7.0	22.1
Sep 3	1047.8	+ 739	115920	+21.5	+7.1	316.0
8	1105.8	+ 548	115739	+22.7	$+7.2$	250.0
13	1123.8	+ 354	115554	+23.7	+7.1	184.0
18	1141.7	+159	115408	+24.5	+7.0	118.0
23	1159.7	+002	115222	+25.2	+6.9	52.0
28	1217.7	- 155	115039	+25.7	+6.8	346.0
Oct 3	1235.7	- 351	114901	+26.0	+6.5	280.0
- 8	1254.0	- 547	114733	+26.2	+6.3	214.0
13	1312.4	- 740	114615	+26.2	$+5.9$	148.1
18	1331.0	-931	114510	+26.0	+5.6	82.1
23	1349.8	-11 18	114421	+25.6	$+5.2$	16.2
28	1409.0	-13 02	114348	+25.0	+4.7	310.2
Nov 2	1428.4	-14 40	114335	+24.3	$+4.2$	244.3
7	1448.2	-16 12	114342	+23.3	+3.7	178.4
12	1508.4	-17 37	114410	+22.1	+3.2	112.4
17	1528.9	-18 55	114459	+20.8	+2.6	46.5
22	1549.7	-20 04	114609	+19.2	+2.0	340.6
27	1610.9	-21 05	114738	+17.5	+1.4	274.7
	1632.4	-21 55	114925	+15.6	+0.8	208.8
7	1654.1	-22 35	115128	+13.6	+0.1	142.9
12	1716.1	-23 04	115344	+11.5	-0.5	77.1
17	1738.2	-23 21	115608	+ 9.2	-1.1	11.2
22	1800.3	-23 27	115837	+ 6.9	-1.8	305.3
27	1822.5	-23 21	120106	+ 4.5	-2.4	239.5
32	1844.7	-23 03	120330	+ 2.1	-2.9	173.6

P is the position angle of the axis of rotation, measured eastward from the north point on the disk. B_{0} is the heliographic latitude of the centre of the disk, and L_{0} is the heliographic longitude of the centre of the disk, from Carrington's solar meridian, measured in the direction of rotation (see diagram). The rotation period of the Sun depends on latitude. The sidereal period of rotation at the equator is 25.38 d .

SUNDIAL CORRECTION

The "Transit at Greenwich" time (pages 48 and 49) may be used to calculate the sundial correction at the observer's position. e.g. To find the correction at Winnipeg on August 15, 1985: At Greenwich the Sun transits at $12^{\mathrm{h}} 04^{\mathrm{m}} 38^{\mathrm{s}}$ on August 14 and at $12^{\mathrm{h}} 03^{\mathrm{m}} 35^{\mathrm{s}}$ on August 19. Thus, to the nearest minute, on August 15 at both Greenwich and Winnipeg the Sun will transit at $12^{\mathrm{h}} 04^{\mathrm{m}}$ mean solar time, or $12^{\mathrm{h}} 33^{\mathrm{m}}$ CST, since Winnipeg has a longitude correction of $+29^{\mathrm{m}}$ (See page 54). Thus a 4^{m} correction must be added to the reading of a simple sundial to obtain mean solar time.

A figure accurate to a second or two can be obtained by interpolating for longitude. The interpolated transit time at Greenwich for August 15 is $12^{\mathrm{h}} 04^{\mathrm{m}} 25^{\mathrm{s}}$, the daily change in the time being $-12^{s} .6$. Adjusting this for the longitude of Winnipeg: $12^{\mathrm{h}} 04^{\mathrm{m}} 25^{\mathrm{s}}-\left(12^{\mathrm{s}} .6 \times 6^{\mathrm{h}} 29^{\mathrm{m}} \div 24^{\mathrm{h}}\right)=12^{\mathrm{h}} 04^{\mathrm{m}} 22^{\text {s }}$. Thus the sundial correction is $4^{\mathrm{m}} 22^{\mathrm{s}}$. To find the standard time of the Sun's transit to the nearest second or two, the observer's longitude must be known to $10^{\prime \prime}$ or better. e.g. Suppose an observer in Winnipeg is at longitude $97^{\circ} 13^{\prime} 50^{\prime \prime} \mathrm{W}$, or $6^{\mathrm{h}} 28^{\mathrm{m}} 55^{\mathrm{s}} \mathrm{W}$ of Greenwich. The time of transit will be $12^{\mathrm{h}} 04^{\mathrm{m}} 22^{\mathrm{s}}+28^{\mathrm{m}} 55^{\mathrm{s}}=12^{\mathrm{h}} 33^{\mathrm{m}} 17^{\mathrm{s}}$ CST ($13^{\mathrm{h}} 33^{\mathrm{m}} 17^{\mathrm{s}}$ CDT).

SOLAR ROTATION (SYNODIC)

DATES OF COMMENCEMENT (UT, $\mathrm{I}_{0}=0^{\circ}$) OF NUMBERED SYNODIC ROTATIONS							
No.		Commences	No.	Commences	No.		Commences
1757	1984	Dec 28.28	1762	May 13.81	1767		Sep 26.93
1758	1985	Jan 24.62	1763	Jun 10.02	1768		Oct 24.22
1759		Feb 20.96	1764	Jul 7.21	1769		Nov 20.52
1760		Mar 20.28	1765	Aug 3.42	1770		Dec 17.84
1761		Apr 16.57	1766	Aug 30.66	1771	1986	Jan 14.17

SOLAR ACTIVITY

SUNSPOTS, FLARES, AND AURORAE

By V. Gaizauskas

The present sunspot cycle (21) is compared with the mean of cycles 8 to 20 in the diagram adapted from "Solar-Geophysical Data" (U.S. Dept. of Commerce, Boulder, Colorado). The data plotted in the graph are monthly smoothed International sunspot numbers. The vertical bar defines the interval in which the most recent value in the graph can be predicted with a confidence of 90%. These smoothed data indicate that the maximum of the cycle occurred in the interval December 1979January 1980. Another measure of solar activity is the 10 cm microwave flux which has been monitored daily since 1947 by the National Research Council of Canada (Covington, A.E. 1967, J. Roy. Astron. Soc. Can., 61, 314). The 10 cm flux correlates closely with sunspot number and has the advantage of being reproducible without subjective bias by an observer.

OBSERVED AND PREDICTED SMOOTHED SUNSPOT NUMBERS

The declining phase of Cycle 21 is now well advanced, but reversals in the downward trend occurred from May to July 1983, and again from February to at least April 1984. A large active region produced a great flare late on 24 April 1984. The outburst of $10-\mathrm{cm}$ emission from this flare set an all-time record for the radio patrol at the Algonquin Radio Observatory: 67000 solar flux units at its peak, $21 / 2$ times its previous record set on 28 April 1978 and 10^{3} times greater than the quiet sun emission at solar minimum.

Successive eleven-year peaks of sunspot activity follow long-term trends which can in extreme cases result in prolonged periods of very low activity (Eddy, J.A. 1976, Science, 192, 1189; 1977, Scientific Am., 236, 80). We are at an opposite extreme; Cycle 21 has the second highest peak of this century, exceeded only by Cycle 19 (maximum at 1957.9).

Brief spasms of intense activity are likely to provide occasional excitement for sun-watchers in 1985. Amateurs who observe sunspots* may still find it worthwhile to keep a watch for white light flares (Pike, R. 1974, J. Roy. Astron. Soc. Can.,

[^4]68, 330). The contrast of these bright transients is now known to be enhanced towards blue wavelengths, especially below 400 nm . Their familiar name is thus becoming a misnomer. The increased rate of detection by photography in the near UV is expanding the data base for these rare events. They are visible in the solar photosphere for a few minutes at most and are not to be confused with long-enduring "light bridges" or bright facular patches adjacent to sunspots. White light flares erupt as one or more intensely bright and compact structures (a few arc-sec or less) during the explosive phase of highly energetic flares. They are most likely to occur in complex, rapidly-evolving sunspot groups with many closely-packed umbrae enclosed by a single penumbra. Forewarning of such energetic events may be given for several hours by a realignment of penumbral filaments or a major increase in penumbral size.

Some intense auroral displays may yet be observed in 1985 in the southern, populous parts of Canada. Aurorae ("Northern Lights") are caused by the precipitation into the ionosphere of energetic charged particles from a vast reservoir enveloping Earth, the magnetosphere. Seen from above (e.g. from the Canadian ISIS satellites) aurorae are concentrated in elliptical bands called auroral ovals that ring Earth's magnetic poles. When the Sun is calm, the ovals shrink to nearly circular rings centred close to the geomagnetic poles. As the Sun grows more active, the ovals advance towards lower latitudes (e.g. in Canada to Churchill, Man. and to Yellowknife, N.W.T.) and become more eccentric with respect to the geomagnetic poles. During periods of very intense solar activity, the ovals shift closer still towards the Equator (e.g. down to the Southern United States for the northern oval). For an observer at the ground, the shifting patterns of the aurora over the night sky reflect the changes in the magnetic and electric fields along the paths of electrons streaming toward Earth.

The magnetospheric reservoir of particles is created by a complicated interaction between Earth's magnetic field and the solar wind, a magnetized plasma that flows continuously from the Sun even in the absence of solar activity. The solar wind has considerable structure; the highest speed streams originate in coronal holes, extended regions of low density and temperature in the solar corona. Near sunspot maximum, coronal holes are nearly absent except in small areas near the Sun's poles. But during the declining phase of the cycle, holes form rapidly and live longer (e.g. up to 10 solar rotations). They should reach their maximum extent by 1984-5 when single long-lived holes may extend from either of the Sun's poles to its equator and into the adjacent hemisphere. They are firmly associated with recurrent 27 -day geomagnetic disturbances. The normal balance between the solar wind and the magnetosphere can be suddenly upset (e.g. by changes in the magnitude and direction of the magnetic field 'blown' towards Earth by the solar wind, by changes in the wind's speed, or by a major solar flare) and can lead to an auroral sub-storm. But universal agreement is still lacking on the exact mechanism which triggers sub-storms.

The atoms and molecules, mostly those of oxygen and nitrogen, that radiate the shimmering light of the aurora are terrestrial in origin. They become luminous at heights between 100 and 400 km through collisions with energetic particles that have leaked out of the magnetosphere during a sub-storm. A faint auroral display may not exceed the brightness threshold of colour perception for the eye; it will be sensed as white. Most aurorae appear green or blue-green with occasional faint patches of pink or red. The green colour is due to excited atoms of oxygen radiating at a wavelength of 558 nm ; the blue is produced by ionized nitrogen molecules radiating in a group of spectral bands between 391 and 470 nm . The green and blue emissions are concentrated near an altitude of 110 km . Rare, all-red auroras have been measured to occur between 200 and 400 km ; the red colour is due to the 630 and 636 nm lines of atomic oxygen, and is normally faint (because of the low concentration of oxygen at that altitude) unless the influx of particles is very great. Red emission also occurs at lower altitudes, near 90 km , where the spectrum can be dominated by emission in a series of bands between 650 and 680 nm .

Illustrative sketches of standard auroral forms. This simplified classification was devised for visual observers during the International Geophysical Year (IGY), nearly three decades ago. The sketches emphasize the fundamental features of auroral patterns and minimize variations which depend on the location of the observer.

TIMES OF SUNRISE AND SUNSET

The tables on pages 55 to 57 give the times of sunrise and sunset at four day intervals for places ranging from 20° to 60° north latitude. "Rise" and "set" correspond to the upper limb of the Sun appearing at the horizon for an observer at sea level. The values are in UT and are for the Greenwich meridian, although for North American observers the stated values may be read as standard time at the standard meridians $\left(60^{\circ}, 75^{\circ}\right.$, etc.) without significant error. The values may be interpolated linearly for both non-tabular latitudes and dates. Also, it is possible to extrapolate the table beyond the 20° and 60° latitude limits a few degrees without significant loss of accuracy.

The standard time of an event at a particular location must take account of the observer's longitude relative to his or her standard meridian. The table below lists the latitude and the longitude correction (in minutes of time) for a number of cities and towns. e.g. To find the time of sunrise at Toronto on February 17, 1985: The latitude is 44°, and from the table the time of sunrise at 0° longitude is $06: 56 \mathrm{UT}$. Thus at the Eastern time zone (E) meridian (75° west), the time of sunrise will be approximately 06:56 EST. The correction for Toronto is +18 minutes, so sunrise will occur at 07:14 EST on that date. Corrections for places not listed below may be found by converting the difference between the longitude of the place and that of its standard meridian to time $\left(15^{\circ}=1 \mathrm{~h}\right)$, the correction being positive if the place is west of its standard meridian, negative if east. Finally, it should be emphasized that the observed time will often differ up to several minutes from the predicted time because of a difference in height between the observer and the actual horizon.

CANADIAN CITIES AND TOWNS						AMERICAN CITIES		
	Lat.	Corr.		Lat.	Corr.		Lat.	Corr.
Baker Lake	64°	$+24 \mathrm{C}$	Peterborough	44°	+13E	Atlanta	34°	+37E
Brandon	50	$+40 \mathrm{C}$	Prince Albert	53	+63C	Baltimore	39	+06E
Calgary	51	+36M	Prince George	54	+11P	Birmingham	33	-13C
Charlottetown	46	$+12 \mathrm{~A}$	Prince Rupert	54	+41P	Boston	42	-16E
Chicoutimi	48	-16E	Quebec	47	$-15 \mathrm{E}$	Buffalo	43	+15E
Churchill	59	+17C	Regina	50	+58C	Chicago	42	-10C
Corner Brook	49	$+22 \mathrm{~N}$	Resolute	75	$+20 \mathrm{C}$	Cincinnati	39	+38E
Cornwall	45	-01E	Rimouski	48	-26E	Cleveland	42	+26E
Edmonton	54	+34M	St. Catharines	43	+17E	Dallas	33	+27C
Fredericton	46	+27A	St. Hyacinthe	46	-08E	Denver	40	00M
Gander	49	+08N	St. John, N.B.	45	+24A	Fairbanks	65	-10A
Goose Bay	53	+02A	St. John's, Nfld.	48	$+01 \mathrm{~N}$	Flagstaff	35	+27M
Granby	45	-09E	Sarnia	43	+29E	Indianapolis	40	-15C
Halifax	45	$+14 \mathrm{~A}$	Saskatoon	52	+67C	Juneau	58	+58P
Hamilton	43	$+20 \mathrm{E}$	Sault Ste. Marie	47	+37E	Kansas City	39	+18C
Kapuskasing	49	+30E	Sept Iles	50	-35E	Los Angeles	34	-07P
Kenora	50	+18C	Sherbrooke	45	-12E	Louisville	38	-17C
Kingston	44	+06E	Sudbury	47	+24E	Memphis	35	00C
Kitchener	43	+22E	Sydney	46	$+01 \mathrm{~A}$	Miami	26	+21E
Lethbridge	50	+31M	The Pas	54	+45C	Milwaukee	43	-09C
London	43	+25E	Thunder Bay	48	+57E	Minneapolis	45	+13C
Medicine Hat	50	+23M	Timmins	48	+26E	New Orleans	30	00C
Moncton	46	+19A	Toronto	44	+18E	New York	41	-04E
Montreal	46	-06E	Trail	49	-09P	Omaha	41	+24C
Moosonee	51	+23E	Trois Rivieres	46	-10E	Philadelphia	40	+01E
Moose Jaw	50	+62C	Vancouver	49	+12P	Phoenix	33	+28M
Niagara Falls	43	+16E	Victoria	48	+13P	Pittsburgh	40	+20E
North Bay	46	+18E	Whitehorse	61	00Y	St. Louis	39	+01C
Ottawa	45	+03E	Windsor, Ont.	42	+32E	San Francisco	38	+10P
Owen Sound	45	+24E	Winnipeg	50	+29C	Seattle	48	+09P
Pangnirtung	66	+23A	Yarmouth	44	$+24 \mathrm{~A}$	Tucson	32	+24M
Penticton	49	-02P	Yellowknife	62	+38M	Washington	39	+08E

SUN

$\begin{aligned} & \circ \\ & \hline 8 \\ & + \end{aligned}$	哥	 	ニニボNべか 	N゙ニニずが年 	무수ののの日の
	$\frac{山 山 N}{2}$	 』のmmmmmNN	NNNNNNN	NNNNmmmm	
$\stackrel{\circ}{\stackrel{+}{+}}$	寝			mmonk	
	\％	ェののののでNくべN	윳NㅅNNNㅅ	퓨슈NNNNN	のののののののロ
	$\begin{aligned} & \sqrt[n]{2} \\ & \boxed{\sim} \end{aligned}$	上ナナ寸mmmmm	mмmmmmm	mलmmmmォ	in
$\begin{aligned} & \circ \\ & \stackrel{0}{n} \\ & + \end{aligned}$	哥				
		ェのののののののの	퓻N슈NNN	수수순ํaの	ののの日のロロー
	$\begin{aligned} & \text { un } \\ & \end{aligned}$		mмmmmmm	 のलすすすすかす	
$\stackrel{\circ}{\ddagger}$	暏				\％
	4	ェのののののののの			
	$\frac{\sqrt[4]{0}}{\boxed{\alpha}}$	$\bumpeq \forall \forall \nabla \forall \nabla \forall \sigma \sigma$	$\forall \forall 寸 \forall 寸 \sigma \nabla$	$\forall \nabla 寸 \forall \sigma 寸 \sigma 寸$	
$\stackrel{\circ}{+}$	雊		ㅊNNNNmm ののののののの	ল゙ল゙লべべオべ ののののののののの	
	$\frac{\sqrt[4]{2}}{\boxed{2}}$	$\leadsto \forall \forall \forall \forall \forall \forall \forall \forall$	$\forall \forall 寸 \forall \forall 寸 \sigma$	$\forall ナ 寸 \forall 寸 \forall 寸$	 ナnnminnn
$\stackrel{\circ}{+}$	哥			ハーラッツニダo	
	\％		ののののの年		＋
	$\frac{\sqrt[4]{n}}{\underline{\sim}}$	 	寸ナ寸ナ寸ナ寸	$\forall \forall \forall \sigma \forall n n n$	
$\stackrel{\circ}{+}$	哥	 	…ののののの	のののののの․	
	$\frac{\sqrt[1]{2}}{\underline{2}}$	 	寸寸寸寸寸にn	nぃいninnin	ゴざNべがが いいいいいいろい
$\stackrel{\circ}{+}$	鹤	 	 	ます符符等ますが 	べ
	资	sぃnnennonn	いいいいいいに	いいといろincon	いいいいいいいい
西	$\xrightarrow{\text { 灾 }}$				

SUN

\circ8+	署	 	 へヘニ゚ー゚ローロ	ジッのッのにの	 むさむさむむにひ
	$\frac{\sqrt[1]{2}}{\boxed{\alpha}}$	ェナんいいいいい	そのボすずすす ○OヒOONT	ボッ゙ががすが ヘヘヘヘ $\infty \infty \infty$	ヲが心ががすず $\infty \infty \infty \infty$ ののの
$\begin{aligned} & \stackrel{\circ}{+} \\ & + \end{aligned}$	旨		 	ソ゚ーローッにいに	nックックのnの
	$\begin{aligned} & \mathbb{N} \\ & \boxed{\sim} \end{aligned}$	をニのごNO「卉 ざいいいいいい	 		$\infty \infty \infty \infty \infty \infty$
$\begin{aligned} & \circ \\ & \stackrel{8}{n} \\ & + \end{aligned}$	哥		 	 	8～～～N8 Ning
	$\stackrel{\sim}{\boxed{\sim}}$	ゴいいいいいいい	8タさローべがす 	 oontant	rantant
$\begin{aligned} & \stackrel{\circ}{寸} \\ & + \end{aligned}$	䛜		 ミヘミニへべー	ํoํoーoํํํ	
	$\frac{\sqrt[1]{2}}{\boxed{2}}$	■ ぺ ョいいいいいいい	กํㅇํㅗํN 	mがからするの ovoovNr	かさべがががm MrNRNR
$\begin{aligned} & \circ \\ & \stackrel{\circ}{+} \\ & + \end{aligned}$	苞	$\therefore \infty \infty \infty$	 へへへへへへへ	 	 우우우웅
	$\frac{\sqrt[1]{\sim}}{\boxed{2}}$	ュいいいいいのい	か8すがッヘニッ い0000000	－000000	$\begin{aligned} & \text { ngnno } \\ & \text { NNNN } \end{aligned}$
$\stackrel{i n}{n}+$	哥	をホのツドージか 	へへへニへへへへ	 	으ํํํํํํํํ
	$\frac{\underline{1}}{\underline{\omega}}$	घが ェのいいいいいい	べがすへこさか 	N゙Nプぶがず 	べぶがす。が oounतNイ
$\stackrel{\circ}{\stackrel{\circ}{+}}$	$$		 へへへへへへへ	 へへへへへへへへ	
	$\frac{山 14}{\boxed{2}}$	ョかo ェいいいいいいか	Ninin8゚88ニ いいい60000	いがオべがか 	かっいい○い。
$\begin{aligned} & \text { O} \\ & + \\ & + \end{aligned}$	皆	 	 へへへへこへへこ	べベニำのコロ ミニニミニニミニ	ミヘヘニラペン
	$\underset{\sim}{\boxed{\sim}}$	ェのいいいいいの	いいいいいいい。	か000060に	서NNNが心n かったいいったも
-	隹	$\begin{aligned} & \text { MNニッのNत } \\ & \dot{\otimes} \\ & \dot{\sim} \end{aligned}$	ーnのmへスへホ تٌ		＋No어NNN ن்

TWILIGHT

This table gives the beginning of morning and ending of evening astronomical twilight (Sun 18° below the horizon) in UT at the Greenwich meridian. For observers in North America, the times may be treated in the same way as those of sunrise and sunset (see p. 54).

MOON

KEY TO THE MAP OF THE MOON

CRATERS

21-Albategnius
22-Alphonsus
23-Arago
24-Archimedes
25-Aristarchus
26-Aristillus
27-Aristoteles
28-Arzachel
29-Atlas
31-Autolycus
32-Bessel
33-Bullialdus
34-Cassini
35-Catharina
36-Clavius
37-Cleomedes
38-Cook
39-Copernicus
41-Cyrillus
42-Delambre
43-Endymion
44-Eratosthenes
45-Eudoxus
46-Fracastorius
47-Furnerius
48-Gassendi
49-Grimaldi
51-Halley
52-Hercules
53-Herschel
54-Hevelius
55-Hipparchus
56-Julius Caesar
57-Kepler
58-Langrenus
59-Lansberg
61-Longomontanus
62-Macrobius
63-Maginus
64-Manilius
65-Maskelyne
66-Maurolycus
67-Mersenius
68-Newcomb
69-Petavius
71—Piccolomini
72-Plato
73-Plinius
74-Posidonius

MOUNTAINS
A -Alpine Valley
B -Alps Mts.
E-Altai Mts.
F -Apennine Mts.
G - Carpathian Mts.
H - Caucasus Mts.
K - Haemus Mts.
M—Jura Mts.
N -Pyrenees Mts.
R —Rheita Valley
S -Riphaeus Mts.
V -Spitzbergen
W-Straight Range
X —Straight Wall
Y - Taurus Mts.
Z —Teneriffe Mts.

MARIA

LS -Lacus Somniorum (Lake of Dreams)
MC -Mare Crisium (Sea of Crises)
MFe -Mare Fecunditatis (Sea of Fertility)
MFr —Mare Frigoris (Sea of Cold)
MH -Mare Humorum (Sea of Moisture)
MI -Mare Imbrium (Sea of Rains)
MNe -Mare Nectaris (Sea of Nectar)
MNu-Mare Nubium (Sea of Clouds)
MS -Mare Serenitatis (Sea of Serenity)
MT -Mare Tranquillitatis (Sea of Tranquillity)
MV -Mare Vaporum (Sea of Vapors)
OP -Oceanus Procellarum (Ocean of Storms)
SA -Sinus Aestuum (Seething Bay)
SI -Sinus Iridum (Bay of Rainbows)
SM —Sinus Medii (Central Bay)
SR —Sinus Roris (Bay of Dew)

LUNAR PROBES

2—Luna 2, First to reach Moon (1959.9•13)
7-Ranger 7, First close pictures $(1964 \cdot 7 \cdot 31)$
9-Luna 9, First soft landing (1966-2•3)
11-Apollo 11, First men on Moon (1969.7•20)
12—Apollo 12 (1969•11•19)
14—Apollo 14 (1971•2•5)
15—Apollo 15 (1971•7•30)
16—Apollo 16 (1972•4•21)
17-Apollo 17 (1972•12•11)

止

FULL MOON DATES

(UT)

1985			1986	
Jan.	7	Jul. 22	Jan. 26	Jul. 21
Feb.	5	Jul. 31	Feb. 24	Aug. 19
Mar.	7	Aug. 30	Mar. 26	Sep. 18
Apr.	5	Sep. 29	Apr. 24	Oct. 17
May	4	Oct. 28	May. 23	Nov. 16
Jun. 3	Nov. 27	June. 22	Dec. 16	
		Dec. 27		

TIMES OF MOONRISE AND MOONSET

The tables on pages 64 to 75 give the times of moonrise and moonset for each day of the year for places ranging from 20° to 60° north latitude. The tables may be interpolated linearly for non-tabular latitudes, and can be extrapolated beyond the 20° and 60° latitude limits a few degrees without significant loss of accuracy. "Rise" and "set" correspond to the upper limb of the Moon appearing at the horizon for an observer at sea level. The times are in UT and are for the Greenwich meridian. Because of the relatively rapid eastward motion of the Moon, unlike the sunrise and sunset tables, the times cannot be read directly as standard times at the various standard meridians in North America. The table must be interpolated according to the observer's longitude. Also, the observer's longitude correction relative to his standard meridian must, of course, be applied (see p. 54). The graph on the opposite page enables the sum of these two corrections to be determined easily in one step. However, the graph must be set for your longitude.

To prepare the Moon Rise/Set Correction graph, first locate your longitude on the longitude scale. Using a straight-edge, draw a line from the origin (0,0 point) to your position on the longitude scale (a red pen is recommended to make this line stand out). Next, the CORRECTION axis must be labeled. As a guide, the first three divisions have been tentatively labeled $0,1,2 ;$ but, to these numbers must be added your longitude correction relative to your standard meridian (p.54). e.g. For Toronto the correction is +18 minutes, thus an observer in Toronto would label this axis: 18, 19, 20, 21, .. 62, 63. An observer in Rimouski (longitude correction: -26) would label the axis: $-26,-25,-24, \ldots 18,19$.

The graph is now ready for use on any day from your position. From the table obtain tomorrow's time and today's time for the event (moonrise, or moonset), enter the difference on the ordinate, and run horizontally across to meet the diagonal line. The correction, to the nearest minute, can then be read directly below off the abscissa. This correction is applied to "today's time" in the table. (Note that, due to a difference in height between the observer and the actual horizon, the observed time may differ by up to several minutes from the predicted time.)

－	苞	ョボすごす $=\operatorname{Nan} \theta \infty$	へすがが の으옹			ゅたべすか ๓ニロロッ	
	$\begin{aligned} & \text { 资 } \\ & \end{aligned}$	ョ8ののデか ェヘฯェォฯ		が，：त̄ल えヘ ：ON	ごらが品 ナーへのの	ํㅜํํำ の으으오	すーローズ゚す 옹ㅇㅇㅇ응
$\begin{aligned} & \stackrel{\circ}{+} \\ & + \end{aligned}$	㖇	ョoxanina ェッツが	のッチツ～ かのの응	ダすすべす	8तすが8 テัตのに	ヘ พ ツニので	สヘ：－～ル
	$\begin{aligned} & \text { 亗 } \\ & \end{aligned}$	を ェェェッツツ	チが우の さにニロース	$\begin{aligned} & \text { FJ:78 } \\ & \text { ה̃ :ON } \end{aligned}$	がo゙がか mnorm	8ががす ののनのの	ッポゥすら゙の 옹ㅇํ․
$\begin{aligned} & \stackrel{\circ}{+} \\ & + \end{aligned}$	岉	ョБースかす このツすべ	シサすがN トかののロ		かoㅁNへM ェォのさに		が子：గñす ส๙ ：ONm
	蔎	ェモヘのツす	ニオデoへ シニニの官		$\begin{aligned} & \text { ogingin } \\ & \text { mannr } \end{aligned}$	がくへすが かのののの	のタタッジま ㅇํㅇニニ
$\stackrel{\circ}{\circ}$	忽	 ェーベが	$\begin{aligned} & \text { の寸8रू\% } \\ & \text { iongo } \end{aligned}$	お仿が ○ロニニさ		 ニロのダへ	
			ずががす ๓ッロのロ～		৪ిown monor	○寸こさす $\infty \infty \propto \cap \sigma$	ㅇํロニニ～
$\begin{aligned} & \text { O+ } \\ & + \end{aligned}$	出	をますごに ェーヘツナー	ぶņo゙8 トペのO	ヘincな․ 으ニニッ	～～ロ゙ㅇa さッずの	べふゥが ニーのロン	ぶ ：いため הヘ ：O－N
	$\begin{aligned} & \text { 匀 } \\ & \end{aligned}$	ェォツのさに			ํㅜㅇำ	ñõ운 ヘmののの	ヘM゙がなの ㅇํㅇニコニ
$\stackrel{\circ}{\sim}$		 ェーヘのすに	す夕品さら ートかのの	ないなが 으ニコッ	すならなが のツさにも	mますプ ニロのロ゙へ	 สヘ ：OーN
	$\begin{aligned} & \text { 苞 } \\ & 2 \end{aligned}$		ホべゥな！ ヘニニーロース	గั๓ ：ici สベ：O－	がらららか Nmすい6	gのットテ	こん8तかm ○ㅇニコニッ
$\stackrel{\circ}{+}$	炰	 』ーNのすに	ートかのの	のぶ～88 －ローニニッ	っすごが品 のささにも	べらいます ミロのロ゙べ	$\begin{aligned} & \text { MO: On= } \\ & \text { Nत :O-N } \end{aligned}$
	$\frac{山}{2}$		ヘニニーの		がす子プ～ ～mすno	かったのま ヘかめのの	のローニニテ
$\stackrel{\text { ® }}{+1}$	忽	퉁ํㅇ․․ sーNのすん	ぶくさすべ orrmo	चnतoon 으ニニッ	ふオがきに のざツニ	すOずらす ロのロロ～～	लの ：oñin ส̃ ：00－
	匀	 －Mのボの		$\begin{aligned} & \pm \approx: 70 \\ & \text { নN :OI } \end{aligned}$	$\begin{aligned} & \text { Omnñ } \\ & \text { Nmナno } \end{aligned}$	ヘrmaの	○ヲすが웅 으ニニテツ
צ	$\begin{aligned} & \text { 息 } \end{aligned}$	一Nmなn ร	 （3）	ニュツさに	のニニののダ	ニホベオシ	

MOON

	芻	 －nへ $\infty \infty$		そ휴웅 ののの으	コツさ゚ニ		
	䍖			ninconc	戸らのニ	$\infty \infty \infty \infty$	
	氙	$\begin{aligned} & \operatorname{and} \mathrm{C} \\ & =+\infty \end{aligned}$	がnが $\infty \infty$ の	デincog のロロニニ	べッオの8 ๆざロロ		－m
	䍖		ミのロスベ	-			Sory
$\stackrel{\circ}{\circ}$	药			の○ロニッ	のさにもの	のローสส	
	$\frac{山 ⿰ 豸 勺}{\sim}$	ミニすくへす ェッツさにも	ェのロスベ			x_{∞}^{∞}	
$\stackrel{\circ}{+}$	㽞	$\begin{aligned} & \sin \delta \\ & =\sin \end{aligned}$	$\begin{aligned} & \sin 8 \\ & \infty \infty \\ & \infty \end{aligned}$	ヘッチング のロニニッ	べがとすの のさ゚ーの	のローテオテ	
	$\begin{aligned} & \underline{\mu} \\ & \stackrel{y}{\sim} \end{aligned}$	ョすल゙かなす ェニツさにに	かのニत̃	$0 \sim$	No	$\sim_{\infty} \infty \infty$	$\begin{aligned} & \text { mox } \\ & \text { good } \end{aligned}$
$\begin{aligned} & \text { Oִ } \\ & + \end{aligned}$	芴	ョチなすが smがor	$-\infty \infty$	かi№no 으ニッツ	さそのニの	のロิスホヘ	ion
	$\frac{山 ⿰ ⿻ 上 丨 匕 ⿱ 幺 ⿲ 丶 丶 丶 ⿴ 囗 十 ~}{2}$	a8゚日にらす －のツのn	ロのスボ	Fはす	nno	$\wedge_{\infty} \infty$	$2 \bar{n}$
$\stackrel{\circ}{\sim}$	忽	$\begin{aligned} & \text { Eic } \\ & =\infty \end{aligned}$	$\begin{aligned} & \text { FN } \\ & \text { in } \end{aligned}$	べすそうへ ㅇコニッツ	さんニニロ		
	$\begin{aligned} & \underline{W} \\ & \stackrel{y}{2} \end{aligned}$	ョニロロロ゚のヘ －のさそのに	かのスボ	$: 0-N$	ォno	$\sim \infty$	$\begin{aligned} & \text { nit } \\ & \text { ond } \end{aligned}$
$\stackrel{\circ}{+}$	腎		$\begin{array}{lll} \text { n-inno } \\ 1 \end{array}$	$\bigcirc=ニ \simeq 9$	ずツミロ	～～べNロニ゙ のัロスत゙	$\stackrel{\pi}{n}$
	$\begin{aligned} & \text { 苃 } \\ & \alpha \end{aligned}$	』のざツ	ロのニホヘ	$=0-\mathrm{Nm}$	niog	$N \infty \infty \propto a$	ngत 오클
	氙		へ $\infty \times \infty$ O	Oニニツ』	のตニニ	จัลสสส	
	$\begin{aligned} & \text { 苞 } \\ & \underline{2} \end{aligned}$	gngainin ェのずのに	acinan	：O5O8	$\begin{array}{ll} \infty \\ \forall q u \end{array}$	n_{i}	
安	空		－${ }^{\text {ang }}$	ヨニツすに	$=\underset{0}{\infty}$	ホสホ	NiNi

MOON

$\stackrel{\circ}{\circ}$	気	ョロinのず －がひイ	rrrrr		ゆ゙ぶらそす －ェッツの		：5からすか
	$\begin{aligned} & \text { 说 } \end{aligned}$	をさすこがと ェのロニッ寸	 ロッローシスヘ	$\begin{aligned} & : \text { R寸すm } \\ & : \rightarrow m \pm n \end{aligned}$	8ลतิల్ల 00000	ゅinmong 00000	タiñタ゚ロ borrmo
$\stackrel{\sim}{\text { ¢ }}$	岉	ミ	亿nncion	かop8す	訊二〇がす	ツ®からす	
					こツさに	かの隹ন	
	茐		「ごらmin			へimbins	
$\stackrel{\stackrel{\rightharpoonup}{\sim}}{+}$		ョニのゴべ	ちよ゙		－～べかべ8		in ：88\％
	出	このず坷	－nrro	かoの过	この	¢ 2	
	摡	如よ	ぶ	∞	のミ		
		ェ゚ニささに	ニロのネ～		すんろん60		－
$\stackrel{\circ}{+}$	它	ョq「		デ行	－${ }_{\text {d }}$	〇omin	－
		$=$		かのの	このnの	－	๙
	苞	E	の方らnが	in：	なニタ	Ņが	がすご8\％
$\begin{aligned} & \text { + } \\ & + \end{aligned}$		gopoḋご	ぞッベら	に	8	ニセnこ	
	\sim	ご可すいい	の日rーか	かのロニッ	のさnのヘ	かのロスヘ	๙
	摡	ョ	－id	矢：	m8	¢\％	の
		ニニさMす゚	へロのスヘ				
$\stackrel{\circ}{\sim}$	\％	ョのニと	テーデ	ช\％	הベへさへ	かさ	\％：\％o゙if
		＝	60ヶrm	のの이	のざ	－	
	0	E	べ8	앙		ラヲロかi	$\stackrel{\sim}{\text { ¢ }}$
	\％	ニコワのに	ラーのヘス	\cdots			ののロ
$\stackrel{\circ}{+}$	画		8fオらल	べっ		のざららす	いか ：¢ 寸
		ニーNのず		のの으̇	のさのセ	めのでべ	તヘ
	\％		लザヶ88	－：¢¢¢入入	त \％$=$－	ごロ゚が	
	\％		ニロースヘ	ก			の응＝
$\xrightarrow{\circ}$	芻	घన్ల入ి）	ทブतすす	が응すす	万inify	तoint	べさ
				のㅇำの	のざロニ	めのの穴त	สส
	㟔	をलう戸लの	すな寸	¢ ：＜	らす¢すか	ブすせC	no
	\％	\sim	へ®のベへ		\sim		
穴	$\begin{aligned} & \text { 空 } \\ & \text { 畄 } \end{aligned}$	$\stackrel{\text { 咸 }}{ }$	－ （6）	ニッツホロ	¢ニローので	নスボゥボ	

MOON

\％	氙	ごいのにいの			ninこのに シーニニの	$\text { NiN: } \underset{\sim}{N F}$ הત:	
	岂	ョ ェッヅニニの	$\begin{aligned} & \text { ñ : শn } \\ & \text { in : on } \end{aligned}$	戸さべな		$\begin{aligned} & 9 \% \\ & i n \end{aligned}$	
～	塁	$\begin{aligned} & \begin{array}{l} \ddagger \mathcal{J} \\ \text { s } \end{array} \end{aligned}$	nowor		ニーの	Nosin :N તતતત :	$\overline{S J}$
	苞			Nのmすす			
$\stackrel{\circ}{\circ}$	苞	Eix	๗ペがズる 00018	－ガスふよ のロニッツ	2∞	$\begin{aligned} & \overline{\%} \\ & : 0 \end{aligned}$	
	$\begin{aligned} & \text { 罣 } \end{aligned}$	$\begin{aligned} & \operatorname{EON} \\ & =\mathbf{M} \end{aligned}$		がまこまと －तmmt			
$\stackrel{\circ}{+}$	䍖			ののニッチ	nのロロの	～スत	
	$\begin{aligned} & \text { 苞 } \end{aligned}$		$\begin{aligned} & \text { ®ons :8 } \\ & \text { iñ }: 0 \end{aligned}$				
	出	ョチスべかか amみがい	－FNず́n ○ーが	กiñ8ㅇ のペのす			20
	$\frac{山 山 N}{2}$		®הసNત	－ Nm	$\forall \forall \forall n i n$	シーがー noorm	$\begin{aligned} & \text { 58= ig } \\ & \text { ag=an } \end{aligned}$
$\begin{gathered} \text { in } \\ + \end{gathered}$	出		600	ロニェッチ	๓ニ․	がらにだら のロスヘスヘ	
			のהス	$0-$	$m+d$	001	
$\begin{aligned} & \text { O} \\ & + \\ & + \end{aligned}$	点	$\begin{aligned} & \text { agosino } \\ & =9 \operatorname{connn} \end{aligned}$	Crrmog	のニッツす	๓ソニニロー	のロッネステ	$\text { } \ddagger$
	$\begin{aligned} & \text { 苞 } \end{aligned}$			－－तNm	$n+ \pm n n$	gerr.	子なすが のロニッツ
$\stackrel{\rightharpoonup}{\mathrm{a}}$	蜀		Mースnn －	ㅇニッツさ	๓ゼニニ́ㅗ	がNのさか 	$\begin{aligned} & :-\operatorname{cin}_{\infty} \bar{y} \\ & 00-n \end{aligned}$
	$\begin{aligned} & \text { 匀 } \\ & \underset{\sim}{2} \end{aligned}$	घのत゙तべ －さnのニの	のロッポ	$\cdot 0-N m$	の＋サnn	our on	$\begin{aligned} & \text { oniost } \\ & \text { O=オのป } \end{aligned}$
¢	穿	$\begin{aligned} & \text {-Nm+n } \\ & \text { 荌 } \end{aligned}$	losaO	ニュッチュ	$\therefore=\frac{\infty}{9}$	ホNざ	సionip

MOON

$\begin{aligned} & \text { O} \\ & + \\ & + \end{aligned}$	㫚	$\begin{aligned} & \text { anininiog } \\ & \text { ammmot } \end{aligned}$	* *nor	のロッツル	べポがっ ำーํNN		ベががとタ －ーNNNN
	$\frac{\sqrt[4]{\sqrt{2}}}{\underline{\alpha}}$		$\begin{aligned} & \text { f :ニng } \\ & : \text { :ーNN } \end{aligned}$	～in80 NNmmm	mmmmm	ベチ～がN mo＋n N	웅우NN かのペット
$\stackrel{\circ}{\sim}$	$\stackrel{⿶}{\omega}$		ñッポチ かんロパ	すべゥらす ○ニッツッ	 ソニローシ	$\begin{aligned} & \text { ন্ণ : 寸 寸 } \\ & \text { הN : } \end{aligned}$	mーそn
	$\frac{\boxed{N}}{\boxed{\sim}}$			NNNNN	5ニペが mmmmm		
$\begin{aligned} & \circ \\ & \stackrel{\circ}{+} \\ & + \end{aligned}$	$\stackrel{⿶}{\sim}$		いがいろ いいがの	Nmもñ $0=9 \text { ตッ }$		$\begin{aligned} & \text { iniof :n } \\ & \text { NतN: } \end{aligned}$	মNipnigi $0 \rightarrow m \mathrm{~N}$
	$\begin{aligned} & \text { 茳 } \\ & \boxed{\sim} \end{aligned}$		Nત : O-	－NNNN	mmmma	デミさへ $\operatorname{Vnorm}^{\circ}$	
$\stackrel{\circ}{\ddagger}$	$\stackrel{H}{\sim}$		い○イかの		$\begin{aligned} & \text { す8oni } \\ & \text { onago } \end{aligned}$	かべか สสัก	$\begin{aligned} & \text { Nong=n } \\ & \text { monjonn } \end{aligned}$
	$\begin{aligned} & \sqrt[u]{2} \\ & \hline \end{aligned}$	を試むが $\therefore \pm \underline{(1)} \underset{\sim}{\infty}$	$\begin{aligned} & \text { 勺inn :f } \\ & \text { NNN: } \end{aligned}$	$\begin{aligned} & \sin \mathrm{min} \\ & -\rightarrow N N N \end{aligned}$	$\begin{aligned} & \text { च尺a寸 }=\infty \\ & \text { mmmo } \end{aligned}$	このずが nnorm	
$\stackrel{\circ}{\mathrm{O}}$	出		$\backsim 6 \sim \infty a$			5だゥ ลสสส	DO-NN
	$\frac{\sqrt[4]{\sqrt[2]{2}}}{2}$	$\begin{aligned} & \text { gingoino } \\ & \text { sサonco } \end{aligned}$	$\begin{aligned} & \text { NFF :N} \\ & \text { NNN:N } \end{aligned}$	$\Rightarrow-N N N$	mmmot	스웅ㅇ norma	ニペゥño ○ニニッツの
$\stackrel{\circ}{\sim}$	$\underset{\sim}{5}$		oomin列 $00 r \infty 0$	$\begin{aligned} & \text { 8ㅇㅇㅇ } \\ & =9 \cong \pm n \end{aligned}$	がいにが 	$\begin{aligned} & \text { iffer } \\ & \text { īసהN } \end{aligned}$	「～す寸す寸 OO-INN
	$\frac{4}{2}$		สสก ：	－－nNN	のmすかに	テั～우の～～ いひイかの	べलすべずっ Oニッツッセ
$\stackrel{\circ}{+}$	$\stackrel{H}{4}$	E읔がn ェのツナナん	$\begin{aligned} & \text { NさNn } \\ & \text { ormag } \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { ニッロ } \end{aligned}$	にํㅡㅋํ	ぶがご 	$\begin{aligned} & \text { :moño } \\ & \cdot 0-1 \text { - } \end{aligned}$
	$\begin{aligned} & \sqrt[4]{2} \\ & \boxed{2} \end{aligned}$		n 8×0 ：8 	$0--N N$		norma	ますががnが ○ニニツす゚
$\begin{aligned} & \stackrel{\circ}{+} \\ & + \end{aligned}$	出	$\begin{aligned} & \text { ENYNON } \\ & \text { smmすnn } \end{aligned}$	ormaO	シヘッホに	유NNN そのベーの	8すが心m ヘิニลสั	
	$\begin{aligned} & \underline{\sim} \\ & \boxed{\sim} \end{aligned}$		ิลสN			$\begin{aligned} & \overline{\mathrm{N} O 8 \Omega} \\ & \text { onoga } \end{aligned}$	がらがあが思 のニッツさに
皆	$\underset{\text { 空 }}{\substack{\mid \\ \hline}}$		$5 \times \infty 0$	ニヘッホに	ㅇN	スベボか	NNN゚Nom （1）

MOON

$\xrightarrow[+]{8}$	氙	goño ェNNNNM	こロ～NN いのかのこ	ま「べかに さザローロ	ボサーズか コーヘベก	$\begin{aligned} & : \boxed{0} \approx \pm \\ & : 0000 \end{aligned}$	$\begin{aligned} & \text { ©Nのベ } \\ & 00000 \end{aligned}$
	$\frac{\sqrt[1]{2}}{2}$				シーすか～		
$\begin{aligned} & \stackrel{\circ}{\stackrel{+}{+}} \end{aligned}$	忽	घ示nत88 ェNNMすい	nomoて융 がのOこ		かッロッチ ำกสสส		のतのにが 0000－
	$\begin{aligned} & \text { w } \\ & \boxed{2} \end{aligned}$	－			8तベかm NNNMJ	n－ 70 m $n \wedge \infty \text { O }$	かiciome ヘコ゚ーの
$\begin{aligned} & \stackrel{\circ}{\circ} \\ & + \end{aligned}$	僁	ョ品こ寸品 ェヘmのかん	－かのO日ニ	ヘッッツニ	かの呤	NNN :O	$\begin{aligned} & \text { njo } \\ & \text { oos- } \end{aligned}$
	$\frac{\sqrt[2]{2}}{2}$				NNm	－パの日	
$\begin{aligned} & \ddagger \\ & + \\ & + \end{aligned}$	氙	घరバフォす =mmすno	ッペ゙ず ヘかのOこ	ヘッポー		があう志 	$\begin{aligned} & \text { nendin } \\ & 00-10 \end{aligned}$
	$\begin{aligned} & \text { M } \\ & \end{aligned}$	 ェッープテホ		$0-1$	Nmman	orag=	
$\begin{aligned} & \circ \\ & + \\ & + \end{aligned}$	哥	ョダオべస ェのツナいロ	べが我志 トかのの＝	がら゙べが ヘッコニー	がらに゙ゥ へーのロ゚～	สતベ	
	$\frac{\sqrt[4]{n}}{2}$			$O-N N$	Notsinn Nのすが		nuoinm ッ寸にもこ
$\stackrel{i n}{+}$	氙	$\begin{aligned} & \text { gingmo } \\ & \text { smmano } \end{aligned}$	かinninin ト $\boldsymbol{*}$ の○こ	ヘッホッำ		สสสํ	
	喣	をベなの゙もす 』ニののステ		$O-N N$	$m m+n o$	ํㅜヘิ쑥 トかの○こ	누누ํ꾸 ヘッッツォ
$\begin{aligned} & \text { ò } \\ & + \end{aligned}$	需	$\begin{aligned} & \text { adoincinion } \\ & =m \forall \forall n o \end{aligned}$	－6588\％ かのロッチ		드구N	สヘベ入	$\begin{aligned} & \text { noño } \\ & 0 \sigma^{\circ}-N N \end{aligned}$
	$\frac{\sqrt[4]{2}}{2}$	 \therefore ミロのロ～～		$0-T N N$	$\begin{array}{ll} \operatorname{mon} \pi \\ m o n t \end{array}$		ががごホ ヘッッツํ
$\stackrel{\circ}{+}$	忽	ョํㅜNNN ェのナいで	～Nオが かの○ニヘ	さッボロ	데요우	สતָતN	の卉が OO-Nm
	$\begin{aligned} & \underline{W} \\ & 2 \\ & 2 \end{aligned}$		$\begin{aligned} & \text { n88: n } \\ & \text { Nñ: } \end{aligned}$	がロッホ $O--N N$	ふニがが心 mすのno	ninnif トかの○こ	ぞダがか ヘッさに゚
＜	$\underset{y}{\mid y}$	$\begin{aligned} & \text {-NmJn } \\ & \text { 第 } \end{aligned}$	orma！ （6）	ニヘッざ		スホッボ （6） （2）	

MOON

$\stackrel{\circ}{+}$	岛	－		ォセニロース	নสสสส	สสสনন	かった：そう สন
			ベされさな		のヵッジ	мป\％กる	ゅすべら5ス
		－テสสสส	ฐสสสテ	สสสส		－のoささ	nこの
$\stackrel{\sim}{+}$	葛	『らすずご	ニッ	8	－bindy	9̇かす\％	－io
			－	さセセニの	¢๐งสন	สสสสণ	๙ส
	䍖	¢5\％	すさがかす	～：	จิส¢	ゅのタさす	＋
		－8สสสส	๙สสสส			－のosv	nセめの
$\stackrel{\circ}{4}$		ミロニェッら	ごゅめす。	89\％	¢ัウin		
			かの9＝	ざ吅	の¢¢	নสสন̃	
		Eing	İ	－ズす	がす		－ņoto
	匈	\|			ののロステ	สสสส๙	
	䍖	ョホオツ0゙の	\％\％	ゅヲの年	－${ }^{\text {®m }}$	の砤ま8	
	2	－のローラス	สก๙สホ			－	さュニロ
\％		8\％	¢¢\％ダ	子扵	¢ena	かのです	
				のざこニ	めの®ロへ	สสสสテ	
	䍖	ョどうらがっ		－\％¢ño			かめnらさすか
		ェのロัズ	สสণส			のののこの	－
¢			なす	¢mºr	スのロロ	のを	¢ineog
			かのここの	のさnセ	－	ลন্নন๙	
	䍖	日年等	ヘิセัも	\％\％す유응	5\％゙ワจ		
	\％	－ロのロテテ	สননঞત			かののニッ	さnセロローの
		ロめがず	ら゙すなく	ลત®	こすか	\}	8Fi゙a ${ }^{\text {a }}$
			のののご	のさnご	－のの	ส	
	碞		สñ9？	のタさらか			88セロニ゙
	2	－	สส刃ส			かののご	さnセさめの
¢		ョさす	58®ioñ	nomin	タలño	¢	の8J
			のロローロ	のさざ吅	ニッのス8	הส	
	䍖	ad	フタํoํ	สセñํo	ずなまずす		すもらが
	2		สสส๙			かのロニコ	のさnセニ
氛			응			নন্הঞন 同	

MOON

\％	苞	ョれがめすへ このいかのの		ニaのロిగి	ciaiciai	ダダッに8 	－ の：ONすい
	曷		がっがず	さi ：\％\％	Noinpo		ご戸が等なも
		ェえतनへत	へतラへत	สส		ニツnニツ	ののの
$\stackrel{\text { ® }}{\text {＋}}$	出	£	Fすがったの	こin	その戸ブゥ	らすがすへ	べロさかin
		＝	○このず，	のニロのの	पicioici	ลतลत̃	
	$\begin{array}{\|l\|} \hline \text { 荡 } \\ \hline \end{array}$		禹的8	त	ธֹঠ丶万8	－¢¢すがo	\％
		ェロへスヘत	ลスベ̃		ナnヶmo	このざ，	かめのののの
号	出	E	らダらぞ	がった		のタの年す	
		$=$	9コニず	ํニーロッの	のでincin	ลतสสべ	
		\＃ $\mathrm{m}_{0} \pm \infty$	がoさなの	呙：q9＊	－¢ \％－in	ごさが号	
		－¢¢へへ入入	ลสสส̃	๙		コンざ，	※ロののの年
¢	氙	ョロロロロスヘ			¢0゙すtyo	討すへ	
			〇ニッツさ	のソニロの	の¢icicia	ลสสส	
	$\begin{array}{\|l\|} \hline W_{2}^{2} \\ \hline \end{array}$	ョのす		ホのル	キが毎年	8へすが	ずきな8へ
			สสส̃ส			コニツざ	ラニロッの
－	出		ลิกిべ	mぁ	へi	\％	
		＝	ํニニツさ	のソニロか	のの号くへ	ลतีત	
		\＃	ถลベస	：	シ89が子		
			สสสテส		－	Oッツさに	－¢ ¢ ¢ の
$\begin{aligned} & \stackrel{\circ}{+} \\ & + \end{aligned}$	䓒	घ ${ }^{\text {cos }}$		๓으웅	こセ¢スする	กัav ：	8\％゚ーシの年
			ํニさツす	こここ	のの¢0¢त	הत̇	
	$\begin{aligned} & \hline \text { 荡 } \\ & \hline \end{aligned}$	E®	8ims	ごっす	すむさべフ	べoさすべ	－さ すがった
			สสત̃			Oッツさ	ソニニの
－	出	ョwmo	さニご吕	\％8	8タロ	8\％¢	ののがいです
			9	の	のの砍	สส̃	
	$\begin{array}{\|l\|} \hline \text { 匀 } \\ \hline \end{array}$	ョ゙行	のヲォ	がごすする	のスतलm	ダす\％	88
			તสત̃		い○イかa	Oニッず	－ニニ
$\stackrel{+}{+}$	勻	ER		¢mºrio	¢	さらす！	－
			○ニコミツ	すn¢べ	かのciack	สสતส ：	
	$\begin{aligned} & \hline \text { 荡 } \\ & \hline \end{aligned}$		¢iño ：		ল্লিয়্লু		¢
		ェのロัへへ入	สสส		いOrma	OニさMさ	－＝
	$\left\|\begin{array}{c} \text { 空 } \\ \text { 省 } \end{array}\right\|$	－Nmず	응	に	－ニローのて	הনがへ	
		哭	＠		（3）	ค⿵冂	－

MOON

\％	芴		Omかñ さにソミニ	がずすチ寸 $\infty \times \infty$	がらに゙ロー かめかのの		NA iond
	品	ョサ「なず）	がすが8	子ツご	デざずす	のごテに	「nminn
	${ }_{2}$	－のこののの		ONすい	フのこのさ	ソニニニコ	$=$
$\stackrel{\text { ¢ }}{+}$	¢	ョニペべち	ત¢pymic	タ゚べのダ	8さ～゚ロヘ	ここん ：	－
		－イmの의	のさnセニ	ニ뜨응	ののののて	สสホ	
	0	をずらすへて	がった	5－らです	¢8）	8ัタタiか	T
	\％	ェののロ゙くて	べतี		－のロッツ	のセセニニ	－
$\stackrel{\text { \％}}{\text { ¢ }}$	H	－	88m8n	べいのです	とべすべ	\cdots	
		－	のざの	今	ののの只	নत	
	䍖		こ	バべプ「	$\cdots 8$		9
		ェののロiくi	নลतึ		「のロニッ	さnこのニ	ここのロ
＋	苞			ぶmర¢す	चmすoñ	ニロ゙が示	
	5	－イかのㅋ̇	このざツ		のの方くत	สก	
		をよと	¢す8in	ぷツべ		8らものベ	
	$\underline{\sim}$	ェのロロべ～	ลสત̃		－${ }^{\text {a }}$－	すざっこの	ニニニー
$\begin{aligned} & \text { 子 } \\ & + \end{aligned}$	島	をニロッロッの		がすべへす	の年こどす		8も5が\％
		－	\because	－¢＝¢	のの砍त	ત̃	
	䍖	ョ「发	Oミ：	年らへ	へテoom	ダプ8す	
	\％		ลส̃		－${ }^{\text {O}}$－	ツさnセも	ニヘペ
$\stackrel{\substack{\circ \\+\\+}}{ }$	H	ョのこのロロ	58すが	¢へテ	のシतすが	べっこち	こo方
	\sim	ヶ「かの吅	このささn	ํニニํㅡํ	ののロロラス	สส゙ ${ }^{-\sim}$	
	W	E	万oso ：M	¢からが	そうらすす		－
	\％	ェのロ゙でへন	สสสส		のご	のさnne	ラニラロ
®o	嶌		いらがずす	ス「ず枵	Nominc		のニさらす
		－rmの으	コホッざ	ํッニำ	ののロッネホ	ก ： $0-$	
	岂	をよざごす	てơon ：		へべ戸べす	5¢¢0\％	
	令	ェのロロべ	สสั	－Nよい。	－${ }^{\text {anay }}$	のささnの	のニニロッ
$\stackrel{\text { ®̀ }}{+}$	H	ョ줘융				－：menem	ल゙Nニ』
	\sim	－rmaの？	さッざ	ワソニッロッ		\％：O－N	
	䍖	ョ\＆のジへす	ダべ：のn	さッラロの	－－તn¢pe		
	c	ェのスิธีสส	สึ ：	Nのすい6	－ 0 のこ	このざの	－5
安	気	苍	－rmag （4）	$=\simeq M \pm n$		নホベボ ค	（6）

MOON

$\begin{aligned} & \circ \\ & \hline \end{aligned}$	忽	ョにがゥです $ェ \infty$ のニのサ	ロ シダぶ 	～i85s のニニニン	かのダすこ ミニペーロ	がm：© 入べ：～	mいいかのこ
	$\frac{山 y}{2}$	ョヴすとい゚ ェラ	$\begin{aligned} & \text { incoin } \\ & \text { aciñ } \end{aligned}$	かっ8ダ －mい○か		으ํㅡํㅜㅡ	
$\begin{aligned} & \stackrel{\circ}{\sim} \\ & + \end{aligned}$	嵫	をलN゙NN $\pm \infty$ ニニッ	さんnもの	ํํニニニ	$\begin{aligned} & \text { na } \\ & 0 \end{aligned}$	$\begin{aligned} & \mathfrak{F}: \infty \infty \mathbb{N} \\ & \underset{\sim}{N}: 0-N \end{aligned}$	
	$\frac{\sqrt[2]{2}}{2}$		ヘลส ：	$-\min \omega \infty$	$a^{2}=さ 寸$	い年令 にぞニッロ	
$\begin{aligned} & \circ \\ & \stackrel{\rightharpoonup}{n} \\ & + \end{aligned}$	易		するがNこ さすにのロ	がNoñ゙子 ーローニニ		$\begin{aligned} & 8: \underset{\sim}{\infty} \underset{寸}{\prime} \\ & \cdots: 0-\infty \end{aligned}$	
	$\stackrel{n}{2}$	－		8－m8ion Nmuor	moतñ $a=N \cong \pm$	Nomin さにnにも	
$\stackrel{\circ}{\ddagger}+$		ョにのオが ェかののニッ	のサさにも	$\underline{\underline{\bullet}} \boldsymbol{\bullet} \text { ニニ }$	๗ํㅡㅇㅇㅇㅇ ロのローステ		
	$\stackrel{\stackrel{U}{2}}{2 \times 2}$		নהત :-	Nmu	ターलずが品 のロニッツ	がいデか さすにいに	
$\begin{aligned} & \circ \\ & + \\ & + \end{aligned}$	氐		$\begin{aligned} & \text { gingoin } \\ & \text { maynn } \end{aligned}$		か유NNN ำกำส	$\begin{aligned} & \text { i子: ins } \\ & n: 0-m \end{aligned}$	$\text { } \operatorname{tnorma}$
	$\frac{山 山 N}{\underline{W}}$	ョiñ붕 ェのののでN	ત̃ત : O-	Nmい゚			$\underline{\underline{0}} \underline{\underline{0}}$
$\underset{+}{\stackrel{\circ}{+}}$	岉	をすぶ为伿志 $\pm \infty \infty$ の으	ッグンに	ひそのケ~	ぶすぞか 	$\begin{aligned} & \text { in :ond } \\ & n:-N m \end{aligned}$	
	$\begin{aligned} & \text { 苞 } \\ & \boxed{2} \end{aligned}$	ェのबㅇNㅅN		のタ8のヘ Nmior	サ8ヘニニ ∞ のニヘッ	$\begin{aligned} & \text { nのずらn } \\ & \text { Mすnn } \end{aligned}$	
$\stackrel{\circ}{+}$	岢	ミんすぞッの ェ「かのOこ	へのささに	$\underline{\underline{\circ}} \boldsymbol{\underline { 1 }}=\boldsymbol{\sim}$	士すすが のัースデ		$\text { } \forall ナ n o$
			สกั ： ヘー $^{-1}$	Nmuor	myino かのำホ	デN゚ーNか のすさにの	
$\begin{gathered} \text { O} \\ + \\ \hline \end{gathered}$	㤐	を寸ががッ ェ「かの을	ヘッツさに	8우웅 	๗సiતిల్ల 	$:$ Mñ께 $: 0-n m$	$\forall \forall n o$
	$\frac{山 山 N}{\sim}$	घ芥8oñ윽 ＝のロำ～ステ	$\begin{aligned} & \text { ñ : }: \infty \infty \\ & \text { ñ } \end{aligned}$	जnin8o5 Nmior	士त్సిM్ల かののニッ		さッへ8がった
	$\underset{\text { 空 }}{\substack{\text { n }}}$		$3 \times \infty 00$ (4)t)		ํㅗํํㅜㅜ	নホがた	 （3）

MOON

MOON

－	芴	ェォตッツツ	刃 オオत戸 мッツッツ		 	च miñ nलすor	えポoㄲㅜㅜ の○ニコニニ
	崺		べらす	ボべちセへ		nowemin	
		ニニのロ゙オત		かのニッホ	ヘッฯฯฯ	บッฯฯฯ	
$\stackrel{\text { ¢ }}{\text {＋}}$			のペ̧¢	Foiminu	ぶッ ：F	8さがすが	88らが年す
		ニニオヘฯの	のヘッツป	コニご気	－̇ત̃	－	－
		をलすご砤	べらべく	なにつの年	8さ	¢	－
		ェッのネत	ーヘナー	－の9ニコ	ฯฯฯฯฯ	ェッツツツ	－
$\stackrel{\circ}{\circ}$	H	E		がらすべす	らすべ八	すべッM	
		－	のヘッ				으으
	苞	をがこので	どうの年	のダなぐ	タ「が年	ローべすへ	がすすご呂
		－		－のoの＝	ニฯฯฯฯ	ヘッツツ	さnこのの穴
$\stackrel{\circ}{+}$	苗	曰incodon			そ	8	5－
		－	M	のヒニッロ	त̇		
		ョ	ニヘフ̧す\％	号ござ		すかなのす	へิत入べmin
		－のでへへ	OーNすん	－ooの으	コニヘッホ	のヘッさす	にセへのの
－	H	®		ningon	方すす！	なななくす	
	\sim	ェ゚ニコさ	のヘささに	nセニのロ	নतશ		
	䍖	ョそららも	それがあさ	๗n¢¢が	－9\％「がす		¢
	足	ェのロットヘ		－rang	コニッฯฯ	のヘッさに	nソニロの
$\stackrel{\circ}{\sim}$	苞		－momy	－O8nで号	ずな：す	すらलうから	
	\sim	ェOニコニ	n	－ペーの兄	הत̃		
	睆	ESすOM	ご出なす。	9すがすN			
	c	－	－－Nmis	－rmao	コニッホの	のヘささに	
	苞	a\％iñot	ロタのらす	入れらす＊	べらす		－ニ®が¢
	\％	ェ으ํan	のツさすn	ソニロース	二तึ̃		－
	苞	\＆	הत్	とかっていす	nลnuan	の守のずす	－
	$\underline{2}$	－¢สสホ		の인	ロニコニ	のツすず	セニッのが
＋	H			¢ncoinco	5๐¢ ：	m유응	す寸がする゙
	\sim	ェのํニニッ	のツさnn	ํニップへ	สતส		no
	䍖			Finisin	がッぶ	がすonセor	かすがあへへ
	\％	－çanc		noraa	ロニニオ	のさずに	ツニめので
	$\begin{aligned} & \text { 忩 } \\ & \text { 告 } \end{aligned}$	－nmon		ニッツさに	ソニロのロ゚	こホべへ	
		\％		－	ค		（1）

ECLIPSES DURING 1985

By Fred Espenak

Four eclipses will occur during 1985. Two of these are solar eclipses (one partial and one total) and two are lunar eclipses (both total).

1. May 4: Total Eclipse of the Moon

The greatest phase of this event occurs just 15 hours after the Moon reaches perigee. As a result, the Moon will appear very large and will swing through Earth's shadow quite rapidly. At maximum eclipse (19:56.4 UT), the umbral magnitude will peak at 1.2428 as the Moon's southern limb passes within 5 arc-minutes of the shadow's central axis. Unfortunately, none of the eclipse will be visible from North America. The partial and total phases will be widely seen from Europe, Asia, Africa and Australia. At mid-totality, the Moon will appear in the zenith from about 1500 kilometres east of Madagascar in the Indian Ocean.
2. May 19: Partial Eclipse of the Sun

The first solar eclipse of 1985 will be partial as the Moon's umbral shadow sweeps within 460 kilometres of Earth's surface. The event is confined to the northern hemisphere and will be visible from northeastern Asia, the northern third of North America, Greenland and Iceland. Greatest eclipse occurs at 21:28.9 UT, when observers in north-central Siberia will witness a sunrise eclipse of magnitude 0.850 . The magnitudes and times of maximum eclipse for several cities of interest follow: Anchorage: 0.203 (21:45 UT); Reykjavik: 0.530 (22:39 UT); Peking: 0.499 (21:29 UT); Tokyo: 0.494 (21:10 UT); Vladivostok: 0.625 (21:29 UT).
3. October 28: Total Eclipse of the Moon

The second lunar eclipse of the year occurs one day before the Moon reaches apogee. The umbral magnitude attains a maximum value of 1.0780 at 17:42.3 UT, when the Moon's southern limb will be a scant 2 arc-minutes from the shadow's edge. Once again, the visibility of this event will be confined to the eastern hemisphere. However, observers in northwestern Canada will see the partial phase begin shortly before moonset. Alaskans will even witness the onset of totality but morning twilight may interfere.
4. November 12: Total Eclipse of the Sun

The fourth and last eclipse of 1985 will be a total solar eclipse, visible from the southern hemisphere. The path of totality begins in the South Pacific about half way between New Zealand and southern Chile. It quickly swings southeast, crossing the Antarctic Circle where greatest eclipse lasts 1 minute and 58 seconds at $14: 10.5$ UT. The path then changes direction and heads west, just off the coast of Antarctica. After sweeping across the Ross Sea, the path skirts the flanks of Mount Sabine and ends. This " C " shaped arc will bring the umbra in contact with Earth for only 38 minutes. As seen from the Moon, the umbral shadow will follow a short chord very close to the edge of Earth's disk. This geometry results in an unusually broad eclipse path of 693 kilometres in width. In addition, the Sun's altitude will never exceed 11 degrees along the central path which both begins and ends at sunrise. The magnitudes and times of maximum eclipse for several cities and areas of interest follow: Cordoba: 0.041 (13:35 UT); Punta Arenas: 0.498 (13:53 UT); Santiago: 0.188 (13:14 UT); South Pole: 0.841 (14:46 UT).

SOLAR ECLIPSE MAPS

For each solar eclipse, an orthographic projection map of Earth shows the path of partial and total eclipse. The map for the partial eclipse is oriented with its origin at the sub-solar longitude at greatest eclipse and latitude equal to the sun's declination plus 45 degrees. The map for the total eclipse is oriented with the point of greatest eclipse at the origin. Greatest eclipse is defined as the instant when the axis of the Moon's shadow passes closest to Earth's center. The point on Earth's surface which is at or is nearest to the axis at this instant is marked by an '*'. Although greatest eclipse differs slightly from the instants of greatest magnitude and greatest duration, the differences are usually negligible. The position of the Moon's umbral shadow at each hour (UT) is labeled along the path of totality. The much larger outline of the penumbral shadow is also shown at each hour (UT) and appears as a dotted curve. The limits of the penumbra delineate the region of visibility of the partial solar eclipse. Loops at the western and eastern extremes of the penumbra's path identify the areas where the eclipse is in progress at sunrise and sunset, respectively.

Data pertinent to the eclipse appear with each map. In the upper left corner are the times of greatest eclipse and conjunction of the Moon and Sun in right ascension, the minimum distance of the Moon's shadow axis from Earth's center in Earth radii (Gamma) and the geocentric ratio of diameters of the Moon and the Sun. For the partial eclipse, the geocentric ratio is replaced by the magnitude at greatest eclipse. To the upper right are contact times of the Moon's shadow with Earth. P1 and P4 are the first and last contacts of the penumbra; they mark the start and end of the partial eclipse. U1 and U4 are the first and last contacts of the umbra; they denote the start and end of the total eclipse. Below each map are the geocentric coordinates of the Sun and Moon at the instant of greatest eclipse. They consist of the right ascension (RA), declination (DEC), apparent semi-diameter (SD) and horizontal parallax (HP). The Saros series for the eclipse is listed along with the Julian Date at greatest eclipse and delta T or the difference between Dynamical and Universal Time. Finally, the geodetic coordinates of the point of greatest eclipse are given, as well as the local circumstances there. In particular, the Sun's altitude (ALT) and azimuth (AZ) are listed along with the duration of totality and the width of the path.

LUNAR ECLIPSE MAPS

Each lunar eclipse has two diagrams associated with it. The top one shows the path of the Moon with respect to Earth's penumbral and umbral shadows. To the left is the time of maximum eclipse, the angle subtended between the Moon and the shadow axis at that instant, followed by the penumbral (PMAG) and umbral (UMAG) magnitudes of the eclipse. The penumbral (or umbral) magnitude is the fraction of the Moon's disk obscured by the penumbra (or umbra) at maximum eclipse as measured along a common diameter. To the right are the contact times of the eclipse. P1 and P4 are the first and last contacts of the Moon with the penumbra; they mark the start and end of the penumbral eclipse. U1 and U4 denote the first and last contacts of the Moon with the umbra; they are the instants when the partial umbral eclipse begins and ends. U2 and U3 are the instants of internal tangency between the Moon and the umbral shadow; they identify the start and end of total umbral eclipse. In a left corner are the Julian Date at maximum eclipse and delta T or the difference between Dynamical and Universal Time. The Moon's geocentric coordinates at maximum eclipse are given on the right. They consist of the right ascension (RA), declination (DEC), apparent semi-diameter (SD) and horizontal parallax (HP).

The bottom map is a cylindrical equidistant projection of Earth which shows the regions of visibility for each stage of the eclipse. In particular, the moonrise/moonset terminator is plotted for each contact and is labeled accordingly. The point where the Moon is in the zenith at maximum eclipse is indicated by an ' $*$ '. The region which is completely unshaded will observe the entire eclipse while the area marked by solid diagonal lines will not witness any of the event. The remaining shaded areas will experience moonrise or moonset while the eclipse is in progress. The shaded zones east of '*' will witness moonset before the eclipse ends while the shaded zones west of '*' will witness moonrise after the eclipse has begun.

Additional information about eclipses is published annually in the Astronomical Almanac. Special circulars on up-coming solar eclipses are usually published twelve months in advance of an event. They contain many pages of detailed predictions and are highly recommended. They can be obtained by writing to the Almanac Office, U.S. Naval Observatory, Washington, DC 20390, U.S.A.

REFERENCES

Espenak, F., 1982, "Eclipse Chaser's Notebook", Astronomy, 10, 6.
Explanatory Supplement to the Astronomical Ephemeris and the American Ephemeris and Nautical Almanac, 1974, H.M. Nautical Almanac Office, London.
Improved Lunar Ephemeris 1952-1959, 1954, U.S. Nautical Almanac Office, Washington, D.C.
Meeus, J., Grosjean, C.C., and Vanderleen, W., 1966, Canon of Solar Eclipses, Pergamon Press, New York.
Newcomb, S., 1895, Tables of the Motion of the Earth on its Axis Around the Sun, A.P.A.E., Vol. 6.

PARTIAL SOLAR ECLIPSE - 19 MAY 1985

MAXIMUM	$=17: 42.3 \mathrm{UT}$
AXIS	$=0.3621$
PMAG	$=2.1936$
UMAG	$=1.0780$

PENUMBRA
$P 1=14: 38.0 U T$
$U 1=15: 54.5 U T$
$U 2=17: 19.7 U T$
$U 3=18: 4.9 U T$
$U 4=19: 30.1 \mathrm{UT}$
$P 4=20: 46.7 U T$

OCCULTATIONS BY THE MOON

Predictions by the
International Lunar Occultation Centre
Tokyo, Japan

The Moon often passes between Earth and a star, an event called an occultation. During an occultation a star suddenly disappears as the east limb of the Moon crosses the line between the star and observer. The star reappears from behind the west limb some time later. Because the Moon moves through an angle about equal to its own diameter every hour, the longest time for an occultation is about an hour. The time is shorter if the occultation is not central. Occultations are equivalent to total solar eclipses, except they are eclipses of stars other than the Sun.

Since observing occultations is rather easy, provided the weather is suitable and equipment is available, amateur astronomers are encouraged to try this activity. The slow, majestic drift of the Moon in its orbit is an interesting part of such observations, and the disappearance or reappearance of a star at the Moon's limb is a remarkable sight, particularly when it occurs as a graze near the Moon's northern or southern edge. In the latter case the star may disappear and reappear several times in succession as mountains and valleys in the Moon's polar regions pass by it. On rarer occasions the moon occults a planet. A memorable event observed by the editor a few years ago was a graze involving Saturn. At one point only a portion of Saturn's rings were visible over a lunar valley, resembling a pale rainbow above that stark landscape.

Lunar occultation and graze observations are used to refine our knowledge of the Moon's orbit, the shape of the lunar profile, and the fundamental star coordinate system. These observations complement those made by other techniques, such as laser-ranging and photographs. Improved knowledge of the lunar profile is useful in determinations of the Sun's diameter from solar eclipse records. Occultation observations are also useful for detecting double stars and measuring their separations. Binaries with separations as small as 0.01 have been discovered visually during grazes. Doubles with separations in this range are useful for filling the gap between doubles which can be directly resolved visually and those whose duplicity has been discovered spectroscopically.

Analysis of lunar occultation observations is currently being done at the U.S. Naval Observatory and the International Lunar Occultation Centre (ILOC). The latter organization is the world clearing house for such observations. Readers who are interested in pursuing a systematic program of lunar occultation observations should write to the ILOC (address on the inside front cover under "Senda") for their booklet: Guide to Lunar Occultation Observations.

Observers in North America should also contact the International Occultation Timing Association (IOTA), P.O. Box 3392, Columbus, OH 43210-0392, U.S.A. IOTA provides predictions and coordination services for occultation observers. Detailed predictions for any grazing occultation are available (\$1.50 U.S. each); instructions concerning the use of predictions are also available ($\$ 2.50$ U.S.). Annual membership in IOTA is $\$ 11.00$ U.S. in North America, $\$ 16.00$ U.S. overseas. Membership includes free graze predictions, descriptive materials, and a subscription to Occultation Newsletter (available separately for $\$ 5.50$ U.S.).

The main information required in a lunar occultation observation is the time of the event and the observer's location. Supplementary information includes the seeing conditions, size of telescope used, timing method used, estimate of the observer's reaction time and the accuracy of the timing, and whether or not the reaction time correction has been applied. The timing should be as accurate as possible, preferably to 0.5 s or better. (A shortwave radio time signal and cassette tape recorder provide a simple, permanent time record). The observer's geodetic latitude, longitude, and altitude should be known to at least the nearest second of arc and 20 metres respectively. These can be determined from a suitable topographical map. For

Canada these are available from the Canada Map Office, 615 Booth Street, Ottawa, ON, K1A 0E9. In the United States east of the Mississippi write to: U.S. Geological Survey, 1200 S. Eads St., Arlington, VA 22202; west of the Mississippi the address is: U.S. Geological Survey, Denver Federal Centre, Bldg. 41, Denver, CO 80225.

The following pages give tables of predictions, and a table and maps of northern or southern limits for many cases where grazing occultations may be seen.

1. TOTAL OCCULTATION PREDICTIONS

The total occultation predictions are for the 18 standard stations identified on the map below; the coordinates of these stations are given in the table headings.

The tables are generally limited to stars of magnitude 5.0 or brighter. The first five columns give for each occultation the date, the Zodiacal Catalogue number of the star, its magnitude, the phenomenon (DD or DB = disappearance at dark limb or bright limb, respectively; RD or $\mathrm{RB}=$ reappearance at dark limb or bright limb, respectively), and the elongation of the Moon from the Sun in degrees (see page 22). Under each station are given the universal time of the event, factors a and b (see below), and the position angle (from the north point, eastward around the Moon's limb to the point of occurrence of the phenomenon). In certain cases, predictions have been omitted due to the Moon being too near or below the horizon, no occultation, interference of sunlight, or other difficulties. If a and b are insignificant, they are omitted.

The terms a and b are for determining corrections to the times of the phenomena for stations within 500 km of the standard stations. Thus if λ_{0}, ϕ_{0}, be the longitude and latitude of the standard station and λ, ϕ, the longitude and latitude of the observer, then for the observer we have: UT of phenomenon = UT of phenomenon at the standard station $+a\left(\lambda-\lambda_{0}\right)+b\left(\phi-\phi_{0}\right)$ where $\lambda-\lambda_{0}$ and $\phi-\phi_{0}$ are expressed in degrees and a and b are in minutes of time per degree. Due regard must be paid to the algebraic signs of the terms. Also, to convert UT to the standard time of the observer, see page 17.

As an example, consider the occultation of ZC 656 on Jan. 4, 1985 as seen from Ottawa. For Ottawa, $\lambda=75.72^{\circ}$ and $\phi=45.40^{\circ}$. The nearest standard station is Montreal, for which $\lambda_{0}=73.60^{\circ}$ and $\phi_{0}=45.50^{\circ}$. Therefore, the UT of the disappearance at the dark limb ("DD") is $3^{\mathrm{h}} 14^{\mathrm{m}} .6-2^{\mathrm{m}} .0(75.72-73.60$) $0^{\mathrm{m}} 5(45.40-45.50)=3^{\mathrm{h}} 10^{\mathrm{m}} .4$. Note that almost the same result is obtained by using Toronto as the standard station. The elongation of the Moon is 144° which
means that the Moon is in the waxing gibbous phase (between first quarter and full). The position angle of disappearance is about 90°.

The total lunar occultation predictions below, being limited to stars of magnitude 5.0 or brighter, are only the more spectacular events and are presented in order to introduce observers to this type of work. The number of events observable at any location increases rapidly as predictions are extended to fainter and fainter stars. Observers who wish to pursue this work can obtain more extensive lists from Walter V. Morgan, 10961 Morgan Territory Rd., Livermore, CA 94550, U.S.A., by providing accurate geographical coordinates and a long, self-addressed envelope (with postage). Experienced observers who regularly measure 60 or more events per year may obtain even more detailed predictions computed for their location by contacting: Occultation Project, Nautical Almanac Office, U.S. Naval Observatory, 34th and Massachusetts Ave., NW, Washington, D.C. 20390, U.S.A.

LUNAR OCCULTATIONS 1985

DATE		ZC	MAG	PH ELG		Ha	HALIFAX, NS$W 63.6, N 44.6$					$\begin{aligned} & \text { MONTREAL, PQ } \\ & W 73.6, N 45: 5 \end{aligned}$					$\begin{aligned} & \text { TORONTO, ON } \\ & \text { W } 79.4 \text {, N } 43.7 \end{aligned}$					
		UT				a	b	PA	UT	a		b	PA	UT	a		b	PA				
Jan							$\stackrel{\circ}{\circ}$		$h \mathrm{~m}$	$\mathrm{m} /{ }^{\circ}$	m/ ${ }^{\text {b }}$		h	h	m/ ${ }^{\circ}$	$\mathrm{m} /{ }^{\circ}$				m/ ${ }^{\circ}$	m/ ${ }^{\text {a }}$	
	4	656	4.4	DD 1	144		334.3	-1.8	-1.3	99	3	314.6	6-2.0	-0.5	91		$3 \quad 3.4$	-2.1	-0.3	93		
	15	2118	2.9	DB	289	10	028.5	-1.9	0.5	91	10	12.4	4-1.4	40.5	105	10	04.9	-1.0	0.2	119		
Feb	15	2118	2.9	RD	290	11	133.3	-0.9	-1.3	333	11	122.3	3-1.1	-0.7	320	11	116.7	-1.2	-0.3	307		
	2	900	4.9	DD 1	136		523.1	-0.8	-1.2	84		512.4	4-1.1	1-1.3	91		58.2	-1.2	-1.5	102		
	9	1821	2.9	DB	229		52.9	-0.4	-1.5	164		458.9	9-0.1	1-2.1	175		58.4			203		
Apr	9	1821	2.9	RD	229		557.4	-1.9	1.0	268		540.2	2-1.8	82.2	253		519.7			223		
	13	2359	4.8	RD	283							832.9			357		837.3	0.1	-0.7	336		
	5	1821	2.9	DD 1	173		056.9	-0.8	-0.1	128		50.4	-0.5	-0.1	134		048.4	-0.3	-0.5	145		
	5	1821	2.9	RB 1	173			-1.1	-0.2	303		152.0	-1.0	0.4	293		145.1	-1.0	0.9	280		
	10	2554	4.4	DD 2	246		722.3	3		188												
JunJul	10	2554	4.4	RD 2	247		727.4			195												
	30	2347	4.8	DD 1	149		430.1	-1.4	-1.0	91		414.4	4-1.6	-0.7	90		45.6	-1.8	-0.5	95		
	14	660	4.4	RD 3	316		617.6	0.4	4 1.4	250												
	30	2784	3.4	DD 1	157		338.0	-1.4	4	47		323.1	-1.6	60.8	40		311.1	-1.9	1.2	42		
Aug	3	3349	4.2	RD 2	208							412.8			181		43.9			183		
	25	2554	4.4	DD 1	115												332.7	-1.3	-1.0	86		
Oct	18	2617	4.7	DD	66						23	29.7	-1.3	-0.8	79		323.0	-1.5	-0.6	77		
Nov	10	1891	4.4	RD 3	329	10	15.8	-0.1	-1.3	346	10	13.8	-0.1	-0.9	339	10	14.4	-0.1	-0.5	327		

DATE		ZC	MAG	PH ELG			MINNIPEG, MBW $97.2, N 49.9$					$\begin{gathered} \text { EDMONTON, AB } \\ W 113.4, \mathrm{~N} 53.6 \end{gathered}$				Va VANCOUVER, BC W 123.1, N 49.2						
		UT				a	b	PA	UT	a		b	PA		UT	a	b	PA				
Jan							${ }^{\circ}$		m	m/ ${ }^{\circ}$	m/ ${ }^{\circ}$			h m	m/ ${ }^{\circ}$	m/ ${ }^{\circ}$			h	$\mathrm{m} /{ }^{\circ}$	$\mathrm{m} /{ }^{\circ}$	-
	4	656	4.4	DD	144	2	39.2	-1.1	1.8	55		236.4	4-0.2	22.9	24		222.7	0.1	3.0	20		
	4	709	4.3	DD	148							134.5	50.1	1-1.6	696		1144.0	0.2	-2.2	117		
	15	2118	2.9	DB	289		54.7	-0.4	$4 \quad 0.4$													
	15	2118	2.9	RD	289	10	58.8	-0.9	0.5	295												
Feb	2	900	4.9	DD	136	4	35.3	-1.6	-0.5	90		410.9	9-1.4	40.8	875							
	9	1821	2.9	DB	229		49.1	0.0	-1.9	175												
	9	1821	2.9	RD	229	5	21.8	-0.8	3.1	244												
Mar	1	852	5.0	DD	105							710.0			29		657.9	-1.2	-0.3	58		
	10	2053	4.6	RD	227	10	50.2	-0.6	-1.7	348		34.7	$7-0.7$	7-0.8	8331		1028.9	-1.0	-0.4	311		
Mar	27	660	4.4	DD	62	5	31.0	0.3	-1.5	96		527.9	90.0	0-1.9	103		538.6	0.1	-2.8	126		
Apr	5	1821	2.9	RB	173	1	38.7	-0.4	40.9	289												
May	6	2347	4.8	RD	202	9	4.9	-1.4	-0.8	297		842.0	0-1.2	2-0.1	1290		828.2	-1.5	0.4	276		
Jun	5	2784	3.4	RD	210							25.0			339		914.9			329		
	9	3349	4.2	RD	260												119.6	-1.4	1.3	271		
	30	2347	4.8	DD	148		35.0	-1.4	0.2													
Jul	30	2784	3.4	DD	157	2	47.5	-1.7	1.7	43												
Aug	25	2554	4.4	DD	115	3	3.9	-1.5	-0.3	70												
	27	2910	4.8	DD	142	6	26.1	-0.0	0.6	19												
	27	2914	5.0	DD	142												737.2	-0.0	0.9	13		
Oct	10	1484	3.6	RD	310												153.4			5		
	23	3349	4.2	DD	127	23	54.4	-1.2	1.4	102												
Nov	24	257	4.5	DD	146	9	24.9	-0.1	-3.9	124	9	5.2	-0.8	-2.5	5104		98.6			122		

DATE		2C	MAG	H ELG			MASSACHUSETTS W 72:5, N 42.5					WASHINGTON, DC W 77\%, N 38.9					$\begin{gathered} \text { CHICAGO, IL } \\ \text { W } 87: 7, N 41: 9 \end{gathered}$					
						UT	a	b	PA	UT		a	b	PA	UT			a	b	PA		
								m	m/ ${ }^{\text {a }}$		-		m	m/ ${ }^{\circ}$	m/ ${ }^{\circ}$	${ }^{\circ}$				m/ ${ }^{\circ}$	$\mathrm{m} /{ }^{\circ}$	
Jan	4	656	4.4	DD	144	3	19.4	-2.2	-1.2	103	3	14.1	-2.7	-2.0	115			45.4	-2.2	0.3	90	
	15	2118	2.9	DB	289	10	12.9	-1.4	0.2	111	10	7.3	-1.0	-0.2	127		95	58.3	-0.6	-0.2	136	
	15	2118	2.9	RD	289	11	25.8	-1.2	-0.8	316	11	21.8	-1.5	-0.4	301	11	1		-1.4	0.3	290	
Feb	2	900	4.9		136		17.7	-1.0	-1.5	99	5	19.6	-1.0	-2.1	116		5		-1.5	-1.9	114	
	9	1821			229		8.0			192												
	9	1821	2.9		229		33.5			237												
	13	2359	4.8		283		37.1	0.3	-1.3	347	8	40.1	-0.2	-0.5	326							
Mar	1	852	5.0	DD	105												73	30.3			27	
	10	2053	4.6		227												11	12.5	-0.8	-2.3	348	
Apr	5	1821	2.9	DD	173		51.8	-0.5	-0.5	143	0	53.5	-0.3	-1.4	162			47.6	-0.2	-1.0	157	
	5	1821	2.9	RB	173		51.8	-1.2	0.6	284	1	42.6	-1.4	1.4	265			35.0	-0.9	1.6	265	
	23	599	4.5	DD	31													59.2			359	
May	6	2347	4.8		202														-1.5	-1.2	291	
Jun	6	2914	5.0	RD	221						4	51.3			334							
	30	2347	4.8	DD	149		18.4	-1.7	-0.8	94	4	13.1	-1.9	-0.7	100			51.2	-1.8	-0.3	103	
Jul	30	2784	3.4	DD	157		22.5	-1.8	0.8	45	3	10.4	-2.1	1.1	50			52.2	-2.0	1.5	48	
Aug	3	3349	4.2	RD	208	4	4.0			172								51.9			183	
	25	2554	4.4	DD	115		42.3	-1.1	-1.2	94	3	41.0	-1.4	-1.2	96			22.5	-1.6	-0.7	82	
	27	2910	4.8	DD	142												6	29.0	-0.6	-0.3	53	
Oct	18	2617	4.7	DD	66	23	33.6	-1.3	-0.8	84	23	29.7	-1.6	-0.7	86							
	24	3349	4.2	DD	127												0	2.7			122	
Nov	10	1891	4.4	RD	329	10	16.1	-0.2	-0.6	328	10	16.2	-0.3	-0.1	311							
Dec	8	MARS	1.8	RD	309						9	1.9			6							

2. GRAZE PREDICTIONS

The table on the next page lists lunar graze predictions for much of North America for 1985. The events are limited to stars of magnitude 7.5 or brighter which will graze the limb of the Moon when it is at a favourable elongation from the Sun and at least 10° above the observer's horizon (5° in the case of stars brighter than $5^{\mathrm{m}} .5$ and 2° for those brighter than 3 m.5). For each is given: a chronological sequential number, the Zodiacal Catalogue number and magnitude of the star, the time of the beginning of each graze track (the west end of the track), the percent of the Moon sunlit (a minus sign indicates a waning Moon), and whether the track is the northern (N) or southern (S) limit of the occultation.

The maps show the predicted graze tracks. Each track is keyed to the sequential number in the table. Several tracks begin and/or end with a letter A, B, or S indicated. A denotes that the Moon is at a low altitude, B that the bright limb interferes, and S that daylight interferes. The tick marks along the tracks indicate multiples of 5 minutes of every hour. e.g. If the time for the west end of a track is $3^{\mathrm{h}} 16^{\mathrm{m}} 11^{\mathrm{s}}$, the tick marks proceeding eastward correspond to $3^{\mathrm{h}} 20^{\mathrm{m}} 00^{\mathrm{s}}, 3^{\mathrm{h}} 25^{\mathrm{m}} 00^{\mathrm{s}}$, etc. Also, the tick marks are located on the side of each line that the star is occulted. The locations of the North American standard stations for lunar total occultation predictions are indicated by dots on the graze maps (as on the map on page 84, where the names are indicated by symbols).

Detailed predictions for any graze are available from the International Occultation Timing Association (see page 83).

No	ZC	$\mathrm{m}_{\mathbf{v}}$	UT at Start of Track in West				\%	L	No	ZC	$\mathbf{m}_{\mathbf{v}}$	UT at Start of Track in West				$\%$	L
					m								h	m	S		
4	1741	7.2	Jan. 12	4	44	14	-69	S	77	258	6.6	Junel3	11	48	6	-21	N
5	1758	7.0	12	9	28	36	-67	S	78	1709	6.7	25	3	49	48	42	N
6	1869	6.1	13	7	7	51	-56	S	79	2053	4.6	28	1	17	4	75	N
7	1875	6.5	13	8	34	42	-56	S	80	3428	5.2	July 7	11	7	4	-73	N
9	2117	5.3	15	10	6	22	-33	S	83	2290	2.5	27	2	16	40	73	N
10	2118	2.9	15	10	12	44	-33	S	84	391	7.4	Aug 8	8	37	39	-53	N
11	2132	7.1	15	13	10	51	-32	S	86	601	6.0	10	4	30	24	-36	N
13	2558	6.2	18	12	29	30	-7	S	88	1749	6.1	19	2	33	17	9	N
14	2564	6.8	18	13	19	26	-7	S	89	1821	2.9	19	14	39	31	13	N
15	3458	6.5	24	23	9	57	14	S	90	1874	7.5	20	3	39	53	17	N
16	128	7.3	27	0	30	0	30	S	92	455	6.1	Sep. 5	7	30	51	-69	N
17	237	7.1	27	22	24	20	38	S	93	467	6.7	5	12	13	14	-68	N
18	742	6.0	Feb. 1	2	16	15	77	S	96	733	7.2	7	11	35	28	-49	N
19	1821	2.9	9	5	0	58	-82	S	98	849	6.5	8	7	14	30	-41	N
20	1962	5.2	10	8	32	52	-71	S	99	1013	6.9	9	7	56	26	-31	N
22	2207	7.0	12	8	17	36	-49	S	100	1035	6.8	9	12	18	3	-30	N
23	2214	6.2	12	9	51	48	-48	S	102	1274	5.7	11	8	11	39	-14	N
24	2228	5.9	12	13	33	5	-47	S	103	1279	6.4	11	8	44	42	-14	N
26	219	5.1	24	3	19	18	16	S	104	1283	6.8	11	9	58	42	-13	N
27	531	5.5	27	0	45	37	40	S	105	1290	6.8	11	11	14	31	-13	N
28	533	6.3	27	1	29	46	40	S	106	1408	7.4	12	9	50	53	-7	N
31	693	6.0	28	2	22	28	51	S	107	2364	6.8	20	2	49	33	34	S
32	714	6.2	28	6	49	53	52	N	108	2371	4.9	20	3	3	19	34	N
33	842	6.3	Mar. 1	5	49	54	61	N	109	2702	6.8	22	4	43	39	57	S
34	852	5.0	1	7	24	33	62	N	110	833	7.1	Oct. 5	13	43	27	-65	N
35	994	6.5	2	3	31	13	70	N	111	1088	5.6	7	7	26	54	-48	N
36	2347	4.8	12	13	52	3	-62	S	112	1093	6.4	7	7	31	48	-48	N
37	2479	5.3	13	10	52	43	-52	S	113	1206	5.9	8	4	39	31	-39	N
38	2480	5.3	13	10	52	53	-52	S	114	1233	5.8	8	8	14	36	-37	N
39	2482	6.7	13	11	7	6	-52	S	115	1363	5.2	9	9	32	54	-27	N
43	497	6.4	26	0	58	10	16	S	116	1365	6.1	9	10	4	33	-27	N
45	625	7.0	27	0	12	46	24	S	117	1484	3.6	10	11	46	2	-17	N
46	630	7.5	27	2	9	56	25	N	119	3082	7.0	21	22	56	14	61	S
47	912	7.0	29	0	45	24	43	S	120	3102	6.9	22	3	42	16	63	S
49	926	7.0	29	2	46	18	43	N	121	3349	4.2	23	23	53	45	80	S
51	1067	7.2	30	0	37	3	53	N	123	1181	6.8	Nov. 4	6	36	38	-64	N
53	1089	6.7	30	5	47	43	55	N	124	1206	5.9	4	13	6	12	-62	S
54	1206	5.9	31	1	8	35	64	N	125	1211	6.2	4	13	37	43	-62	S
55	1211	6.2	31	2	13	50	64	N	126	1290	6.8	5	4	30	47	-55	N
56	1251	5.9	31	10	20	33	67	N	127	1408	7.4	6	4	18	42	-45	N
57	2554	4.4	Apr. 10	7	11	50	-69	S	129	1436	6.9	6	11	4	17	-42	S
58	599	4.5	23	1	55	51	6	N	132	3052	6.2	18	1	10	5	35	S
59	601	6.0	23	2	6	57	6	N	133	1274	5.7	Dec. 2	7	28	43	-79	N
60	743	5.6	24	2	51	17	12	N	134	1393	6.7	3	9	22	13	-70	S
61	1042	6.6	26	2	55	39	28	N	135	1484	3.6	4	3	27	2	-62	N
62	1169	5.4	27	2	5	10	38	N	136	1499	7.3	4	6	47	22	-60	N
64	1290	6.8	28	0	48	26	48	N	137	1514	6.1	4	11	8	21	-59	S
66	1435	6.6	29	5	26	35	61	N	138	1728	6.9	6	9	30	15	-38	S
67	1436	6.9	29	6	15	58	61	N	139	1828	6.6	7	8	4	14	-28	S
68	1544	5.7	30	2	45	49	70	N	140	1850	6.5	7	12	53	25	-26	S
69	3141	6.0	May 11	10	0	46	-52	N	141	2998	6.2	15	2	28	7	12	S
71	1131	7.1	24	1	12	5	15	N	142	3141	6.0	16	0	52	34	20	S
72	1270	6.1	25	2	57	16	24	N	143	3276	7.4	17	0	8	48	29	S
73	1499	7.3	27	1	30	49	44	N	144	215	6.7	21	6	53	1	70	S
74	1612	7.3	28	2	0	56	56	N	145	1684	7.0	Jan. 2	4	53	38	-66	S
76	1866	5.9	30	6	32	12	79	N	147	1808	7.0	3	12	3	33	-53	S

P

PLANETS, SATELLITES, AND ASTEROIDS

PLANETARY HELIOCENTRIC LONGITUDES 1985

Date UT	Planet					
	M	V	E	M	J	S
Jan. 1.0	176°	44°	101°	10°	294°	231°
Feb. 1.0	272	94	132	29	296	232
Mar. 1.0	14	139	160	45	299	232
Apr. 1.0	184	189	191	62	301	233
May 1.0	275	238	221	78	304	234
June 1.0	36	287	250	93	306	235
July 1.0	195	334	279	108	309	236
Aug. 1.0	286	23	309	122	312	237
Sep. 1.0	61	73	339	136	314	238
Oct. 1.0	209	122	8	149	317	239
Nov. 1.0	299	172	39	162	320	240
Dec. 1.0	80	220	69	176	322	241
Jan. 1.0	222	270	100	189	325	242

The heliocentric longitude is the angle between the vernal equinox and the planet, as seen from the Sun. It is measured in the ecliptic plane, in the direction of the orbital motion of the planets (counterclockwise as viewed from the north side of the ecliptic plane). Knowing the heliocentric longitudes, and the approximate distances of the planets from the Sun (page 8), the reader can construct the orientation of the Sun and planets on any date.

The heliocentric longitude of Uranus increases from 254° to 258° during the year; that of Neptune from 271° to 273°, and that of Pluto from 213° to 215°.

The magnitudes of the five, classical (naked eye) planets in 1985. Oppositions (O), conjunctions (C), inferior and superior conjunctions (IC, SC), and greatest elongations east and west (GEE, GEW) are indicated. (Note the diagram explaining these terms on page 94. For planetary symbols see page 7.)

PRONUNCIATION OF PLANET NAMES

Mercury	mûr' kū-rē
Venus	vē'nŭs
Earth	ûrth
Mars	mȧrs
Jupiter	j̄̄̄'pĭ-tẽr
Saturn	sát'ûrn
Uranus	yoor'à-nŭs
Neptune	nĕp'tyōon
Pluto	plō'tō

ā dāte; ă tăp; â câre; à àsk; ē wē; ě mĕt; ẽ makẽr; ī īce; ǐ bĭt; ō gō; ŏ hŏt; ô ôrb; oo book; $\overline{\text { ō mōn; }}$ ū ūnite; ŭ ŭp; û ûrn.

This diagram is a simplified view of the Solar System, from the north side. Earth is shown (middle orbit) together with an "inferior" planet (e.g. Venus) and a "superior" planet (e.g. Mars). Four special configurations of the inferior planet relative to Earth are shown (in counterclockwise chronological sequence): inferior conjunction (IC), greatest elongation west (GEW), superior conjunction (SC), greatest elongation east (GEE). Four special configurations of the superior planet relative to Earth are also shown (in clockwise chronological sequence): opposition (O), eastern quadrature (EQ), conjunction (C), western quadrature (WQ).

The apparent maximum and minimum observable size of seven planets is illustrated along with characteristic telescopic appearance. The large satellites of Jupiter (not shown) appear smaller than Neptune.

PRONUNCIATION OF SATELLITE NAMES

Adrastea	à-drăs'tē-ȧ	Europa	yoo-rō'pȧ	Oberon	ō'bȧ-rŏn'
Amalthea	ăm' ${ }^{\prime}$ l-thē' ${ }^{\text {a }}$	Ganymede	găn'ě-mēd'	Pandora	păn-dôr'ȧ
Ananke	\dot{a}^{\prime} năn-kē	Himalia	hĭm' ${ }^{\text {a }}$-lıı̆-à	Pasiphae	pȧ-sĭf'à ${ }^{-1}$
Ariel	âr'ē-ěl	Hyperion	hī-pēr'ī-ĕn	Phobos	fō'bŏs
Atlas	ăt'lăs	Iapetus	ī-ăp'ŭ-tŭs	Phoebe	fē'bè
Callisto	kȧ-liss'tō	Io	$\mathrm{I}^{\prime} \mathbf{o}$	Prometheus	prŏ-me'thē-ŭs
Calypso	kȧ-lĭp' sō	Janus	jā'nŭs	Rhea	rē'à
Carme	kȧr'mè	Leda	le'dà	Sinope	sĭ-nō'pē
Charon	kâr'ěn	Lysithea	lı̌s'ī-thē'-a	Telesto	tà-lěs'tō
Deimos	di'mors	Metis	me'tiols	Tethys	tē'thĭs
Dione	dī-ǒ'nē	Mimas	mi' măs	Thebe	thē'bē
Elara	é'làr-à	Miranda	mĭ-răn'dȧ	Titan	tì ${ }^{\prime}$ 'n
Enceladus	ěn-sěl'ȧ-dŭs	Moon	moon	Titania	tī-tā'nē-à
Epimetheus	ép'à-mē'thē-ŭs	Nereid	nēr'è-ĭd	Triton Umbriel	$\begin{aligned} & \text { trīi't'n }^{\text {ŭm }} \text { 'brē-ěl' } \end{aligned}$

[^5]
THE PLANETS FOR 1985

By Terence Dickinson

MERCURY

At just over one-third Earth's distance from the Sun, Mercury is the solar system's innermost planet and the only one known to be almost entirely without an atmosphere. Mercury is a small world only 6% as large as Earth by volumebarely larger than our Moon.

Until the advent of interplanetary probes, virtually nothing was known about the surface of Mercury. Only the vaguest smudges have been seen through Earth-based telescopes. In 1974 the U.S. spacecraft Mariner 10 photographed one hemisphere of Mercury revealing it to be extremely heavily cratered, in many respects identical in appearance to the far side of Earth's Moon. There is no interplanetary mission planned to photograph the other hemisphere.

Mercury's orbit is the most elliptical of any planet except Pluto's. Once each orbit Mercury approaches to within 0.31 A of the Sun and then half an orbit (44 days) later it is out to 0.47 A . This amounts to a 24 million km range in distance from the Sun, making the Sun in Mercury's sky vary from about four times the area we see it to more than ten times its apparent area from Earth. Mercury's sidereal rotation period of 59 days combines with the 88 day orbital period of the planet to produce a solar day (one sunrise to the next) of 176 days-the longest of any planet.

Of the five planets visible to the unaided eye, Mercury is by far the most difficult to observe and is seldom conveniently located for either unaided eye or telescopic observation. The problem for observers is Mercury's tight orbit which constrains the planet to a small zone on either side of the Sun as viewed from Earth. When Mercury is east of the Sun we may see it as an evening star low in the west just after sunset. When it is west of the Sun we might view Mercury as a morning star in the east before sunrise. But due to celestial geometry involving the tilt of Earth's axis and Mercu'y's orbit we get much better views of Mercury at certain times of the year.

The best time to see the planet in the evening is in the spring, and in the morning in the fall (from the northern hemisphere). Binoculars are of great assistance in searching for the planet about 40 minutes to an hour after sunset or before sunrise during the periods when it is visible. Mercury generally appears about the same colour and brightness as the planet Saturn. Telescopic observers will find the rapidly changing phases of Mercury of interest. The planet appears to zip from gibbous to crescent phase in about three weeks during each of its elongations.

MERCURY
TELESCOPIC OBSERVING DATA FOR
FAVOURABLE EASTERN (EVENING) ELONGATION 1985

Date Oh UT	Magnitude	Angular Diameter	\% of Disk Illuminated	Distance From Sun	RA	Dec
Mar 6	-1.2	5.6	86	13°	$23^{\text {h }} 54^{\mathrm{m}}$	$-0^{\circ} 54^{\prime}$
10	-1.0	6.1	74	15	018	+2 37
14	-0.6	6.7	58	17	039	+5 48
18	-0.1	7.6	41	18	054	+818
22	+0.8	8.6	25	16	102	+9 54

Mercury's phases have been glimpsed with telescopes of 75 mm aperture or less, but generally a 100 mm or larger telescope is required to distinguish them. In larger instruments under conditions of excellent seeing (usually when Mercury is viewed in the daytime) dusky features have been glimpsed by experienced observers. Thorough analysis has shown only a fair correlation between these visually observed features and the surface of the planet as photographed by Mariner 10.

VENUS

Venus is the only world in the solar system that closely resembles Earth in size and mass. It also comes nearer to Earth than to any other planet, at times approaching as close as 0.27 A. Despite the fundamental similarity, surface conditions on Earth and Venus differ greatly, according to findings of spacecraft missions to the planet during the past decade. The chief disparity is that Venus' surface temperature varies only a few degrees from a mean of $455^{\circ} \mathrm{C}$ on both day and night sides of the planet. The high temperature is due to the dense carbon dioxide atmosphere of Venus which, when combined with small quantities of water vapour and other gases known to be present, has the special property of allowing sunlight to penetrate to the planet's surface but does not permit the resulting heat to escape. This process is commonly known as the greenhouse effect.

Venus' atmosphere has a surface pressure 91 times Earth's sea-level atmospheric pressure. A haze layer extends down from about 65 km above the surface to about 50 km , where a dense $3-\mathrm{km}$-thick cloud deck occurs. The haze continues to within about 30 km from the surface, where the atmosphere clears. Several Soviet Venera spacecraft have landed on Venus since 1975 and have photographed the planet's surface, revealing daytime lighting conditions similar to those on Earth on a heavily overcast day. Winds at the surface range from 2 to $10 \mathrm{~km} / \mathrm{h}$. The clouds and haze that cloak the planet, consisting chiefly of droplets of sulphuric acid, are highly reflective, making Venus brilliant in the nighttime sky. However, telescopically, the planet is virtually a featureless orb.

Extensive radar data returned from the U.S. Pioneer Orbiter since 1978, a Soviet Orbiter and ground-based radar have yielded crude maps of the cloud-shrouded globe. Sixty percent of Venus' surface is rolling plains varying in height by only about 1 km between high and low points. Only 16 percent of the surface could be described as lowlands (perhaps comparable to ocean basins on Earth). Just 8 percent is true highland, ranging to a maximum altitude of 10.6 km above the rolling plains. Venus' crust appears to be thicker than Earth's-thick enough to choke off plate tectonics. Apparently, Venus' crust is one huge tectonic plate. There is no evidence of features like Earth's midocean ridges.

In 1983, readings from the still-functioning Pioneer Orbiter revealed that sulphur dioxide levels in the upper atmosphere had declined by 90 percent since the spacecraft arrived at Venus in 1978. This is interpreted as the aftereffect of a massive volcanic eruption that occurred shortly before Pioneer reached Venus. Furthermore, almost continuous lightning detected by Pioneer in the lower atmosphere has been traced to the major highlands, which are now believed to be giant active shield volcanoes larger than, but similar to, Hawaii's Mauna Loa. Lightning is known to be caused by electric-charge differentials near the plumes of active volcanoes. This suggestion of a volcanically active Venus could mean that the planet's atmosphere is not static but is substantially modified, perhaps over short time periods, by gaseous and particulate injection from volcanoes. Other evidence from analyses of the Pioneer readings indicates that about four billion years ago, Venus probably had a global ocean of water almost identical to Earth's for several hundred million years. At that time, the Sun was only two-thirds of its present brightness, but as solar radiation slowly increased toward present levels, the Venus ocean was doomed.

Evaporation of the oceans may have been the first step toward the greenhouse situation seen today.

Venus is the brightest natural celestial object in the nighttime sky apart from the Moon, and whenever visible, it is readily recognized. Because its orbit is within that of Earth's, Venus is never separated from the Sun by an angle greater than 47 degrees. However, this is more than sufficient for the dazzling object to dominate the morning or evening sky.

Like Mercury, Venus exhibits phases, although they are much more easily detected in small telescopes because of Venus' greater size. When it is far from us (near the other side of its orbit), we see the planet nearly fully illuminated, but because of its distance, it appears small-about 10 seconds of arc in diameter. As Venus moves closer to Earth, the phase decreases (we see less of the illuminated portion of the planet), but the diameter increases until it is a thin slice nearly a minute of arc in diameter. It takes Venus several months to move from one of these extremes to the other, compared to just a few weeks for Mercury.

As if making amends for its lackluster showing last year, Venus opens 1985 as a dazzling beacon in the west at dusk. The planet continues to dominate the early-evening skies until late March. It reaches greatest brilliancy on February 26 and inferior conjunction on April 3, when it passes into the morning sky. It remains there for the balance of the year, though less prominently placed than during its evening apparition. Venus is within 10 degrees of Mercury during the third week of March, offering a convenient guidepost for the elusive inner planet.

The table below supplies telescopic observing data for the first third of 1985. By mid-year Venus is magnitude $-4.2,60 \%$ illuminated and $20^{\prime \prime}$ in diameter. The phase increases and diameter decreases for the remainder of the year as the planet recedes from Earth.

When Venus is about a 20% crescent even rigidly-held, good quality binoculars can be used to distinguish that the planet is not spherical or a point source. A 60 mm refractor should be capable of revealing all but the gibbous and full phases of Venus. Experienced observers prefer to observe Venus during the daytime, and indeed the planet is bright enough to be seen with the unaided eye if one knows where to look.

Venus appears to most observers to be featureless no matter what type of telescope is used or what the planet's phase. However, over the past century some observers using medium or large size telescopes have reported dusky, patchy markings usually described as slightly less brilliant than the dazzling white of the rest of the planet. We now know that there are many subtle variations in the intensity of the clouds of Venus as photographed in ultraviolet by spacecraft and Earth-based telescopes. But when the ultraviolet photos are compared to drawings of the patchy markings seen by visual observers the correlation is fair at best.

When Venus is less than 10% illuminated the cusps (the points at the ends of the crescent) can sometimes be seen to extend into the night side of the planet. This is an actual observation of solar illumination being scattered by the atmosphere of Venus. When Venus is a thin sliver of a crescent the extended cusps may be seen to ring the entire planet.

VENUS NEAR INFERIOR CONJUNCTION 1985

Date Oh UT	Magnitude	Apparent Diameter	\% of Disk Illuminated	Distance From Sun	RA	Dec
Jan 3	-4.3	20 ". 1	60	$46^{\circ} \mathrm{E}$	$22^{\text {h }} 05^{\mathrm{m}}$	$-13^{\circ} 20^{\prime}$
Jan 23	-4.4	24.5	51	47	2323	- 350
Feb 12	-4.6	31.3	39	45	027	543
Mar 4	-4.6	42.1	23	37	107	1316
Mar 12	-4.6	47.6	16	31	112	1502
Mar 16	-4.5	50.5	12	28	111	1530
Mar 20	-4.4	53.3	8.3	23	107	1536
Mar 24	-4.3	55.8	5.2	18	102	1520
Mar 28	-4.2	57.7	2.7	14	055	1440
Apr 1	-4.1	58.8	1.3	10	0 0 0	1336
Apr 5	-4.0	59.0	0.9	8 W	037	1215
Apr 9	-4.1	58.2	1.7	11	029	1044
Apr 13	-4.2	56.5	3.5	16	023	911
Apr 17	$-4 \cdot 3$	54.1	6.2	21	$\begin{array}{ll}0 & 18 \\ 0 & 17\end{array}$	744 5
Apr 25	-4.5	48.4	13	29	017	531

MARS
Mars is the planet that has long captivated the imagination of mankind as a possible abode of life. One of the major objectives of the Viking spacecraft which landed on Mars in 1976 was the quest for Martian microorganisms. The Viking biology experiments completed the search in 1977 and, although the results are somewhat ambiguous, there is no convincing evidence of life we are familiar with.

The landscapes photographed by the Viking landers were basically desert vistas strewn with rocks ranging up to several metres wide. Judging by their texture and colour, and chemistry analysis by Viking, the rocks are fragments of lava flows. The soil composition resembles that of basaltic lavas on Earth and our Moon. About 1\% of the soil is water, chemically bound in the crystal structure of the rock and soil particles. Some planetary scientists speculate that water in the form of permafrost exists a few metres below the surface. However, Viking and its predecessors have shown that water was once abundant enough on Mars to leave major structures on the planet resembling riverbeds. Analysis of high resolution Viking Orbiter photographs of these structures has led most investigators to conclude that they were likely carved during the planet's early history.
The red planet's thin atmosphere has an average surface pressure only 0.7% of Earth's and consists of 95% carbon dioxide, 2.7% nitrogen, 1.6% argon, 0.6% carbon monoxide, 0.15% oxygen and 0.03% water vapour. Winds in the Martian atmosphere reach speeds exceeding $300 \mathrm{~km} / \mathrm{h}$ and in so doing raise vast amounts of dust that can envelop the planet for weeks at a time. The dust storms were thought to occur with seasonal regularity shortly after Mars passed the perihelion point of its elliptical orbit, but the Viking observations revealed more complex weather patterns.
In many ways Mars is the most interesting planet to observe with the unaided eye. It moves rapidly among the stars-its motion can usually be detected after an interval of less than a week-and it varies in brightness over a far greater range than any other planet. Mars may be distinguished by its orange-red colour, a hue that originates with rust-coloured dust that covers much of the planet.

Telescopically Mars is usually a disappointingly small featureless ochre disk except within a few months of opposition when its distance from Earth is then near minimum. If Mars is at perihelion at these times the separation can be as little as 56 million km . Such close approaches occur at intervals of 15 to 17 years; the most recent was in 1971. At a perihelion opposition the telescopic disk of Mars is 25 seconds of arc in diameter and much detail on the planet can be distinguished with telescopes of 100 mm aperture or greater. At oppositions other than when Mars is at perihelion, the disk is correspondingly smaller.

Early in 1985, Mars is retreating from its opposition of May 1984 and is visible low in the southwest after sunset. On January 1, at magnitude 1.0, the planet is in Aquarius and slowly fades during the winter months as it progresses through Pisces and into Aries. By early May, it reaches magnitude 1.6 and is a difficult naked-eye object in Taurus at dusk. From mid-May to late September, it is lost in the solar glare, conjunction occurring on July 18. Mars remains relatively inconspicuous in the morning sky for the remainder of the year, reaching magnitude 1.5 in Libra by January 1, 1986. Throughout 1985, Mars has an apparent diameter less than 5".5, making it nothing more than an orange blip in backyard telescopes.

JUPITER

Jupiter, the solar system's largest planet, is a colossal ball of hydrogen and helium without any solid surface comparable to land masses on Earth. In many respects Jupiter is more like a star than a planet. Jupiter likely has a small rocky core encased in a thick mantle of metallic hydrogen which is enveloped by a massive atmospheric cloak topped by a quilt of multi-coloured clouds.

The windswept visible surface of Jupiter is constantly changing. Vast dark belts merge with one another or sometimes fade to insignificance. Brighter zones-actually smeared bands of ammonia clouds-vary in intensity and frequently are carved up with dark rifts or loops called festoons. The equatorial region of Jupiter's clouds rotates five minutes faster than the rest of the planet: 9 hours 50 minutes compared to 9 hours 55 minutes. This means constant interaction as one region slips by the other at about $400 \mathrm{~km} / \mathrm{h}$. It also means that there are basically two rotational systems from the viewpoint of week-to-week telescopic observation.

In the table below the two quantities $L(1)$ and Δ can be used to calculate the longitude L of the central meridian of the illuminated disk of Jupiter. System I is the most rapidly rotating region between the middle of the North Equatorial Belt and the middle of the South Equatorial Belt. System II applies to the rest of the planet. For a given date and time (U.T.) of observation, L is equal to $L(1)$ for the month in question plus Δ times the number of complete days elapsed since $0 \mathrm{~h} \mathrm{U.T}$. of the month plus either 36.58° (for system I) or 36.26° (for system II) times the number of hours elapsed since 0 h U.T. The result will usually exceed 360°; if so, divide the result by 360 and then multiply the decimal portion of the quotient by 360°. This procedure, which is accurate to 1°, is readily computed using a modest calculator.

Jupiter's rapid rotation also makes the great globe markedly oval so that it appears about 7% "squashed" at the poles. Jupiter's apparent equatorial diameter ranges from $48^{\prime \prime}$ at opposition on August 4 to a minimum of $32^{\prime \prime}$ at conjunction on January 14.

JUPITER: EPHEMERIS FOR PHYSICAL OBSERVATIONS 1985

Date UT	Mag.	App. Equat. Diam.	System I		System II	
			$L(1)$	Δ	$L(1)$	Δ
Jan 1.0	-1.9	32.12	308.0	157.67	$325^{\circ} .5$	150.04
Feb 1.0	-1.9	32.3	155.8	157.71	296.7	150.08
Mar 1.0	-2.0	33.3	251.7	157.77	179.0	150.14
Apr 1.0	-2.1	35.5	102.5	157.84	153.2	150.21
May 1.0	-2.3	38.7	157.6	157.92	339.4	150.29
Jun 1.0	-2.5	42.7	13.1	158.00	318.4	150.36
Jul 1.0	-2.7	46.4	73.0	158.04	149.4	150.41
Aug 1.0	-2.8	48.4	292.2	158.00	132.0	150.37
Sep 1.0	-2.7	47.2	150.3	157.90	113.6	150.27
Oct 1.0	-2.6	43.8	207.3	157.78	301.7	150.16
Nov 1.0	-2.3	39.7	58.6	157.70	276.5	150.07
Dec 1.0	-2.2	36.4	109.4	157.65	98.4	150.02
Jan 1.0	-2.0	34.1				RLB

JUPITER'S BELTS AND ZONES

Viewed through a telescope of 150 mm aperture or greater, Jupiter exhibits a variety of changing detail and colour in its cloudy atmosphere. Some features are of long duration, others are shortlived. The standard nomenclature of the belts and zones is given in the figure.

The Great Red Spot, a salmon-coloured oval vortex whose hue may possibly be due to organic-like compounds that are constantly spewed from some heated atmospheric source below, is the longest-lived structure on the visible surface of Jupiter. The spot and the changing cloud structures that stripe the planet can be easily observed in small telescopes because the apparent size of the visible surface of Jupiter is far greater than that of any other planet. Occasionally (1981-84 for example) the Red Spot loses its prominence, becoming difficult to detect in smaller telescopes, only to return to its normal state a few years later.

Two Voyager spacecraft swung through the Jovian system in 1979 and transmitted to Earth superbly detailed photographs of the planet and its five inner moons. Among the most surprising finds was a ring of dust-size particles around the giant planet's equator. The ring apparently extends from the Jovian clouds out to 59000 km .

The smallest of telescopes will reveal Jupiter's four large moons, each of which is equal to or larger than Earth's satellite. The moons provide a never-ending fascination for amateur astronomers. Sometimes the satellites are paired on either side of the belted planet; frequently one is missing-either behind Jupiter or in the planet's shadow. Even more interesting are the occasions when one of the moons casts its shadow on the disk of the planet. The tiny black shadow of one of the moons can be particularly evident if it is cast on one of the bright zones of Jupiter. According to some observers this phenomenon is evident in a good 60 mm refractor. Both the satellite positions and the times of their interaction with the Jovian disk are given elsewhere in the handBook. Jupiter's other satellites are photographic objects for large instruments.

As 1985 opens, Jupiter is too near the Sun for viewing, but by late February it can be seen with difficulty just before sunrise. By May it becomes visible in the late evening sky in Capricornus and is ideally placed for telescopic viewing for the next six months. Despite the fact that it is five times Earth's distance from the Sun, Jupiter's giant size and reflective clouds make it a celestial beacon which is unmistakable, particularly around opposition.

Opposition this year occurs on August 4, when the giant planet is 609 million km (4.07 A) from Earth. Minimum possible distance between the two planets is 590 million km .

SATURN

Saturn is the telescopic showpiece of the night sky. The chilling beauty of the small pale orb floating in a field of velvet is something no photographs or descriptions can adequately duplicate. According to recent Voyager spacecraft findings, the rings consist of billions of particles that range in size from microscopic specks to flying mountains kilometres across. The reason "rings" is plural and not singular is that gaps and brightness differences define hundreds of distinct rings. However, from Earth only the three most prominent components-known simply as rings A, B, and C -can be distinguished. (See the diagram on p. 104.)

Cassini's Division, a gap between rings A and B discovered in 1675, is visible in small telescopes when the ring system is well inclined to our view. The Voyager spacecraft revealed Cassini's Division as a region less densely populated with ring particles than adjacent rings. Ring B, the brightest, overpowers ring C to such an extent that ring C, also known as the crepe ring, is seen only with difficulty in small telescopes. Other ring structures beyond these three are not visible in amateur telescopes.

In addition to the rings, Saturn has a family of at least twenty satellites. Titan, the largest, is easily seen in any telescope as an eighth-magnitude object orbiting Saturn in about 16 days. At east and west elongation Titan appears about five ring diameters from the planet. Titan is the only satellite in the solar system with a substantial atmosphere, now known to be primarily nitrogen and 4.6 times as massive as Earth's, with a surface pressure of 1.6 Earth atmospheres.

Telescopes over 60 mm aperture should reveal Rhea at 10th magnitude less than two ring-diameters from Saturn. The satellite Iapetus has the peculiar property of being five times brighter at western elongation (10.1) than at eastern elongation ($11 \mathrm{I}^{\mathrm{m}} 9$). One side of the moon has the reflectivity of snow while the other resembles dark rock. The reason for this is unknown. When brightest, Iapetus is located about 12 ring-diameters west of its parent planet. Of the remaining moons Tethys and Dione may be glimpsed in a 150 mm telescope but the others require larger apertures or photographic techniques. (See page 120 for an ephemeris for the five brightest satellites of Saturn.)

The disk of Saturn appears about $1 / 6$ the area Jupiter appears through the same telescope with the same magnification. In telescopes less than 100 mm aperture probably no features will ever be seen on the surface of the planet other than the shadow cast by the rings. As the size of the telescope is increased the pale equatorial region, a dusky equatorial band, and the darker polar regions become evident. Basically, Saturn has a belt system like Jupiter's but it is much less active and the contrast is reduced. Seldom in telescopes less than 200 mm aperture do more than one or two belts come into view. In 1980, the planet's rotation period was established at 10 hours, 40 minutes, four percent longer than previous estimates. Very rarely a spot among the Saturnian clouds will appear unexpectedly, but less than a dozen notable spots have been recorded since telescopic observation of Saturn commenced in the 17th century.

From year to year the rings of Saturn take on different appearances. The planet's orbit is an immense 29.5 year circuit about the Sun, so in the course of an observing season the planet moves relatively little in its orbit (and thus appears to remain in about the same general area of the sky) and maintains an essentially static orientation toward Earth. In 1973 the rings were presented to their fullest extent $\left(27^{\circ}\right)$ as viewed from Earth, with the southern face being visible. The north face will be seen similarly displayed in 1987. In apparent width the rings are equal to the equatorial diameter of Jupiter.

SATURIN

MAIN RING FEATURES VISIBLE FROM EARTH

P
As 1985 opens, the rings are tilted 23.3° with respect to Earth, with the northern face being visible. The tilt remains near this value until June, when it decreases slightly, reaching 22.5° in July. From then until early November, when Saturn is too close to the Sun for observation, the ring inclination slowly increases to near 24°. By December 31, when Saturn is visible in the morning sky, the rings have opened to 25.3°.

Saturn is in Libra and rises about three hours before the Sun as 1985 begins. Opposition is on May 15, when the planet is 1.33 billion $\mathrm{km}(8.92 \mathrm{~A})$ from Earth. At that time Saturn is 18.5 in equatorial diameter, and the rings are 42.1 in width. Saturn will remain in Libra until December when it moves into Scorpius.

URANUS

Although Uranus can be seen with the unaided eye under a clear, dark sky it was apparently unknown until 1781 when it was accidentally discovered by William Herschel with a 150 mm reflecting telescope. It can be easily seen with binoculars, and a telescope will reveal its small, greenish, featureless disk.

Jupiter, Saturn, Uranus and Neptune are rather similar in the sense that their interiors consist mainly of hydrogen and helium and their atmospheres consist of these same elements and simple compounds of hydrogen. Unlike the three other giant planets, the axis of Uranus is tipped almost parallel to the plane of the solar system. This means that we can view Uranus nearly pole-on at certain points in its 84 year orbit of the Sun. The northern hemisphere of Uranus is now directed toward Earth and we will be viewing the planet almost exactly toward its north pole in 1985. Uranus has five satellites, all smaller than Earth's moon, none of which can be detected in small or moderate sized telescopes.

The path of Uranus in southern Ophiuchus, 1985. The position of Uranus is indicated for the beginning of each month, where $1=$ January, $2=$ February, etc. The faintest stars shown are of magnitude 9. The magnitude of Uranus is about 5.6. The coordinates are for 1950.0. The position of Uranus relative to the other Jovian planets is shown in the wide-angle map on page 102.

The 1977 discovery of at least five rings encircling Uranus is regarded as one of the major planetary finds in recent years. Their detection emerged during a relatively routine occultation observation from an airborne observatory-an experiment initially intended to provide a more accurate measure of the diameter of Uranus. Refinement of the observations and results from another occultation in 1978 indicates there is evidence for eight (possibly nine) rings relatively evenly spaced from 16000 to 24000 km above the cloudy surface of Uranus. The outer ring is about 100 km wide but curiously eccentric. The others are estimated to be between 5 and 10 km across.

These dimensions are markedly different from Saturn's three major rings, each of which is thousands of kilometres wide. The rings are not as dense as Saturn's major ring since the occulted star did not completely disappear during passage behind them. Also, the albedo of the individual particles is believed to be low suggesting a dark substance compared to Saturn's brilliantly reflective ring material. The Uranian rings are invisible by direct visual observation from Earth because of their small dimensions and the enormous distance that separates us from Uranus.

Estimates of Uranus' diameter made over the last half century range from 46000 to 56000 km depending on the technique employed. Some recent work supports the high end of this range. If this proves to be correct then Uranus, like Saturn, has an average density less than that of water. The long-quoted rotation period of Uranus (about 11 hours) has come into question recently and may be in error by a factor of at least 2 , since several recent studies have yielded values in the 12 to 24 hour range. Uranus' nearly pole-on aspect in recent years is the primary impediment to obtaining an accurate value for the planet's spin. Much new information should result from the Voyager 2 flyby of Uranus in January 1986. Approach photos from the spacecraft are already of higher resolution than most Earth-based imagery.

Uranus is in Ophiuchus all year with opposition on June 6, when the planet is 2.70 billion $\mathrm{km}(18.07 \mathrm{~A})$ from Earth. At this time its magnitude is +5.5 and its apparent diameter is 3.9 seconds of arc.

NEPTUNE

The discovery of Neptune in 1846, after its existence in the sky had been predicted from independent calculations by Leverrier in France and Adams in England, was regarded as the crowning achievement of Newton's theory of universal gravitation. Actually Neptune had been seen-but mistaken for a star-several times before its "discovery".

Telescopically, the planet appears as a very small, featureless, bluish-green disk. Neptune's large moon Triton can be seen by an experienced observer using a 300 mm telescope. Recent measurements from NASA's Infrared Facility on Mauna Kea (Hawaii) suggest that Triton is smaller than Earth's Moon, thus effectively eliminating the possibility that it is the largest satellite in the solar system. Spectral studies in 1982 indicate that the surface of Triton may be rocky, with methane glaciers and a shallow sea of liquid nitrogen. However, these results are tentative. Triton varies from 8 to 17 seconds of arc from Neptune during its 5.9-day orbit. An unconfirmed third moon of Neptune was reported in 1981. This object may prove to be one of a large number of smaller as-yet-undetected bodies in orbit around the planet.

Since the discovery of Uranus' rings in 1977, numerous searches for a Neptunian ring system have failed to reveal one. Neptune's diameter was determined with high precision from occultation observations in 1969. Uncertainties in the rotation period of Neptune may have narrowed in 1981 with the results from over 300 infrared observations of the planet made with a 1.3-metre telescope at Kitt Peak. Astronomers Michael Belton, Lloyd Wallace and Sethanne Howard conclude that Neptune's rotation period is 18.2 hours, with an uncertainty of plus or minus 24 minutes.

In 1985 Neptune is buried in the Milky Way in western Sagittarius between Mu and the Lagoon Nebula (M8) (see the chart). At opposition on June 23 Neptune is magnitude $+7.9,4.37$ billion $\mathrm{km}(29.24 \mathrm{~A})$ distant from Earth, and $2^{\prime \prime} .3$ in diameter.

PLUTO

Pluto, the most distant known planet, was discovered at the Lowell Observatory in 1930 as a result of an extensive search started two decades earlier by Percival Lowell. The faint star-like image was first detected by Clyde Tombaugh by comparing photographs taken on different dates.

The path of Neptune during 1985. Moving through the central Milky Way, Neptune is almost lost against the star clouds of Sagittarius. Its position is marked for the beginning of each month, where $1=$ January, $2=$ February, etc. The faintest stars shown are of 9th magnitude, somewhat dimmer than 7.9 magnitude Neptune. Southwest of the path is the Trifid Nebula (M20) and the Lagoon Nebula (M8). The coordinates are for 1950.0. The position of Neptune relative to the other Jovian planets is shown in the wide-angle map on page 102.

The most important advance in our knowledge of Pluto since its discovery came in 1978 as a result of routine examinations of photographs of the planet taken at the U.S. Naval Observatory, Flagstaff, Arizona. James W. Christy detected an elongation of Pluto's image on some of the photos which has been confirmed as a large satellite revolving once every 6.3867 days-identical to the planet's rotation period. This means that the moon is visible only from one hemisphere of Pluto. Calculations made some years ago suggest that this is the only stable orbit a satellite could have with Pluto's slow rotation rate. The moon too would likely have one side constantly turned to Pluto. The name Charon has been proposed for the new-found object.

Recent speckle-interferometry observations by D. Bonneau and R. Foy using the Canada-France-Hawaii Telescope reveal Pluto and Charon as a unique double planet, 4000 and 2000 km in diameter respectively, orbiting 22000 km apart. This amounts to an apparent separation of 1.02 seconds of arc at Pluto's present distance. The derived mass for Pluto is one-quarter the mass of Earth's Moon. Charon is about one-tenth as massive. The albedo of both objects is about 20%. These values yield a density of 0.5 that of water, definitely indicating Pluto and Charon are fluffy balls of ice, most likely water, methane, and ammonia. This conclusion is supported by recent observations of a tenuous methane atmosphere on Pluto. However, since Pluto's surface gravity is too feeble to retain a primordial methane atmosphere it is probable that as the planet nears perihelion, the Sun is evaporating its frosty surface.

Besides being the solar system's smallest planet, Pluto is different from the other eight in almost every respect. Its unique characteristics include its orbit which is relatively higher inclined and so elliptical that the planet will be closer to the Sun than Neptune from 1980 to 1999. Just where such a freak fits into the solar system's origin and evolution is unknown. Perhaps Pluto is the largest member of a group of small, icy, comet-like structures beyond Neptune.

At opposition on April 23, Pluto is located in eastern Virgo (see chart) and its distance from Earth will be 4.31 billion km (28.81 A). With an apparent magnitude of +13.7 , Pluto is a difficult target in moderate-sized amateur telescopes.

The path of Pluto in eastern Virgo, 1985. Its position is marked at 10-day intervals, beginning at February 9 (F9). The brightest stars in the field shown here are about magnitude 7, and the faintest are magnitude 14. Pluto reaches opposition on April 23 at magnitude 13.7 and 4.0 light-hours from Earth. The asterisk about 14^{\prime} south of the April 10 position of Pluto marks the position of the 12th magnitude galaxy NGC 5638. The chart is based on Vehrenberg's Atlas Stellarum 1950.0, and the coordinates are for that epoch. Here is a quick way to aim a telescope at the mid-April path of Pluto (an aperture of at least 200 mm is required in order to see Pluto): Locate the 4th magnitude star τ Virginis (It is just above the 14-hour right ascension mark on the May star chart, page 179). About 3° east of τ (at position angle 70°) is a 5 th magnitude star. Run an imaginary straight line from τ to the second star and extend it 1.5 times as far.

JUPITER

PHENOMENA OF THE GALILEAN SATELLITES

The following tables give the various transits, occultations, and eclipses of the four great satellites of Jupiter. All such phenomena are given except when Jupiter is within a few weeks of conjunction (Jan. 14, 1985). Since the phenomena are not instantaneous but require up to several minutes, the predicted times are for the middle of each event. The abbreviations are: I = Io, II = Europa, III = Ganymede, IV = Callisto; $\mathrm{Ec}=$ eclipse, $\mathrm{Oc}=$ occultation, $\mathrm{Tr}=$ transit of the satellite, $\mathrm{Sh}=$ transit of the shadow, $\mathrm{I}=$ ingress, $\mathrm{E}=$ egress, $\mathrm{D}=$ disappearance, $\mathrm{R}=$ reappearance.
The general motions of the satellites, and the successive phenomena are shown in the diagram at right. Satellites move from east to west across the face of the planet, and from west to east behind it. Before opposition, shadows fall to the west, and after opposition, to the east (as in the diagram). The sequence of phenomena in the diagram, beginning at the lower right, is: transit ingress (Tr.I.), transit egress (Tr.E.), shadow ingress (Sh.I.), shadow egress (Sh.E.), occultation disappearance (Oc.D.), occultation reappearance (Oc.R.), eclipse disappearance (Ec.D.) and eclipse re-
 appearance (Ec.R.), but this sequence will depend on the actual Sun-JupiterEarth angle.

Over half the phenomena listed will not be visible from any one locality because they occur when Jupiter is below the horizon or when daylight interferes. To determine which phenomena are visible from a given locality (latitude ϕ) on a certain date, note the local time that Jupiter transits and its declination δ (see The Sky Month By Month section). Jupiter will be above the horizon for a time of (1/15) $\cos ^{-1}$ ($-\tan$ $\phi \tan \delta$) hours on either side of the time of transit. A second time interval corresponding to nighttime can be determined from the Twilight table. The region of overlap of these two time intervals will correspond to Jupiter being both above the horizon and in a dark sky. Those phenomena in the table which fall within this time "window" will be visible.

In practice, the observer usually knows when Jupiter will be conveniently placed in the night sky, and the table can simply be scanned to select those events which occur near these times. For example, an active observer in Victoria, British Columbia, on August 13 would know that Jupiter is well placed in the late evening sky. If he planned to observe from 10 pm to 2 am PDT (7 h behind UT), he could scan the table for events in the interval August 14, 5 h to 9 h UT. He would find two events, at 2242 and 2343 PDT, both involving the satellite Ganymede.

UNIVERSAL TIME OF GEOCENTRIC PHENOMENA

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{MARCH} \\
\hline d h m \& \& d h m \& \& d h m \& \& d h m \& \\
\hline \(1 \quad 529\) \& 1. Ec.D. \& 9652 \& I. Sh.E. \& \(16 \quad 1508\) \& II. Oc.R. \& \(24 \quad 225\) \& III. Sh.E. \\
\hline 833 \& I. Oc.R. \& 744 \& 1. Tr.E. \& 1856 \& III. Sh.I. \& 310 \& III. Tr.I. \\
\hline \& \& 749 \& II. Ec. D . \& 2226 \& III. Sh.E. \& 540 \& I. Ec.D \\
\hline 2242 \& 1. Sh.I. \& 1222 \& II. Oc.R. \& 2251 \& III. Tr.I. \& 644 \& III. Tr E. \\
\hline 327 \& I. Tr.I. \& 1457 \& III. Sh.I. \& \& \& 903 \& I. Oc.R. \\
\hline 458 \& I. Sh.E. \& 1826 \& III. Sh.E. \& \(\begin{array}{lll}17 \& 2 \& 24\end{array}\) \& III. Tr E. \& \& \\
\hline 515 \& II. Ec. D. \& 1829 \& III. Tr.I \& 346 \& I. Ec.D. \& \(\begin{array}{llll}25 \& 2 \& 51\end{array}\) \& I. Sh.I. \\
\hline 544 \& I. TrE. \& 2202 \& III. Tr.E. \& 704 \& I. Oc.R. \& 355 \& I. Tr.I. \\
\hline 935 \& II. OcR \& \& \& \& \& 507 \& I. Sh.E. \\
\hline 1057 \& III. Shil. \& \(10 \quad 152\) \& 1. Ec.D. \& \(18 \quad 058\) \& I. Sh.I. \& 611 \& I. Tr.E. \\
\hline 1405 \& III. Tr.I \& 504 \& 1. Oc.R. \& 156 \& I. Tr.I. \& 757 \& II. ShI. \\
\hline 1426 \& III. Sh.E \& 2304 \& I. Sh.I. \& 314 \& I. Sh.E. \& 1007 \& II. Trit. \\
\hline 1737 \& III. Tr.E \& 2357 \& I. Tr.I. \& 412 \& I. Tr.E. \& 1047 \& II. Sh.E. \\
\hline 2358 \& 1. Ec.D. \& \& \& 521 \& II. Sh.I. \& 1258 \& II. Tr.E. \\
\hline \& \& \(\begin{array}{llll}11 \& 1 \& 20 \\ \& 2 \& 13\end{array}\) \& 1. Sh.E. \& 7121
810 \& II. Tr.I. \& \(26 \quad 009\) \& I. Ec.D. \\
\hline 3
3 \begin{tabular}{l}
3 \\
\hline 1
\end{tabular} \& I. Oc.R. \& 144
24 \& II. Tr.E. \& - 1012 \& II. Tr.E. \& \(26 \quad 309\)

2 \& I. Oc.R

\hline 2157 \& I. Tr.I. \& 433 \& II. Tr.I. \& 2215 \& I. Ec.D. \& 2120 \& I. Sh.I.

\hline 2327 \& I. Sh.E. \& 533 \& II. Sh.E. \& \& \& 2224 \& I. Tr.I.

\hline \& \& 724 \& II. Tr.E. \& $\begin{array}{llll}19 & 1 & 33\end{array}$ \& I. Oc.R. \& 2336 \& I. Sh.E.

\hline 4007 \& II. Sh.I. \& 2021 \& I. Ec.D. \& 1926 \& I. Sh.I. \& \&

\hline 014 \& 1. Tr.E. \& 2334 \& I. Oc.R. \& 2026 \& I. Tr.I. \& $\begin{array}{lll}27 & 0 & 40 \\ & 2 & 14\end{array}$ \& I. Tr.E.

\hline 144 \& II. Tri. \& \& \& 2142 \& I. Sh.E. \& 214 \& II. Ec.D.

\hline 256 \& II. Sh.E. \& 121732 \& I. Sh.I. \& 2242 \& I. Tr.E. \& 714
1248 \& II. Oc.R.

\hline 435 \& II. Tr.E. \& 1827
19 \& I. Tr.I. \& 2340 \& II. Ec.D. \& 1248
1621 \& III. Ec.D.

\hline 18
21 \& I. Ec.D. \& 1949
2043 \& I. Sh.E. \& \& \& 1621
1716 \& III. Ec.D.

\hline 2134 \& I. Oc.R. \& 2043

2106 \& II. Tr.E. \& $\begin{array}{rrr}20 & 4 & 30 \\ & 8 & 49\end{array}$ \& III. Oc.R. \& | 1716 |
| :--- |
| 18 |
| 18 | \& II. Ec.D.

\hline 51539 \& I. Sh.l \& \& \& 1221 \& III. Ec.R. \& 2052 \& III. Oc.R.

\hline 1627 \& I. Tr.I. \& $13 \quad 145$ \& II. Oc.R. \& 1256 \& III. Oc.D. \& 2202 \& I. Oc.R.

\hline 1755 \& I. Sh.E. \& 449 \& II. Ec.D. \& 1632 \& III. Oc.R. \& \&

\hline 1832 \& II. Ec.D. \& 821 \& III. Ec.R. \& 1643 \& I. Ec.D. \& 281548 \& I. Sh.I.

\hline 1844 \& I. Tr.E. \& 835 \& III. Oc.D. \& 2003 \& I. Oc.R. \& 1654 \& I. Tr.I.

\hline 2259 \& II. Oc.R. \& 1210 \& III. Oc.R. \& \& \& 1804 \& 1. Sh.E.

\hline \& \& 1449 \& I. Ec.D. \& | 21 | 13 | 55 |
| :--- | :--- | :--- |
| 14 | | | \& I. Sh.I. \& 1910 \& I. Tr.E.

\hline 6050 \& III. Ec.D. \& 1804 \& I. Oc.R. \& 1455 \& I. Tr.I. \& 2116 \& II. Sh.I.

\hline 746 \& III. Oc.R. \& \& \& 1611 \& I. Sh.E. \& 2330 \& 11. Tr.I.

\hline 1259
1604 \& I. Ec.D. \& 141257
1257 \& I. Tr.I. \& 1839 \& II. Sh.I. \& 29005 \& II. Sh.E.

\hline 1748 \& IV. Ec.D. \& $\begin{array}{ll}14 & 17\end{array}$ \& I. Sh.E. \& 2044 \& II. Tr.I. \& 221 \& II. Tr.E.

\hline 2209 \& IV. Ec.R. \& 1513 \& I. Tr.E. \& 2129 \& II. Sh.E. \& 1306 \& 1. Ec.D.

\hline \& \& 1603 \& II. Sh.I. \& 2335 \& II. Tr.E. \& 1632 \& I. Oc.R.

\hline 7138 \& IV. Oc.D. \& 1757 \& II. Tr.I. \& \& \& \&

\hline 610
1007 \& IV. Oc.R.
I. Sh.I. \& 1852
2048 \& III. Sh.E. \& $\begin{array}{llll}22 & 11 & 12 \\ & 14 & 33\end{array}$ \& I. Ec.D.
I. Oc.R. \& $\begin{array}{rlll}30 & 10 & 16 \\ & 11 & 23\end{array}$ \& I. Sh.I.

\hline 1057 \& I. Tr.I. \& \& \& \& \& 1232 \& I. Sh.E.

\hline 1223 \& I. Sh.E. \& $\begin{array}{lll}15 & 1 & 31\end{array}$ \& IV. Sh.,I. \& 23823 \& I. Sh.I. \& 1339 \& I. Tr.E.

\hline 1314 \& I. Tr.E. \& 554 \& IV. Sh.E. \& 925 \& I. Tr.I. \& 1531 \& II. Ec.D.

\hline 1326 \& II. Shil. \& 918 \& I. Ec.D. \& 1039 \& I. Sh.E. \& 2036 \& II. Oc.R

\hline 1509 \& II. Tr.I. \& 1035 \& IV. Tr.I. \& 1141 \& I. Tr.E. \& \&

\hline 1615 \& II. Sh.E. \& 1234 \& I. Oc.R. \& 1150 \& IV. Ec.D. \& $\begin{array}{lll}31 & 253\end{array}$ \& III. Sh.I.

\hline 1800 \& II. Tr.E. \& 1511 \& IV. Tr.E. \& 1257 \& II. Ec.D. \& 624 \& III. Sh.E.

\hline \& \& \& \& 1616 \& IV. Ec.R. \& 728 \& III. Tr.I.

\hline 8724 \& I. Ec.D. \& $16 \quad 6 \quad 29$ \& I. Sh.I. \& 1792 \& II. Oc.R. \& 734 \& I. Ec.D.

\hline 1034 \& I. Oc.R. \& 726 \& I. Tr.I. \& 2141 \& IV. Oc.D. \& 1101 \& I. Oc.R.

\hline \& \& 845 \& I. Sh.E. \& 2255 \& III. Sh.I. \& 1102 \& III. Tr.E.

\hline \[
$$
\begin{array}{lll}
9 & 436 \\
& 5 & 27
\end{array}
$$

\] \& | 1. Sh.I. |
| :--- |
| I. Tr.l. | \& \[

$$
\begin{array}{r}
943 \\
1023
\end{array}
$$

\] \& | I. Tr.E. |
| :--- |
| II. Ec.D | \& $24 \quad 221$ \& IV. Oc.R \& 1937 \& IV. Sh.I.

\hline
\end{tabular}

UNIVERSAL TIME OF GEOCENTRIC PHENOMENA

APRIL							
d h m		hm		${ }^{1} \mathrm{n}$		d h m	
1004	IV. Sh.E.	81310	II. Sh.I.	152109	II. Tr.E.	231121	I. Oc.R.
445	I. Sh.I.	1536	II. Tr.I.				
552	1. Tr.I.	1559	II. Sh.E.	16550	I. Ec.D.	$\begin{array}{lll}24 & 4 & 54\end{array}$	I. Sh.I.
630	IV. Tr.I.	1827	II. Tr.E	925	I. Oc.R.	611	I. Tr.I.
701	I. Sh.E.					710	I. Sh.E.
809	1. Tr.E.	9357	I. Ec.D.	$\begin{array}{lll}17 & 300 \\ & 4 & 15\end{array}$	I. Sh.I.	8 12 12	1. Tr.E.
1034	II. Sh.I.	553 7 7	1V. Ec.D.	415 5	1. Tr.l.	1231	II. Ec.D
$\begin{array}{ll}11 & 12 \\ 12\end{array}$	IV. Tr.E.	728	I. Oc. R .	516	I. Sh.E.	1800	II. Oc.R.
$\begin{array}{lll}1252 \\ 13 & 23\end{array}$	II. Tr.I. II. Sh.E.	1023 17 17	IV. Ec.R. IV. Oc.D.	632 956	II. Tr.E.		
1323 1543	II. Sh.E.	1715 2159	IV. Oc.D.	956 1342	II. Ec.D.	$\begin{array}{llll}25 & 2 & 13 \\ & 4 & 45\end{array}$	II. Ec.D
				15 20	II. Oc.R	550	I. Oc.R.
2203	I. Ec.D.	$10 \quad 107$	I. Sh.I.	1813	IV. ShE.	819	III. EcR.
531 2313	1. Oc.R.	219	I. Tr.I			1004	III. Oc. D
2313	I. Sh.I.	323	I. Sh.E.	$\begin{array}{lll}18 & 0 & 19\end{array}$	I. Ec.D.	1342	III. Oc.R.
		435	I. Tr.E.	046	III. Ec.D.	2322	I. Sh.i.
3022	I. Tr.l.	722	II. Ec.D.	151	IV. Tr.I.	2356	IV. Ec.D
129	I. Sh.E.	1240	II. Oc.R.	354	I. Oc.R.		
238	I. Tr.E.	2047	III. Ec.D.	420	III. Ec.R.	$26 \quad 040$	I. Tr.I.
448	II. Ec.D.	2225	1. Ec.D.	557	III. Oc.D.	138	1. Sh.E.
958	II. Oc.R.			636	IV. Tr.E.	256	I. Tr.E.
1648	III. Ec.D.	11020	III. Ec.R.	934	III. Oc.R.	430	IV. Ec.R.
2021	III. Ec.R.	146	III. Oc.D.	2129	I. Sh.I.	740	II. Sh.I.
2031	I. Ec.D.	158	I. Oc.R.	2244	I. Tr.I.	1018	II. Tr.I.
2133	III. Oc.D.	523 1935	III. Oc.R.	2345	I. Sh.E.	1029 1213	$\begin{aligned} & \text { II. Sh.E. } \\ & \text { IV. Oc. } \end{aligned}$
4000	I. Oc.R.	2048	I. Tr.I.	$19 \quad 101$	I. Tr.E.	1309	II. $\mathrm{Tr} . \mathrm{E}$.
1009	III. Oc.R.	2151 23	I. Sh.E.	504	II. Sh.I.	1659	IV. Oc.R.
1742 1851	I. Sh.I.	2305	I. Tr.E.	738 7 74	II. Tr.I.	2041	I. Ec.D.
$\begin{array}{ll}18 & 51 \\ 1958\end{array}$	I. Tr.I.	12228	II. Sh.I.	754 1029	II. Sh.E.	$\begin{array}{lll}27 & 019\end{array}$	I. Oc.R.
2108	I. Tr.E.	$\begin{array}{r}1257 \\ \hline 518\end{array}$	III. Tr.I.	1847	I. Ec.D.	1751	I. Sh.I.
2352	II. Sh.I.	518	II. Sh.E.	2223	I. Oc.R.	1908	I. Tr.I.
		748	II. Tr.E.			2007	I. Sh.E.
5215	II. Tr.I.	1653	1. Ec.D.	201557	I. Sh.I.	2125	I. Tr.E.
241	II. Sh.E.	2027	I. Oc.R.	1713	I. Tr.I.		
506 1500	II. Tr.E.			1813 19	I. Sh.E.	$\begin{array}{lll}28 \quad 1 & 48 \\ & 7\end{array}$	II. Ec.D.
1500	1. Ec.D.	131404	I. Sh.l.	1930	I. Tr.E.	718 1509	II. Oc.R.
1830	I. Oc.R.	$\begin{array}{ll} 15 & 17 \\ 16 & 19 \end{array}$	I. Tr.I.	2313	II. Ec.D.	1509 1847	I. Ec.D
61210	I. Sh.I.	1734	I. Tr.E.	21440	II. Oc.R.	1850	III. Sh.I.
1320	I. Tr.I.	2039	II. Ec.D.	1316	I. Ec.D.	2222	III. Sh.E.
1426	I. Sh.E.			1451	III. Sh.I.		
1537	I. Tr.E.	$\begin{array}{lll}14 & 200\end{array}$	II. Oc.R.	1652	I. Oc.R.	$\begin{array}{lll}29 & 0 & 10\end{array}$	
1805	II. Ec.D.	1052	III. Sh.I.		III. Sh.E.	345 124	III. Tr.E.
2319	II. Oc.R.	1122 1423	III. Ec.D.	20 23	${ }_{\text {IIII. }}$ Tr.I.	1219 13 13	I. Sh.I.
7652	III. Sh.I.	$\begin{array}{ll}14 & 23 \\ 1456\end{array}$	III. Sh.E.	2339	III. Tr.E.	13 14 14 35	I. Tr.l.
928	I. Ec.D.	1555	III. Tr.I.	$22 \quad 1025$	I. Sh.I.	1554	I. Tr.E.
1023	III. Sh.E.	1930	III. Tr.E.	1142	I. Tr.I.	2058	II. Sh.I.
1142	III. Tr.I.			1241	I. Sh.E.	2336	II. Tr.l.
1259	I. Oc.R.	$15 \quad 8 \quad 32$	I. Sh.I.	1359	I. Tr.E.	2347	II. Sh.E.
1517	III. Tr.E.	946 1048	I. Tr.I.	1822	II. Sh.l.		
		1048 1203	I. Sh.E.	2058 21 2111	II. Tr.1.		
- 750	1. Tr.I.	1546	II. Sh.I.	2349	II. Tr.E.	1316	I. Oc. R
854 1006	I. Sh.E.	$\begin{array}{ll} 18 & 18 \\ 18 & 35 \end{array}$	II. Tr.I. II. Sh.E.	$23 \quad 744$	I. Ec.D.		

UNIVERSAL TIME OF GEOCENTRIC PHENOMENA

MAY							
d h m		d h m		d h m		d	
1647	I. Sh.I.	9600	I. Ec.D.	$17 \quad 142$	III. Oc.R.	242034	II. Tril.
806	I. Tr.I.	938	I. Oc.R.	503	I. Sh.l.	2051	II. Sh.E.
903	I. Sh.E.	1243	III. Ec.D.	621	I. Tr.I.	2325	II. Tr.E.
1022	I. Tr.E.	1618	III. Ec.R.	719	I. Sh.E.		
1505	II. Ec.D.	1807	III. Oc. D	837	I. Tr.E.	$\begin{array}{llll}25 \quad 4 & 16\end{array}$	I. Ec.D.
2037	II. Oc.R.	2146	III. Oc.R.	1526	II. Sh.I.	751	I. Oc.R.
2406	1. Ec.D.	10309	I. Sh.l.	1816 18	II. Sh.E.	$26 \quad 125$	I. Sh.I.
2445	I. OcR	10428	I. Tr.I.	2054	II. Tr.E.	2640	I. Tr.I.
843	III. Ec.D.	525	I. Sh.E			341	I. Sh.E.
1218	III. Ec.R	645	I. Tr.E.	$18 \quad 222$	1. Ec.D	457	I. Tr.E.
1407	III. Oc.D.	1251	II. Sh.I.	1859	I. Oc.R	1207	II. Ec.D.
1745	III. Oc.R.	1530	II. Tr.I.	2331	I. Sh.I.	1734	II. Oc.R.
		1540	II. Sh.E.			2244	I. Ec.D.
$\begin{array}{llll}3 & 1 & 16\end{array}$	I. Sh.I.	1821	II. Tr.E.	$\begin{array}{lll}19 & 0 & 49\end{array}$	I. Tr.I.		
234	I. Tr.I.			147	I. Sh.E.	$\begin{array}{llll}27 & 2 & 18\end{array}$	I. Oc.R.
332	I. Sh.E.	11028	I. Ec.D.	305	I. Tr.E.	1045	III. Sh.I.
451	1. Tr.E.	407	I. Oc.R.	932	II. Ec.D.	$\begin{array}{ll}14 & 19 \\ 15 & 51\end{array}$	III. Sh.E.
1016	II. Sh.I.	2138	I. Shil.	1503	II. Oc.R.	1551	III. Tr.I.
1255	II. Tr.I.	2256	I. Tr.I.	2050	1. Ec.D.	$\begin{array}{ll}19 & 27 \\ 19 & 53\end{array}$	III. Tr.E.
1305	II. Sh.E.	2354	I. Sh.E.			1953 215	I. Sh.I.
1546 2235	II. Tr.E.			$\begin{array}{ccc}20 & 0 & 27 \\ & 6 & 47\end{array}$	I. Oc.R. III. Sh.I.	2108 2209	I. Tr.I.
2235	I. Ec.D.	$\begin{array}{llll}12 & 1 & 13 \\ & 6 & 57\end{array}$	II. Tr.E.	1 647 1020	IIII. Sh.l.	22 23	I. Tr.E.
4213	I. Oc.R.	1230	II. Oc.R.	1202	III. Tr.I.		
747	IV. Sh.I.	1759	IV. Ec.D.	1538	III. Tr E.	$\begin{array}{lll}28 & 719\end{array}$	II. Sh.I.
1221	IV. Sh.E.	1857	I. Ec.D.	1759	I. Shil.	943	II. Tr.I.
1944	I. Sh.l.	2235	I. Oc.R.	1917	I. Tr.I.	1008	II. Sh.E.
2029	IV. Tri.	2237	IV. Ec.R.	2016	I. Sh.E.	1239	II. Tr.E.
2103	I. Tr.I.			2133	I. Tr.E.	1712	I. Ec.D.
2200	I. Sh.E.	$13 \quad 248$	III. Sh.I.			2046	I. Oc.R.
2319	I. Tr.E.	620	III. Sh.E.	$21 \quad 153$	IV. Sh.I.		
	IV. Tr.E.	624 809	IV. Oc.D.	4 6 6	II. Sh.I.	$\begin{array}{rrr}29 & 12 & 03 \\ & 14 & 21\end{array}$	IV. Ec.D.
422	II. Ec.D.	1112	IV. Oc.R.	719	II. Tr.I.	1535	I. Tr.I.
955	II. Oc.R.	1145	III. Tr.E.	733	II. Sh.E.	1638	I. Sh.E.
1703	I. Ec.D.	1606	I. Sh.l.	1010	II. Tr.E.	1643	IV. Ec.R.
2042	1. Oc.R.	1724	I. Tr.I.	1418	IV. Tr.I.	1752	1. Tr.E.
2249	III. Sh.I.	$\begin{array}{ll}18 & 22 \\ 19 & 41\end{array}$	I. Sh.E.	$\begin{array}{lll}15 & 19 \\ 18 & 55\end{array}$	I. Ec.D.	2342	IV. Oc.D.
6221	III. Sh.E.	1941	I. Tr.E.	1855 1906	I. Oc.R. IV. Tr.E.	$30 \quad 125$	II. Ec.D.
411	III. Tr.I.	$14 \quad 209$	II. Sh.I.			431	IV. Oc.R.
747	III. Tr.E.	447	II. Tr.I.	221228	I. Sh.l.	649	II. Oc.R.
1412	I. Sh.I.	458	II. Sh.E.	1345	I. Tr.I.	$\begin{array}{ll}1141 \\ 15 & 14\end{array}$	I. Ec.D.
1531	I. Tr.I.	738	II. Tr.E.	1444	I. Sh.E.	1514	I. Oc.R.
1628	I. Sh.E.	1325	I. Ec.D.	16 nl	I. Tr.E.		
1748	I. Tr.E.	1703	I. Oc.R.	2249	II. Ec.D.	31041	III. Ec.D.
2333	II. Sh.I.					417	III. Ec.R.
		151034	I. Sh.l.	$\begin{array}{lll}23 & 419\end{array}$	II. Oc.R.	542	III. Oc.D.
7213	II. Tr.I.	1153	I. Tr.I.	947 13	I. Ec.D.		I. Sh.I.
222	II. Sh.E.	1250	I. Sh.E.	1323	I. Oc.R:	920 1003	III. Oc.R.
504	II. Tr.E.	1409	II. Tr.E.	2042	III. Ec.D.	1003 1106	I. Tr.I.
1132	1. Ec.D.	2014	II. Ec.D.			1106 1200	I. Sh.E.
1510	I. Oc.R.	$16 \quad 147$	II. Oc.R.	$\begin{array}{llll}24 & 0 & 17 \\ & 1 & 55\end{array}$	III. Ec.R.	1220 2036	II. Tr.E.
8841	1. Sh.l.	754	I. Ec.D.	534	III. Oc.R.	2303	II. Tr.I.
1000	I. Tr.I.	1131	I. Oc.R.	656	I. Sh.I.	2326	II. Sh.E.
1057	I. Sh.E.	1642	III. Ec.D.	812	I. Tr.I.		
1216	I. Tr.E.	2017	III. Ec.R.	913	I. Sh.E.		
1740	II. Ec.D.	2203	III. Oc.D.	1029	I. Tr.E.		
2313	II. Oc.R.			1801	II. Sh.I.		

UNIVERSAL TIME OF GEOCENTRIC PHENOMENA

UNIVERSAL TIME OF GEOCENTRIC PHENOMENA

JULY							
d b m		d h m		d h m		d h m	
1105	II. Ec.D.	9716	I. Sh.I.	$16 \quad 1634$	111. Tr.I.	24720	II. Ir.E.
537	II. GC.R.	754	I. Tr.I.	1818	III. Sh.E.	823	1. Ec.D.
813	I. Ec.D.	934	1. Sh.E.	2011	III. Tr.E.	1057	I. Oc.R.
1118	I. Oc.R.	1012	I. Tr.E.				
		1041	III. Sh.I.	$17 \quad 121$	II. Sh.I.	$\begin{array}{llll}25 & 5 & 33\end{array}$	I. Sh.I.
2012	IV. Ec. D.	1313	III. Tr.I.	17215	II. Tr.I.	549	I. Tr.I.
458	IV. Ec.R.	1418	III. Sh.E.	412	II. Sh.E.	751	I. Sh.E.
522	I. Sh.I.	1651	III. Tr.E.	506	II. Tr.E.	807	I. Tr.E.
608	I. Tr.I.	2246	II. Sh.l.	629	I. Ec.D.	$22 \quad 14$	II. Ec.D.
642	III. Sh.I.			914	I. Oc.R.		
729	IV. Oc.D.	$10 \quad 000$	II. Tr.I.			$\begin{array}{llll}26 \quad 1 & 38\end{array}$	II. Oc.R.
739	I. Sh.E.	$10 \quad 137$	II. Sh.E.	$18 \quad 3 \quad 39$	I. Sh.I.	251	I. Ec.D.
826	I. Tr.E.	251	II. Tre.	404	I. Tr.I.	523	I. Oc.R.
950	III. Tr.I.	435	I. Ec.D.	557	I. Sh.E.		
1018	III. Sh.E.	729	I. Oc.R.	623	I. Tr.E.	$27 \quad 002$	I. Sh.I.
1218	IV. Oc.R.	812	IV. Sh.I.	1818	IV. Ec.D.	015	I. Tr.I.
1327	III. Tr.E.	1259	IV. Sh.E.	1937	II. Ec.D.	220	IV. Sh.I.
2012	II. Sh.I.	1359	IV. Tr.I.	2322	II. Oc.R.	220	I. Sh.E.
2143	II. Tr.I.	1849	IV. Tr.E.			233	I. Tr.E.
2303	II. Sh.E.			$\begin{array}{lll}19 & 0 & 57\end{array}$	I. Ec.D.	420	IV. Tr.I.
		111144	I. Sh.I.	257	IV. Oc.R.	710	IV. Sh.E.
30034	II. Tr.E.	220	1. Tr.I.	339	I. Oc.R.	836	III. Ec.D.
24 !	I. Ec.D.	402	I. Sh.E.	2207	I. Sh.l.	909	IV. Tr.E.
544	I. Oc.R.	438	I. Tr.E.	2231	I. Tr.I.	1304	III. Oc.R.
2350	I. Sh.I.	1701	II. Ec.D.			$\begin{array}{ll}17 & 13 \\ 17\end{array}$	II. Sh.I.
		2106	II. Oc.R.	200025	I. Sh.E.	1736	II. Tr.l.
4035	I. Tr.I.	2303	I. Ec.D.	049	I. Tr.E.	2004	II. Sh.E.
208	1. Sh.E.			437	III. Ec.D.	2027	II TrE.
253	I. Tr.E.	$12 \quad 155$	1. Oc.R.	947	III. Oc.R.	2120	I. Ec.D.
1424	II. Ec.D.	2013	I. Sh.I.	1438	II. Sh.I.	2349	I. Oc.R.
1847	II. Oc.R.	2046	I. Tr.I.	1522	II. Tr.I.		
2110	I. Ec.D.	2231	I. Sh.E.	1729 18	II. Sh.E.	$28 \quad 1830$	I. Sh.I.
		2304	I. Tr.E.	1813	II. Tr.E.	1841 2049	
$\begin{array}{llll}5 & 0 & 11\end{array}$	I. Oc.R.			1926	I. Ec.D.	2049	I. Sh.E.
1819	I. Sh.I.	$\begin{array}{llll}13 & 0 & 37\end{array}$	III. Ec.D.	2205	I. Oc.R.	2059	I. Tr.E.
19 201	I. Tr.I.	629 1204	III. Oc.R.				
2036	I. Sh.E.	1204	II. Sh.I.	211636	I. Sh.I.	$2911 \begin{aligned} & 11 \\ & 14\end{aligned}$	II. Ec.D.
2037 21	III. Ec.D.	1307 14	II. Tr.I.	1657 1854	I. Tr.I.	1445 1549	II. Oc.R.
2119	I. Tr.E.	14 155 15	II. Sh.E.	18 184 19	I. Sh.E.	$\begin{aligned} & 1549 \\ & 1815 \end{aligned}$	I. Ec.D. I. Oc.R.
$6 \quad 307$	III. Oc.R.	1732	I. Ec.D.				
929	II. Sh.I.	2021	I. Oc.R.	$\begin{array}{llll}22 & 8 & 55\end{array}$	II. Ec.D.	$30 \quad 1259$	I. Sh.I.
1051	II. Tr.I.			1230	II. Oc.R.	1307	I. Tr.I.
1220	II. Sh.E.	141441	I. Sh.I.	1354	I. Ec.D.	$\begin{array}{lll}15 & 17 \\ 15\end{array}$	I. Sh.E.
1343	II. Tr.E.	1512	I. Tr.I.	1631	I. Oc.R.	1525	I. Tr.E.
1538	I. Ec.D.	1659	I. Sh.E.			2241 23	III. Sh.I.
1837	I. Oc.R.	1730	I. Tr.E.	$\begin{array}{llll}23 & 11 & 04 \\ & 11 & 23\end{array}$	I. Sh.I.	2309	III. Tr.I.
71247	I. Sh.I.	15619	II. Ec.D.	1323	I. Sh.E.	$31 \quad 219$	III. Sh.E.
1327	I. Tr.I.	1014	II. Oc.R.	1341	I. Tr.E.	247	III. Tr.E.
1505	I. Sh.E.	1200	I. Ec.D.	1841	III. Sh.I.	630	II. Sh.I.
1545	I. Tr.E.	1447	I. Oc.R.	1952	III. Tr.I.	643	II. Tr.I.
				2219	III. Sh.E.	921	II. Sh.E.
8342	II. Ec.D.	$16 \quad 910$	I. Sh.I.	2330	III. Tr.E.	934	II. Tr.E.
756	II. Oc.R.	1638	I. Tr.I.			1017	I. Ec.D.
1006	I. Ec.D.	1128	I. Sh.E.	$24 \quad 355$	II. Sh.I.		I. Oc.R.
1303	I. Oc.R.	1157 14	III. Tr.E.	429 647	II. Tr.I. II. Sh E		

UNIVERSAL TIME OF GEOCENTRIC PHENOMENA

AUGUST							
$\begin{array}{rl}1 & 728 \\ 7 & 33 \\ & 946 \\ & 951\end{array}$		$\begin{array}{llll}9 & 3 & 14 \\ 6 & 24 \\ 6 & 33 \\ 8 & 58\end{array}$	$\begin{aligned} & \text { II. Oc.D. } \\ & \text { II. Ec.R } \\ & \text { I. Oc.D. } \\ & \text { I. Ec.R. } \end{aligned}$	$\begin{array}{cccc}\text { d } & \text { h } \\ 16 & 10 & 5\end{array}$	I. Ec.R.	$\begin{array}{rcc} d & n & m \\ 24 & 10 & 00 \\ & 22 & 33 \end{array}$	
	I. Sh.I.						1. Sh.E. III. Oc.D
	I. Tr.I.						
	I. Sh.E			$\begin{array}{lll}17 & 5 & 27\end{array}$	I. Tr.I.		
	1 Tr.E.			[546	I. Sh.I.	$\begin{array}{lll}25 & 2 & 32\end{array}$	II. Tr.I.
			I. Tr.I.		I. Tr.E	332	II. Sh.I
$\begin{array}{lll}2 & 0 & 52 \\ 3 & 54 \\ 4 & 46 \\ 7 & 07\end{array}$	II. Ec.D.	$10 \quad 343$		805	I. Sh.E.	416	III. Ec.R.
	II. Oc.R.		I. Sh.I.	1915	III. Oc.D.	427 5	
	I. Ec.D.		1. Tr.E.			522	I. Oc.D II. Tr.E
	I. Oc.R.	610	I. Sh.E.	$18 \quad 0 \quad 15$	III. Ec.R.	623 7	II. Sh.E.
		$\begin{array}{lll}15 & 57 \\ 20 & 14\end{array}$	III. Oc.D.	1817 0	II. Tr.I.	715	I. Ec.R.
3156	I. Sh.I.		III. Ec.R.	057	II. Sh.I.	$26 \quad 138$	
159	I. Tr.I.	$\begin{array}{ll} 22 & 03 \\ 22 & 22 \end{array}$	II. Tr.I. II. Sh.I.	242	1. Oc.D.		I. Tr.I.
415	1. Sh.E.			308	II. Tr.E.	2610	$\begin{aligned} & \text { I. Sh.I } \\ & \text { I. Tr.E. } \end{aligned}$
417	I. Tr.E.		II. Tr.E.	$\bigcirc 48$	II. Sh.E.	356	
1236	III. Ec.D.	11054		521	I. Ec.R.	429	I. Sh.E.
1620	III. Oc.R.	059	I. Oc.D.	2353	I. Tr.I.	20552253	II. Oc.D
1947	II. Sh.I	114	II. Sh.E.				
1949	II. Tr.I.	326	I. Ec.R.	19015	I. Sh.I.		
2239	II. Sh.E.	2209	I. Tril.	211	I. Tr.E.	$27 \quad 058$	II. Ec.R.
2240	II. Tr.E.	2220	I. Sh.I.	234	I. Sh.E.	144	I. Ec.R
2314	I. Ec.D.		I. Tr.E.	1838	II. Oc.D.	2005	I. Tr.I.
		$12 \quad 027$		2109		2039	I. Sh.I.
4132	I. Oc.R.	03801622	I. Sh.E.	2220	II. Ec.R.	22232258	I. Tr.E. I. Sh.E.
1224	IV. Oc.D.		II. Oc.D.	2349			
1714	IV. Ec.R.	1622				2258	I. Sh.E.
2025	1. Tr.I.	1925	I. Oc.D.	201819	I. Tr.I.	281220	III. Tr.I.
2025	I. Sh.I.	1942		18 +4	I. Sh.I.	14441540	III. Sh.I.
2243	1 Tr E.	2029	IV. Ec.R.	2038	1. Tr.E		
2244	I. Sh.E.	2155 2317	$\begin{aligned} & \text { I. Ec.R. } \\ & \text { IV. Tr.E. } \end{aligned}$	2102	I. Sh.E.	1558	$\begin{aligned} & \text { III. Tr.E. } \\ & \text { II. Sh.I. } \end{aligned}$
51406	II. Oc.D.		IV ShE	21239	IV. Oc.D.	1719	1. Oc.D
1704	II. Ec.R.	$\begin{array}{lll}13 & 1 & 21\end{array}$		$\begin{array}{rr} 900 \\ 1043 \end{array}$	III. Tr.I.	18221818	III. Sh.E. II. Tr.E. II. Sh.E. I. Ec.R
1741	I. Oc.D.	1635	I. Tr.I.				
2000	I. Ec.R.	$\begin{aligned} & 1649 \\ & 1853 \\ & 1907 \end{aligned}$	I. Sh.I. I. Tr.E.	1123	IV. Ec.R.	$\begin{array}{ll} 19 & 41 \\ 20 & 12 \end{array}$	
				1237			
61451	I. Tr.I.		I. Sh.E.	$\begin{array}{ll}1324 \\ 14 & 15\end{array}$	II. Tr.I.	$\begin{array}{llll}29 & 8 & 51\end{array}$	$\begin{aligned} & \text { IV. Tr.I. } \\ & \text { IV. Tr.E. } \end{aligned}$
1454	I. Sh.l.						
1709	I. Tr.E.	$14 \quad 542$	III. Tr.I.	1421	III. Sh.E.	13141431	
1712	I. Sh.E.	643	III. Sh.I.	1535	I. Oc.D.		I TrI IV. Sh.I.
		920	III. Tr.E.	1615	II. Tr.E. II. Sh.E.	1441	
$7 \quad 225$ 242	III. Tr.I.	10211110		1818		1508 1649	IV. Sh.I.
242 603	III. Sh.I.		II. Tr.I.		II. Sh.E. I. Ec.R.	1649 1726	$\begin{aligned} & \text { I. Tr.E. } \\ & \text { I. Sh.E } \\ & \text { IV. Sh.E. } \end{aligned}$
6	III. Tr.E	11 13 130	II. Oc.D.	221246	I. Tr.I.	1932	
856	II. Tr.I.	1401		1313			IV. Sh.E.
905	II. Sh.I	1431	II. Sh.E.	1504	I. Tr.E.	301005	II. Oc.D
1147	II. Tr.E.	1623	I. Ec.R.	1531	I. Sh.E.	1146	I. Oc.D
1156	II. Sh.E.					1418	II. Ec.R.
1207	I. Oc.D.	151101	I. Tr.I.	23747	II. Oc.D.	1441	I. Ec.R.
1429	I. DE.R.	$\begin{array}{ll}11 & 18 \\ 13\end{array}$	I. Sh.I.				
		1319 13	I. Tr.E.	1140 1246	II. Ec.R.		
$\begin{aligned} & 917 \\ & 923 \end{aligned}$	I. Tr.I.	1336	I. Sh.E.	1246	I. Ec.R.	838 137 116	I. Sh.I. Tr .
1135	I. Tr.E.	$\begin{array}{llll}16 & 5 & 30 \\ 88 & 16 \\ & 9 & 02\end{array}$	II. Oc.D. I. Oc.D II. Ec.R.	$\begin{array}{lll} 24 & 7 & 12 \\ & 7 & 42 \\ & 9 & 30 \end{array}$	$\begin{aligned} & \text { I. Tr.I. } \\ & \text { I. Sh.I } \\ & \text { I. Tr.E. } \end{aligned}$	1155	I. Sh.E.
1141	I. Sh.E.						

UNIVERSAL TIME OF GEOCENTRIC PHENOMENA

SEPTEMBER							
h m		d hm		d h m		${ }^{d} \mathrm{~h} \quad \mathrm{~m}$	
1156	III. Oc.D	$8 \quad 957$	II. Tr.E	151408	II. Sh.E.	231106	I. Tr.E.
448	II. Tr.I.	1105	I. Ec.R.	1618	III. Ec.R.	1210	1. Sh.E.
607	II. Sh.I	1133	II. Sh.E.			1339	IV. OC.R.
612	I. Oc.D.	1218	III. Ec.R.	$\begin{array}{lll}16 & 6 & 59\end{array}$	I. Tr.I.	1853	1 E.C.D
739	II. Tr.E			757	I. Sh.I	2343	IV. Ec.R.
817	III. Ec.R.	$\begin{array}{llll}9 & 5 & 11\end{array}$	1. Tr.I.	917 15	I. Tr E .		
858	II. Sh.E	601	I. Sh.I.	1015	1. Sh.E.	$24 \quad 601$	I. Oc. D.
910	I. Ec.R	729	1. Tr.E			624	II. Oc.D.
		819	1. Sh.E.	$\begin{array}{llll}17 & 3 & 58 \\ & 4 & 12\end{array}$	II. Oc.D	923 11	1. Ec.R.
2324	I. Tr.I.			412 7 12 8	I. Oc.D.	1132	II. Ec.R.
406	I. Sh.I.	$\begin{array}{llll}10 \quad 1 & 15\end{array}$	II. Oc. D	728 853	I. Ec.R		
542	I. Tr.E	225	1. Oc.D.	853	II. Ec.R.	$25 \quad 316$	I. Tr.I.
624	I. Sh.E.	533	1. Ec.R.			$\begin{array}{ll}4 & 21 \\ 5\end{array}$	I. Sh.I.
2314	II. Oc.D.	615	II. Ec.R.	$\begin{array}{ll}18 \quad 1 & 26\end{array}$	1. Tr.I.	533	I. Tr.E.
		2338	I. Tri.	226	I. Sh.I.	639	I. Sh.E.
30039	I. Oc.D			344 4	1. Tr.E.		
3. 36	II. Ec.R	$\begin{array}{llll}11 & 0 & 30 \\ & 1 & 56\end{array}$	1. Sh.I.	443 2237	I. Sh.E.	$\begin{array}{llll}26 & 0 & 28 \\ & 1 & 01 \\ & 2 & & 21\end{array}$	II. Oc.D.
338	I. Ec.R.	156 248	I. Tr.E.	2237 2239	II. Tr.I.	$\begin{array}{ll}1 & 01 \\ 2 & 21 \\ 3\end{array}$	III. Tr.I.
2151	I. Tr.I.	248 1912	III. Sh.E.	2239 2244	III. Oc.D.	$\begin{array}{ll}2 & 21 \\ 310\end{array}$	III. Tr.I.
2235	I. Sh.I.	1912 2016	III. Tr Tr.I.	2244	III. Tri.	$\begin{array}{lll}310 \\ 3 & 10 \\ & \end{array}$	II. Sh.I.
4009	1. Tr.E.	2052	I. Oc.D.	$\begin{array}{llll}19 & 0 & 35\end{array}$	II. Sh.l.	352	1. Ec.R.
053	I. Sh.E	2200	II. Sh.I.	127	II. Tr.E.	557	III. Tr.E.
1544	III. Tr.I.	2246	III. Sh.I.	157	I. Ec.R	601	II. Sh.E.
1757	II. Tr.I.	2249	III. Tr.E	220	III. Tr.E.	649	III. Sh.I.
1844	III. Sh.I.	2306	II. Tr.E.	247	III. Sh.I.	1027	III. Sh.E.
1905	I. Oc.D			326	II. Sh.E.	2143	I. Tr.I.
1921	III. Tr.E.	12002	I. Ec.R.	625	III. Sh.E	2250	I. Sh.l.
1925	II. Sh.I.	051	II. Sh.E.	1954	I. Tr.I.		
2047	II. Tr.E.	224	III. Sh.E.	2055	I. Sh.I.	$\begin{array}{llll}27 & 0 & 01 \\ & 1 & 08\end{array}$	I. Tr.E.
2207	1 Ec.R.	1805	I. Tr.I.	2211	I. Tr.E.	108 1856	I. Sh.E.
2216	II. Sh.E.	1859	I. Sh.I.	2312	I. Sh.E.	1856	I. Oc.D.
2223	III. Sh.E.	$\begin{array}{ll} 20 & 23 \\ 21 & 17 \end{array}$	I. Tr.E. I. Sh.E	201707	I. Oc.D.	1938 2221	II. Oc.D.
51618	I. Tr.I.			1711	II. Oc.D.		
1703	I. Sh.I.	131447	II. Oc.D.	2026	I. Ec.R.	28051	II. Ec.R.
1835	I. Tr.E.	1519	I. Oc.D.	2213	II. Ec.R.	1611	I. Tr.I.
1922	I. Sh.E.	1831	I. Ec.R.			1719	I. Sh.I.
		1934	II. Ec.R.	211421	I. Tr.I.	1828	I. Tr.E.
61225	II. Oc.D.			1524	I. Sh.I.	1937	I. Sh.E.
1332	I. Oc.D.	$\begin{array}{llll}14 & 12 & 32 \\ & 13\end{array}$	I. Tr.I.	1639	I. Tr.E.		
1636	I. Ec.R.	1328	I. Sh.I.	1741	I. Sh.E.	291323	I. Oc.D.
1656	II. Ec.R.	1450	I. Tr.E.			1413	III. Tr.I.
1721	IV. Oc.D.	1546	I. Sh.E.	221134	I. Oc.D.	1601	III. Oc.D.
2209	IV. Oc.R.	2353	IV. Tr.I.	1149	II. Tr.I.	1628	II. Sh.I.
				1223	III. Oc.D.	1649	I. Ec.R.
7043	IV. Ec.D.	$\begin{array}{llll}15 & 4 & 41\end{array}$	IV. Tr.F.	1353	II. Sh.1.	1703	II. Tr.E.
533	IV. Ec.R.	849	III. Oc.D.	1438	II. Tr.E.	1919	
1044	1 REI	853	IV. Sh.I	1454	I. Ec.R.	1939	III. Oc.R.
1132	1. Sh.I.	926	II. Tr.I.	1601	III. Oc.R.	2041	III. Ec.D
1302	I. Tr.E.	945	I. Oc.D.	1640	III. Ec.D.		
1350	I. Sh.E.	1117	II. Sh.I.	1643	II. Sh.E.	$\begin{array}{lll}30 & 0 & 20\end{array}$	III. Ec.D.
		1216	II. Tr.E.	2019	III. Ec.R.	1039	I. Tr.I
8521	III. Oc.D.	$!228$	III. Oc.R.			1148	I. Sh.I.
706	II. Tr.I.	1239	III. Ec.D.	$\begin{array}{llll}23 & 8 & 48\end{array}$	I. Tr.I.	1256	I. Sh.E.
758	I. Oc.D.	1259	I. Ec.R.	852	IV. Oc.D.	1406	I. Sh.E.
842	II. Sh.I.	1344	IV. Sh.E.	952	I. Sh.l.		

UNIVERSAL TIME OF GEOCENTRIC PHENOMENA

OCTOBER							
d b m		h m		d h m		d mm	
1751	1. Oc.D.	9658	I. Tr.I.	47 602	1. Oc. D	241624	II. Sh.E.
851	II. Oc.D.	813	I. Shil.	- 825	II. Tr.I.	1734	III Tr.I.
1118	I. Ec.R.	916	I. Tr.E	937	I. Ec.R.	2110	III. Tr.E.
1410	II Ec.R.	1030	I. Sh.E.	1057	II. Sh.l.	2255	III. Sh.I.
1551	IV. Tr.I.			1114	II. Tr.E.		
2039	IV. Tr E	$\begin{array}{lll}10 & 1 & 20\end{array}$	IV. Oc.D	1339	III. Tr.I.	$\begin{array}{llll}25 & 2 & 32\end{array}$	III. ShE:
		410	1. Oc.D.	1348	II. Sh.E.	514	I. Tr.I.
2306	IV. Sh.I.	554	II. Tr.I.	1715	III. Tr.E.	633	I. Sh.l.
507	I. Tr.l.	608	IV. Oc.R	1853	III. Sh.I.	731	I. Tr E.
617	I. Sh.I.	742	I. Ec.R.	2230	III. Sh.E.	850	I. ShE
724	I. Tr.E.	822	II. Sh.I.				
756	IV. Sh.E.	844	II. Tr.E.	$\begin{array}{lll}18 & 3 & 20\end{array}$	I. Tr.I.	$\begin{array}{lll}26 & 2 & 25\end{array}$	1 OcD
835	I. Sh.E.	948	III. Tr.I.	438	1. Sh.I.	547	II. Oc D
	1. Sh.E.	1112	II. Sh.E	537	I. Tr.E.	$\begin{array}{ll}601 \\ 1 & 25\end{array}$	I. EcR
3218	1. Oc.D.	1304	IV. Ec. ${ }^{\text {d }}$	655	I. Sh.E	1125	II EcR.
326	II. Tr.I.	1324	III. Tr.E.	851	IV. Tr.I.	1848	IV. Oc. D
546	II. Sh.I.	1452	III. Sh.I.	1339	IV. Tr.E.	2337	IV. Oc.R.
547	I. Ec.R.	1754	IV. Ec.R.	2120	IV. Sh.I.	2343	I. Tr.I.
602	III. Tr.1.	1829	III. Sh.E.				
616	II. Tr.E.			$\begin{array}{lll}19 & 0 & 31\end{array}$	I. Oc.D.	$27 \quad 102$	I. Sh.l.
836	II. Sh.E.	$\begin{array}{llll}11 & 1 & 27\end{array}$	I. Tr.I.	209	IV. Sh.E.	200	I. Tr.E.
938	III. Tr E.	242	I. Sh.I.	312	11. Oc.D.	319	I. Sh.E.
1051	Iil. Sh.I.	344	I. Tr.E.	406	I. Ec.R.	715	IV. Ec.D.
1428	III. Sh.E.	459	I. Sh.E.	847	II. Ec.R.	1204	IV. Ec.R.
2334	I. Tr.I.	2238	I. Oc.D.	2148 2307	I. Tr.I.	2053	I. Oc.D.
- 046	I. Sh.I.	$\begin{array}{lll}12 & 0 & 38\end{array}$	II. Oc.D.			28015	II. Tr.I.
152	I. Tr.E.	211	I. Ec.R.	$20 \quad 006$	I. Tr.E.	0 0	I. Ec.R.
303	I. Sh.E.	608	II. Ec.R.	124	I. Sh.E.	251	II. Sh.I.
2046	I. Oc.D.	1955	I. Tr.I.	1859	I. Oc.D.	305	II. Tr.E.
2206	II. Oc.D.	2111	I. Sh.I.	2141	II. Tr.I.	542	II. Sh.E.
		2212	1. Tr.E.	2235	I. Ec.R.	723	III. Oc.D
5016	1. Ec.R.	2328	I. Sh.E.			1102	III. Oc.R.
330	II. Ec.R.			$\begin{array}{llll}21 & 0 & 15\end{array}$	II. Sh.I.	1246	III. Ec.D.
1802	I. Tr.I.	131706	I. Oc.D	031	II. Tr.E.	1626	III. Ec.R.
1915	I. Sh.I.	1909	II. Tr.I.	306	II. Sh.E.	1812	I. Tr.I.
2020	I. Tr.E.	2040	1. Ec.R.	326	III. Oc. D .	1931	1. Sh.1.
2132	I. Sh.E.	21 2159 159	II. Sh.I.	704 845	III. Oc.R.	2029 2148	I. Tr.E.
		2159 23	II. Tr.E. III. Oc.D.	845 1295	III. Ec.D.	2148	I. Sh.E.
61514 1640	II. Oc.D.	2332	III. Oc.D.	$\begin{array}{lll}12 & 25 \\ 1617\end{array}$	III. Ec.R.	291522	I. Oc.D.
1845	I. Ec.R.	$14 \quad 030$	II. Sh.E.	1736	I. Sh.l.	1859	I. Ec.R.
1904	II. Sh.I.	311	III. Oc.R.	1834	I. Tr.E.	1906	II. Oc.D.
1930	III. Tr.E.	443	III. Ec.D.	1953	I. Sh.E.		
1944	III. Oc.D.	823	III. Ec.R.			$\begin{array}{llll}30 & 0 & 44\end{array}$	II. Ec.R
2154	II. Sh.E.	1423	I. Tr.I.	221327	I. Oc. D .	1241	1. Tr I
2323	III. Oc.R.	1540	I. Sh.l.	1629	II. Oc.D.	1400	
		1640	l. Tr.E.	1704	I. Ec.R.	1458 1617	I. Tr.E.
7042	III. Ec.D.	1757	I. Sh.E.	2206	II. Ec.R.	1617	I. ShE
422	III. Ec.R.						
1230 13	I. Tr.I.	$\begin{array}{llll}15 & 11 & 34 \\ & 13 & 54\end{array}$					
1344 1448	I. Sh.I.	1354 1509	II. Oc.D.	12 12 13 13 03	I. Sh.I.	13 13 13 163	II. Ec.R.
1448 1601	I. Sh.E.	1927	II. Ec.R.	1422	I. Sh.E.	1609	II. Sh.l.
						1622	II. Tr E .
$8 \quad 942$	I. Oc.D.	$\begin{array}{llll}16 & 8 & 52\end{array}$	I. Tr.I	24	I. Oc.D.	1900	III. Sh.E
1121	II. Oc.D.	1009	1. Sh.I.	1058	II. Tr.I.	2134	III. Tr.I.
1313	I. Ec.R.	1109	I. Tr.E.	1133	I. Ec.R.		
1649	II. Ec.R.	1226	I. Sh.E.	$\begin{aligned} & 1333 \\ & 13447 \end{aligned}$	II. Sh.I.		

UNIVERSAL TIME OF GEOCENTRIC PHENOMENA

NOVEMBER							
d \quad b		d h m		m		d h m	
1110	III. Tr.E.	81025	1. Sh.l.	151438	I. Sh.E.	$23 \quad 1343$	I. Ec.R.
257	III. Sh.I.	1035	III. ShE.			1631	II. Oc.D.
634	III. Sh.E.	1123	I. Tr.E.	$\begin{array}{llll}16 & 8 & 13\end{array}$	1. Oc. D.	2157	II. Ec.R.
710	I. Tr.I.	1242	I. Sh.E.	1148	1. Ec.R.		
829	1. Sh.l.			1347	II. Oc.D.	$24 \quad 732$	I. Tr.I.
927	I. Tr.E.	9616	I. Oc.D.	1919	II. E.c.R.	846	I. Sh.I.
1046	I. Sh.E.	952	1. Ec.R.			949	I. Tr.E.
		1100	II. Oc.D.	$\begin{array}{lll}17 \quad 5 & 33\end{array}$	I. Tr.I.	1102	I. Sh.E.
$\begin{array}{lll}2 & 4 & 20\end{array}$	1. Oc.D.	1641	II. Ec.R.		I Sh.I.		
757	I. Ec.R.			750	I. Tr.E.	$25 \quad 440$	I. Oc.D.
826	II. Oc.D.	$\begin{array}{lll}10 \quad 3 & 36\end{array}$	I. Tr.I.	907	I. Sh.E.	812	1. Ec.R.
1403	II. Ec.R	454	1. Sh.l.			1050	II. Tr.I
		553	1. Tr E	$18 \quad 242$	I. Oc.D.	1316	II. Sh.I.
$\begin{array}{llll}31 & 1 & 39\end{array}$	I. Tr.I.	711	I. Sh.E.	${ }^{6} 16$	I. Ec.R.	1341	II. $\operatorname{Tr} \mathrm{E}$.
258	I. Sh.l.			809	II. Tri.	1607	II. Sh.E.
356 5	I. Tr.E.	110045	I. Oc.D.	1039	II. Sh.I.	2353	III. Oc.D.
515	I. Sh.E.	421	I. Ec.R.	1059	II. Tr.E.		
2248	I. Oc.D.	529	II. Tr.I.	1331 1939	III. Sh.E.	$\begin{array}{llll}26 & 2 & 01 \\ & 3 & 14 \\ & & 3 & 3\end{array}$	I. Tr.I.
		8 8 8 8	II. Sh.I.	1939 2318	III. Oc.D. III. Oc.R.	$\begin{array}{ll}3 & 14 \\ 3 & 32\end{array}$	III. Sh.I.
2 2 2	I. FC.R.	$8 \quad 19$ 1054	II. Tr.E.	2318	III. Oc.R.	$\begin{array}{ll}3 & 32 \\ 418\end{array}$	III. Oc.R.
249 251	IV. Tr.I.	1054 1530	III. Oc.D.	19003	I. Tr.l.	4 4 4 5	III. Ec.D.
527	II. Sh.I.	1909	III. Oc.R.	190	III. Ec.D	531	I. Sh.E.
541	II. Tr.E.	2049	III. Ec.D.	119	I. Sh.I.	831	III. Ec.R.
738	IV. Tr.E.	2205	I. Tr.I.	220	I. Tr.E.	2310	I. Oc.D.
818	II. Sh.E.	2323	I. Sh.I.	336	I. Sh.E.		
1124	III. Oc.D.			429	III. Ec.R.	$\begin{array}{lll}27 & 241\end{array}$	I. Ec.R.
1503	III. Oc.R.	$12 \quad 022$	I. Tr.E.	2111	I. Oc.D.	553	II. Oc.D.
1534	IV. Shil.	028	III. Ec.R.			1116	II. Ec.R.
1647	III. Ec.D.	140	I. Sh.E.	$20 \quad 045$	I. Ec.R.	2031	I. Tr.I.
2008	I. Tr.l.	1312	IV. Oc.D.	309	II. Oc.D.	2143	I. Sh.I.
2023	IV. Sh.E.	1802	IV. Oc.R.	838	II. E.c.R.	2248	I. Tr.E.
2027	III. Ec.R.	1914	1. Oc.D.	1832	I. Tr.I.		
$\begin{array}{ll}21 & 27 \\ 22 & 25\end{array}$	I. Sh.I.	2250	I. Ec.R.	1948 20	I. Sh.I.	$\begin{array}{rrr}28 & 0 \\ 17 \\ 17 & 39\end{array}$	
2225 2344	I. Tr.E.			2050 2141	IV. Tr.E.	1739 2109	I. Oc.D.
2344	I. Sh.E.	$\begin{array}{llll}13 & 0 & 26 \\ & 1 & 27\end{array}$	II. Oc.D.	2141 2205	IV. Tr.I.	2109	I. Ec.R.
51717	1. Oc.D.	600	II. Ec.R.	2205		$\begin{array}{lll}29 & 0 & 12\end{array}$	II. Tr.I.
2054	I. Ec.R.	615	IV. Ec.R.	$21 \quad 231$	IV. Tr.E.	2934	II. Sh.I.
2145	II. Oc.D.	1634	I. Tr.l.	948	IV. Sh.I.	303	II. Tr.E.
		1752	I. Sh.I.	1436	IV. Sh.E.	526	II. Sh.E.
$\begin{array}{ll}63 & 32\end{array}$	II. Ec.R.	1851	I. Tr.E.	1541	I. Oc.D.		
1437	1. Tr.I.	2009	I. Sh.E.	1914	I. Ec.R.	1314	IV. Oc.R.
1556	I. Sh.I.			2129	II. Tr.I.	1413	III. Tr.I.
1654	I. Tr.E.	141343	I. Oc.D.	2358	II. Sh.I.	1501	I. Tr.I.
1813	I. Sh.E.	1719	I. Ec.R.			1612	I. Sh.I.
		1848	II. Tr.I.	$22 \quad 020$	II. Tr . E .	1718	I. Tr.E.
71146	I. Oc.D.	2121	II. Sh.I.	249	II. Sh.E.	1750	III. Tr.E.
1523	I. Ec.R.	2139	II. Tr.E.	958	III. Tr.I.		I. Sh.E.
1609	II. Tr.I.			1302	I. Tr.I.	1903	III. Sh.I.
1845	II. Sh.I.	$\begin{array}{llll}15 & 0 & 12\end{array}$	II. Sh.E.	1335	III. Tr.E.	1939	IV. Ec.D.
1859	II. Tr.E.	547	III. Tr.I.	1417	I. Sh.I.	2240	III. Sh.E.
2136	II. Sh.E.	924	III. Tr.E.	1502	III. Sh.I.		
		1101	III. Sh.I.	1519	I. Tr.E.	$\begin{array}{llll}30 \quad 0 & 26\end{array}$	IV. Ec.R.
$8 \quad 138$	III. Tr.I.	1104	1. Tr.I.	1634	I. Sh.E.		
515	III. Tr.E.	1221	I. Sh.I.	1839	III. Sh.E.	1538	I. Ec.R.
658	III. Sh.I.	$\begin{array}{ll}13 & 21 \\ 14 & 37\end{array}$	II. Tr.E.			1916	II. Oc.D.
906	I. Tr.l.	1437	III. Sh.E.	231010	I. Oc.D.		

SATELLITES OF JUPITER, 1985
UNIVERSAL TIME OF GEOCENTRIC PHENOMENA

DECEMBER								
$\\|_{\text {d }} \mathrm{m}$		d in m		$\checkmark \mathrm{hm}$		d n m		
1035	II. Ec.R.	9838	I. Oc.D.	162358	II. Sh.E	242054	III. Oc.R.	
931	1. Tr.I.	1202	I. Ec.R.			2057	III. Ec.D.	
1041	I. Sh.I.	1618	II. Tr.I.	17801	I. Tr.I.	2219	IV. Sh.I.	
1148	I. Tr.E.	1829	II. Sh.I.	901	I. Sh.l.			
1258	I. Sh.E.	1910	II. Tr.E.	1018	I. Tr.E.	$\begin{array}{lll}25 & 0 & 37\end{array}$	III. Ec.R.	
		2121	II. Sh.E.	1118	I. Sh.E.	304	IV. Sh.E.	
2639	I. Oc.D.			1251	III. Oc.D.	709	I. Oc.D	
1007	I. Ec.R.	10600	I. Tr.I.	1631	III. Oc.R.	1022	I. Ec.R.	
1333	II. Tr.I.	706	I. Sh.I.	1656	III. Ec.D	1702	II. Oc.D.	
is 52	II. Sh.I.	818	I. Tr.E.	2036	III. Ec.R.	2145	II. Ec.R.	
1625	II. Tr . E .	829	III. Oc.D.					
1844	II. Sh.E.	923	I. Sh.E.	$\begin{array}{lll}18 & 5 & 09\end{array}$	I. Oc. D .	$\begin{array}{llll}26 & 4 & 32\end{array}$	I. Tr I	
		1209	III. Oc.R.	827	I. Ec.R.	525	1. Sh.l.	
3401	I. Tr.I.	1255	III. Ec.D.	1413	II. Oc.D.	649	I. Tr.E	
409	III. Oc.D	1634	III. Ec.R.	1908	II. Ec.R.	743	I. Sh.E.	
510 618	I. Sh.I.							
$\begin{array}{ll}618 \\ 7 & 18\end{array}$	1. Tr.E.	$\begin{array}{llll}11 & 3 & 08 \\ & 6 & 31\end{array}$	I. Oc.D.	$\begin{array}{llll}19 & 2 & 31 \\ & 3 & 30\end{array}$	I. Tr.I.	$\begin{array}{llll}27 & 1 & 40 \\ & 4 & 51 \\ & 11\end{array}$	I. Oc.D.	
727 749	II. Sh.E.	631 1125	II. Ec.R.	31 4 4 48	I. Tr.E.	1 4116 11	II. Tr.I.	
853	III. Ec.D.	1631	II. Ec.R.	547	I. Sh.E.	1301	II. Sh. 1.	
1233	III. Ec.R.			2339	I. Oc.D.	1409	II. Tr.E.	
		12031	I. Tr.I.			1554	II. Sh.E.	
4109	I. Oc.D.	135	I. Sh.l.	$\begin{array}{llll}20 & 2 & 55\end{array}$	I. Ec.R.	2302	l. Tr I.	
436	I. Ec.R.	248	I. Tr.E.	828	II. Tr.I.	2354	I. Sh.l.	
839	II. Oc.D.	352	I. Sh.E.	1024	II. Sh.I.			
1353	II. Ec.R.	2138	I. Oc.D.	1120	II. Tr.E.	$\begin{array}{lll}28 & 1 & 20\end{array}$	I. Tr.E.	
2231	I. Tr.I.			1317	II. Sh.E.	211	I. Sh.E.	
2339	I. Sh.I.	$\begin{array}{lll}13 & 1 & 00\end{array}$	I. Ec.R.	2101	I. Tr.I.	739	III. Tr.I.	
		541	II. Tr.l.	2159	I. Sh.I.	1109	III. Sh.I.	
5048	I. Tr.E.	747	II. Sh.I.	2319	I. Tr.E.	1118	III. Tr E.	
156	I. Sh.E.	833	II. Tr.E.			1447	III. Sh.E.	
1939	1. Oc.D.	1039	II. Sh.E.	$21 \quad 0 \quad 16$	I. Sh.E.	2010	I. Oc.D.	
2305	I. Ec.R.	1901	I. Tr.I.		III. Tr.I.	2320	I. Ec.R.	
		2003	I. Sh.I.	652	III. Tr.E.			
5256	II. Tr.I.	2118	I. Tr.E.	708	III. Sh.I.	$\begin{array}{lll}29 & 627\end{array}$	II. Oc.D.	
511	II. Sh.I.	2220	I. Sh.E.	1045	III. Sh.E.	1103	II. Ec.R.	
547	II. Tr.E.	2251	III. Tr.I.	1809	I. Oc.D.	1733	I. Tr.I.	
803	II. Sh.E.			2124	I. Ec.R.	1823	I. Sh.I.	
1700	I. Tr.I.	$\begin{array}{ll}14 & 229\end{array}$	III. Tr.E.			1950	I. Tr.E.	
1808	I. Sh.I.	306	III. Sh.I.		II. Oc.D.	2040	I. Sh.E.	
1830	III. Tr.I.	643 1608	III. Sh.E.	838 1531	II. Ec.R.			
1918	I. Tr.E.	1608	I. Oc.D.	1531	I. Tr.I.	301440	I. Oc.D.	
2025	1. Sh.E.	1929	I. Ec.R.	1628	I. Sh.I.	1748	I. Ec.R.	
2208	III. Tr.E.			1749	I. Tr.E.			
2304	III. Sh.I.	$\begin{array}{lll}15 & 0 & 49\end{array}$	II. Oc.D.	1845	I. Sh.E.	$31 \quad 040$	II. Tr.I.	
7242	III. Sh.E.	549 13 131	1I. Ec.R.	231239	I. Oc.D.	$\begin{array}{lll}219 \\ 3 & 19 \\ 3\end{array}$	III. Sh.I.	
1408	I. Oc.D.	1432	I. Sh.I.	231593	I. Ec.R.	512	II. Sh.E.	
1717	IV. Tr.I.	1548	I. Tr.E.	2152	II. Tr.I.	1203	I. Tr.I.	
1734	1. Ec.R.	1649	I. Sh.E.	2342	II. Sh.I.	1252	I. Sh.I.	
2202	II. Oc.D.					1420	I. Tr.E.	
2208	IV. Tr.E.	$\begin{array}{lll}16 & 4 & 13 \\ & 9 & 05 \\ & 10 & \end{array}$	IV. Oc.D. IV OcR	$\begin{array}{lll} 24 & 0 & 44 \\ 2 & 35 \end{array}$	II. Tr.E.	$\begin{array}{ll} 15 & 09 \\ 21 & 40 \end{array}$	1. Sh.E.	
8312	II. Ec.R.	1039	I. Oc.D.	1002	I. Tr.I.			
404	IV. Sh.I.	1351	IV. Ec.D.	1056	I. Sh.I.	$\begin{array}{llll}32 & 4 & 37\end{array}$	III. Ec.R.	
851	IV. Sh.E.	1358	I. Ec.R.	1219	I. Tr.E.	911	I. Oc.D.	
1130	I. Tr.I.	1836	IV. Ec.R.	1314	I. Sh.E.	1217	I. Ec.R.	
1237	I. Sh.I.	1904	II. Tr.I.	1327	IV. Tr.I.	1951	II. Oc.D.	
1348	I. Tr.E.	2106	II. Sh.I.	1714	III. Oc.D.			
1454	I. Sh.E.	2156	II. Tr.E.	1820	IV. Tr.E.			

SATURN

EPHEMERIS FOR THE BRIGHTER SATELLITES

The table below may be used to determine the orbital position of each of the five brightest satellites of Saturn at any time in 1985. The northern side of the rings and orbital planes of the five satellites now face Earth, being tilted approximately 23° from edge-on during the part of the year when Saturn is conveniently placed in the night sky (The orbit of Iapetus deviates most from this figure since it is itself tilted 15° to the ring plane). Hence the satellites pass (east to west) in front of and south of the centre of Saturn, and (west to east) behind and north of the centre of Saturn.

For each satellite, the table gives the visual magnitude, orbital period,* distance from the centre of Saturn in units of the radius of Saturn's rings (the outer radius of ring A), and time (UT) of the first eastern elongation in each month. For example, to find the position of Rhea on May 19, 1985 at 22 h EDT (May 20, 2 h UT): The first eastern elongation in May occurs on May 3 at 13.7 h . May 20, 2 h is 16.513 d or $16.513 \div 4.518=3.655$ periods later. Thus Rhea will be $0.655 \times 360^{\circ}=236^{\circ}$ from eastern elongation. Hence it will be behind Saturn, $3.9 \times \cos 236^{\circ}=2.2$ ring radii west of the centre of Saturn, and somewhat north.
*Note: Sidereal periods rather than synodic periods are listed since, due to Earth's orbital motion, the sidereal period yields less error in predictions during the months near opposition. Predictions based on this table are accurate to within a couple of degrees.

	Tethys	Dione	Rhea	Titan	Iapetus
m_{v}	10.2	10.4	9.7	8.3	11
P	$1.888^{\text {d }}$	$2.737^{\text {d }}$	$4.518^{\text {d }}$	$15.945^{\text {d }}$	$79.330^{\text {d }}$
r	2.2	2.8	3.9	9.0	26.1
Jan.	$1^{\text {d }} 04 .{ }^{\text {h }} 6$	$0^{d_{09}}{ }^{\text {h }} 1$	$1^{\text {d }} 14 . \frac{h}{}$	$2^{d} 13.3$	$30^{\text {d }} 09{ }^{\text {h }} 8$
Feb.	207.1	205.7	206.0	313.2	
Mar.	214.7	114.7	108.7	711.5	
Apr.	129.5	310.7	123.4	808.0	1915.7
May	200.2	312.9	313.7	1003.1	
June	104.8	215.0	403.9	1022.1	
July	109.5	217.3	106.0	1218.0	621.8
Aug.	211.8	119.8	120.9	1315.6	
Sep.	116.9	316.4	212.3	1414.8	2419.4
Oct.	122.2	101.7	404.1	1615.4	
Nov.	103.6	222.7	420.2	116.0	
Dec.	109.0	301.9	123.8	317.5	1502.5

EPHEMERIDES FOR THE BRIGHTEST ASTEROIDS 1985

Provided By Brian G. Marsden

The following are the ephemerides for the brightest asteroids in 1985: those asteroids which will be brighter than photographic magnitude 11.0 and more than 90° from the Sun. The tables give the number and name of the asteroid, the date at $0^{\mathrm{h}} \mathrm{E} . \mathrm{T}$. (which differs only slightly from U.T.), the right ascension and declination for the epoch 1950 (for convenience in plotting on commonly-used star charts) and the photographic magnitude (which is normally about 0.7 fainter than the visual magnitude). These data were derived from current osculating elements, and were generously calculated and provided by Dr. Brian G. Marsden of the Smithsonian Astrophysical Observatory.

A map is provided for Vesta, the brightest asteroid during 1985. The map is based on the Sky Atlas 2000.0 and shows the predicted path of the asteroid during a sixmonth interval around opposition. Readers can make maps for other asteroids by using the ephemerides on the next two pages and an appropriate star atlas (Remember to allow for precession if your atlas does not use the same epoch as the tables: 1950.0. See page 16.)

The path of Vesta in central Virgo, 1985. Its position is marked at 10-day intervals, beginning with February 2 (F2). The faintest stars shown are of magnitude 8, and the coordinates are for 2000.0. Vesta is at magnitude 8 on February 2, but brightens to 6.5 when at opposition on April 22, 1.21 A from Earth. With a diameter of 540 km , Vesta is the third largest asteroid after Ceres and Pallas. However, it has an unusually high albedo $(\approx 23 \%)$ and a smaller orbit than the two larger asteroids; thus when near opposition, Vesta is the brightest asteroid. Vesta is now north of Earth's equatorial plane (its orbit is inclined at 7° to the ecliptic), which is the reason for its broad, northward, retrograde loop as we draw near to it this spring.

PLANETARY APPULSES AND OCCULTATIONS

Provided By Gordon E. Taylor

A planetary appulse is a close approach of a star and a planet, minor planet (asteroid), or satellite (moon) as seen from Earth. At certain locations on Earth the appulse may be seen as an occultation, a "solar eclipse", but usually of a star other than our Sun. Careful observations of these events can provide valuable information on the position, size, and shape of the occulting body, and indicate the possible presence of satellites and/or atmosphere surrounding the body. In the case of asteroids, information of this sort is not currently obtainable in any other way. In addition, through a stepwise drop in the light of the occulted star or a gradual dimming, an occultation can reveal the binary nature of some stars or their diameter.

Gordon Taylor has issued a list of 46 possible occultations of stars by asteroids for 1985. Eleven of these may be visible from North America (including Hawaii). All predictions are listed on the next page. In the first table, the month (M), day (d), hour, and minute range of each event are given along with data on the occulted star. (Positions of some stars were unavailable at press time. For these and more information, contact the International Occultation Timing Association: see p. 83.) In the second table, $\Delta \mathrm{m}_{\mathrm{v}}$ is the change in visual magnitude which will accompany the occultation, and Δt is the predicted maximum duration in seconds.

Improved predictions may be available closer to the time of the various events. Within a few days of each event, observers may obtain recorded telephone messages at 312-259-2376 (Chicago, Ill.), 713-488-6871 (Houston, Tex.), or 301-585-0989 (Silver Spring, Md.).

Serious observers of occultations pay careful attention to: the determination of their geographical latitude, longitude, and altitude (which should be known to the nearest second of arc and 20 m , respectively); identification of the star; accurate timing of the events (considerable care is needed to attain an accuracy of 0.5 s or better: a shortwave radio time signal and cassette tape recorder are recommended); monitoring the star for several minutes surrounding the time of closest approach in order to time the possible occultation and/or any secondary extinctions of the star; the provision of independent observers a kilometre or more apart for both confirmation and improved "resolution" of the eclipse shadow. High speed photoelectric recordings are very desirable when possible. When reporting timings, state the aperture of the telescope used, describe the timing method, estimate your reaction time and the accuracy of the timing, and state whether or not the reaction time correction has been applied. Reaction times vary from about 0.2 s to 1.0 s or more depending on the observer and the magnitude of the star.

Observations of these events are coordinated in North America by the International Occultation Timing Association (IOTA). Dr. Dunham of the IOTA intends to publish an article on planetary occultations for 1985 in the January issue of Sky and Telescope. Observations of planetary occultations, including negative observations, should be sent to Dr. Dunham at P.O. Box 7488, Silver Spring, MD 20907, U.S.A. for publication by the IOTA. (Note that observations of lunar occultations should be sent to Japan. See page 83.)

Key	Time (UT)					Star								
	M	d	h	mi		Name		m_{v}	α		(1950)		δ	
H	1	3	7	50		AGK3	+ $6^{\circ} 0699$	8.6						
Hs	1	18	1	32	12	"	$+18^{\circ} 0426$	8.3		$5^{n} 12^{m}$	53^{8}			59'
I	3	28	8	40		"	$+17^{\circ} 1215$	8.8						
A	4	11	2	47	55	"	+20 1138	9.9		950		+2	30	
S	4	15	2	10	10	"	- $2^{\circ} 0828$	7.0		46		- 2	35	
Al	8	25	12	5	10	"	+11 ${ }^{\circ} 2891$	8.4		304			32	
A2	9	1	4	53	8	"	$+11^{\circ} 2882$	8.8		59		+11	05	
P	11	5	3	20		"	+26 ${ }^{\circ} 0449$	7.7						
B	11	10	12	00		"	+20 ${ }^{\circ} 1039$	8.3						
J	12	9	8	11			+42 ${ }^{\circ} 0724$	10.1		615		+42	02	
M	12	30	1	56	8	"	$+8^{\circ} 0871$	9.8		653	59	+ 8	39	09

Key	Asteroid			Occult.		Possible Area of Visibility*
		Name	m	Δm_{v}	Δt	
H	6	Hebe	8.9	0.9	18	S. America, SW U.S.A.
Hs	206	Hersilia	12.9	4.6	17	S. Europe, N. Canada
I	42	Isis	12.0	3.3	8	Caribbean, SW U.S.A.
A	129	Antigone	11.2	1.6	81	Central \& N. America
S	275	Sapienta	11.8	4.8	11	Africa, NE America
A1	230	Athamantis	10.4	2.2	16	NW N. America, Japan, China
A2	230	Athamantis	10.3	1.7	14	N. America
P	70	Panopaea	12.0	4.3	14	Africa, Caribbean, Mexico
B	521	Brixia	12.7	4.4	8	Pacific (Hawaii?), U.S.A.
J	89	Julia	10.5	1.0	13	U.S.A. inc. Hawaii
M	18	Melpomene	9.2	0.5	13	Africa, eastern N. America

*Track position is uncertain by $\pm 1000 \mathrm{~km}$. See the preceding page for directions to obtain updates.

The path of asteroid 206 Hersilia in front of star AGK3 +18 0426 on January 18. The field shown is 5° wide and is centered at $5^{\mathrm{h}} 13^{\mathrm{m}},+18^{\circ}$ (1950), just under the eastern horn of Taurus. North is up. Four stars have Flamsteed numbers indicated. The brightest star, \#104, is of 5th magnitude.

METEORS, COMETS, AND DUST

METEORS, FIREBALLS, AND METEORITES

By Peter M. Millman

Meteoroids are small solid particles moving in orbits about the Sun. On entering the Earth's atmosphere they become luminous and appear as meteors or fireballs, and in rare cases, if large enough to avoid complete fragmentation and vaporization, they may fall to the Earth as meteorites.

Meteors are visible on any night of the year. At certain times of the year the Earth encounters larger numbers of meteoroids all moving together along the same orbit. Such a group is known as a meteor stream and the visible phenomenon is called a meteor shower. The orbits followed by these meteor streams are very similar to those of short-period comets, and in many cases can be identified with the orbits of specific comets.

The radiant is the position among the stars from which the meteors of a given shower seem to radiate. This is an effect of perspective commonly observed for any group of parallel lines. Some showers, notably the Quadrantids, Perseids, and Geminids, are very regular in their return each year and do not vary greatly in the numbers of meteors seen at the time of maximum. Other showers, like the Leonids, are very unpredictable and may arrive in great numbers or fail to appear at all in any given year. The δ Aquarids and the Taurids are spread out over a fairly extended period of time without a sharp maximum.

For more information concerning meteor showers, see the paper by A. F. Cook in "Evolutionary and Physical Properties of Meteoroids", NASA SP-319, pp. 183-191, 1973.

The light of meteors is produced by a mixture of atoms and molecules, originating from both the meteoroid and the Earth's atmosphere. i.e. The light of a meteor is primarily from a glowing gas, and not from the solid meteoroid itself. The collision, at a very high speed, of the material from the meteoroid with the Earth's atmosphere

MAJOR VISUAL METEOR SHOWERS FOR 1985

Shower	Shower Maximum			Radiant				Single Observer Hourly Rate	Speed of Encounter with Earth	Normal Duration to $\frac{1}{4}$ Strength of Max.
	Date	U.T.	Moon	Position at Max.		Daily Motion				
		h		h m	。	m	。		km/s	days
Quadrantids	Jan. 3	13	FM	1528	+50	-	-	40	41	1.1
Lyrids	Apr. 22	09	NM	1816	+34	+4.4	0.0	15	48	2
η Aquarids	May 4	13	LQ	2224	00	+3.6	+0.4	20	65	3
S. δ Aquarids	July 28	16	FM	2236	-17	+3.4	+0.17	20	41	7
Perseids	Aug. 12	06	NM	0304	+58	+5.4	+0.12	50	60	4.6
Orionids	Oct. 21	11	FQ	0620	+15	+4.9	+0.13	25	66	2
S. Taurids	Nov. 3	-	LQ	0332	+14	+2.7	+0.13	15	28	-
Leonids	Nov. 17	17	FQ	1008	+22	+2.8	-0.42	15	71	-
Geminids	Dec. 14	06	NM	0732	+32	+4.2	-0.07	50	35	2.6
Ursids	Dec. 22 (1986)	12	FQ	1428	+76	-	-	15	34	2
Quadrantids	Jan. 3	19	LQ	1528	$+50$	-	-	40	41	1.1

excites the involved atoms and molecules to shine, each with its own characteristic wavelength (colour). In addition to the light of oxygen and nitrogen, prominent in the luminosity of meteors, we find the orange-yellow of sodium, the brilliant green of magnesium, and various other wavelengths of light produced by iron, calcium, and some dozen, less-common elements. For a general survey of the light of meteors see Smithsonian Contributions to Astrophysics, 7, p. 119-127, 1963.

An observer located away from city lights, and with perfect sky conditions on a moonless night, will see an overall average of seven sporadic meteors per hour apart from the shower meteors. These have been included in the hourly rates listed in the table. Slight haze or nearby lighting will greatly reduce the number of meteors seen. More meteors appear in the early morning hours than in the evening, and more during the last half of the year than during the first half.

When a meteor has a luminosity greater than the brightest stars and planets it is generally termed a fireball. The visible trails of most meteors occur high in the atmosphere from 60 to 110 kilometres altitude. Only the rare, very bright fireballs survive down to the lower levels of Earth's atmosphere, and, in general, these are not associated with meteor showers. The occurrence of such an object should be reported immediately to the nearest astronomical group or other organization concerned with the collection of such information. Where no local organization exists, reports should be sent to Meteor Centre, Herzberg Institute of Astrophysics, National Research Council of Canada, Ottawa, Ontario, K1A 0R6. Special "Fireball Report" forms and related instructions are available from the Meteor Centre without charge. If sounds are heard accompanying a bright fireball there is a possibility that a meteorite may have fallen. Astronomers must rely on observations made by the general public to track down such an object.

The two showers associated with Halley's Comet, due in 1986, are the η Aquarids and the Orionids and these showers should be given priority in meteor observations for the next few years.

A SELECTION OF MINOR VISUAL METEOR SHOWERS

Shower	Dates	Date of Max.	Speed
			km/s
δ Leonids	Feb. 5-Mar. 19	Feb. 26	23
σ Leonids	Mar. 21-May 13	Apr. 17	20
τ Herculids	May 19-June 14	June 3	15
N. δ Aquarids	July 14-Aug. 25	Aug. 12	42
α Capricornids	July 15-Aug. 10	July 30	23
S. ı Aquarids	July 15-Aug. 25	Aug. 5	34
N. ı Aquarids	July 15-Sept. 20	Aug. 20	31
к Cygnids	Aug. 9-Oct. 6	Aug. 18	25
S. Piscids	Aug. 31-Nov. 2	Sept. 20	26
N. Piscids	Sept. 25-Oct. 19	Oct. 12	29
N. Taurids	Sept. 19-Dec. 1	Nov. 13	29
Annual Andromedids	Sept. 25-Nov. 12	Oct. 3	18-23
Coma Berenicids	Dec. 12-Jan. 23	-	65

NORTH AMERICAN METEORITE IMPACT SITES

By P. Blyth Robertson

The realization that our Earth is truly part of the solar system, and not a planet in isolation, has been dramatically demonstrated by the past two decades of space exploration. Bodies such as Phobos, Callisto, Mimas, which were once solely part of the astronomer's realm, are now familiar terrain to planetary geologists, and an insight into the age and history of their surfaces can be derived from a knowledge of, and comparison with geological processes on Earth. In particular, as the only common feature apparent on all bodies from Mercury outward to the moons of Saturn is the abundance of meteorite craters, studies of the terrestrial equivalents may lead to better understanding of the evolution of planetary crusts.

Although all the planets are heavily cratered, the source of the impacting bodies is not the same throughout the solar system, nor has the rate been constant with time. The densely-cratered lunar highlands reveal a period of intense bombardment between 4.6 and 3.9 billion years ago, whereas the crater populations on the younger mare surfaces indicate a subsequent, considerably reduced rate that may have fluctuated somewhat over the past 3 billion years. It is believed that the cratering history of Earth is like that of the Moon, but all vestiges of the early bombardment, and a large percentage of the craters from the later period have been obliterated by various geologic processes on the 'active' Earth. A significant number of the larger, younger craters have been preserved, however, and their ages determined through radiometric age-dating techniques, to permit a calculation of the recent cratering rate. This rate, for the past 120 million years, is 5.4×10^{-15} per square kilometre of Earth per year, for craters 20 kilometres or larger in diameter. In other words, an event of this magnitude may occur every 7.6 million years in North America.

An impact crater results from a combination of excavation of the shattered target rocks and further expansion of the cavity by outward and downward movements of highly fractured material. Craters larger than 4 or 5 km undergo further modification through rebound and uplift of the crater floor, and downward faulting and displacement of large blocks in a broad annulus surrounding the crater. These movements result in a comparatively shallow impact structure whose outer dimension is approximately 40% larger than that of the initial crater.

The magnitude of the impact event is proportional to the kinetic energy of the meteorite, and therefore depends on its size, composition and speed. A 20 km impact structure on Earth would result from an impact yielding the equivalent of approximately 64000 megatons of TNT, and could be produced by a stony meteorite (density $3.4 \mathrm{~g} / \mathrm{cm}^{3}$), 900 m in diameter, travelling at a typical speed of $20 \mathrm{~km} / \mathrm{s}$. Thus the diameter of the impact structure is many times that of the impacting body. (The kinetic energy of a typical meteor is about 100 times the explosive energy of the same mass of TNT.-Ed.)

In impacts, where craters greater than approximately 1.5 km are created, extreme shock pressures and temperatures vaporize and melt the meteorite. It subsequently becomes thoroughly mixed with the melted target rocks and is no longer recognizable in its original form, although chemical traces have been discovered. Of the 38 North American impact structures listed, which account for roughly 40% of the world's recognized total, meteorite fragments are preserved at only 3 . The remainder are identified by the presence of characteristic deformation features in the target rocks; features that are uniquely produced by extreme shock pressures generated in nature only by hypervelocity, meteorite impact. In addition to these sites there are twenty or more structures in Canada and the United States whose impact origin seems highly probable, but where distinctive shock deformation has not been found.

In the table, sites accessible by road or boat are marked " A " or " B " respectively and those sites where data have been obtained through diamond-drilling or geophysical surveys are signified by "D" and "G", respectively.

Name	Lat.		${ }_{\circ}^{\text {Long. }}$,		Diam. (km)	$\underset{\left(\times 10^{6} \mathrm{a}\right)}{\mathrm{Age}}$	Surface Expression	Visible Geologic Features			
Barringer, Meteor Crater, Ariz.		02	111	01	1.2	. 05	rimmed polygonal crater	fragments of meteorite,			
Bee Bluff, Texas	29	02	099	51				highly shocked sandstone	A	D	G
Brent, Ont.	46	05	078	29	3.8	450 ± 30	shallow circ. depress' n .; ; rim remnants	breccia	A		
Carswell, Sask.	58	27	109	30	37	485 ± 50	sediment-filled shallow depression discontinuous circular ridge	fracturing shatter cone	A	D	G_{G}
Charlevoix, Que.	47	32	070	18	46	360 ± 25	semi-circular trough, central elevation	breccia, shatter cones,			
Clearwater Lake East, Que.	56	05	074	07	22	290 ± 20	circular lake	impact melt	A		G
Clearwater Lake West, Que.	56	13	074	30	32	290 ± 20	island ring in circular lake	impact melt		D	G
Crooked Creek, Missouri	37	50	091	23	5.6	320 ± 80	oval area of disturbed rocks, shallow				
Decaturville, Missouri	37	54	092	43	6	<300	(marginal depression	breccia, shatter cones breccia, shatter cones	A		
Deep Bay, Sask.	56	24	102	59	12	100 ± 50	circular bay	breccia, shatter cones		D	G
Flynn Creek, Tenn.	36	16	085	37	3.8	360 ± 20	sediment-filled shallow depression with slight central elevation	breccia, shatter cones,		D	
Glover Bluff, Wis.	43	58	089	32	0.4	?	disturbed dolomite exposed in 3 quarries	dhatter cones	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	D	G
Gow Lake, Sask.	56	27	104	29	5	<250	lake and central island	breccia			
Haviland, Kansas	37	35	099	10	0.0011	<0.001	excavated depression	fragments of meteorite	A		
Haughton, NWT	75	22	089	40	20	<20	shallow circular depression	shatter cones, breccia			G
Holleford, Ont.	44	28	076	38	2	550 ± 100	sediment-filled shallow depression	sedimentary fill	A	D	G
Ile Rouleau, Que.	50	41	073	53	4	<300	island is central uplift of submerged structure	shatter cones, breccia dikes	A	D	
Kentland, Ind.	40	45	087	24	13	300	central uplift exposed in quarries, rest buried	breccia, shatter cones, disturbed rocks	A		
Lac Couture, Que.	60	08	075	18	8	430	circular lake	breccia float	A		
Lac la Moinerie, Que.	57	26	066	36	8	400	lake-filled, partly circular	breccia float			
Lake St. Martin, Man.	51	47	098	33	23	225 ± 40	none, buried and eroded	impact melt	A	D	G
Lake Wanapitei, Ont.	46	44	080	44	8.5	37 ± 2	lake-filled, partly circular	breccia float	A		G
Manicouagan, Que.	51	23	068	42	100	210 ± 4	circumferal lake, central elevation	impact melt, breccia	B		G
Manson, Iowa	42	35	094	31	32	<100	none, central elevation buried to 30 m	none	A	D	G
Middlesboro, Ky.	36	37	083	44	6	300	circular depression	disturbed rocks	A		
Mistastin Lake, Labr.	55	53	063	18	28	38 ± 4	elliptical lake and central island	breccia, impact melt			
New Quebec Crater, Que. Nicholson Lake, NWT	61	17	073	40	3.2	<5	rimmed, circular lake	raised rim			
Nicholson Lake, NWT	62	40	102	41	12.5	<400	irregular lake with islands	breccia			G
Odessa, Tex.	31	48	102	30	0.17	0.03	sediment-filled depression with very slight rim, 4 others buried and smaller	fragments of meteorite	A	D	G
Pilot Lake, NWT	60	17	111	01	6	<440	circular lake	fracturing, breccia float			
Redwing Creek, N. Dak. Serpent Mound, Ohio	47	40	102	30	9	200	none, buried	none	A	D	G
Serpent Mound, Ohio	39	02	083	24	6.4	300	circular area of disturbed rock, slight central elevation	breccia, shatter cones	A		G
Sierra Madera, Tex.	30	36	102	55	13	100	central hills, annular depression, outer	breccia, shatter cones	A	D	G
Slate Islands, Ont.	48	40	087	00	30	350	islands are central uplift of submerged	shatter cones, breccia dikes			
Steen River, Alta.	59	31	117	38	25	95 ± 7	none, buried to 200 metres		B	D	$\underset{\text { G }}{\text { G }}$
Sudbury, Ont.	46	36	081	11	140	1840 ± 150	elliptical basin	breccia, impact melt,			
Wells Creek, Tenn.	36	23	087	40	14	200 ± 100	basin with cenral hill, inner and	shatter cones breccia, shatter cones	${ }_{\text {A }}^{\text {A }}$	D	$\underset{\text { G }}{\text { G }}$
West Hawk Lake, Man.	49	46	095	11	2.7	100 ± 50	outer annular, valleys and ridges circular lake	no	A	D	G

COMETS IN 1985
By Brian G. Marsden
The following periodic comets are expected at perihelion during 1985:

Comet	Perihelion			Period
	Date		Dist.	
			A	a
Tsuchinshan 1	Jan.	2	1.51	6.7
Schwassmann-Wachmann 3	Jan.	11	0.94	5.4
Honda-Mrkos-Pajdusáková	May	23	0.54	5.3
Schuster	June	2	1.53	7.2
Gehrels 3	June	3	3.44	8.1
Russell 1	July	5	1.61	6.1
Kowal 2	July	8	1.50	6.5
Tsuchinshan 2	July	21	1.79	6.8
Daniel	Aug.	4	1.65	7.1
Giacobini-Zinner		5	1.03	6.6
Giclas	Oct.	1	1.84	6.9

P/Halley, 1982i, due at perihelion on 1986 Feb. 9, should be bright enough for observation with small telescopes during the last months of 1985. P/GiacobiniZinner, 1984e, is also very well placed for observation at this return. Ephemerides for both comets appear on the next page.

Five comets, P/Schuster, P/Gehrels 3, P/Russell 1, P/Kowal 2 and P/Giclas, are making their first predicted returns in 1985. The return of P/Giclas is very favourable, and that of P/Russell 1 is moderately so. P/Schuster and P/Kowal 2 are rather badly placed for observation, but with its large perihelion distance $\mathrm{P} / \mathrm{Gehrels} 3$ should be detectable with large telescopes. Of the older comets, P/Tsuchinshan 1 is making a favourable return, but $\mathrm{P} /$ Tsuchinshan 2 is not. P/Daniel may be detectable at its opposition early in 1986, but the returns of P/SchwassmannWachmann 3 and P/Honda-Mrkos-Pajdušáková are so unfavourable that it is unlikely these comets will be observed at all.

Editor's Note: 1985 will be a memorable year for observers of the skies since the legendary Halley's Comet will become visible in small telescopes. As its period approximates a full human lifetime, few people are privileged to see this comet more than once. Last observed in 1910, Halley's Comet was first detected on its current return on October 16, 1982 by means of a solid state (CCD) detector at the prime focus of the Palomar 5-metre telescope. The comet was then at magnitude 24 and 11 astronomical units from the Sun, the faintest and most distant comet ever observed. During 1985, it enters the inner solar system, passing from 5.28 A (near Jupiter's orbit) to 1.01 A from the Sun. The comet remains more than 4 A from Earth until late July, but then closes rapidly on us reaching a minimum distance of 0.62 A on November 27. By year-end the Earth-comet separation will have opened to 1.16 A . When at perihelion (and 0.59 A from the Sun) on February 9, 1986, the comet will be 1.55 A from Earth on the far side of the Sun. However, on April 11, 1986 the separation reaches a second minimum of 0.42 A as the comet recedes toward the cold, outer fringes of the solar system.

Halley's Comet will be too faint to be seen in amateur telescopes prior to its conjunction with the Sun in June 1985. It may be visible in large amateur telescopes, low in the pre-dawn sky, in mid-August, but prospects are better, again around new moon, in mid-September. During this period, Halley's Comet will be moving slowly a couple of degrees south of the west foot of Gemini and about 3 A from Earth (see the chart on p. 132). By mid-November the comet will be visible with binoculars (see the chart on p. 133). Finally, in a dark sky early in December, Halley's Comet will become a faint, naked-eye object for the first time in nearly 76 years.

Ground-based observations are being coordinated by the International Halley Watch (IHW), an organization approved by the International Astronomical Union. The IHW Western Hemisphere Lead Centre is at the Jet Propulsion Laboratory of the California Institute of Technology (4800 Oak Grove Drive, T-1166, Pasadena, CA 91109, U.S.A.). Stephen J. Edberg of the IHW is Coordinator for Amateur Observations, and has produced a two-part manual entitled: International Halley Watch Amateur Observer's Manual for Scientific Comet Studies. Part I gives detailed instructions for observation projects valuable to the IHW i:l six areas of study: (1) visual observations, (2) photography, (3) astrometry, (4) spectroscopic observations, (5) photoelectric photometry, and (6) meteor observations. Part II includes an ephemeris for Comet Halley for the period 1985-1987 and star charts showing its position from November 1985 through May 1986. This manual is available from Sky Publishing Corporation, 49 Bay State Road, Cambridge, MA 02238-1290, U.S.A. (Order: 46409 IHW Guide, $\$ 9.95$ US plus 10% for orders from outside the U.S.A.).

Some additional information is contained in The Comet Halley Handbook by Donald K. Yeomans, available from the U.S. Government Printing Office (Washington, D.C. 20402, U.S.A.). See also The Journal of The Royal Astronomical Society of Canada, 77, 63, 1983; and Sky and Telescope, 61, 500, 1981, and 67, 9, 1984.

COMET HALLEY				COMET GIACOBINI-ZINNER			
Date				Date			
Oh E.T.	R.A. ${ }^{\text {(1950) }}$	Dec. (1950)	Mag.	Oh E.T.	R.A. 1950)	Dec. (1950)	Mag.
Sept. 22	$6^{\text {h }} 13.0$	$+19^{\circ} 45^{\prime}$	11.7	July 4	$22^{\text {h }} 19.9$	$+50^{\circ} 39^{\prime}$	11.5
27	612.5	+19 53		9	2240.0	+53 06	
Oct. 2	611.1	+20 03	11.0	14	2304.2	+55 21	10.9
7	608.6	+20 14		19	2332.6	+5718	
12	604.6	+20 28	10.3	24	005.8	+5848	10.3
17	558.6	+20 44		29	043.9	+5940	
22	550.2	+21 04	9.4	Aug. 3	126.2	+5942	9.7
27	538.5	+21 26		8	210.8	+58 42	
Nov. 1	522.3	+2148	8.4	13	255.0	+56 31	9.2
6	459.9	+22 08		18	336.2	+5305	
11	429.4	+22 14	7.3	23	413.0	+4828	8.7
16	348.8	+2147		28	444.9	+4251	
21	258.0	+20 19	6.3	Sept. 2	512.2	+36 27	8.5
26	201.0	+1730		7	535.5	+29 34	
Dec. 1	105.3	+13 39	5.6	12	555.3	+22 31	8.6
6	017.5	+935		17	612.4	+15 35	
11	2339.6	+ 559	5.2	22	627.1	+ 858	8.8
16	2310.6	+ 306		27	639.8	+ 249	
21	2248.5	$+051$	4.9	Oct. 2	650.7	- 248	9.3
26	2231.3	- 055		7	700.0	- 754	
31	2217.4	- 219	4.4	12	707.7	-12 28	9.8
Jan. 5	2205.9	- 328		17	714.0	-16 35	
10	2155.8	-428	3.7	22	718.8	-20 15	10.4
15	2146.6	- 524		27	722.3	-23 31	
20	2137.8	- 617	2.8	Nov. 1	724.3	-26 26	11.0
				6	724.9	-29 01	
				11	724.1	-31 16	11.6

[^6] intervals from August 10 (A10) to October 4 (O4), and then at 2-day intervals until the comet reaches the west edge of the chart on October 27.0. For several days after the latter date, moonlight will interfere with viewing, as it will during the first few and last days of each of these months. The field is in the morning sky, about $3^{\circ} S$ of the west "foot" of Gemini. The brightest stars shown are the two left and right of centre and just N of $+20^{\circ}: \chi^{2}$ and χ^{1} Orionis, of magnitude 4.5. The faintest stars shown are of magnitude 14. The predicted magnitudes of Halley's comet during the dark-sky periods in mid-August, mid-September, and mid-October are, respectively, about 13, 12, and 10. During the same three periods, the average distance of the comet from Earth and its speed toward us are, respectively: $3.3 \mathrm{~A}, 47 \mathrm{~km} / \mathrm{s} ; 2.4 \mathrm{~A}, 54 \mathrm{~km} / \mathrm{s}$; and $1.5 \mathrm{~A}, 54 \mathrm{~km} / \mathrm{s}$. The eastward portion of the path here is the last "retrograde" motion made by the comet prior to its dash westward across three-quarters of the sky during an 8-month period beginning on September 21. The chart is based on Vehrenberg's Atlas Stellarum 1950.0, and the coordinates are for that epoch.

The path of Halley's Comet during the time it comes within reach of binoculars and the naked eye. The path begins at October 27, the point at which the path on the preceding page ends, and is on a scale 12 times smaller. The five brightest stars on the right half of the large scale chart appear near the 20° index mark at the left edge of the above chart. The path is marked (for 0 h UT) at 2-day intervals beginning at October 28, with 8-day intervals labeled starting with November 1 (N1). The path ends in late January, 1986, when Halley's Comet becomes lost in the evening twilight. The comet passes N of the ecliptic (the dashed line) and reaches its greatest N declination on November 9 . It passes $2^{\circ} S$ of the Pleiades on November 16, is at opposition on November 18, is closest to Earth (during 1985) on November 27, and crosses the celestial equator on December 23. Note how the apparent angular speed of the comet peaks when it is closest to us, and then slows as we recede from it during December and January. Of course, relative to the Sun, the comet is still accelerating as it approaches perihelion on the far side of the Sun on February 9, 1986. Moon-free viewing periods include mid-November, and the first halves of December and January. The predicted magnitudes of the comet during these periods are approximately 7, 5, and 4, respectively. The faintest stars shown are of magnitude 6, and the constellations through which the comet passes are named. The coordinates are for 1950.0.

INTERPLANETARY DUST

Outside of the astronomical community it is not generally realized that the inner solar system contains a vast cloud of dust. The particles in this cloud are concentrated near the plane of the ecliptic and toward the Sun, their spatial particle density in the ecliptic falling off somewhat more rapidly than the reciprocal of their distance from the Sun. Measurements from spacecraft indicate that the cloud extends well beyond the orbit of Mars, but that it is negligible in the vicinity of Jupiter's orbit and beyond. In 1983, IRAS, the pioneering Infrared Astronomical Satellite, discovered that there is an extra concentration of dust in the asteroid region, in the form of a ring or torus centred on the Sun. Aside from this overall structure, the cloud is quite uniform both spatially and temporally.

The particles composing the cloud have a continuum of sizes, from pebble-sized clumps down to specks with diameters comparable to the wavelength of visible light and smaller. The smaller particles are the more numerous, although the mass distribution appears to peak near $10^{-8} \mathrm{~kg}$, corresponding to a particle diameter of a few tenths of a millimetre. The total mass of the cloud is small, amounting to perhaps 10^{-14} of the mass of the solar system. It is as if the moons of Mars had been pulverized and spread throughout the inner solar system.

Like the planetary system, the interplanetary dust cloud is not static. Its particles generally move in orbits about the Sun. In addition, the particles undergo continual fragmentation due to collisions, sputtering associated with bombardment by the solar wind, electrostatic bursting, and sublimation. This progression toward smaller and smaller sizes is of crucial significance for the cloud, since particles with diameters appreciably less than a tenth of a millimetre have a sufficiently large surface-tovolume ratio that the pressure of the Sun's radiation has a significant effect upon their motion. Their orbits become non-Keplerian and many particles are lost as they spiral inward toward the Sun (the Poynting-Robertson effect). During a total solar eclipse in 1983, instruments carried by a balloon detected a ring-like concentration of dust only a couple of solar diameters from the Sun. Its inner edge apparently marks the point at which the Sun's heat vaporizes the infalling particles. The resulting tiny gas molecules, like the smallest particles of dust, are blown out of the solar system by the dominant radiation pressure and interactions with the solar wind.

Because of the above-mentioned influences on the sizes and motions of the dust particles, the estimated mean life of a cloud particle is about 10^{5} years. Since this is much less than the age of the solar system, it is obvious that the cloud must be in a dynamic equilibrium. Part of the tail of a bright comet is due to significant quantities of dust ejected from its nucleus, and it is generally assumed that comets provide the main supply of new dust to the cloud. Since comet nuclei are believed to consist of the undifferentiated matter from which the solar system formed, the dust of the interplanetary cloud is most likely composed of this same low-density, fragile, primitive material. Collisions of asteroids may also provide dust, but the extent of this possible contribution is unknown.

To an observer on Earth the most noticeable aspect of the dust cloud is meteors larger particles of the cloud which encounter Earth and vaporize in its upper atmosphere. In addition, sunlight scattered by the dust cloud appears as a faint glow in the vicinity of the ecliptic. This glow is brightest toward the Sun, is due primarily to particles having diameters between a few micrometres and a millimetre, and is referred to as the zodiacal light. A slight brightening in the sky opposite the Sun, called the Gegenschein (German for "counter-glow"), is due to a phase effect (analogous to the full moon), and also possibly to a concentration of dust at the L3 Lagrangian point of the Earth-Sun system. As astronomical objects, the zodiacal light and Gegenschein are unusual in that they can be seen only with the unaided eye. Both are invisible in binoculars or a telescope.

The Zodiacal Light

Nearly a millenium ago the Persian astronomer-poet Omar Khayyam referred to the zodiacal light in the second quatrain of his Rubaiyat. As translated by the poet Edward FitzGerald, we have the haunting lines: "Dreaming when Dawn's Left Hand was in the Sky", and "Before the phantom of False morning died".

When conditions are favorable, the zodiacal light is indeed a mysterious and beautiful sight. It is best seen after the end of evening twilight and before the beginning of morning twilight (see page 58). Because the zodiacal light is brightest nearest the Sun, it is best seen when the ecliptic is at a steep angle relative to the horizon. In the tropics this is always the case and the short duration of twilight is an added advantage. At mid-northern latitudes the optimum geometry occurs in the evening western sky in February and March, and in the morning eastern sky in October. The zodiacal light appears as a huge, softly radiant pyramid of white light with its base near the horizon and its axis centered on the zodiac. In its brightest parts it exceeds the luminance of the central Milky Way.

Despite its brightness, many people have not seen the zodiacal light. As mentioned above, certain times of night and times of year are more favorable than others. In addition, moonlight, haze, or light pollution rule out any chance of seeing this phenomenon. Even with a dark, transparent sky the inexperienced observer may confuse the zodiacal light with twilight and thus ignore it, or he may not notice it because he is expecting a much smaller object.

The Gegenschein

Photometric measurements indicate that the zodiacal light extends all around the zodiac with a shallow minimum in brightness some 120° to 150° from the Sun; nevertheless, this "zodiacal band" or "light bridge" is exceedingly faint and hence rarely visible. However, the slight brightening in the vicinity of the anti-solar point can be seen under the right conditions.

The Gegenschein is very faint. The slightest haze, moonlight, bright nearby stars, planets, or light pollution will hide it completely. Most observers, including experienced ones, have not seen it. It is a ghostly apparition best seen near midnight and, in mid-northern latitudes, in the fall or winter when the anti-solar point is nearest the zenith. To avoid interference from bright stars or the Milky Way, observations should be restricted to the periods late September to early November, and late January to early February when the Gegenschein is in Pisces and Cancer respectively. It appears as a faint yet distinct, somewhat elliptical glow perhaps 10° in diameter. The luminance of the Gegenschein is about $10^{-4} \mathrm{~cd} / \mathrm{m}^{2}$, some ten orders of magnitude dimmer than the brightest light the human eye can tolerate.

STARS
CONSTELLATIONS

Nominative \& Pronunciation	Genitive	Abbr.	Meaning
Andromeda, ăn-drŏm'ē-dà	Andromedae	And	Daughter of Cassiopeia
Antlia, ănt'lī-a	Antliae	Ant	The Air Pump
Apus, à'pŭs	Apodis	Aps	Bird of Paradise
Aquarius, à-kwâr'i-ŭs	Aquarii	Aqr	The Water-bearer
Aquila, ăk'wĭ-là	Aquilae	Aql	The Eagle
Ara, a' ${ }^{\prime}$ rà	Arae	Ara	The Altar
Aries, ā'rǐ-èz	Arietis	Ari	The Ram
Auriga, ô-ri'gà	Aurigae	Aur	The Charioteer
Bootes, bō-ō'tēz	Bootis	Boo	The Herdsman
Caelum, sè'lŭm	Caeli	Cae	The Chisel
Camelopardalis kà-mèl'ō-pàr'dà-lĭs	Camelopardalis	Cam	The Giraffe
Cancer, kăn'sēr	Cancri	Cnc	The Crab
Canes Venatici kā'nēz vè-năt'ī-sī	Canum Venaticorum	CVn	The Hunting Dogs
Canis Major, kā'nĭs mā'jêr	Canis Majoris	CMa	The Big Dog
Canis Minor, kā'nĭs mī'nẽr	Canis Minoris	CMi	The Little Dog
Capricornus, kăp'rí-kôr'nŭs	Capricorni	Cap	The Horned Goat
Carina, kà-ri'nà	Carinae	Car	The Keel
Cassiopeia, kăs'ī-ō-pē'yȧ	Cassiopeiae	Cas	The Queen
Centaurus, sěn-tô'rŭs	Centauri	Cen	The Centaur
Cepheus, sē'fūs	Cephei	Cep	The King
Cetus, sė'tŭs	Ceti	Cet	The Whale
Chamaeleon, kà-mē'lē-ŭn	Chamaeleontis	Cha	The Chameleon
Circinus, sûr'sĭ-nŭs	Circini	Cir	The Compasses
Columba, kō-lŭm'bȧ	Columbae	Col	The Dove
Coma Berenices kō'mȧ běr'ē-nī'sēz	Comae Berenices	Com	Berenice's Hair
Corona Australis kō-rō'nà ôs-trā'lǐs	Coronae Australis	CrA	The Southern Crown
Corona Borealis kō-rō'nà bō'rē-ā'lǐs	Coronae Bodrealis	CrB	The Northern Crown
Corvus, kôr'vŭs	Corvi	Crv	The Crow
Crater, krā'tēr	Crateris	Crt	The Cup
Crux, krŭks	Crucis	Cru	The Cross
Cygnus, sig'nŭs	Cygni	Cyg	The Swan
Delphinus, dĕl-fi'nŭs	Delphini	Del	The Dolphin
Dorado, dō-rà ${ }^{\text {do }}$ do	Doradus	Dor	The Goldfish
Draco, drā'kō	Draconis	Dra	The Dragon
Equuleus, è-kw $\overline{o o}^{\prime}$ 'ē-ŭs	Equulei	Equ	The Little Horse
Eridanus, è-rid'à-nŭs	Eridani	Eri	A River
Fornax, fôr'năks	Fornacis	For	The Furnace
Gemini, jĕm'ī-nī	Geminorum	Gem	The Twins
Grus, grŭs	Gruis	Gru	The Crane (bird)
Hercules, hâr'kū-lēz	Herculis	Her	The Son of Zeus
Horologium, hŏr'ō-lō'jĭ-ŭm	Horologii	Hor	The Clock
Hydra, hï'drà	Hydrae	Hya	The Water Snake (\%)
Hydrus, hì drŭs	Hydri	Hyi	The Water Snake (${ }^{(}$)

Nominative \& Pronunciation	Genitive	Abbr.	Meaning
Indus, inn'dŭs	Indi	Ind	The Indian
Lacerta, là-sûr'tà	Lacertae	Lac	The Lizard
Leo, lē'ō	Leonis	Leo	The Lion
Leo Minor, lè'ō mì nenr	Leonis Minoris	LMi	The Little Lion
Lepus, lē'pŭs	Leporis	Lep	The Hare
Libra, li'brá	Librae	Lib	The Balance
Lupus, lū'pŭs	Lupi	Lup	The Wolf
Lynx, links	Lyncis	Lyn	The Lynx
Lyra, lī'rá	Lyrae	Lyr	The Lyre
Mensa, měn'sá	Mensae	Men	Table Mountain
Microscopium mī'krō-skō'pī-ŭm	Microscopii	Mic	The Microscope
Monoceros, mō-nŏs'ẽr-ŏs	Monocerotis	Mon	The Unicorn
Musca, muss'kà	Muscae	Mus	The Fly
Norma, nôr'mȧ	Normae	Nor	The Square
Octans, ŏk'tănz	Octantis	Oct	The Octant
Ophiuchus, ŏf'ī-ū'kŭs	Ophiuchi	Oph	The Serpent-bearer
Orion, ō-ri'ŏn	Orionis	Ori	The Hunter
Pavo, pā'vō	Pavonis	Pav	The Peacock
Pegasus, pěg'à-sŭs	Pegasi	Peg	The Winged Horse
Perseus, pûr'sūs	Persei	Per	Rescuer of Andromeda
Phoenix, fé'niks	Phoenicis	Phe	The Phoenix
Pictor, pik'tẽr	Pictoris	Pic	The Painter
Pisces, pis'èz	Piscium	Psc	The Fishes
Piscis Austrinus piss'ìs ôs-tri'nŭs	Piscis Austrini	PsA	The Southern Fish
Puppis, pǔp'is	Puppis	Pup	The Stern
Pyxis, pik'sis	Pyxidis	Pyx	The Compass
Reticulum, rē-tik'ū-lŭm	Reticuli	Ret	The Reticle
Sagitta, sà-jǐt' ${ }^{\text {a }}$	Sagittae	Sge	The Arrow
Sagittarius, săj'ī-tā'rī-ŭs	Sagittarii	Sgr	The Archer
Scorpius, skôr'pǐ-ŭs	Scorpii	Sco	The Scorpion
Sculptor, skŭlp'tēr	Sculptoris	Scl	The Sculptor
Scutum, skū'tŭm	Scuti	Sct	The Shield
Serpens, sûr'pěnz	Serpentis	Ser	The Serpent
Sextans, sěks'tănz	Sextantis	Sex	The Sextant
Taurus, tô'rŭs	Tauri	Tau	The Bull
Telescopium těl'ē-skō'pĭ-ŭm	Telescopii	Tel	The Telescope
Triangulum, trī-ăng'gù-lŭm	Trianguli	Tri	The Triangle
Triangulum Australe trī-ăng'gū-lŭm ôs-trā'lē	Trianguli Australis	TrA	The Southern Triangle
Tucana, tū-kā'nà	Tucanae	Tuc	The Toucan
Ursa Major, ûr'sȧ mā'jēr	Ursae Majoris	UMa	The Great Bear
Ursa Minor, ûr'sȧ mi'nẽr	Ursae Minoris	UMi	The Little Bear
Vela, vē'là	Velorum	Vel	The Sails
Virgo, vûr'gō	Virginis	Vir	The Maiden
Volans, vō'lănz	Volantis	Vol	The Flying Fish
Vulpecula, vŭl-pěk'ū-là	Vulpeculae	Vul	The Fox

 ŭ ŭp; û ûrn.

FINDING LIST OF SOME NAMED STARS

Name	Con.	R.A.	Name	Con.	R.A.
Acamar, à ${ }^{\text {'kà-màr }}$	θ Eri	02	Gienah, jē'nà	$\gamma \mathrm{Crv}$	12
Achernar, ${ }^{\text {a }}$ 'kēr-nȧr	α Eri	01	Hadar, hăd'àr	β Cen	14
Acrux, ā'krŭks	$\alpha \mathrm{Cru}$	12	Hamal, hăm'ăl	α Ari	02
Adara, à-dā'rá	$\epsilon \mathrm{CMa}$	06	Kaus Australis,	¢ Sgr	18
Al Na'ir, ăl-nâr'	α Gru	22	kôs ôs-trā'lis		
Albireo, ăl-bir'è-ō	β Cyg	19	Kochab, kō'kăb	β UMi	14
Alcor, ăl-kôr'	80 UMa	13	Markab, mȧr'kăb	α Peg	23
Alcyone, ăl-sī'ō-nē	η Tau	03	Megrez, mē'grěz	δ UMa	12
Aldebaran,	α Tau	04	Menkar, měn'kär	α Cet	03
ăl-dĕb'à-ran			Menkent, měn'kěnt	θ Cen	14
Alderamin,	α Cep	21	Merak, mē'răk	β UMa	11
ăl-děr'àmĭn			Merope, mèr'ō-pē	23 Tau	03
Algeiba, ăl-jè'bȧ	γ Leo	10	Miaplacidus,	β Car	09
Algenib, ăl-jē'nīb	$\gamma \mathrm{Peg}$	00	mi'àdplăs'í-dǔs		
Algol, ăl'gŏl	β Per	03	Mintaka, mĭn-tà ${ }^{\text {kaj }}$	δ Ori	05
Alioth, ăl'ǐ-ǒth	$\epsilon \mathrm{UMa}$	12	Mira, mī ${ }^{\prime}$ rà	o Cet	02
Alkaid, ăl-kād'	η UMa	13	Mirach, mi'răk	β And	01
Almach, ăl'măk	γ And	02	Mirfak, mir' ${ }^{\text {fag }}$	α Per	03
Alnilam, ăl-nī'lăm	¢ Ori	05	Mizar, mí'zàr	$\zeta \mathrm{UMa}$	13
Alphard, ăl'färd	α Hya	09	Nunki, nǔn'kē	$\sigma \mathrm{Sgr}$	18
Alphecca, ăl-fěk'à	$\alpha \mathrm{CrB}$	15	Peacock, pē'kŏk'	$\alpha \mathrm{Pav}$	20
Alpheratz, ăl-fē'răts	α And	00	Phecda, fěk'dà	$\gamma \mathrm{UMa}$	11
Altair, ăl-târ'	α Aql	19	Polaris, pō-lâr'ǐs	α UMi	02
Ankaa, ăn'kȧ	α Phe	00	Pollux, pǒl'ǔks	β Gem	07
Antares, ăn-tā'rēs	α Sco	16	Procyon, prō'sī-ŏn	$\alpha \mathrm{CMi}$	07
Arcturus, àrk-tū'rŭs	α Boo	14	Pulcherrima,	ϵ Boo	14
Atria, ā'tri-a	α TrA	16	pŭl-kĕr'ímà		
Avior, ă-vĭ-ôr'	$\epsilon \mathrm{Car}$	08	Ras-Algethi,	α Her	17
Bellatrix, bě-lā'triks	γ Ori	05	ras'all-jē'thē		
Betelgeuse, bět'ĕl-jūz	α Ori	05	Rasalhague, rảs'ăl-hā'gwē	α Oph	17
Canopus, kà-nō'pŭs	$\alpha \mathrm{Car}$	06	Regulus, rĕg'ū-ŭs	α Leo	10
Capella, kà-pěl'á	α Aur	05	Rigel, ri'jël	β Ori	05
Caph, kăf	β Cas	00	Rigil Kentaurus,	α Cen	14
Castor, kȧs'tēr	α Gem	07	rī'jil kěn-tô'rŭs		
Cor Caroli, kôr kăr'ŏ-lī	$\alpha \mathrm{CVn}$	12	Sabik, sā’bîk	η Oph	17
Deneb, děn'ĕb	$\alpha \mathrm{Cyg}$	20	Scheat, shē'ăt	β Peg	23
Denebola, dè-něb'ō-lȧ	β Leo	11	Schedar, shĕd'ar	α Cas	00
Diphda, dĭf'dà	β Cet	00	Shaula, shô'là	λ Sco	17
Dubhe, dŭb'è	α UMa	11	Sirius, sir'ǐ-ŭs	$\alpha \mathrm{CMa}$	06
Elnath, ell'năth	β Tau	05	Spica, spī'ká	α Vir	13
Eltanin, ěl-tà C nın	$\gamma \mathrm{Dra}$	17	Suhail, sŭ-hāl'	$\lambda \mathrm{Vel}$	09
Enif, èn'íf	ϵ Peg	21	Thuban, thoo' ${ }^{\text {ban }}$	$\alpha \mathrm{Dra}$	14
Fomalhaut, fō'măl-ôt	α PsA	22	Vega, vē'gà	α Lyr	18
Gacrux, gà ${ }^{\text {'krŭks }}$	$\gamma \mathrm{Cru}$	12	Zubenelgenubi,	$\alpha \mathrm{Lib}$	14
Gemma, jěm'à	$\alpha \mathrm{CrB}$	15	zōo-bĕn'ĕl-jē-nū'bē		

Key to pronunciation on p. 137.

THE BRIGHTEST STARS

By Robert F. Garrison

The 286 stars brighter than apparent magnitude 3.55 .
Star. If the star is a visual double the letter A indicates that the data are for the brighter component. The brightness and separation of the second component B are given in the last column. Sometimes the double is too close to be conveniently resolved and the data refer to the combined light, $A B$; in interpreting such data the magnitudes of the two components must be considered.

Visual Magnitude (V). These magnitudes are based on photoelectric observations, with a few exceptions, which have been adjusted to match the yellow colour-sensitivity of the eye. The photometric system is that of Johnson and Morgan in Ap.J., vol. 117, p. 313, 1953. It is as likely as not that the true magnitude is within 0.03 mag. of the quoted figure, on the average. Variable stars are indicated with a " v ". The type of variability, range, R, in magnitudes, and period in days are given.

Colour index $(B-V)$. The blue magnitude, B, is the brightness of a star as observed photoelectrically through a blue filter. The difference $B-V$ is therefore a measure of the colour of a star. The table reveals a close relation between $B-V$ and spectral type. Some of the stars are slightly reddened by interstellar dust. The probable error of a value of $B-V$ is only 0.01 or 0.02 mag.

Type. The customary spectral (temperature) classification is given first. The Roman numerals are indicators of luminosity class. They are to be interpreted as follows: Ia-most luminous supergiants; Ib-less luminous supergiants; II—bright giants; III—normal giants; IV-subgiants; V-main sequence stars. Intermediate classes are sometimes used, e.g. Iab. Approximate absolute magnitudes can be assigned to the various spectral and luminosity class combinations. Other symbols used in this column are: p-a peculiarity; e-emission lines; v -the spectrum is variable; m -lines due to metallic elements are abnormally strong; f -the O-type spectrum has several broad emission lines; n or $n n$-unusually wide or diffuse lines. A composite spectrum, e.g. M1 Ib+B, shows up when a star is composed of two nearly equal but unresolved components. The table now includes accurate spectral and luminosity classes for all stars in the southern sky. All other types were very kindly provided especially for this table by Dr. W. W. Morgan, Yerkes Observatory.

Parallax (π), and radial velocity (R). From "The Bright Star Catalogue" by Dorrit Hoffleit, Yale University Observatory, 1982. Parallaxes in which the letter "D" precedes the decimal point are dynamical parallaxes (i.e. determined not by trigonometric means but through Kepler's laws). In several cases, following the numerical values for radial velocity, are symbols indicating that the star is a variable (V) or a spectroscopic binary (SB). A spectroscopic binary is an unresolved system whose duplicity is revealed by periodic oscillations of the lines in its spectrum. If the lines of both stars are detectable, the designation is SB2; if only one set of lines is visible, the designation is SB1. The letter "O" appended to SB, SB1, or SB2 indicates that the orbit has been calculated.

Annual proper motion (μ). From "General Catalogue of Stellar Radial Velocities" by R. E. Wilson, Carnegie Inst. Pub. 601, 1953.

The star names are given for all the officially designated navigation stars and a few others. Throughout the table, a colon (:) indicates an uncertainty.

Editor's Note: The columns entitled Absolute Magnitude and Distance, light-years have been deleted from this edition. Many of these values in earlier editions are inconsistent with the new values for parallax and spectral type. A complete revision of the table is expected for the 1986 edition.

				$\begin{aligned} & \stackrel{0}{\circ} \\ & \stackrel{0}{y} \\ & \vdots \\ & \stackrel{\rightharpoonup}{x} \end{aligned}$							
Star	R.A. 1980 Dec.		v	$B-V$	Type		π	μ	R		
Sun	h m	${ }^{\circ}$ '	-26.73	+0.63		v	"	"	km/s		Sun
α And	0007.3	+2858	2.06	-0.08	89p		0.032	0.209	-12 SBO	Manganese star ${ }^{\text {d }}$	Alpheratz
β Cas	08.1	+5902	2.26v	+0.34	${ }^{\text {F2 }}$	IV	0.072	0.555	+11 SB		2.83-2.85, $0.15^{\text {caph }}$
${ }_{\beta}^{\gamma} \mathrm{Peg}$	12.2 24.6	+ +1504	${ }_{2}^{2.84 \mathrm{v}}$	-0.23	${ }_{\text {G1 }}$	IV	0.000 0.159	0.010 2.255	+04 SB	β CMa type, R in V	$2.83-2.85,0.15 d$ γ Peg
α Phe	25.3	-4225	2.39	+1.08	K0	IIIb	0.039	0.442	$+25 \mathrm{SB1O}$		Ankaa
δ And A	38.2	+30 45	3.25:	+1.26	K3	III	0.028	0.161	-07 SB1O	B $12^{\mathrm{m}} 28^{\prime \prime}$	
α Cas	39.4	+5625	2.22	+1.18	K0	II-III	0.016	0.058	-04 V ?	Var.?	Schedar
${ }_{\square}^{\beta}{ }_{\square}^{\text {Cet }}$ Cas A	42.6	-1806 +57	2.02	+1.03 +0.56	K0	III	0.061 0.176	0.234	+13		Diphda
$\gamma \operatorname{Cas} A$	55.5	+6036	2.5 v	${ }_{-0.16 \mathrm{v}}^{+0.03}$	B0	IV:pe	0.016	${ }_{0}^{1.026}$	${ }_{-07 \mathrm{SB}}^{+09 \mathrm{SBIO}}$	Var. $\mathrm{Br}^{\text {B }}$. $18^{\mathrm{m}} 2^{\prime \prime}$	
β Phe $A B$	0105.1	-4650	3.30	+0.88	G8	III	0.021	0.035	-01	$A 4.1^{\mathrm{m}} \mathrm{B} \mathrm{I}^{\mathrm{m}} 1^{\prime \prime}$	
$\eta \mathrm{Cet}$	07.6	-10 17	3.44	+1.16	K3	III	0.041	0.250	+12		
${ }_{8}^{\beta}{ }_{\delta}^{\text {And }} \mathrm{Cas}$	08.6 24.4	+3531 +608	2.62	+1.57	M0	III	0.049 0.037	0.211	${ }^{+03} \mathrm{~V}$		Mirac
γ Phe	27.5	+4325	3.40	+0.13	K5	IIb-III	0.037	0.301 0.209	+07 SB $+26 \mathrm{SB1O}$	Ecl.? R 0.08: ${ }^{\text {m }} 759$	Ruchbah
α Eri	37.0	-57 20	0.51	-0.16	B3	Vp	0.026	0.098	$+16 \mathrm{~V}$		
τ Cet	43.2	-1603	3.50	+0.72	G8	Vp	0.287	1.921	-16		Achernar

Star	R.A. 1980 Dec.		V	$B-V$	Type	π	μ	R	
	h m	- ,				"	"	km/s	
α Tri	0152.0	+29 29	3.42	+0.50	F6 IV	0.057	0.230	-13 SB1O	
ε Cas	52.9	+63 34	3.37	-0.15	B3 IV:p	0.010	0.038	-08 V	
β Ari	53.6	$+2043$	2.65	+0.14	A5 V	0.074	0.147	-02 SBO	Sheratan
$\alpha \mathrm{Hyi}$	58.1	-6140	2.84	+0.28	F0 V	0.048	0.265	+01 V	
γ And A	0202.7	+42 14	2.14:	+1.16:	K3 II	0.013	0.068	-12 SB	$B 5.4^{\mathrm{m}} \mathrm{C} 6.2^{\mathrm{m}} A-B C 10^{\prime \prime} B-C 0.6^{\prime \prime}$
						0.049			γ And = Almach
${ }_{\beta}{ }^{\text {Ari }}$	06.1	+23 22	2.00	$+1.15$	K2 III	0.049 0.022	0.241	-14 SB	Hamal
β Tri	08.4	+3454 +89	3.00 1.99 v	+0.13	A5 III	0.022 0.007	0.156	+10 SB2O	
$\alpha \mathrm{UMi} A$	12.5	+89 11	1.99 v	$+0.60 \mathrm{v}$	F8 Ib	0.007	0.046	-17 SBO	Cep., $R 0.11^{\mathrm{m}} 4.0^{\text {d }}, B 8.9^{\mathrm{m}} 18^{\prime \prime}$, Polaris
- Cet A	18.3	-03 04	2.0v		M5.5e-M9e	0.024	0.232	$+64 \mathrm{~V}$	LP, $R 2.0-10.1,332^{\text {d }}, B 10^{\mathrm{m}} 1^{\prime \prime} \quad$ Mira
γ Cet $A B$	42.2	+0310	3.48	+0.11	A2 V	0.052	0.203	-05 V	$A 3.57^{\mathrm{m}}$ B $6.23^{\mathrm{m}} 3^{\prime \prime}$
θ Eri $A B$	57.5	-4023	2.92	+0.13	A3 III	0.035	0.061	+12 SB2	$A 3.25^{\mathrm{m}}$ B $4.36^{\mathrm{m}} 8^{\prime \prime} \quad$ Acamar
α Cet	0301.2	+0400	2.54	$+1.63$	M2 III	0.009	0.075	-26	Menkar
γ Per	03.3	+5325	2.91:	+0.72:	G8III + A5V	0.016	0.004	+03 SBO	
ρ Per	03.7	+38 45	3.5 v		M4 II-III	0.011	0.172	+28	Irr. R 3.2-3.8
β Per	06.6	$+4052$	2.06 v	-0.07	B8 V	0.045	0.006	+04 SBO	Ecl. $R 2.06-3.28,2.87^{\text {d }}$ Algol
α Per	22.9	$+4947$	1.80	$+0.48$	F5 Ib	0.016	0.035	-02 V	Mirfak
δ Per	41.5	$+4744$	3.03	-0.14	B5 III	0.016	0.046	+04 SB	
η Tau	46.3	$+2403$	2.86	-0.09	B7 III	0.008	0.050	+10 V ?	in Pleiades Alcyone
γ Hyi	47.5	-7418	3.30	+1.61	M2 III	0.005	0.125	$+16$	
$\zeta \operatorname{Per} A$	52.7	+3150	2.83	+0.13	B1 Ib	0.010	0.015	+20 SB	$B 9.36^{\mathrm{m}} 13^{\prime \prime}$
ε Per \boldsymbol{A}	56.5	$+3957$	2.88	-0.17	B0.5 V	0.009	0.036	+01 SB2	$B 7.99^{\text {m }} 9^{\prime \prime}$
γ Eri	57.1	-1334	2.96	+1.58	M0 III	0.010	0.126	+62	
α Ret A	0414.1	-6232	3.33	+0.91	G9 III	0.013	0.064	+36SB?	$B 12^{\text {m }} 49^{\prime \prime}$
ε Tau	27.5	+1908	3.54	+1.02	K0 III	0.020	0.118	+39	
$\boldsymbol{\theta}^{2} \mathrm{Tau}$	27.5	+1549	3.42	+0.17	A7 III	0.029	0.108	+40 SB1O	
α Dor	33.5	-5505	3.28	-0.08	A0 IIIp	0.018	0.051	+26	Silicon star
α Tau A	34.8	+1628	0.86 v	$+1.52$	K5 III	0.054	0.202	+54 SB	Irr.? R0.78-0.93, $B 13^{\mathrm{m}} 31^{\prime \prime}$ Aldebaran
π^{3} Ori	48.3	+0656	3.17	+0.45	F6 V	0.137	0.468	+24 SB2	
1 Aur	55.7	$+3308$	2.68:	+1.49	K3 II	0.021	0.021	+18	

Star	R.A. 1980 Dec.		V	$\boldsymbol{B}-\boldsymbol{V}$	Type	π	μ	R	
	h m	- ,				"	/	km/s	
ε Aur	0500.5	+43 48	3.0 v	+0.50:	F0 Iap	0.007	0.008	-03 SB1O	Ecl. $R 0.81^{\mathrm{m}} 9886^{\text {d }}$
ε Lep	04.6	-2224	3.21	+1.46	K5 III	0.011	0.077	+01	
η Aur	05.1	+41 13	3.17	-0.18	B3 V	0.022	0.077	+07 V?	
β Eri	06.9	-05 06	2.79	$+0.13$	A3 III	0.050	0.122	-09	
μ Lep	12.1	-1613	3.29	-0.09	B9 IIIp	0.023	0.049	+28	Manganese star
$\boldsymbol{\beta}$ Ori \boldsymbol{A}	13.6	-08 13	0.14 v	-0.04	B8 Ia	0.013	0.001	+21 SB	Irr. ? R 0.08-0.20, B 6.65'm $9^{\prime \prime} \quad$ Rigel
α Aur	15.2	+45 59	0.05	+0.80	G8 III: + F	0.080	0.435	+ 30 SBO	Capella
η Ori $A B$	23.5	-02 24	3.32 v	-0.18	B0.5 V	0.007	0.008	+20 SB2O	Ecl. R 3.32-3.50, $8.0^{\text {d }}, A 3.59^{\mathrm{m}} B 4.98^{\mathrm{m}} 1^{\prime \prime}$
γ Ori	24.0	+06 20	1.64	-0.23	B2 III	0.029	0.015	+18 SB?	Bellatrix
β Tau	25.0	+28 36	1.65	-0.13	B7 III	0.028	0.178	$+09 \mathrm{~V}$	Elnath
β Lep A	27.4	-20 47	2.81	+0.82	G5 III	0.020	0.090	-14	B 9.4 ${ }^{\text {m }} 3^{\prime \prime}$
δ Ori A	31.0	-00 19	2.20 v	-0.20	O9.5 II	0.014	0.002	+16 SBO	Ecl. R 2.20-2.35 $5.7{ }^{\text {d }}$, B 6.74 ${ }^{\mathrm{m}} 53^{\prime \prime}$
α Lep	31.8	-1751	2.58	$+0.22$	F0 Ib	0.007	0.006	+24	
λ Ori $A B$	34.1	+09 55	3.40	-0.18	O8 III	0.007	0.006	+34	$A 3.56{ }^{\mathrm{m}}$ B 5.54 ${ }^{\mathrm{m}} 4^{\prime \prime}$ C $10.92^{\mathrm{m}} 29^{\prime \prime}$
1 Ori $A B$	34.5	-05 56	2.76	-0.24	O9 III	0.025	0.005	+22 SB2O	$A 2.78^{\mathrm{m}}$ B $7.31^{\mathrm{m}} 11^{\prime \prime}$
ε Ori	35.2	-01 13	1.70	-0.19	B0 Ia	0.000	0.000	+26 SB	Alnilam
ζ Tau	36.5	+2108	3.07:	-0.13:	B2 III:p	0.008	0.023	+20 SBO	Shell star
$\alpha \operatorname{Col} A$	39.0	-34 05	2.64	-0.11	B7 IV	0.001	0.026	+25 V?	$B 12^{\text {m }} 12^{\prime \prime}$ Phact
ζ Ori $A B$	39.7	-01 57	1.79	-0.22	O9.5 Ib	0.024	0.004	+18 SB	A 1.91 ${ }^{\text {m }}$ B4.05 ${ }^{\text {m }}{ }^{\prime \prime}$ Alnitak
κ Ori	46.8	-09 41	2.06	-0.17	B0.5 Ia	0.015	0.004	+21 V?	
β Col	50.2	-35 47	3.12	+1.16	K1.5 III	0.028	0.402	+89 V	
α Ori	54.0	+0724	0.41 v	+1.87:	M2 Iab	0.005	0.028	+21 SB	Irr. ? R 0.06:-0.75: ${ }^{\mathrm{m}} \quad$ Betelgeuse
β Aur	58.0	+44 57	1.86	+0.06	A2 V	0.041	0.051	-18 SB2O	Menkalinan
θ Aur $A B$	58.4	$+3713$	$2.65 v$	-0.07	B9.5pv	0.022	0.097	+30 SB	Silicon star $A 2.67^{\mathrm{m}} B 7.14^{\mathrm{m}} 3^{\prime \prime}$, var., 1.4 ${ }^{\text {d }}$
η Gem A	0613.7	+2231	3.33 v	$+1.58$	M3 III	0.014	0.066	+19 SBO	$R 0.27^{\mathrm{m}}, \mathrm{B} 6.70^{\mathrm{m}} 1^{\prime \prime}$
$\zeta \mathrm{CMa}$	19.6	-3003	3.04	-0.18	B2.5 V	0.004	0.004	+32 SBO	
μ Gem	21.7	+2232	2.92 v	+1.63	M3 III	0.020	0.129	+55	$R 0.14^{\text {m }}$
$\beta \mathrm{CMa}$	21.8	-17 56	1.96 v	-0.24	B1 II-III	0.019	0.004	+34 SB	β CMa type variable, 0.25 ${ }^{\text {d }}$
α Car	23.5	-52 41	-0.72	$+0.16$	F0 Ib-II	0.028	0.025	+21	β Canopus
γ Gem	36.6	+1625	1.93	0.00	A0 IV	0.037	0.066	-13 SB	Alhena

Star	R.A. 1980 Dec.		V	$B-V$	Type	π	μ	R	
	h m	- ,				\%	"	km/s	
v Pup	0637.1	-4311	3.19	-0.10	B8 III	- 017	0.010	+28 SB	
ε Gem	42.7	+2509	3.00	+1.39	G8 Ib	0.017	0.016	+10 SB	
ξ Gem	44.2	+1255	3.38	+0.43	F5 IV	0.055	0.224	+25 V?	
α CMa A	44.2	-16 42	-1.47	+0.01	A1 V	0.378	1.324	-08 SBO	$B 8.66^{\mathrm{m}} 1980.0$: $10.0^{\prime \prime}$, P.A. 46° Sirius
α Pic	48.2	-61 55	3.27	+0.21	A7 Vn	0.052	0.272	+21	
τ Pup	49.5	-50 36	2.92	+1.21	K1 III		0.079	+36 SB1O	
ε CMa A	57.8	-2857	1.48:	-0.18:	B2 II	D. 001	0.004	+27	$B 7.5^{\mathrm{m}} 8^{\prime \prime} \quad$ Adhara
$0^{2} \mathrm{CMa}$	0702.2	-23 48	3.02	-0.09	B3 Ia	- 000	0.000	+48 SB	
$\delta \mathrm{CMa}$	07.6	-26 22	1.85	+0.65	F8 Ia	0.000	0.005	+34 SB	
L_{2} Pup	12.9	-44.37			M5e-M6e	0.022	0.342	+53 V ?	LP, R 3.4-6.2, $141^{\text {d }}$
π Pup	16.5	-3704	2.70:	+1.63:	K3 Ib	0.032	0.008	+16	
$\eta \mathrm{CMa}$	23.3	-29 15	2.46	-0.08	B5 Ia	-	0.008	+41	
$\beta \mathrm{CMi}$	26.2	+0820	2.91	-0.09	B7 V	0.019	0.065	+22 SB	
$\sigma \operatorname{Pup} A$	28.6	-4315	3.24	+1.49	K5 III	0.020	0.195	+88 SB1O	$B 9.4^{\mathrm{m}} 22^{\prime \prime}$
α Gem A	33.3	+3156	1.97	+0.00:	A1 V	0.067	0.199	+06 SBO	\} $2^{\prime \prime}, B-V+0.02, C 9.08 \mathrm{v}^{\mathrm{m}} 73^{\prime \prime}$ Castor
α Gem B	33.3	+3156	2.95	+0.07:	A5m	0.067	0.199	-01 SB1O	$\int_{B} 10.7{ }^{\text {m }} 4^{\prime \prime}$ Procyon
$\alpha \mathrm{CMi} A$	38.2	+05 17	0.37	+0.41	F5 IV-V	0.292	1.250	-03 SBO	$B 10.7^{\mathrm{m}} 4^{\prime \prime} \quad$ Procyon
β Gem	44.1	$+2805$	1.16	+1.02	K0 III	0.094	0.625	+03 V	Pollux
ξ Pup	48.4	-24 50	3.34	+1.23	G3 Ib	0.003	0.005	+03 SB	
χ Car	56.2	-5256	3.48	-0.18 .	B3 IVp	0.004	0.039	$+19 \mathrm{~V}$	
ζ Pup	0802.9	-39.57	2.23	-0.26	O5 Iaf	-	0.033	-24 V?	
ρ Pup	06.7	-24 15	2.80 v	$+0.42$	F6 IIp	0.035	0.098	+46 SB	Var. $R 2.72-2.87,0.14^{\text {d }}$
γ Vel A	08.9	-4718	1.83	-0.26	WC8	0.017	0.011	$+35 \mathrm{SB} 2 \mathrm{O}$	$B 4.31^{\mathrm{m}} 41^{\prime \prime}$
$\varepsilon \mathrm{Car}$	22.1	-5926 +6047	1.90:	+1.30:	K3:III+B2:V	0.009	0.030	+02	B $15^{\mathrm{m} 7^{\prime \prime} \text { Avior }}$
- UMa A	28.6	+60 47	3.37	$+0.83$	G5 III	0.009	0.171	+20	B $15^{\mathrm{m}} 7^{\prime \prime}$
$\delta \mathrm{Vel} A B$	44.2	-54 38	1.95	$+0.05$	A2 V	0.051	0.086	+02 V?	
ε Hya $A B C$	45.7	+0630	3.39	$+0.68$	G0:IV comp.	0.027	0.198	+36 SBO	$A 3.7^{\mathrm{m}} B 5.2^{\mathrm{m}} 0.2^{\prime \prime} 15^{\mathrm{y}}, C 6.8^{\mathrm{m}} 3^{\prime \prime} D 12^{\mathrm{m}} 20^{\prime \prime}$
ζ Hya	54.3	+0602	3.11	$+1.00$	K0 II-III	0.035	0.101	+23	
1 UMa A	57.9	+48 07	3.12	+0.19	A7 V	0.075	0.505	+09 SBO	$B C 10.8^{\mathrm{m}} 4^{\prime \prime}$

Star	R.A. 19	80 Dec.	V	$B-V$		Type	π	μ	R	
	h m	- ,					'	/	km/s	
λ Vel	0907.3	-43 21	2.24	+1.64:	K4	Ib-IIa	0.022	0.026	+18	Suhail
a Car	10.5	-58 52	3.43	-0.17	B2	IV-V	-	0.028	+23 SB2O	
β Car	13.0	-69 38	1.67	+0.01	A1	III	0.021	0.183	-05 V ?	Miaplacidus
1 Car	16.6	-5911	2.25	+0.17	A9	Ib	0.017	0.019	+13	
α Lyn	19.9	+34 29	3.17	$+1.54$	M0	III	0.025	0.217	+38	
κ Vel	21.5	-54 56	2.49	-0.20	B2	IV-V	0.013	0.012	+22 SBO	
α Hya	26.6	-08 35	1.98	+1.44	K4	III	0.022	0.034	-04 V?	Alphard
N Vel	30.6	-56 57	3.19	+1.56	K5	III	0.022	0.036	-14	
θ UMa A	31.5	+5146	3.12	$+0.46$	F6	IV	0.068	1.094	+15 SB1O	$B 14^{\mathrm{m}} 5^{\prime \prime}$
ε Leo	44.7	+23 51	2.99	+0.81	G0	II	0.010	0.048	+04 V?	
1 Car	44.7	-6226	4.1		G8	Ia	0.027	0.016	+03 V	Cep. max. 3.4^{m} min. $4.8^{\mathrm{m}}, 35.52^{\text {d }}$
v Car $A B$	46.6	-64 59	2.95	$+0.26$	A8	Ib	0.027	0.012	+14	$A 3.02^{\mathrm{m}}$ B $6.03^{\mathrm{m}} 5^{\prime \prime}$
α Leo A	1007.3	+1204	1.36	-0.11	B7	V	0.045	0.248	+06 SB	B8.1 ${ }^{\text {m } 177^{\prime \prime}}$ Regulus
ω Car	13.2	-69 56	3.33	-0.08	B8	III	-	0.029	$+07 \mathrm{~V}$	
ζ Leo	15.7	+23 31	3.46	$+0.30$	F0	III	0.017	0.023	-16 SB	
$\lambda \mathrm{UMa}$	15.9	+4301	3.45	+0.03	A2	IV	0.030	0.170	+18 V	
q Car	16.4	-61 14	3.41v	+1.55	K3	Ib-II	0.027	0.023	+08	Var. R 3.38-3.44
γ Leo $A B$	18.8	+1957	1.99	$+1.13$	K0	IIIp	0.022	0.350	-37 SB	$A 2.29^{\mathrm{m}}$ B 3.54 ${ }^{\mathrm{m}} 4^{\prime \prime}$
$\mu \mathrm{UMa}$	21.1	+4136	3.05	+1.55	M0	III	0.035	0.086	-21 SBO	
p Car	31.4	-61 35	3.30 v	-0.11	B4	Vne	-	0.021	$+26$	Var. R 3.22-3.39
θ Car	42.2	-64 17	2.74	-0.22	B0. 5	Vp	-	0.018	+24 SB	
$\mu \mathrm{Vel} A B$	45.9	-49 19	2.67	+0.89	G5	IIIa	D. 022	0.085	+06 SB	$A 2.7^{\mathrm{m}}$ B $7.2^{\mathrm{m}} 1^{\prime \prime}$
v Hya	48.6	-1605	3.12	+1.25	K3	III	0.028	0.221	-01	
β UMa	1100.6	$+5630$	2.37	-0.03	A1	V	0.053	0.087	-12 SB	Merak
α UMa $A B$	02.5	+6152	1.81	$+1.06$	K0	III	0.038	0.138	-09 SBO	A 1.88^{m} B 4.82 ${ }^{\mathrm{m}} 1^{\prime \prime} \quad$ Dubhe
ψ UMa	08.6	+4436	3.00	$+1.14$	K1	III	-	0.072	-04	
δ Leo	13.0	+2038	2.57	+0.13	A4	V	0.048	0.201	$-20 \mathrm{~V}$	
θ Leo	13.2	+1533	3.34	0.00	A2	V	0.026	0.104	$+08 \mathrm{~V}$	
λ Cen	34.9	-62 54	3.15	-0.05	B9	III	0.026	0.039	-01 V	
β Leo'.	48.0	+1441	2.14	+0.09	A3	V	0.082	0.511	-00 V	Denebola

Star	R.A. 1980		V	$B-V$	Type	π	μ	R	
	$\mathrm{h} \quad \mathrm{m}$	- ,				'	"	km/s	
$\boldsymbol{\gamma}$ UMa	1152.7	$+5349$	2.44	0.00	A0 V	0.028	0.094	-13 SB	Phecda
δ Cen	1207.3	-50 36	2.59v	-0.11:	B2 IVne	0.026	0.042	+11 V	Var. R 2.56-2.62
ε Crv	09.1	-22 30	3.00	$+1.33$	K3 III	0.027	0.069	+05	
δ Cru	14.1	-58 38	2.81v	-0.23	B2 IV	0.003	0.041	+22 V?	Var R 2.78-2.84
δ UMa	14.4	$+5709$	3.30	$+0.07$	A3 V	0.061	0.106	-13 V	Megrez
γ Crv	14.8	-1725	2.59	-0.10	B8 III	-	0.163	-04 SB	Gienah
$\alpha \operatorname{Cru} A$	25.4	-62 59	1.39	-0.25	B0.5 IV	D. 008	0.042	-11 SBO	$\} 5^{\prime \prime}, C 4.90^{\mathrm{m}} 89^{\prime \prime} \quad$ Acrux
α Cru B	25.4	-62 59	1.86	-0.25	B1 V	D. 008	0.042	-01	$\int^{5}, C 4.90^{\text {m }} 89^{\prime \prime}$ Acrux
$\delta \operatorname{Crv} A$	28.8	-16 24	2.97	-0.04	B9.5 V	0.024	0.255	$+09 \mathrm{~V}$	B $8.26^{\mathrm{m}} 24^{\prime \prime}$
γ Cru	30.1	-5700	1.69	+1.55	M4 III	-	0.274	+21	Gacrux
β Crv	33.3	-23 17	2.66	$+0.89$	G5 III	0.034	0.059	-08	
α Mus	36.0	-69 01	2.70v	-0.20	B2 IV-V	-	0.037	+13	Var. R 2.66-2.73
γ Cen $A B$	40.5	-48 51	2.17	$+0.00$	A0 IV	0.016	0.197	-06 SB	$A 2.9^{\mathrm{m}}$ B $2.9{ }^{\mathrm{m}} 2^{\prime \prime}$
γ Vir $A B$	40.6	-01 20	2.76	+0.34	F0 V	0.099	0.567	-20 SB	A 3.50 ${ }^{\mathrm{m}}$ B $3.52^{\mathrm{m}} 4^{\prime \prime}$
$\boldsymbol{\beta}$ Mus $A B$	45.0	-68 00	3.06	-0.17:	B2 V	D. 015	0.041	+42 V	$A 3.7^{\mathrm{m}}$ B $4.0^{\mathrm{m}} 1^{\prime \prime}$
β Cru	46.6	-59 35	1.28v	-0.25	B0.5 III	-	0.049	+16 SB	β CMa var., $0.25^{\text {d }}$: Beta Crucis
ε UMa	53.2	+5604	1.79v	-0.03	A0pv	0.009	0.113	-09 SB?	Chromium-europium star Alioth
$\alpha \operatorname{CVn} A$	55.1	+38 26	2.90v	-0.10	B9.5pv	0.027	0.238	-03 V	Silicon-europium star. $B 5.61^{\mathrm{m}} 20^{\prime \prime}$ Cor Caroli
ε Vir	1301.2	$+1105$	2.83	$+0.93$	G9 II-III	0.043	0.274	-14	
γ Hya	17.8	-23 04	2.98	$+0.92$	G8 III	0.027	0.086	-05 V?	
1 Cen	19.5	-36 36	2.76	+0.05	A2 V	0.062	0.351	00	
$\zeta \mathrm{UMa} A$	23.1	+ 5502	2.26	$+0.02$	A2 V	0.047	0.127	-06 SB2O	$B 3.94{ }^{\text {m }} 14^{\prime \prime}$ (Alcor, 708'') Mizar
α Vir	24.1	-1103	0.91v	-0.24	B1 V	0.023	0.054	+01 SB2O	Ecl. R 0.91-1.01, 4.0 ${ }^{\text {d }}$, β CMa var., Spica
ζ Vir	33.7	-00 30	3.37	$+0.10$	A3 Vn	0.044	0.287	-13	
ε Cen	38.6	-53 22	2.33 v	-0.23	B1 III	-	0.033	+03	β CMa var., $0.17^{\text {d }}$
η UMa	46.8	+49 25	1.87	-0.20	B3 V	0.035	0.123	-11 SB?	Alkaid
v Cen	48.3	-41 35	3.42	-0.22	B2 IV	-	0.037	+09 SB1O	
μ Cen	48.4	-42 23	3.12v	-0.13:	B2 V:pne	0.108	0.032	+09 SB	Var. R 3.08-3.17
$\eta \mathrm{Boo}$	53.8	+18 30	2.69	+0.59	G0 IV	0.108	0.370	-00 SB1O	
ζ Cen	54.3	-47 12	2.56	-0.23:	B2.5 IV	-	0.076	+07 SB2O	

Star	R.A. 1980 Dec.		V	$B-V$		Type	π	μ	R	
	$\mathrm{h} \quad \mathrm{m}$	-					${ }^{\prime \prime}$	"	km/s	
β Cen $A B$	1402.4	-60 16	0.63 v	-0.23:	B1	III	0.009	0.035	+06 SB	A 0.7^{m} B 3.9 ${ }^{\mathrm{m}} 1^{\prime \prime}$, β CMa var. Hadar
π Hya	05.3	-26 35	3.25	+1.13	K2	III	0.049	0.156	+27	
θ Cen	05.5	-36 17	2.04	+1.03	K0	IIIb	0.065	0.738	+01	Menkent
α Boo	14.8	+19 17	-0.06	+1.23	K2	IIIp	0.097	2.284	-05 V ?	Arcturus
γ Boo	31.3	+38 24	3.05	+0.19	A7	III	0.025	0.186	-37 V	
η Cen	34.2	-42 04	2.39v	-0.21	B1.5	$V:$ ne	-	0.049	-00 SB	Var, R 2.33-2.45
α Cen A	38.4	-60 46	0.01	+0.68	G2	V	0.750		-25 SBO	\} 22" Rigil Kentaurus
α Cen B	38.4	-60 46	1.40:	+0.73:	K4	V	0.750	3.676	-21 V?	$\} 22^{\prime \prime} \quad$ Rigil Kentaurus
α Lup	40.7	-47 19	2.32 v	-0.22		V	- 0	0.033	+05 SB	β CMa var., 0.26 ${ }^{\text {d }}$
$\alpha \operatorname{Cir} A B$	40.9	-64 53	3.18	+0.25	A8p		0.056	0.308	+07 SB?	Strontium star. $A 3.19^{\mathrm{m}}$ B $8.61^{\mathrm{m}} 16^{\prime \prime}$
ε Boo $A B$	44.1	$+2709$	2.37	+0.96	K1:	III: + A	0.016	0.051	$-17 \mathrm{~V}$	$A 2.47^{\mathrm{m}}$ B $5.04^{\mathrm{m}} 3^{\prime \prime}$
$\alpha \operatorname{Lib} A$	49.8	-1554	2.76	$+0.15$	A3m		0.058	0.130	$-10 \mathrm{SB}$	$B 5.15^{\mathrm{m}} 2311^{\prime \prime} \quad$ Zubenelgenubi
$\boldsymbol{\beta}$ UMi	50.8	+74 14	2.07	+1.47	K4	III	0.039	0.033	$+17 \mathrm{~V}$	Kochab
β Lup	57.3	-43 03	2.69	-0.23	B2	IV	-	0.066	+00 SB	
κ Cen	57.8	-4201	3.15	-0.21	B2	V	-	0.033	+08 SB	
β Boo	1501.2	$+4028$	3.48	$+0.95$	G8	III	0.037	0.059	-20	
σ Lib	02.9	-25 12	3.31	+1.65	M4	III	0.064	0.089	-04	
$\zeta \operatorname{Lup} A$	10.8	-5201	3.42	+0.90:	G8	III	0.043	0.135	-10	$B 7.8^{\text {m }} 71^{\prime \prime}$
δ Boo A	14.7	+3324	3.47	+0.95	G8	III	0.030	0.148	-12 SB	$B 7.84^{\mathrm{m}} 105^{\prime \prime}$
$\beta \mathrm{Lib}$	15.9	-09 18	2.61	-0.11	B8	V	0.000	0.101	-35 SB	
γ TrA	17.1	-68 36	2.89	+0.01	A0	IV	0.010	0.067	-03 V	Europium star
$\delta \operatorname{Lup}$	20.1	-4034	3.21 v	-0.23	B2	IV	-	0.032	+00 V?	β CMa var., $0.165^{\text {d }}$
γ UMi	20.8	+7154	3.04	+0.06	A3	II-III	0.003	0.026	-04 V	
1 Dra	24.5	$+5902$	3.28	+1.18	K2	III	0.040	0.012	-11	
$\gamma \operatorname{Lup} A B$	33.8	-41 06	2.80	-0.22	B2	Vn	D. 008	0.037	+02 V	$A 3.5^{\mathrm{m}}$ B $3.7^{\mathrm{m}} 1^{\prime \prime}$
${ }_{\alpha}{ }^{\text {c }} \mathrm{CrB}$	33.8	+2647 +0629	2.23 v	-0.02	A0	V	0.045	0.154	+02 SBO	Ecl. R 0.11 ${ }^{\mathrm{m}}, 17.4^{\mathrm{d}} \quad$ Alphecca
${ }_{\alpha}^{\alpha} \mathrm{Ser}$	43.3	+06 29	2.65	$+1.17$	K2	III	0.053	0.139	+03 V?	, Alphecca
${ }_{\boldsymbol{\beta}}^{\boldsymbol{\pi}} \mathrm{Tr} \mathrm{Sco}$	53.4	-63 22	2.84	+0.28:	F0	IV	0.083	0.448	+00	
π Sco	57.6	-26 04	2.92	-0.19	B1	V	0.010	0.034	-03 SB2O	
$\eta \operatorname{Lup}^{\prime} A B$	58.8	-38	3.40	-0.23	B2.5	IV	D. 008	0.042	+08 V	A 3.47^{m} B $7.70^{\mathrm{m}} 15^{\prime \prime}$
δ Sco	59.2	-22 34	2.34	-0.13	B0	V	-	0.032	-07 SB	Dschubba

Star	R.A. 1980 Dec.		V	$B-V$	Type	π	μ	R		
	$\mathrm{h} \quad \mathrm{m}$	-				${ }^{\prime \prime}$	"	km/s		
β Sco $A B$	1604.3	-19 45	2.65	-0.09	B0.5 V	0.009	0.027	-01 SBO	A $2.78{ }^{\text {m }}$ B $5.04^{\mathrm{m}} 1^{\prime \prime}$, $C 4.9$	$14^{\prime \prime}$
δ Oph	13.3	-03 37	2.72	+1.59	M1 III	0.034	0.156	$-20 \mathrm{~V}$		
ε Oph	17.2	-04 39	3.22	+0.97	G9 III	0.043	0.089	$-10 \mathrm{~V}$		
σ Sco A	20.0	-25 32	2.86 v	+0.14	B1 III	-	0.030	+03 SBO	β CMa R 2.82-2.90, $0.25^{\text {d }}$,	$8.49^{\mathrm{m}} 20^{\prime \prime}$
η Dra A	23.7	+6133	2.71	+0.92	G8 III	0.051	0.062	-14 SB?	$B 8.7^{\mathrm{m}} 6^{\prime \prime}$	
$\alpha \operatorname{Sco} A$	28.2	-2623	0.92v	+1.84	$\begin{aligned} & \text { M1.5Iab } \\ & +\mathrm{B} 2.5 \mathrm{~V} \end{aligned}$	0.024	0.029	-03 SB	$A 0.86{ }^{\mathrm{m}}-1.02^{\mathrm{m}}$ B $5.07^{\mathrm{m}} 3^{\prime \prime}$	Antares
β Her	29.3	+21 32	2.78	$+0.92$	G8 III	0.024	0.105	-26 SB1O		
τ Sco	34.6	-2810	2.85	-0.25	B0 V	0.020	0.030	+02 V		
ζ Oph	36.1	-1031	2.57	$+0.00$	O9.5 V	0.003	0.022	$-15 \mathrm{~V}$		
ζ Her $A B$	40.6	+3138	2.81	+0.64	G0 IV	0.102	0.608	-70 SB1O	$A 2.91{ }^{\text {m }}$ B $5.46^{\mathrm{m}} 1^{\prime \prime}$	
η Her	42.2	+3858	3.46	+0.92	G7 III-IV	0.034	0.097	+08 V?		
$\alpha \operatorname{TrA}$	46.5	-68 60	1.93	+1.43	K 2 Ib	0.031	0.044	-03		Atria
ε Sco	48.8	-34 16	2.28	+1.16	K2 IIIb	0.022	0.664	-03		
$\mu^{1} \mathrm{Sco}$	50.5	-38 01	2.99 v	-0.20	B1.5 IV + B	- 0.021	0.033	$-25 \mathrm{SB} 2 \mathrm{O}$	Ecl. R 2.99-3.09, 1.4 ${ }^{\text {d }}$	
${ }_{\kappa}$ \% Oph	56.8	+09 25	3.18	$+1.15$	K2 III	0.031	0.293	-56		
ζ Ara	56.9	-55 57	3.12	+1.61	K4 III	0.044	0.042	-06		
ζ Dra	1708.7	+65 44	3.20	-0.12	B6 III	0.023	0.026	-17 V		
η Oph $A B$	09.3	-1542	2.43	+0.06	A2.5 V	0.052	0.097	-01 SB	$A 3.0^{\mathrm{m}}$ B 3.4 ${ }^{\mathrm{m}} 1^{\prime \prime}$	Sabik
η Sco	10.7	-43 13	3.33	+0.38	F2 III	0.062	0.293	-27		
α Her $A B$	13.8	+1424 +2451	3.10 v	+1.41 +0.09	M5 II	0.000 0.044	0.032 0.164	-33 V -40 SB	$A 3.2^{\mathrm{m}} \pm 0.3 B 5.4^{\mathrm{m}} 5$	Ras-Algethi
δ Her	14.2	+2451 +3649	3.14 3.13	+0.09 +1.43	A3 IV	0.044 0.025	0.164 0.029	-40 SB -26		
θ Oph	20.8	-24 59	3.29 v	-0.22	B2 IV	-	0.025	-02 SB	β CMa var., 0.14 ${ }^{\text {d }}$	
β Ara	23.6	-55 31	2.90:	+1.45:	K 1.5 Ib	0.034	0.035	-00		
$\boldsymbol{\gamma}$ Ara A	23.8	-56 22	3.32	-0.16:	B1 Ib	-	0.017	-03 V	$B 10^{m} 18^{\prime \prime}$	
v Sco	29.4	-37 16	2.71	-0.22	B2 IV	0.012	0.039	-36		
β Dra A	29.9	$+5220$	2.77	+0.96	G2 II	0.013	0.019	$-20 \mathrm{~V}$	B $11.49^{\text {m }} 4^{\prime \prime}$	
α Ara	30.3	-49 52	2.95	-0.18:	B2.5 V	0.007	0.083	+00 SB		
λ Sco	32.3	-3705	1.60 v	-0.24	B1.5 IV	-	0.031	-03 SB2	β CMa var., $0.21^{\text {d }}$	Shaula
α Oph	34.0	$+1235$	2.09	$+0.16$	A5 III	0.067	0.260	+13 SB?		Rasalhague
θ Sco	35.9	-42 59	1.86	+0.39	F0 II	0.027	0.012	+01		

委

Star	R.A. 1980 Dec.		V	$\boldsymbol{B}-\boldsymbol{V}$	Type	π	μ	R	
	h m	- ,				"	/	km/s	
$\kappa^{\text {c Sco }}$	1741.1	-39 01	2.39 v	-0.21	B1. 5 III	-	0.031	-14 SB	β CMa var., 0.20 ${ }^{\text {d }}$
β Oph	42.5	+0435	2.77	$+1.16$	K2 III	0.033	0.160	$-12 \mathrm{~V}$	
$\mu \mathrm{Her} A$	45.7	$+2745$	3.42	+0.75	G5 IV	0.133	0.811	$-16 \mathrm{~V}$	$B C 9.78^{\mathrm{m}} 33^{\prime \prime}$
ι^{1} Sco	46.2	-40 06	3.02	+0.49	F2 Ia	0.019	0.004	-28 SB	
G Sco	48.4	-37 02	3.21	+1.18	K2 III	0.040	0.064	+25	
$\boldsymbol{\gamma}$ Dra	56.1	+5129	2.21	+1.52	K5 III	0.025	0.026	-28	Eltanin
v Oph	58.0	-09 47	3.32	+1.00	G9 III	0.021	0.118	+13	
$\gamma \mathrm{Sgr}$	1804.5	-3026	2.97	$+1.00$	K0 III	0.025	0.200	+22 SB	
$\eta \operatorname{Sgr} A$	16.3	-36 47	3.12	+1.55	M3 III	0.045	0.218	+01 V?	$B 10^{m} 4^{\prime \prime}$
$\delta \mathrm{Sgr}$	19.7	-29 50	2.71	+1.39	K2.5 IIIa	0.047	0.050	-20	
η Ser	20.2	-02 54	3.23	$+0.94$	K0 III-IV	0.058	0.894	+09 V?	
$\varepsilon \mathrm{Sgr}$	22.9	-34 24	1.81	-0.02	B9.5 III	0.023	0.135	-15	Kaus Australis
$\lambda \mathrm{Sgr}$	26.7	-25 27	2.80	+1.05	K1 III	0.053	0.194	-43	
α Lyr	36.2	$+3846$	0.04	0.00	A0 V	0.133	0.345	-14 V	Vega
ϕ Sgr	44.4	-2701	3.20	-0.11	B8.5 II-III	-	0.052	+22 SB	
β Lyr A	49.4	$+3321$	3.38v	-0.05:	B5pe shell+A	0.000	0.007	-19 SBO	Ecl. $R 3.38-4.36,12.9^{\text {d }}, B 7.8^{\mathrm{m}} 46^{\prime \prime}{ }_{\text {Nunki }}$
$\sigma \mathrm{Sgr}$	54.0	-26 19	2.12:	-0.21	B2.5 V	-	0.059	$-11 \mathrm{~V}$	Nunki
$\xi^{2} \mathrm{Sgr}$	56.5	-21 07	3.51	+1.18:	K1 III	0.011	0.035	-20	
γ Lyr	58.2	+32 40	3.25	-0.05	B9 III	0.021	0.007	-21 V	
$\zeta \operatorname{Sgr} A B$	1901.3	-29 54	2.61	+0.08	A3 IV	0.025	0.020	+22 SB	$A 3.3^{\mathrm{m}}$ B $3.5^{\mathrm{m}}<1^{\prime \prime}$
ζ Aql A	04.5	$+1350$	2.99	+0.01	A0 V:nn	0.045	0.101	-25 SB	B $12^{\mathrm{m}} 5^{\prime \prime}$
λ Aql	05.2	-04 55	3.44	-0.10	B9 V:n	0.032	0.092	$-12 \mathrm{~V}$	
$\tau \mathrm{Sgr}$	05.7	-27 42	3.30	$+1.18$	K1.5 III	0.044	0.261	+45 SB	
$\pi \operatorname{Sgr} A B C$	08.6	-2103	2.89	+0.35	F2 II-III	0.026	0.040	-10	$A 3.7^{\mathrm{m}}$ B $3.8^{\mathrm{m}} C 6.0^{\mathrm{m}}<1^{\prime \prime}$
δ Dra	12.5	+6738	3.06	$+1.00$	G9 III	0.032	0.130	$+25$	
δ Aql	24.5	+0304	3.38	$+0.31$	F0 IV	0.072	0.267	-30 SB	
β Cyg A	29.9	$+2755$	3.07	$+1.12$	K3 II: + B:	0.017	0.009	$-24 \mathrm{~V}$	$B 5.11^{\mathrm{m}} 35^{\prime \prime} \quad$ Albireo
δ Cyg $A B$	44.3	+4505	2.87	-0.03	B9.5 III	0.030	0.060	-20 SB	A 2.911^{m} B $6.44^{\mathrm{m}} 2^{\prime \prime} \quad$ Albireo
γ Aql	45.3	+1033	2.72	+1.52	K3 II	0.016	0.012	$-02 \mathrm{~V}$	A2.91 B6.44 2
α Aql	49.8	+08 49	0.77	+0.22	A7 IV-V	0.202	0.658	-26	Altair

Star	R.A. 19	3 Dec.	V	$B-V$	Type	π	μ	R	
	h m	${ }^{\circ}$,				${ }^{\prime \prime}$	"	km/s	
θ Aql	2010.3	-00 52	3.24	-0.07	B9.5 III	0.012	0.034	-27 SB2O	
β Cap A	19.9	-14 51	3.06	+0.76	K2III + A5:V	0.010	0.039	-19 SBO	Type gK0: + late B; B $5.97^{\mathrm{m}} 205^{\prime \prime}$
γ Cyg	21.5	$+4011$	2.22	+0.66	F8 Ib	0.003	0.001	-08	
α Pav	24.1	-56 48	1.95	-0.20	B2.5 V	-	0.087	+02 SBO	Peacock
α Ind	36.2	-47 21	3.11	$+1.00$	K0 III CN-1	0.046	0.082	-01	
α Cyg	40.7	+45 12	1.26	+0.09	A2 Ia	0.000	0.003	-05 V	Deneb
β Pav	43.2	-66 17	3.45	$+0.16$	A7 III	0.035	0.046	+10	
η Cep	44.9	+6145	3.41	$+0.92$	K0 IV	0.076	0.825	-87	
ε Cyg	45.4	$+3353$	2.46	+1.03	K0 III	0.057	0.481	-11 SB	
$\zeta \mathrm{Cyg}$	2112.1	$+3008$	3.19	$+1.00$	G8 II	0.027	0.056	+17 SB	
α Cep	18.2	+62 31	2.44	+0.24	A7 IV-V	0.068	0.156	-10	Alderamin
β Cep	28.4	+70 28	3.15v	$-0.22 \mathrm{v}$	B2 III	0.014	0.014	-08 SBO	β CMa R 3.14-3.16, 0.19 ${ }^{\text {d }}$
β Aqr	30.5	-05 40	2.86	+0.82	G0 Ib	0.006	0.017	+07	
$\varepsilon \mathrm{Peg} A$	43.2	+09 48	2.38	+1.55	K2 Ib	0.006	0.025	$+05 \mathrm{~V}$	$B 11^{\mathrm{m}} 82^{\prime \prime}$ ent Enif
$\delta \mathrm{Cap}$	45.9	-1613	2.92v	$+0.29$	A6m	0.087	0.392	-06 SBO	Var. R 2.88-2.95
γ Gru	52.7	-3727	3.00	-0.10	B8 III	0.013	0.102	-02 V?	
α Aqr	2204.7	-00 25	2.93	+0.96	G2 Ib	0.012	0.016	+08 V?	
α Gru	06.9	-47 04	1.76	-0.14	B7 IV	0.057	0.194	+12	Al Na'ir
ζ Cep	10.1	$+5806$	3.36	+1.59	K1 Ib	0.017	0.015	-18 SB	
α Tuc	17.1	-6021	2.87	$+1.40$	K4 III	0.026	0.079	+42 SBO	
$\delta \operatorname{Cep} A$	28.5	+5819	3.96 v	$+0.66 \mathrm{v}$	F5-G2 Ib	0.011	0.012	$-15 \mathrm{SB}$	Cep. $R 3.51-4.42,5.4^{\text {d }}, B 6.19^{\mathrm{m}} 41^{\prime \prime}$
$\zeta \mathrm{Peg}$	40.5	+1044	3.40	-0.08:	B8 V	0.023	0.077	+07 V?	
β Gru	41.5	-46 59	2.17 v	+1.59	M5 III	0.008	0.134	+02	Var. R 2.11-2.23
$\eta \mathrm{Peg}$	42.1	+3007	2.95	$+0.85$	G8 II: $+_{V} \mathrm{~F}$?	0.017	0.027	$+04 \mathrm{SB1O}$ +18 V	
$\delta \mathrm{Aqr}$	53.6	-15 56	3.28	$+0.08$	A3 V	0.038	0.047	+18 V +07	
α PsA	56.5	-29 44	1.15	+0.10	A3 V	0.149	0.367	+07	Fomalhaut
β Peg	2302.8	+2758	2.5 v	+1.67	M2 II-III	0.022	0.234	+09 V	Var. R 2.4-2.7 Scheat
α Peg	03.8	+1505	2.50	-0.03	B9.5 III	0.038	0.071	-04 SB	Markab
γ Cep	38.5	+7730	3.20	+1.02	K1 IV	0.068	0.168	-42	

THE NEAREST STARS

By Alan H. Batten

The accompanying table lists all the stars known to be within a distance of just over 5 parsecs (17 light-years) from the Sun. The table is based on one published in Volume 8 of the Landolt-Bornstein tabulations, by Professor W. Gliese. It contains, however, an additional object whose existence has been drawn to my attention by Professor Gliese. Readers who compare this table with its counterpart in the 1984 HANDBOOK will notice several differences, particularly in the order of stars. All the parallaxes given here are uncertain by several units in the last decimal; some are uncertain in the second decimal. It is thus inevitable that the order of stars of nearly equal parallaxes will change, either because of new results or because different compilers evaluate differently the quality of individual determinations of parallax that make up the means recorded here. All stars included in the 1984 list are to be found in this one, except the two components of B.D. $44^{\circ} 2051$ and of Stein 2051, now considered to be beyond the limit of this compilation. Even close to home, astronomical distance estimates are still uncertain!

The table gives the name of each star, its coordinates for 2000, its parallax π, its distance in light-years, its spectral type, proper motion (seconds of arc per year), position angle of the proper motion (measured from north through east), total space velocity relative to the $\operatorname{Sun}\left(\mathrm{km} \mathrm{s}^{-1}\right.$, where known, with the sign of the radial velocity), apparent (V) and absolute $\left(\mathrm{M}_{\mathrm{v}}\right)$ visual magnitudes. The revision of the table has provided an opportunity to improve the presentation of the spectral types. Recently, Dr. R. F. Wing classified all the stars in the old table on the MK system, except the white dwarfs, the stars of type K3 or earlier (whose spectral types are given in the Bright Star Catalogue), the Sun, and those whose parallaxes are less than $0^{\prime \prime} .2$. He kindly provided his data in advance of publication and I have adopted his classifications, except that I have retained the e, indicating the presence of emission lines in the spectrum. Classifications given for the white dwarfs (indicated by D) are taken from Gliese's table. I know of no spectral type for the newcomer LP 731-58, but its colour corresponds to an early M-type. In general, I have used the same names for stars as in earlier versions of the table. I have, however, given the two components of $\Sigma 2398$ their B.D. number, and changed the designation of α Centauri C to Proxima. This latter change emphasizes that Proxima is indeed somewhat closer to us than α Centauri itself. Some readers may enjoy working out the true spatial separation between Proxima and its brighter companions.

Measuring the distances of stars is one of the most difficult and important jobs of the observational astronomer. As Earth travels round the Sun each year, the apparent positions of nearby stars-against the background of more distant ones-change very slightly. This change is the annual parallax. Even for Proxima Centauri it is only about three-quarters of an arc-second: that is, the apparent size of a penny viewed from rather more than 5 km distance. A graphic way of conveying the distances to stars is to speak of a light-year, the distance (about ten million million km) that light travels in a year. The first astronomers to measure parallax spoke in this way, but modern astronomers prefer to speak of a parsec-the distance at which a star would have a parallax of exactly one arc-second. One parsec is equal to about 3.26 light-years. The distance of a star in parsecs is simply the reciprocal of its parallax expressed (as in the table) in arc-seconds.

The table contains 65 stars. Of these, 35 are single (including the Sun, whose planets are not counted), 24 are found in 12 double systems, and six in the two triple systems o^{2} Eridani and α Centauri (with Proxima). There is some evidence for unseen companions of low mass associated with eight of the stars. The list gives an idea of the frequencies of different kinds of stars in our part of the Galaxy. Only four of the stars are brighter than the Sun; most are very much fainter and cooler. No giants or very hot massive stars are found in the solar neighbourhood.

Name	2000			π	D	Sp.	μ	θ	W	V	M_{v}
	α	δ									
	h m	-		"	1.y.		"/a	-	km/s		
Sun						G2V				-26.72	4.85
Proxima	1430	-62	41	0.772	4.2	M5.5Ve	3.85	282	-29	11.05	15.49
α Cen A	1440	-60	50	. 750	4.3	G2V	3.68	281	-32	-0.01	4.37
						K1V				1.33	5.71
Barnard's*	1758	+04	39	. 545	6.0	M3.8V	10.31	356	-140	9.54	13.22
Wolf 359	1057	+07	03	. 421	7.7	M5.8Ve	4.70	235	+54	13.53	16.65
BD $+36^{\circ} 2147^{*}$	1103	+36	02	. 397	8.2	M2.1Ve	4.78	187	-102	7.50	10.50
L-726-8A	0139	-17	58	. 387	8.4	$\}_{\text {M5.6Ve }}$ \{	3.36	80	+50 +52	12.52	15.46
B						\}M5.6Ve\{			+52	13.02	15.96
Sirius A	0645	-16	43	. 377	8.6	$\mathrm{A} 1 \mathrm{Vm}$	1.33	204	-19	-1.46	1.42.
B Ross 154	1850	-23	50	. 345	9.4	DA	0.72	104	-11	8.3:	11.2:
Ross 248	2342	+44	11	. 314	10.4	M 4.9 Ve	1.60	176	-85	12.29	14.78
ϵ Eri	0333	-09	28	. 303	10.8	K2Ve	0.98	271	+22	3.73	6.14
Ross 128	1148	+00	50	. 298	10.9	M4.1V	1.38	152	-26	11.10	13.47
61 Cyg A	2107	+38	05	. 294	11.1	K3.5Ve	5.22	52	-106	5.22	7.56
B*						K 4.7 Ve				6.03	8.37
ϵ Ind	2203	-56	47	. 291	11.2	K 3 Ve	4.70	123	-86	4.68	7.00
BD $+43^{\circ} 44 \mathrm{~A}$	0018	+44	00	. 290	11.2	M1.3Ve	2.90	82	+49	8.08	10.39
B						M3.8Ve			+51	11.06	13.37
L789-6	2239	-15	21	. 290	11.2		3.26	46	-80	12.18	14.49
Procyon A	0739	+05	13	. 285	11.4	F5IV-V	1.25	214	-21	0.37	2.64
B						DF				10.7	13.0
$\mathrm{BD}+59^{\circ} 1915 \mathrm{~A}$	1843	+59	36	. 282	11.6	M3.0V	2.29	325	$38 \dagger$	8.90	11.15
B						M3.5V	2.27	323	+39	9.69	11.94
CD-36 ${ }^{\circ} 15693$	2305	-35	53	. 279	11.7	M1.3Ve	6.90	79	+117	7.35	9.58
G51-15	0830	+26	47	. 278	11.7	M6.6V	1.27	242		14.81	17.03
τ Cet	0144	-15	56	. 277	11.8	G8V	1.92	297	-37	3.50	5.72
BD5 ${ }^{\circ} 1668^{*}$	0727	05	17	. 266	12.3	M3.7V	3.77	171	+72	9.82	11.94
L725-32	0112	-17	00	. 261	12.5	M4.5Ve	1.32	62	+37	12.04	14.12
CD-39 ${ }^{\circ} 14192$	2117	-38	52	. 260	12.5	K5.5Ve	3.46	251	+66	6.66	8.74
Kapteyn's	0511	-44	56	. 256	12.7	M0.0V	8.72	131	+293	8.84	10.88
Krüger 60A B	2228	+57	41	. 253	12.9	\}M3.3Ve\{	0.86	246	-31	9.85 11.3	11.87 13.3
$\mathrm{BD}-12^{\circ} 4253$	1631	-12	40	. 247	13.2	M3.5V	1.18	183	-26	10.11	12.07
Ross 614A	0629	-02	48	. 246	13.3	\}M4.5Ve\{	1.00	133	+31	11.10	13.12 16.
van Maanen's	0049	+05	25	. 232	14.1	DG	2.99	155	+82	12.37	14.20
Wolf 424A	1233	+09	01	230	14.2	$\}_{\text {M5.3Ve }}$ \{	1.76	279	-37	13.16	14.97
- ${ }^{\text {B }}$						M5.3Ve				13.4	15.2
CD-37¹5492	0005	-37	19	225	14.5	M2.0V	6.11	112	+131	8.56	10.32
L1159-16	0200	+13	05	. 224	14.6	M4.5Ve	2.09	149		12.26	14.01
$\mathrm{BD}+50^{\circ} 1725$	1012	+49	27	. 222	14.7	K5.0Ve	1.45	250	-40	6.59	8.32
LP731-58	1048	-11	19	. 219	14.9		1.64	160		15.60	17.30
CD-46 11540	1728	-46	53	216	15.1	M2.7V	1.06	147		9.37	11.04
G158-27	0007	-07	31	. 214	15.2	M5.5:	2.04	204		13.74	15.39
CD-49 ${ }^{\circ} 13515$	2134	-49	00	. 214	15.2	M1.8V	0.81	184	+20	8.67	10.32
CD-44 ${ }^{\circ} 1190{ }^{*}$	1737	-44	19	. 213	15.3	M3.9V	1.16	217		10.96	12.60
$\mathrm{BD}+68^{\circ} 946$	1736	+68	21	. 213	15.3	M3.3V	1.31	196	-37	9.15	10.79
G208-44 A	1954	+44	25	. 211	15.5		0.74	143		13.41	15.03
45 B						M5:				13.99	15.61
BD-15 ${ }^{\circ} 6290$	2253	-14	15	. 209	15.6	M3.9V	1.14	124	+27	10.17	11.77
0^{2} Eri A	0415	-07	39	. 207	15.7	K1V	4.08	213	-102	4.43	6.01
B						DA	4.07	212	-96	9.52	11.10
C						M4.3Ve			$(-45) \ddagger$	11.17	12.75
BD $+20^{\circ} 2465^{*}$	1020	+19	53	. 206	15.8	M3.3Ve	0.49	264	+16	9.43	11.00
L145-141	1145	-64	50	. 206	15.8	DC	2.68	97		11.50	13.07
$70 \text { Oph A }$	1805	+02	30	. 203	16.1	K0Ve	1.12	167	-27	4.22 6.00	5.76 7.54
BD $+43^{\circ} 4305^{*}$	2247	+44	21	. 200	16.3	M5e:	0.83	236	-20	10.2	11.7
Altair*	1951	+08	52	. 198	16.5	A7V	0.66	54	-30	0.76	2.24
$\mathrm{AC}+79^{\circ} 3888$	1148	+78	42	. 193	16.9	M4:	0.89	57	-121	10.80	12.23
G9-38A	0858	+19	45	. 192	17.0		0.89	267		14.06	15.48
$\begin{gathered} \mathrm{B} \\ \mathrm{BD}+15^{\circ} 2620 \end{gathered}$	1346	+14	55	. 192	17.0	M1.7Ve	2.30	129	+59	14.92 8.49	16.34 9.91
	1346										

[^7]
DOUBLE AND MULTIPLE STARS

By Charles E. Worley

Many stars can be separated into two or more components by use of a telescope. The larger the aperture of the telescope, the closer the stars which can be separated under good seeing conditions. With telescopes of moderate size and good optical quality, and for stars which are not unduly faint or of large magnitude difference, the minimum angular separation in seconds of arc is given by 120/D, where D is the diameter of the telescope's objective in millimetres.
The following lists contain some interesting examples of double stars. The first list presents pairs whose orbital motions are very slow. Consequently, their angular separations remain relatively fixed and these pairs are suitable for testing the performance of small telescopes. In the second list are pairs of more general interest, including a number of binaries of short period for which the position angles and separations are changing rapidly.

In both lists the columns give, successively: the star designation in two forms; its right ascension and declination for 1980; the combined visual magnitude of the pair and the individual magnitudes; the apparent separation and position angle for 1985.0; and the period, if known. (The position angle is the angular direction of the fainter star from the brighter, measured counterclockwise from north.)

Many of the components are themselves very close visual or spectroscopic binaries. (Other double stars appear in the tables of Nearest Stars and Brightest Stars. For more information about observing these stars, see the articles by: J. Ashbrook in Sky and Telescope, 60, 379 (1980); J. Meeus in Sky and Telescope, 41, 21 and 89 (1971); and by C. E. Worley in Sky and Telescope, 22, 73, 140 and 261 (1961). The latter two articles have been reprinted by Sky Publishing Corp., 49 Bay State Road, Cambridge, Mass. 02238 under the titles Some Bright Visual Binary Stars and Visual Observing of Double Stars, each \$1.95 U.S.-Ed.)

	Star	A.D.S.			Dec.		Magnitudes			$\begin{gathered} \text { P.A. Sep. } \\ { }_{0} 1985.0_{"}^{\prime} \end{gathered}$		$\begin{gathered} P \\ \text { (app.) } \\ \text { years } \end{gathered}$
			h	m	-	,	comb.	A	B			
λ	Cas	434	00	30.7	$+54$	26	4.9	5.5	5.8	185	0.6	640
α	Psc	1615	02	01.0	+02	40	4.0	4.3	5.3	277	1.7	720
33	Ori	4123	05	30.2	+03	16	5.7	6.0	7.3	27	1.8	-
O2	156	5447	06	46.3	+18	13	6.1	6.8	7.0	237	0.5	1100
Σ	1338	7307	09	19.7	$+38$	17	5.8	6.5	6.7	262	1.1	400
35	Com	8695	12	52.3	$+21$	21	5.1*	5.2	7.4	168	1.1	500
Σ	2054	10052	16	23.6	+61	44	5.6	6.0	7.2	355	1.1)
ϵ^{1}	Lyr ${ }^{+}$	11635	18	43.7	+39	38	5.1	5.4	6.5	354	2.7	1200
ϵ^{2}	Lyr ${ }^{+}$	11635	18	43.7	+39	38	4.4	5.1	5.3	82	2.4	600
π	Aql	12962	19	47.7	+11	45	5.6	6.0	6.8	110	1.4	-
61	Cyg	14636	21	05.5	$+38$	34	4.8	5.2	6.0	147	29.6	722
OL	500	16877	23	36.5	$+44$	20	5.9	6.4	7.1	355	0.5	,
η	Cas	671	00	47.7	$+57$	44	3.5*	3.5	7.2	310	12.2	480
Σ	186	1538	01	54.8	+01	45	6.0	6.8	6.8	56	1.3	170
γ	And AB	1630	02	02.4	+42	16	2.1*	2.1	5.1	64	9.8	
γ	And BC	1630	02	02.4	+42	16	5.1	5.5	6.3	107	0.6	61
OL	65	2799	03	49.2	$+25$	32	5.2	5.8	6.2	209	0.5	62
α	CMa	5423	06	44.3	-16	40	-1.4	-1.4	8.5	35	8.2	50
α	Gem	6175	07	33.3	+31	55	1.6	2.0	2.8	83	2.6	420
ζ	Cnc AB	6650	08	11.1	+17	43	5.0	5.6	5.9	239	0.7	60
ζ	Cnc AC	6650	08	11.1	$+17$	43	5.2	5.4	7.3	79	5.9	1150
σ^{2}	UMa	7203	09	08.6	$+67$	13	4.8*	4.8	8.2	0	3.4	1100
$\boldsymbol{\gamma}$	Leo	7724	10	18.9	+19	57	1.8	2.1	3.4	124	4.3	620
ξ	UMa	8119	11	17.1	$+31$	39	3.8	4.3	4.8	91	2.3	60
$\boldsymbol{\gamma}$	Vir	8630	12	40.7	-01	21	2.8	3.5	3.5	293	3.5	170
ζ	Boo	9343	14	40.1	+13	49	3.8	4.5	4.5	304	1.0	125
ξ	Boo	9413	14	50.4	+19	12	4.5	4.7	6.8	329	7.2	150
ζ	Her	10157	16	40.6	+31	38	2.8	2.9	5.5	110	1.4	35
τ	Oph	11005	18	01.9	-08	11	4.7	5.2	5.9	279	1.8	280
70	Oph	11046	18	04.5	+02	32	4.0	4.2	6.0	287	2.1	88
δ	Cyg	12880	19	44.4	+45	04	2.9*	2.9	6.3	230	2.4	830
4	Aqr	14360	20	50.4	-05	53	6.0	6.4	7.2	12	0.9	150
τ	Cyg	14787	21	13.9	$+37$	57	3.7	3.8	6.4	102	0.5	50
μ	Cyg	15270	21	43.2	+28	39	4.5	4.8	6.1	302	1.7	500
ζ	Aqr	15971	22	27.8	-00	08	3.6	4.3	4.5	216	1.8	850
Σ	3050	17149	23	58.5	$+33$	37	5.8	6.5	6.7	316	1.6	350

[^8]
VARIABLE STARS

By Janet A. Mattei

Variable stars provide information about many stellar properties. Depending upon their type, variables can tell the mass, radius, temperature, luminosity, internal and external structure, composition, and evolution of stars. The systematic observation of variable stars is an area in which an amateur astronomer can make a valuable contribution to astronomy.
For beginning observers, charts of the fields of four different types of bright variable stars are printed below. On each chart, the magnitudes (with decimal point omitted) of several suitable comparison stars are shown. A brightness estimate of the variable is made using two comparison stars, one brighter, one fainter than the variable. The magnitude, date, and time of each observation are recorded. When a number of observations have been made, a graph of magnitude versus date may be plotted. The shape of this "light curve" depends on the type of variable. Further information about variable star observing may be obtained from the American Association of Variable Star Observers, 187 Concord Ave., Cambridge, Massachusetts 02138, U.S.A.

The first table on the next page is a list of long-period variables, brighter than magnitude 8.0 at maximum, and north of -20°. The first column (the Harvard designation of the star) gives the position for the year 1900: the first four figures give the hours and minutes of right ascension, the last two figures the declination in degrees (italicised for southern declinations). The column headed "Max." gives the mean maximum magnitude. The "Period" is in days. The "Epoch" gives the predicted date of the earliest maximum occurring this year; by adding multiples of the period to this epoch the dates of subsequent maxima may be found. These variables may reach maximum two or three weeks before or after the epoch and may remain at maximum for several weeks. This table is prepared using the observations of the American Association of Variable Star Observers.
The second table contains stars which are representative of some other types of variables. The data for the preparation of the predicted epoch of maximum and minimum are taken from The General Catalog of Variable Stars, 3rd ed., and its Second Supplement; for the eclipsing binaries (except β Lyr) and RR Lyrae variables from Rocznik Astronomiczny Obserwatorium Krakowskiego 1984,International Supplement; for β Lyr from ActaAstronomica 29, 393, 1979.

LONG-PERIOD VARIABLE STARS

Variable	Max. m_{v}	$\begin{aligned} & \mathrm{Per} \\ & d \end{aligned}$	Epoch 1985	Variable	$\underset{\mathrm{m}_{\mathrm{v}}}{\operatorname{Max}}$	$\begin{gathered} \text { Per } \\ \text { d } \end{gathered}$	Epoch 1985
001755 T Cas	7.8	445	Nov. 27	142539 V Boo	7.9	258	Oct. 16
001838 R And	7.0	409		143227 R Boo	7.2	223	Jan. 17
021143 W And	7.4	397	July 24	151731 S CrB	7.3	361	Dec. 23
021403 o Cet	3.4	332	Apr. 15	154639 V CrB	7.5	358	Aug. 8
022813 U Cet	7.5	235	Mar. 12	154615 R Ser	6.9	357	June 8
023133 R Tri	6.2	266	Aug. 4	160625 RU Her	8.0	484	Oct. 9
043065 T Cam	8.0	374	Dec. 28	162119 U Her	7.5	406	June
045514 R Lep	6.8	432	Dec. 6	162112 V Oph	7.5	298	July 24
050953 R Aur	7.7	459	Aug. 28	163266 R Dra	7.6	245	July 8
054920 U Ori	6.3	372	Nov. 25	164715 S Her	7.6	307	Aug. 2
061702 V Mon	7.0	335	Sept. 4	170215 R Oph	7.9	302	Mar. 15
065355 R Lyn	7.9	379	Aug. 24	171723 RS Her	7.9	219	Aug. 5
070122aR Gem	7.1	370	Aug. 12	180531 T Her	8.0	165	Mar. 5
070310 R CMi	8.0	338	Nov. 26	181136 W Lyr	7.9	196	Jan. 10
072708 S CMi	7.5	332	June 30	183308 X Oph	6.8	334	Jan.
081112 R Cnc	6.8	362	Dec. 3	190108 R Aql	6.1	300	July 26
081617 V Cnc	7.9	272	May 13	191017 T Sgr	8.0	392	
084803 S Hya	7.8	257	Jan. 26	191019 R Sgr	7.3	269	Sept. 4
085008 T Hya	7.8	288	Jan. 14	193449 R Cyg	7.5	426	Oct. 4
093934 R LMi	7.1	372	June 5	194048 RT Cyg	7.3	190	Feb. 13
094211 R Leo	5.8	313	Oct. 25	$194632 \times$ Cyg	5.2	407	June 30
103769 R UMa	7.5	302	Apr. 27	201647 U Cyg	7.2	465	Dec. 22
121418 R Crv	7.5	317	July 15	204405 T Aqr	7.7	202	Apr. 20
122001 SS Vir	6.8	355	Jan. 14	210868 T Cep	6.0	390	Mar. 13
123160 T UMa	7.7	257	Mar. 9	213753 RU Cyg	8.0	234	Feb. 14
123307 R Vir	6.9	146	Apr. 2	230110 R Peg	7.8	378	Apr. 13
123961 S UMa	7.8	226	June 12	230759 V Cas	7.9	228	May 25
131546 V CVn	6.8	192	June 24	231508 S Peg	8.0	319	July 30
132706 S Vir	7.0	378	May 12	233815 R Aqr	6.5	387	June
134440 R CVn	7.7	328	May 19	235350 R Cas	7.0	431	May
142584 R Cam	7.9	270	Feb. 3	235715 W Cet	7.6	351	Sept. 28

OTHER TYPES OF VARIABLE STARS

Variable	Max. m_{v}	Min. m_{v}	Type	Sp. Cl.	Period d	Epoch 1985 U.T.
005381	U Cep	6.7	9.8	Ecl.	B8+gG2	2.49307
025838	ρ Per	3.3	4.0	Semi R	M4	$33-55,1100$
030140	β Per	2.1	3.3	Ecl.	B8+G	2.86731
035512	λ Tau	3.5	4.0	Ecl.	B3	3.86^{*}
060822	η Gem	3.1	3.9	Semi R	M3	233.4
061907	T Mon	5.6	6.6	δ Cep	F7-K1	27.0205
065820	ζ Gem	3.6	4.2	δ Cep	F7-G3	10.15082
154428	R Cr B	5.8	14.8	R Cr B	CFpep	
171014	α Her	3.0	4.0	Semi R	M5	$50-130,6$ yrs.
184205	R Sct	5.0	7.0	RVTau	G0e-K0p	144
184633	β Lyr	3.4	4.3	Ecl.	B8	$12.93599 \dagger$
192242	RR Lyr	6.9	8.0	RR Lyr	A2-F1	0.56
194700	η Aql	3.5	4.3	δ Cep	F6-G4	7.176641
222557	δ Cep	3.5	4.4	δ Cep	F5-G2	5.366341

*Minimum.
\dagger Changing period.

BRIEF DESCRIPTION OF VARIABLE TYPES

Variable stars are divided into four main classes: Pulsating and eruptive variables where variability is intrinsic due to physical changes in the star or stellar system; eclipsing binary and rotating stars where variability is extrinsic due to an eclipse of one star by another or the effect of stellar rotation. A brief and general description about the major types in each class is given below.

I. Pulsating Variables

Cepheids: Variables that pulsate with periods from 1 to 70 days. They have high luminosity and the amplitude of light variation ranges from 0.1 to 2 magnitudes. The prototypes of the group are located in open clusters and obey the well known period-luminosity relation. They are of F spectral class at maximum and G to K at minimum. The later the spectral class of a Cepheid the longer is its period. Typical representative: δ Cephei.
RR Lyrae Type: Pulsating, giant variables with periods ranging from 0.05 to 1.2 days with amplitude of light variation between 1 and 2 magnitudes. They are usually of A spectral class. Typical representative: RR Lyrae.
RV Tauri Type: Supergiant variables with characteristic light curve of alternating deep and shallow minima. The periods, defined as the interval between two deep minima, range from 30 to 150 days. The amplitude of light variation may be as much as 3 magnitudes. Many show long term cyclic variation of 500 to 9000 days. Generally the spectral classes range from G to K. Typical representative: R Scuti. Long period-Mira Ceti variables: Giant variables that vary with amplitudes from 2.5 to 5 magnitudes or more. They have well defined periodicity, ranging from 80 to 1000 days. They show characteristic emission spectra of late spectral classes of M , C, and S. Typical representative: o Ceti (Mira).
Semiregular Variables: Giants and supergiants showing appreciable periodicity accompanied by intervals of irregularities of light variation. The periods range from 30 to 1000 days with amplitudes not more than 1 to 2 magnitudes in general. Typical representative: R Ursae Minoris.
Irregular Variables: Stars that at times show only a trace of periodicity or none at all. Typical representative: RX Leporis.

II. Eruptive Variables

Novae: Close binary systems consisting of a normal star and a white dwarf that increase 7 to 16 magnitudes in brightness in a matter of 1 to several hundreds of days. After the outburst, the star fades slowly until the initial brightness is reached in several years or decades. Near maximum brightness, the spectrum is generally similar to A or F giants. Typical representative: CP Puppis (Nova 1942).
Supernovae: Brightness increases 20 or more magnitudes due to a gigantic stellar explosion. The general appearance of the light curve is similar to novae. Typical representative: CM Tauri (Supernova of A.D. 1054 and the central star of the Crab Nebula).
R Coronae Borealis Type: Highly luminous variables that have non-periodic drops in brightness from 1 to 9 magnitudes, due to the formation of "carbon soot" in the stars' atmosphere. The duration of minima varies from a few months to years. Members of this group have F to K and R spectral class. Typical representative: R Coronae Borealis.
U Geminorum Type: Dwarf novae that have long intervals of quiescence at minimum with sudden rises to maximum. Depending upon the star, the amplitude of eruptions range from 2 to 6 magnitudes, and the duration between outbursts ten to thousands of days. Most of these stars are spectroscopic binaries with periods of few hours. Typical representative: SS Cygni.
Z Camelopardalis Type: Variables similar to U Gem stars in their physical and spectroscopic properties. They show cyclic variations interrupted by intervals of constant brightness (stillstands) lasting for several cycles, approximately one third of the way from maximum to minimum. Typical representative: Z Camelopardalis.

III. Eclipsing Binaries

Binary system of stars with the orbital plane lying near the line of sight of the observer. The components periodically eclipse each other, causing decrease in light in the apparent brightness of the system, as is seen and recorded by the observer. The period of the eclipses coincides with the period of the orbital motion of the components. Typical representative: β Persei (Algol).

IV. Rotating Variables

Rapidly rotating stars, usually close binary systems, which undergo small amplitude changes in light that may be due to dark or bright spots on their stellar surface. Eclipses may also be present in such systems. Typical representative: R Canum Venaticorum.

THE STAR OF THE YEAR: V BOOTIS

V Bootis, located at right ascension $14^{\mathrm{h}} 25^{\mathrm{m}} 43^{\mathrm{s}}$ and declination $+39^{\circ} 18.4$ (epoch 1900), is an interesting semiregular variable (SR) of type a. These semiregular long period variables have a range of variation between maxima and minima of less than 2.5 magnitudes. They retain periodicity with considerable stability.They are red giant stars with late spectral types of M, C, or S. V Bootis is of spectral class M6e. The " e " indicates the presence of bright hydrogen lines in the spectrum, particularly when the star is near maximum.

Observations of V Bootis in the AAVSO files go back to 1905. The AAVSO light curve is quite complete, as it is possible for northern hemisphere observers to monitor V Bootis through most of the year, first following it in the evening sky and then picking it up in the morning sky. V Bootis varies between magnitudes 7 m .0 and $11 \mathrm{~m} \cdot 3$, and has a period of 258 days. At times both the shape of the light curve and the brightness range between maxima and minima vary. The accompanying AAVSO light curve shows the optical behavior of V Bootis from 1974 to 1979, with observed maxima and minima dates indicated by vertical lines. During this interval the shape of the light curve was quite irregular and the amplitude of variation significantly diminished.

Due to its peculiar optical behavior and its proximity to the 3rd magnitude star gamma Bootis, V Bootis is a good candidate for observing, both for experienced and new variable star observers. The accompanying AAVSO "b" scale finding chart shows the field of V Bootis, with the variable identified in the center of the chart and stars of constant and known magnitudes (comparison stars) around it labelled, to be used in estimating the brightness of the variable. The $11^{\mathrm{m}} .3$ comparison star close by, to the southeast of V Bootis, has been suspected by AAVSO observers to be a variable and is being monitored.The RR Lyrae type variable SV Bootis lies to the northeast of V Bootis. It varies between magnitudes $122^{\mathrm{m}} .8$ and 13 m .5 and has a period of 0.58 day, and provides an additional challenge for observers with moderate size telescopes.

STAR CLUSTERS

By Anthony Moffat

The study of star clusters is crucial for the understanding of stellar structure and evolution. For most purposes, it can be assumed that the stars seen in a given cluster formed nearly simultaneously from the same parent cloud of gas and dust; thus, the basic factor which distinguishes one star from another is the quantity of matter each contains. Comparing one cluster with another, it is essentially only the age and the chemical composition of their stars that differ. But what makes one cluster appear different from another in the sky is mainly the degree of concentration and regularity, the spread in magnitude and colour of the member stars, all of which vary mainly with age, and the total number of stars. Extremely young clusters are often irregular in shape with clumps of newly formed stars, pervaded by lanes of obscuring dust and bright nebulosity (e.g. the Orion Nebula around the Trapezium Cluster), while the oldest clusters, if they were fortunate enough not to have already dissipated or been torn apart by external forces, tend to be symmetric in shape, with only the slower-burning, low-mass stars remaining visible; the massive stars will have spent their nuclear fuel and passed to the degenerate graveyard of white dwarfs, neutron stars, or black holes depending on their original mass.

The star clusters in the lists below were selected as the most conspicuous. Two types can be recognized: open and globular. Open clusters often appear as irregular aggregates of tens to thousands of stars, sometimes barely distinguishable from random fluctuations of the general field; they are concentrated toward the Galactic disk and generally contain stars of chemical abundance like the Sun. They range in age from very young to very old.

Sometimes we observe loose, extended groups of very young stars. When precise methods of photometry, spectroscopy and kinematics are applied, we see that these stars often have a common, but not necessarily strictly coeval, origin. Such loose concentrations of stars are referred to as associations. Dynamically, they are generally unbound over time scales of the order of ten million years, being subject to the strong tidal forces of passing clouds and the background Galaxy. Often, they contain sub-concentrations of young open clusters (e.g. the double cluster h and χ Persei of slightly different ages despite their proximity, in the association Per OB1, which stretches over some 6° on the sky), with a strong gradient in age as the star formation process rips through them from one edge to another. In view of their sparse nature, we do not consider it appropriate here to list any of the over 100 -odd catalogued associations in the Galaxy.

Globular clusters on the other hand are highly symmetric, extremely old and rich agglomerations of up to several million stars, distributed throughout the Galactic halo but concentrated toward the centre of the Galaxy. Compared to the Sun and other disk stars, they tend to be much less abundant in elements heavier than hydrogen and helium.

The first table includes all well-defined Galactic open clusters with diameters greater than 40^{\prime} and/or integrated magnitudes brighter than 5.0 , as well as the richest clusters and some of special interest. The apparent integrated photographic magnitude is from Collinder, the angular diameter is generally from Trumpler, and the photographic magnitude of the fifth-brightest star, m_{5}, is from Shapley, except where in italics, which are new data. The distance is mainly from Becker and Fenkart (Astr. Astrophys. Suppl. 4, 241 (1971)). The earliest spectral type of cluster stars, Sp , is a measure of the age as follows: expressed in millions of years, $05=2, \mathrm{~B} 0=8$, $\mathrm{B} 5=70, \mathrm{~A} 0=400, \mathrm{~A} 5=1000, \mathrm{~F} 0=3000$ and $\mathrm{F} 5=10000$.

Open Clusters

$\begin{aligned} & \text { NGC } \\ & \text { or } \\ & \text { other } \dagger \end{aligned}$	$\begin{aligned} & \text { R.A. } \\ & 1980 \\ & \text { h } \quad \text { m } \end{aligned}$	$\begin{aligned} & \text { Dec. } \\ & 1980, \end{aligned}$	$\begin{aligned} & \text { Int. } \\ & \mathrm{m}_{\mathrm{pg}} \end{aligned}$	Diam.	m_{5}	$\begin{gathered} \text { Dist. } \\ 1000 \\ \text { l.y. } \end{gathered}$	Sp	Remarks
188	0042.0	+85 14	9.3	14	14.6	5.0	F2	Oldest known
752	0156.6	+37 35	6.6	45	9.6	1.2	A5	
869	0217.6	+5704	4.3	30	9.5	7.0	B1	h Per
884	0221.0	+57 02	4.4	30	9.5	8.1	B0	χ Per, M supergiants
Perseus	0321	+48 32	2.3	240	5	0.6	B1	Moving cl.; α Per
Pleiades	0345.9	+24 04	1.6	120	4.2	0.41	B6	M45, best known
Hyades	0419	+1535	0.8	400	1.5	0.13	A2	Moving cl.**, in Taurus
1912	$05 \quad 27.3$	+35 49	7.0	18	9.7	4.6	B5	M38
1976/80	0534.4	-05 24	2.5	50	5.5	1.3	O5	Trapezium, very young
2099	05151.1	+32 32	6.2	24	9.7	4.2	B8	M37
2168	0607.6	+24 21	5.6	29	9.0	2.8	B5	M35
2232	0625.5	-04 44	4.1	20	7	1.6	B1	
2244	0631.3	+04 53	5.2	27	8.0	5.3	O5	Rosette, very young
2264	0639.9	+09 54	4.1	30	8.0	2.4	O8	S Mon
2287	0646.2	-20 43	5.0	32	8.8	2.2	B4	M41
2362	0718.0	-24 54	3.8	7	9.4	5.4	O9	$\tau \mathrm{CMa}$
2422	0734.7	-14 27	4.3	30	9.8	1.6	B3	
2437	0740.9	-14 46	6.6	27	10.8	5.4	B8	M46
2451	0744.7	-37 55	3.7	37	6	1.0	B5	
2516	0758.0	-60 51	3.3	50	10.1	1.2	B8	
2546	$08 \quad 11.8$	-37 35	5.0	45	7	2.7	B0	
2632	0839.0	+20 04	3.9	90	7.5	0.59	A0	Praesepe, M44
IC2391	$08 \quad 39.7$	-52 59	2.6	45	3.5	0.5	B4	
IC2395	0840.4	-48 07	4.6	20	10.1	2.9	B2	
2682	$08 \quad 49.3$	+1154	7.4	18	10.8	2.7	F2	M67, very old
3114	$10 \quad 02.0$	-60 01	4.5	37	7	2.8	B5	
IC2602	1042.6	-64 17	1.6	65	6	0.5	B1	$\theta \mathrm{Car}$
Tr 16	1044.4	-59 36	6.7	10	10	9.6	O3	η Car and Nebula
3532	1105.5	-58 33	3.4	55	8.1	1.4	B8	
3766	1135.2	-61 30	4.4	12	8.1	5.8	B1	
Coma	1224.1	+26 13	2.9	300	5.5	0.3	A1	Very sparse
4755	1252.4	-60 13	5.2	12	7	6.8	B3	к Cru, "jewel box"
6067	16	-54 10	6.5	16	10.9	4.7	B3	G, K supergiants
6231	1652.6	-41 46	8.5	16	7.5	5.8	09	O supergiants, WR stars
Tr 24	1655.6	-40 38	8.5	60	7.3	5.2	O5	
6405	1738.8	-32 12	4.6	26	8.3	1.5	B4	M6
IC4665	1745.7	+05 44	5.4	50	7	1.1	B8	
6475	1752.6	-34 48	3.3	50	7.4	0.8	B5	M7
6494	1755.7	-19 01	5.9	27	10.2	1.4	B8	M23
6523	1801.9	-24 23	5.2	45	7	5.1	O5	M8, Lagoon Neb.
6611	1817.8	-13 48	6.6	8	10.6	5.5	07	M16, nebula
C4725	$18 \quad 30.5$	-19 16	6.2	35	9.3	2.0	B3	M25, Cepheid U Sgr
IC4756	1838.3	+05 26	5.4	50	8.5	1.4	A3	
6705	$18 \quad 50.0$	-06 18	6.8	12.5	12	5.6	B8	M11, very rich
Mel 227	2008.2	-79 23	5.2	60	9	0.8	B9	
C1396	$\begin{array}{ll}21 & 38.3\end{array}$	+5725	5.1	60	8.5	2.3	O6	Tr 37
790	$23 \quad 57.4$	+61 06	7.1	4.5	11.7	10.3	B1	Cepheids CEa, CEb and CF Cas

[^9]The table below includes all globular clusters with a total apparent photographic magnitude brighter than about 7.5. The data are taken from a compilation by Arp (Galactic Structure, ed. Blaauw and Schmidt, U. Chicago 1965), supplemented by H. S. Hogg's Bibliography (Publ. David Dunlap Obs. 2, No. 12, 1963). The apparent diameter given contains 90% of the stars, except values in italics which are from miscellaneous sources. The concentration class is such that I is the most compact, XII is least. The integrated spectral type varies mainly with the abundances, and $\mathrm{m}(25)$ refers to the mean blue magnitude of the 25 brightest stars excluding the 5 brightest, which are liable to fluctuate more. The number of variables known in the cluster is also given. A more detailed, recent catalogue of fundamental data for galactic globular clusters can be found in a review by Harris and Racine (Annual Review of Astronomy and Astrophysics, 17, 241, 1979).

Globular Clusters

NGC	$\begin{gathered} \mathrm{M} \\ \text { or } \\ \text { other } \end{gathered}$	$\begin{array}{r} \text { R.A. } \\ 1980 \\ \text { h } \quad \text { m } \end{array}$	Dec. 1980	$\begin{aligned} & \text { Int. } \\ & \mathrm{m}_{\mathrm{pg}} \end{aligned}$	Diam.	Conc.	$\begin{aligned} & \text { Int. } \\ & \text { Sp. T. } \end{aligned}$	$\mathrm{m}(25)$	No. Var.	$\begin{aligned} & \text { Dist. } \\ & 1000 \\ & \text { l.y. } \end{aligned}$
104 †	47 Tuc	0023.1	-72 11	4.35	44	III	G3	13.54	11	16
1851*		0513.3	-40 02	7.72	11.5	II	F7		3	46
2808		0911.5	-64 42	7.4	18.8	I	F8	15.09	4	30
5139 \dagger	ω Cen	1325.6	-47 12	4.5	65.4	VIII	F7	13.01	165	17
5272 \dagger	3	1341.3	+28 29	6.86	9.3	VI	F7	14.35	189	35
5904	5	1517.5	+02 10	6.69	10.7	V	F6	14.07	97	26
6121	4	1622.4	-26 28	7.05	22.6	IX	GO	13.21	43	14
6205	13	1641.0	+36 30	6.43	12.9	V	F6	13.85	10	21
6218	12	1646.1	-01 55	7.58	21.5	IX	F8	14.07	1	24
6254	10	1656.0	-04 05	7.26	16.2	VII	G1	14.17	3	20
6341	92	1716.5	+43 10	6.94	12.3	IV	F1	13.96	16	26
6397		1739.2	-53 40	6.9	19	IX	F5	12.71	3	9
$6541 \dagger$		1806.5	-43 45	7.5	23.2	III	F6	13.45	1	13
$6656 \dagger$	22	1835.1	-23 56	6.15	26.2	VII	F7	13.73	24	10
6723		1858.3	-36 39	7.37	11.7	VII	G4	14.32	19	24
6752		1909.1	-60 01	6.8	41.9	VI	F6	13.36	1	17
6809	55	1938.8	-30 59	6.72	21.1	XI	F5	13.68	6	20
7078*	15	$21 \quad 29.1$	+12 05	6.96	9.4	IV	F2	14.44	103	34
7089	2	2132.4	-00 55	6.94	6.8	II	F4	14.77	22	40

*Bright, compact X-ray sources were discovered in these clusters in 1975.
\dagger These clusters contain dim X-ray sources.

TWO EXAMPLES OF YOUNG STAR CLUSTERS

Although globular clusters are extremely useful cosmic tracers and are equally beautiful to look at, individual stars in them are usually faint and crowded. It is therefore perhaps simpler and more instructive to demonstrate some effects of stellar evolution with the aid of a young open cluster. An excellent case is the "jewel box" cluster NGC 4755, visible mainly from the southern hemisphere. Within its obvious boundary, NGC 4755 contains some three blue (B-type) and one red (M-type) supergiants, which stand out like jewels on a background of fainter, blue main sequence stars. One of the blue supergiants is the sixth magnitude star к Cru. A photograph of this cluster appears on p. 439 of the May 1984 issue of Sky and Telescope.

A similar case in the north is the young open cluster NGC 457 (not listed in the table). It is about 18^{\prime} across and is located at R.A. $01^{\mathrm{h}} 17^{\mathrm{m}} .8$, Dec. $+58^{\circ} 13^{\prime}$ (1980), almost diametrically opposite to NGC 4755 in the sky, and nearly 4° SE of γ Cas (the central star in the " W " of Cassiopeia). NGC 457 contains the 5th magnitude F-type supergiant ϕ Cas at its SE edge, accompanied by a 7th magnitude B-type supergiant
just SW of ϕ Cas. Nearer to the centre of the cluster is a bright (8.6 magnitude) red (M-type) supergiant. All three stars are superposed on a background of fainter main sequence stars of type BO and later (cooler). NGC 457 is about 10000 ly distant. Below is a colour-magnitude diagram for NGC 457, based on broadband B and V photoelectric observations.The most rapidly evolving (and thus most massive) stars, the three supergiants, have truly outstanding luminosities. The brightest of the three, ϕ Cas, has an absolute magnitude of about -8.8, making it about 260000 times as luminous as our Sun!

A colour-magnitude diagram for NGC 457. The axes are labelled with V (apparent visual magnitude), M_{v} (estimated absolute visual magnitude), and $B-V$ (blue magnitude minus visual magnitude, the "colour index"). Selective absorption by inter-stellar dust has shifted the $B-V$ values of all stars in the cluster toward the red (right). The curved line indicates the location of the "zero-age main sequence" (also shifted to the right). (From: Hagen, Publ. D. Dunlap Obs., 4, 1, 1970)

NEBULAE
 GALACTIC NEBULAE

By William Herbst

The following objects were selected from the brightest and largest of the various classes to illustrate the different types of interactions between stars and interstellar matter in our galaxy. Emission regions (HII) are excited by the strong ultraviolet flux of young, hot stars and are characterized by the lines of hydrogen in their spectra. Reflection nebulae (Ref) result from the diffusion of starlight by clouds of interstellar dust. At certain stages of their evolution stars become unstable and explode, shedding their outer layers into what becomes a planetary nebula (P 1) or a supernova remnant (SN). Protostellar nebulae (PrS) are objects still poorly understood; they are somewhat similar to the reflection nebulae, but their associated stars, often variable, are very luminous infrared stars which may be in the earliest stages of stellar evolution. Also included in the selection are three extended complexes (Comp) of special interest for their rich population of dark and bright nebulosities of various types. In the table S is the optical surface brightness in magnitude per square second of arc of representative regions of the nebula, and m^{*} is the magnitude of the associated star.

NGC	M	Con	$\alpha 1980$ ठ		Type	$\underset{\text { Size }}{ }$		${ }_{*}^{\text {m }}$	$\begin{gathered} \text { Dist. } \\ 10^{3} \\ 1 . \mathrm{y} . \end{gathered}$	Remarks
			h m	-						
1435		Tau	0346.3	+2401	Ref	15	20	4	0.4	Merope nebula
1535		Eri	0413.3	-1248	Pl	0.5	17	12		
1952	1	Tau	0533.3	+2205	SN	5	19	16v	4	"Crab" + pulsar
1976	42	Ori	0534.3	-05 25	HII	30	18	4	1.5	Orion nebula
2070		Dor	0538.7	-69 06	HII	20	-	13	200	Tarantula Neb.
COri		Ori	0539.8	-01 57	Comp	2°			1.5	Incl. "Horsehead"
2068	78	Ori	0545.8	+00 02	Ref	5	20		1.5	
IC443		Gem	0616.4	+2236	SN	40			2	
2244		Mon	0631.3	+0453	HII	50	21	7	3	Rosette neb.
2261		Mon	0638.0	+0844	PrS	2		12v	4	Hubble's var. neb.
2392		Gem	0728.0	+20 57	Pl	0.3	18	10	10	Clown face neb.
2626		Vel	0834.9	-40 34	Ref	2	-	10	3	
3132		Vel	1006.2	-40 19	Pl	1	17	10	\square	Eight-Burst
3324		Car	1036.7	-58 32	HII	15	-	8	9	
3372		Car	1044.3	-59 35	HII	80	-	6v	9	Carina Neb.
3503		Car	1100.5	-60 37	Ref	3	-	11	9	
3587	97	UMa	1113.6	+5508	Pl	3	21	13	12	
-5189		Cru	1250	-63	Dark	6°	-	-	0.5	Coal Sack
5189		Mus	1332.4	-65 54	HII	150	-	10		
¢Oph		Oph	1624.4	-23 24	Comp	4°			0.5	Bright + dark neb.
6514	20	Sgr	1801.2	-23 02	HII	15	19		3.5	Trifid nebula
6523	8	Sgr	1802.4	-24 23	HII	40	18		4.5	Lagoon nebula
6543		Dra	1758.6	+6637	Pl	0.4	15	11	3.5	
6618	17	Sgr	1819.7	-16 12	HII	20	19		3	Horseshoe neb.
6720	57	Lyr	1852.9	+3301	P1	1.2	18	15	5	Ring nebula
6726		CrA	1900.4	-36 56	PrS	5	$\bar{\square}$	7	0.5	
6853	27	Vul	1958.6	+22 40	Pl	7	20	13	3.5	Dumb-bell neb.
6888		Cyg	2011.6	+3821	HII	15				
		Cyg	2021.5	+4012	Comp	6^{6}				HII + dark neb.
6960/95		Cyg	2044.8	+30 38	SN	150			2.5	Cygnus loop
7000		Cyg	2058.2	+4414	HII	100	22		3.5	N. America neb.
7009		Aqr	2103.0	-1128	Pl	0.5	16	12	3	Saturn nebula
7027		Cyg	2106.4	+4209	Pl	0.2	15	13		
7129		Cep	2142.5	+6500	Ref	$\begin{array}{r}3 \\ \\ \hline\end{array}$	21	10	2.5	Small cluster
7293		Aqr	2228.5	-20 54	Pl	13	22	13		Helix nebula

THE MESSIER CATALOGUE

By Alan Dyer

The Messier Catalogue, with its modern additions, represents a listing of many of the brightest and best deep-sky wonders. The following table lists the Messier objects by season for the evening observer, grouping the objects within their respective constellations, with the constellations themselves listed roughly in order of increasing right ascension, i.e., constellations further to the east and which rise later in the night are further down the list.

The columns contain: Messier's number (M); the constellation; the object's New General Catalogue (NGC) number; the type of object (OC = open cluster, $\mathrm{GC}=$ globular cluster, $\mathrm{PN}=$ planetary nebula, $\mathrm{EN}=$ emission nebula, $\mathrm{RN}=$ reflection nebula, SNR = supernova remnant, G = galaxy (with the type of galaxy also listed); the 1980 co-ordinates; the visual magnitude (unless marked with a " p " which indicates a photographic magnitude). The "Remarks" column contains comments on the object's appearance and observability. The final column, marked "Seen", is for the observer to use in checking off those objects which he or she has located. An asterisk in the "Type" column indicates that additional information about the object may be found elsewhere in the handBook, in the appropriate table. Most data are from the Skalnate Pleso Atlas of the Heavens catalogue; occasionally from other sources.
All these objects can be seen in a small telescope (60 mm refractor, for instance), with M74 and M83 generally considered to be the most difficult. The most southerly M-objects are M6 and M7 in Scorpius, with M54, M55, M69, and M70 in Sagittarius almost as far south. Notice how different classes of objects dominate the skies of the various seasons: open clusters dominate the winter sky; galaxies by the hundreds abound in the spring sky; the summer sky contains many globular clusters and nebulae; while the autumn sky is a mixture of clusters and galaxies. This effect is due to the presence (or absence) of the Milky Way in any particular season, and whether or not we are looking toward the centre of the Galaxy (as in summer) or away from the centre (as in winter).

M	Con	NGC	Type	R.A. (1980) Dec.	m_{v}	Remarks	Seen
101	UMa	5457	G-Sc*	$1402.5+5427$	9.6	large, faint, face-on spiral	
108	UMa	3556	G-Sc	$1110.5+5547$	10.7	nearly edge-on; near M97	
109	UMa	3992	G-Sb	$1156.6+5329$	10.8	barred spiral; near γ UMa	
65	Leo	3623	G-Sb	$1117.8+1313$	9.3	bright elongated spiral	
66	Leo	3627	G-Sb	$1119.1+1307$	8.4	M65 in same field	
95	Leo	3351	G-SBb	$1042.8+1149$	10.4	bright barred spiral	
96	Leo	3368	G-Sbp	$1045.6+1156$	9.1	M95 in same field	
105	Leo	3379	G-E1	$1046.8+1242$	9.2	very near M95 and M96	
53	Com	5024	GC	$\begin{array}{ll}13 & 12.0\end{array}+1817$	7.6	15 cm scope needed to resolve	
64	Com	4826	G-Sb*	$1255.7+2148$	8.8	Black Eye Galaxy	
85	Com	4382	G-SO	$1224.3+1818$	9.3	bright elliptical shape	
88	Com	4501	G-Sb	$1230.9+1432$	10.2	bright multiple-arm spiral	
91	Com	4548	G-SBb	$1234.4+1436$	10.8	not the same as M58	
98	Com	4192	G-Sb	$1212.7+1501$	10.7	nearly edge-on spiral	
99	Com	4254	G-Sc	$1217.8+1432$	10.1	nearly face-on spiral	
100	Com	4321	G-Sc	$1221.9+1556$	10.6	face-on spiral; star-like nuc.	
49	Vir	4472	G-E4*	$1228.8+0807$	8.6	very bright elliptical	
58	Vir	4579	G-SB	$1236.7+1156$	9.2	bright barred spiral	
59	Vir	4621	G-E3	$1241.0+1147$	9.6	bright elliptical near M58	
60	Vir	4649	G-E1	$1242.6+1141$	8.9	bright elliptical near M59	
61	Vir	4303	G-Sc	$1220.8+0436$	10.1	face-on barred spiral	
84	Vir	4374	G-E1	$1224.1+1300$	9.3	bright elliptical	
86	Vir	4406	G-E3	$1225.1+1303$	9.7	M84 in same field	
87	Vir	4486	G-E1	$1229.7+1230$	9.2	nearly spherical galaxy	
89	Vir	4552	G-E0	$1234.6+1240$	9.5	resembles M87; smaller	
90	Vir	4569	G-Sb	$1235.8+1316$	10.0	bright spiral; near M89	
104	Vir	4594	G-Sb*	$\begin{array}{lllll}12 & 38.8 & -11 & 31\end{array}$	8.7	Sombrero Galaxy	
3	CVn	5272	GC*	$1341.3+2829$	6.4	contains many variables	
51	CVn	5194	G-Sc*	$1329.0+4718$	8.1	Whirlpool Galaxy	
63	CVn	5055	G-Sb*	$1314.8+4208$	9.5	Sunflower Galaxy	
94	CVn	4736	G-Sbp*	$1250.1+4114$	7.9	very bright and comet-like	
106	CVn	4258	G-Sbp*	1218.0 +47 25	8.6	large, bright spiral	
68	Hya	4590	GC	$1238.3-2638$	8.2	15 cm scope needed to resolve	
83	Hya	5236	G-Sc*	$\begin{array}{llll}13 & 35.9 & -2946\end{array}$	10.1	very faint and diffuse	
102	Dra	5866	G-E6p	$1505.9+5550$	10.8	small, edge-on galaxy	
5	Ser	5904	GC*	$1517.5+0211$	6.2	one of the finest globulars	
The	ummer						
13	Her	6205	GC*	$1641.0+3630$	5.7	spectacular globular cl.	
92	Her	6341	GC*	$1716.5+4310$	6.1	$9^{\circ} \mathrm{NE}$. of M13; bright	
9	Oph	6333	GC	$1718.1-1830$	7.3	smallest of Oph. globulars	
10	Oph	6254	GC*	$1656.0-0405$	6.7	rich cl.; M12 3.4° away	
12	Oph	6218	GC*	$1646.1-0155$	6.6	loose globular	
14	Oph	6402	GC	$17 \begin{array}{llll}17 & 36.5 & -0314\end{array}$	7.7	20 cm scope needed to resolve	
19	Oph	6273	GC	$17 \begin{array}{llll}17 & 01.3 & -2614\end{array}$	6.6	oblate globular	
62	Oph	6266	GC	$1659.9-3005$	6.6	unsymmetrical; in rich field	
107	Oph	6171	GC	$1631.3-1302$	9.2	small, faint globular	
4	Sco	6121	GC*	$1622.4-2627$	6.4	bright globular near Antares	
6	Sco	6405	OC*	$\begin{array}{llll}17 & 38.9 & -3211\end{array}$	5.3	best at low magnification	
7	Sco	6475	OC*	$17 \begin{array}{llll}17 & 52.6 & -34 & 48\end{array}$	3.2	excellent in binoculars	
80	Sco	6093	GC	1615.8 -22 56	7.7	very compressed globular	
16	Ser	6611	EN*	$\begin{array}{lllll}18 & 17.8 & -13 & 48\end{array}$	-	Star-Queen Neb. w/ open cl.	
8	Sgr	6523	EN*	$\begin{array}{lllll}18 & 02.4 & -24 & 23\end{array}$	-	Lagoon Neb. w/cl. NGC 6530	
17	Sgr	6618	EN*	$\begin{array}{llll}18 & 19.7 & -16 & 12\end{array}$		Swan or Omega Nebula	
18	Sgr	6613	OC	$\begin{array}{lllll}18 & 18.8 & -17 & 09\end{array}$	7.5	sparse cluster; $1^{\circ} \mathrm{S}$. of M17	
20	Sgr	6514	EN*	$1801.2-2302$		Trifid Nebula	
21	Sgr	6531	OC	$1803.4-2230$	6.5	$0.7^{\circ} \mathrm{NE}$. of M20	
22	Sgr	6656	GC*	$1835.2-2355$	5.9	low altitude dims beauty	
23	Sgr	6494	OC*	$1755.7-1900$	6.9	bright, loose cluster	
24	Sgr	-	-	$\begin{array}{llll}18 & 17 & -18 & 27\end{array}$	4.6	Milky Way patch; binoc. obj.	
25	Sgr	14725	OC*	$\begin{array}{lllll}18 & 30.5 & -19 & 16\end{array}$	6.5	bright but sparse cluster	
28	Sgr	6626	GC	$\begin{array}{lllll}18 & 23.2 & -24 & 52\end{array}$	7.3	compact globular near M22	
54	Sgr	6715	GC	$\begin{array}{llll}18 & 53.8 & -30 & 30\end{array}$	8.7p	not easily resolved	

M	Con	NGC	Type	R.A. (1980) Dec.	m_{v}	Remarks	Seen
55	Sgr	6809	GC*	$1938.7-3100$	7.1 p	bright, loose globular	
69	Sgr	6637	GC	$\begin{array}{lllll}18 & 30.1 & -32 & 23\end{array}$	8.9	small, poor globular	
70	Sgr	6681	GC	$\begin{array}{lllll}18 & 42.0 & -32 & 18\end{array}$	9.6	small globular; $2^{\circ} \mathrm{E}$. of M69	
75	Sgr	6864	GC	$\begin{array}{lllll}20 & 04.9 & -2159\end{array}$	8.0	small, remote globular	
11	Sct	6705	OC*	18 50.0	6.3	superb open cluster	
26	Sct	6694	OC	1844.1 -09 25	9.3	bright, coarse cluster	
56	Lyr	6779	GC	$1915.8+3008$	8.2	within rich field	
57	Lyr	6720	PN*	$1852.9+3301$	9.3	Ring Nebula	
71	Sge	6838	GC	$1952.8+1844$	9.0	loose globular cl.	
27	Vul	6853	PN*	$1958.8+2240$	7.6	Dumbbell Nebula	
29	Cyg	6913	OC	20 23.3	7.1	small, poor open cl.	
39	Cyg	7092	OC	$2131.5+4821$	5.2	very sparse cluster	
The Autumn Sky							
2	Aqr	7089	GC*	$\begin{array}{lllll}21 & 32.4 & -00 & 54\end{array}$	6.3	20 cm scope needed to resolve	
72	Aqr	6981	GC	$\begin{array}{llll}20 & 52.3 & -12 & 39\end{array}$	9.8	near NGC 7009 (Saturn Neb.)	
73	Aqr	6994	OC	$\begin{array}{llll}20 & 57.8 & -1244\end{array}$	11.0	group of 4 stars only	
15	Peg	7078	GC*	$2129.1+1205$	6.0	rich, compact globular	
30	Cap	7099	GC	$\begin{array}{lllll}21 & 39.2 & -23 & 15\end{array}$	8.4	noticeable elliptical shape	
52	Cas	7654	OC	23 23.3 +6129 01	7.3	young, rich cluster	
103	Cas	581	OC	$0131.9+6035$	7.4	3 NGC clusters nearby	
31	And	224	G-Sb*	$0041.6+4109$	4.8	Andromeda Gal.; large	
32	And	221	G-E2*	$0041.6+4045$	8.7	companion gal. to M31	
110	And	205	G-E6*	$0039.1+4135$	9.4	companion gal. to M31	
33	Tri	598	G-Sc*	$0132.8+3033$	6.7	large, diffuse spiral	
74	Psc	628	G-Sc	$0135.6+1541$	10.2	faint, elusive spiral	
77	Cet	1068	G-Sbp	$0241.6+0004$	8.9	Seyfert gal.; star-like nuc.	
34	Per	1039	$\mathrm{OC}^{\text {PN* }}$	$0240.7+4243$ $0140.9+5128$	5.5	best at very low mag.	
76	Per	650	PN*	$0140.9+5128$	12.2	Little Dumbbell Neb.	

NUMERICAL LISTING OF MESSIER OBJECTS

M	Sky	Con	M	Sky	Con	M	Sky	Con	M	Sky	Con	M	Sky	Con
1	Wi	Tau	23	Su	Sgr	45	Wi	Tau	67	Sp	Cnc	89	Sp	Vir
2	Au	Aqr	24	Su	Sgr	46	Wi	Pup	68	Sp	Hya	90	Sp	Vir
3	Sp	CVn	25	Su	Sgr	47	Wi	Pup	69	Su	Sgr	91	Sp	Com
4	Su	Sco	26	Su	Sct	48	Wi	Hya	70	Su	Sgr	92	Su	Her
5	Sp	Ser	27	Su	Vul	49	Sp	Vir	71	Su	Sge	93	Wi	Pup
6	Su	Sco	28	Su	Sgr	50	Wi	Mon	72	Au	Aqr	94	Sp	CVn
7	Su	Sco	29	Su	Cyg	51	Sp	CVn	73	Au	Aqr	95	Sp	Leo
8	Su	Sgr	30	Au	Cap	52	Au	Cas	74	Au	Psc	96	Sp	Leo
9	Su	Oph	31	Au	And	53	Sp	Com	75	Su	Sgr	97	Sp	UMa
10	Su	Oph	32	Au	And	54	Su	Sgr	76	Au	Per	98	Sp	Com
11	Su	Sct	33	Au	Tri	55	Su	Sgr	77	Au	Cet	99	Sp	Com
12	Su	Oph	34	Au	Per	56	Su	Lyr	78	Wi	Ori	100	Sp	Com
13	Su	Her	35	Wi	Gem	57	Su	Lyr	79	Wi	Lep	101	Sp	UMa
14	Su	Oph	36	Wi	Aur	58	Sp	Vir	80	Su	Sco	102	Sp	Dra
15	Au	Peg	37	Wi	Aur	59	Sp	Vir	81	Sp	UMa	103	Au	Cas
16	Su	Ser	38	Wi	Aur	60	Sp	Vir	82	Sp	UMa	104	Sp	Vir
17	Su	Sgr	39	Su	Cyg	61	Sp	Vir	83	Sp	Hya	105	Sp	Leo
18	Su	Sgr	40	Sp	UMa	62	Su	Oph	84	Sp	Vir	106	Sp	CVn
19	Su	Oph	41	Wi	CMa	63	Sp	CV	85	Sp	Com	107	Su	Oph
20	Su	Sgr	42	Wi	Ori	64	Sp	Com	86	Sp	Vir	108	Sp	UMa
21	Su	Sgr	43	Wi	Ori	65	Sp	Leo	87	Sp	Vir	109	Sp	UMa
22	Su	Sgr	44	Sp	Cnc	66	Sp	Leo	88	Sp	Com	110	Au	And

The abbreviations are: Wi , winter; Sp , spring; Su , summer; Au , autumn.

[^10]
THE FINEST N.G.C. OBJECTS + 20

By Alan Dyer

The New General Catalogue of deep-sky objects was originally published by J. L. E. Dreyer in 1888. Supplementary Index Catalogues were published in 1895 and 1908. Together, they contain descriptions and positions of 13,226 galaxies, clusters and nebulae. Many of these are well within reach of amateur telescopes. Indeed, the brightness and size of many NGC objects rival those of the better known deep-sky targets of the Messier Catalogue (almost all of which are also in the NGC catalogue). However, most NGC objects are more challenging to locate and observe than the Messiers.

The first four sections of the following list contain 110 of the finest NGC objects that are visible from mid-northern latitudes. The arrangement is similar to that used in the preceding Messier Catalogue. A telescope of at least 15 cm aperture will likely be required to locate all these objects. The last section is for those wishing to begin to extend their deep-sky observing program beyond the basic catalogue of Charles Messier or the brightest objects of the New General Catalogue. It is a selected list of 20 "challenging" objects, and is arranged in order of right ascension.

The Wil Tirion Sky Atlas 2000.0, the sets of index card finder charts called AstroCards, or the AAVSO Variable Star Atlas will be indispensible in locating the objects on this list. For more information about them, and many other deep-sky objects, see Burnham's Celestial Handbook (Vol. 1, 2, 3), and the Webb Society Deep-Sky Observer's Handbooks.

Abbreviations used: $\mathrm{OC}=$ open cluster, $\mathrm{GC}=$ globular cluster, $\mathrm{PN}=$ planetary nebula, $\mathrm{EN}=$ emission nebula, $\mathrm{RN}=$ reflection nebula, $\mathrm{E} / \mathrm{RN}=$ combination emission and reflection nebula, $\mathrm{DN}=$ dark nebula, $\mathrm{SNR}=$ supernova remnant, $\mathrm{G}=$ galaxy (the Hubble classification is also listed with each galaxy). Magnitudes are visual; exceptions are marked with a " p " indicating a photographic magnitude. Sizes of each object are in minutes of arc, with the exception of planetary nebulae which are given in seconds of arc. The number of stars (*) and, where space permits, the Shapley classification is also given for star clusters in the Remarks column.

No.	NGC	Con	Type	R.A. (1950) Dec.		m_{v}	Size	Remarks
The A	umn Sk							
1	7009	Aqr	PN	$\begin{array}{cc} \mathrm{h} & \mathrm{~m} \\ 21 & 01.4 \end{array}$	-11 34	9.1	$44^{\prime \prime} \times 26^{\prime \prime}$	Saturn Nebula; bright oval planetary
2	7293	Aqr	PN	2227.0	-21 06	6.5	$900^{\prime \prime} \times 720^{\prime \prime}$	Helix Nebula; very large and diffuse
3	7331	Peg	G-Sb	2234.8	+34 10	9.7	10.0×2.3	large, very bright spiral galaxy
4	7789	Cas	OC	2354.5	+56 26	9.6	30	200*; faint but very rich cluster
5	185	Cas	G-EO	0036.1	+48 04	11.7	2.2×2.2	companion to M31; quite bright
6	281	Cas	EN	0050.4	+56 19	-	22×27	large, faint nebulosity near γ Cas.
7	457	Cas	OC	0115.9	+58 04	7.5	10	100*; Type e-intermediate rich
8	663	Cas	OC	0142.6	+61 01	7.1	11	80*; NGC 654 and 659 nearby
9	7662	And	PN	2323.5	+42 14	9.2	$32^{\prime \prime} \times 28^{\prime \prime}$	star-like at low mag.; annular, bluish
10	891	And	G-Sb	0219.3	+42 07	10.9p	11.8×1.1	faint, classic edge-on with dust lane
11	253	Scl	G-Scp	0045.1	-25 34	8.9	24.6×4.5	very large and bright but at low alt.
12	772	Ari	G-Sb	0156.6	+18 46	10.9	5.0×3.0	diffuse spiral galaxy
13	936	Cet	G-SBa	0225.1	-01 22	10.7	3.3×2.5	near M77; NGC 941 in same field
14a	869	Per	OC	0215.5	+56 55	4.4	36	Double Cluster; superb!
14b	884	Per	OC	0218.9	+56 53	4.7	36	Double Cluster; superb!
15	1023	Per	G-E7p	0237.2	+38 52	10.5p	4.0×1.2	bright, lens-shaped galaxy; near M34
16	1491	Per	EN	0359.5	+51 10	-	3×3	small, fairly bright emission nebula
17	1501	Cam	PN	0402.6	+60 47	12.0	$56^{\prime \prime} \times 58^{\prime \prime}$	faint, distinctive oval; darker centre
18	1232	Eri	G-Sc	0307.5	-20 46	10.7	7.0×5.5	fairly bright, large face-on spiral
19	1300	Eri	G-SBb	0317.5	-1935	11.3	5.7×3.5	large barred spiral near NGC 1232
20	1535	Eri	PN	0412.1	-12 52	10.4	$20^{\prime \prime} \times 17^{\prime \prime}$	blue-grey disk

No.	NGC	Con	Type	R.A. (1950) Dec.		m_{v}	Size	Remarks
The Winter Sky								
21	1907	Aur	OC	0524.7	+35 17	9.9	5	40*; nice contrast with nearby M38
22	1931	Aur	EN	0528.1	+34 13		3×3	haze surrounding 4 stars
23	1788	Ori	E/RN	0504.5	-03 24	-	8×5	fairly bright but diffuse E / R neb.
24	1973+	Ori	E/RN	0532.9	-04 48		40×25	near M42 and M43; often neglected
25	2022	Ori	PN	0539.3	+09 03	12.4	$28^{\prime \prime} \times 27^{\prime \prime}$	small, faint but distinct; annular
26	2194	Ori	OC	0611.0	+12 50	9.2	8	100*; Type e; faint but rich
27	2158	Gem	OC	0604.3	+24 06	12.5	4	40*; same field as M35; nice contrast
28	2392	Gem	PN	0726.2	+21 01	8.3	$47^{\prime \prime} \times 43^{\prime \prime}$	Clown-Face Nebula; very bright
29	2244	Mon	OC	0629.7	+04 54	6.2	40	16*; in centre of Rosette Nebula
30	2261	Mon	E/RN	0636.4	+08 46	var.	5×3	Hubble's Variable Nebula
31	2359	CMa	EN	0715.4	-13 07	-	8×6	fairly bright; NGC's 2360 \& 2362 nearby
32	2438	Pup	PN	0739.6	-14 36	11.8	68"	within M46 open cluster
33	2440	Pup	PN	0739.9	-18 05	10.3	$54^{\prime \prime} \times 20^{\prime \prime}$	almost starlike; irregular at high mag.
34	2539	Pup	OC	0808.4	-12 41	8.2	21	$150 *$; Type f-fairly rich
35	2403	Cam	G-Sc	0732.0	+65 43	8.9	17×10	bright, very large; visible in binocs.
36	2655	Cam	G-S	0849.4	+78 25	10.7	5.0×2.4	bright ellipse w/ star-like nucleus
The Spring Sky								
37	2683	Lyn	G-Sb	0849.6	+33 38	9.6	8.0×1.3	nearly edge-on spiral; very bright
38	2841	UMa	G-Sb	0918.6	+51 12	9.3	6.4×2.4	classic elongated spiral; very bright
39	2985	UMa	G-Sb	0946.0	+72 31	10.6	5.5×5.0	near M81 and M82
40	3077	UMa	G-E2p	0959.4	+68 58	10.9	2.3×1.9	small elliptical; companion to M81/82
41	3079	UMa	G-Sb	0958.6	+55 57	11.2	8.0×1.0	edge-on spiral, NGC 2950 nearby
42	3184	UMa	G-Sc	1015.2	+4140	9.6	5.6×5.6	large, diffuse face-on spiral
43	3675	UMa	G-Sb	1123.5	+43 52	10.6	4.0×1.7	elongated spiral; same field as 56 UMa
44	3877	UMa	G-Sb	1143.5	+4746	10.9	4.4×0.8	edge-on; same field as Chi UMa
45	3941	UMa	G-Sa	1150.3	+3716	9.8	1.8×1.2	small, bright, elliptical shape
46	4026	UMa	G-E8	1156.9	+5112	10.7	3.6×0.7	lens-shaped edge-on; near γ UMa
47	4088	UMa	G-Sc	1203.0	+50 49	10.9	4.5×1.4	nearly edge-on; 4085 in same field
48	4111	UMa	G-S0	1204.5	+43 21	9.7	3.3×0.6	bright, lens-shaped, edge-on spiral
49	4157	UMa	G-Sb	1208.6	+50 46	11.9	6.5×0.8	edge-on, a thin sliver, $4026+4088$ nearby
50	4605	UMa	G-Scp	1237.8	+6153	9.6	5.0×1.2	bright, distinct, edge-on spiral
51	3115	Sex	G-E6	1002.8	-07 28	9.3	4.0×1.2	"Spindle Galaxy"; bright, elongated
52	3242	Hya	PN	1022.4	$\begin{array}{ll}-18 & 23\end{array}$	9.1	$40^{\prime \prime} \times 35^{\prime \prime}$	"Ghost of Jupiter" planetary
53	3344	LMi	G-Sc	1040.7	+25 11	10.4	7.6×6.2	diffuse, face-on spiral
54	3432	LMi	G-Sc	1049.7	+36 54	11.4	5.8×0.8	nearly edge-on; faint flat streak
55	2903	Leo	G-Sb	0929.3	+2144	9.1	11.0×4.6	very bright, large elongated spiral
56	3384	Leo	G-E7	1045.7	+12 54	10.2	4.4×1.4	same field as M105 and NGC 3389
57	3521	Leo	G-Sc	1103.2	+00 14	9.5	7.0×4.0	very bright, large spiral
58	3607	Leo	G-E1	1114.3	+1820	9.6	1.7×1.5	NGC 3605 and 3608 in same field
59	3628	Leo	G-Sb	1117.7	+13 53	10.9	12.0×1.5	large, edge-on; same field as M65/M66
60	4214	CVn	G-irr	1213.1	+36 36	10.3	6.6×5.8	large irregular galaxy
61	4244	CVn	G-S	1215.0	+38 05	11.9	14.5×1.0	large, distinct, edge-on spiral
62	4449	CVn	G-irr	1225.8	+44 22	9.2	4.1×3.4	bright rectangular shape
63	4490	CVn	G-Sc	1228.3	+4155	9.7	5.6×2.1	bright spiral; 4485 in same field
64	4631	CVn	G-Sc	1239.8	+32 49	9.3	12.6×1.4	very large, bright, edge-on; no dust lane
65	4656	CVn	G-Sc	1241.6	+32 26	11.2	19.5×2.0	same field as 4631; fainter, smaller
66	5005	CVn	G-Sb	1308.5	+3719	9.8	4.4×1.7	bright elongated spiral; near α CVn
67	5033	CVn	G-Sb	1311.2	+36 51	10.3	9.9×4.8	large, bright spiral near NGC 5005
68	4274	Com	G-Sb	1217.4	+29 53	10.8	6.7×1.3	NGC 4278 in same field
69	4494	Com	G-E1	1228.9	+26 03	9.6	1.3×1.2	small, bright elliptical
70	4414	Com	G-Sc	1224.0	+3130	9.7	3.2×1.5	bright spiral; star-like nucleus
71	4559	Com	G-Sc	1233.5	+28 14	10.6	11.0×4.5	large spiral; coarse structure
72	4565	Com	G-Sb	1233.9	+26 16	10.2	14.4×1.2	superb edge-on spiral with dust lane
73	4725	Com	G-Sb	1248.1	+25 46	8.9	10.0×5.5	very bright, large spiral
74	4361	Crv	PN	1221.9	-18 29	11.4	$18^{\prime \prime}$	$12^{\text {m }}$ 8 central star

No.	NGC	Con	Type	R.A. (1950) Dec.		m_{v}	Size	Remarks
75	4216	Vir	G-Sb	1213.4	+13 25	10.4	7.4×0.9	nearly edge-on; two others in field
76	4388	Vir	G-Sb	1223.3	+12 56	11.7p	5.0×0.9	edge-on; near M84 and M86
77	4438	Vir	G-S	1225.3	+13 17	10.8	8.0×3.0	paired with NGC 4435
78	4473	Vir	G-E4	1227.3	+13 42	10.1	1.6×0.9	NGC 4477 in same field
79	4517	Vir	G-Sc	1229.0	+00 21	12.0	8.9×0.8	faint edge-on spiral
80	4526	Vir	G-E7	1231.6	+07 58	10.9	3.3×1.0	between two $7^{m} 0$ stars
81	4535	Vir	G-Sc	1231.8	+08 28	10.4p	6.0×4.0	near M49
82	4697	Vir	G-E4	1246.0	-05 32	9.6	2.2×1.4	small, bright elliptical
83	4699	Vir	G-Sa	1246.5	-08 24	9.3	3.0×2.0	small, bright elliptical shape
84	4762	Vir	G-Sa	1250.4	+11 31	11.0	3.7×0.4	flattest galaxy; 4754 in same field
85	5746	Vir	G-Sb	1442.3	+02 10	10.1	6.3×0.8	fine, edge-on spiral near 109 Virginis
86	5907	Dra	G-Sb	1514.6	+56 31	11.3	11.1×0.7	fine, edge-on spiral with dust lane
87	6503	Dra	G-Sb	1749.9	+70 10	9.6	4.5×1.0	bright spiral
88	6543	Dra	PN	1758.8	+66 38	8.7	$22^{\prime \prime}$	luminous blue-green disk
The	mmer Sky							
89	6207	Her	G-Sc	1641.3	+36 56	11.3	2.0×1.1	same field as M13 cluster
90	6210	Her	PN	1642.5	+23 53	9.2	$20^{\prime \prime} \times 13^{\prime \prime}$	very star-like blue planetary
91	6369	Oph	PN	1726.3	-23 44	9.9	$28^{\prime \prime}$	greenish, annular, and circular
92	6572	Oph	PN	1809.7	+06 50	8.9	$16^{\prime \prime} \times 13^{\prime \prime}$	tiny oval; bright blue
93	6633	Oph	OC	1825.1	+06 32	4.9	20	wide-field cluster; IC4756 nearby
94	6712	Sct	GC	$18 \quad 50.3$	-08 47	8.9	2.1	small globular near M26
95	6819	Cyg	OC	1939.6	+40 06	10.1	6	150*; faint but rich cluster
96	6826	Cyg	PN	1943.4	+50 24	9.4	$27^{\prime \prime} \times 24^{\prime \prime}$	Blinking Planetary Nebula
97	6960	Cyg	SNR	2043.6	+30 32	-	70×6	Veil Nebula (west component)
98	6992-5	Cyg	SNR	2054.3	+31 30	-	78×8	Veil Nebula (east component)
99	7000	Cyg	EN	2057.0	+44 08	0	120×100	North America Neb.; binoc. obj.
100	7027	Cyg	EN	2105.1	+4202	10.4	$18^{\prime \prime} \times 11^{\prime \prime}$	very star-like H II region
101	6445	Sgr	PN	1747.8	-20 00	11.8	$38^{\prime \prime} \times 29^{\prime \prime}$	small, bright and annular; near M23
102	6818	Sgr	PN	1941.1	-14 17	9.9	$22^{\prime \prime} \times 15^{\prime \prime}$	"Little Gem"; annular; 6822 nearby
103	6802	Vul	OC	1928.4	+20 10	11.0	3.5	60*; small, faint but rich
104	6940	Vul	OC	2032.5	+28 08	8.2	20	100*; Type e; rich cluster
105	6939	Cep	OC	2030.4	+60 28	10.0	5	80*; very rich; 6946 in same field
106	6946	Cep	G-Sc	2033.9	+59 58	9.7 p	9.0×7.5	faint, diffuse, face-on spiral
107	7129	Cep	RN	2142.0	+65 52	-	7×7	small faint RN; several stars inv.
108	40	Cep	PN	0010.2	+72 15	10.5	$60^{\prime \prime} \times 38^{\prime \prime}$	small circular glow; 11 m .5 central star
109	7209	Lac	OC	2203.2	+46 15	7.6	20	50*; Type d; within Milky Way
110	7243	Lac	OC	$22 \quad 13.2$	+49 38	7.4	20	40*; Type d; within Milky Way
Cha	ge Object							
1	246	Cet	PN	0044.6	-12 09	8.5	$240^{\prime \prime} \times 210^{\prime \prime}$	large and diffuse; deceptively difficult
2	1275	Per	G	0316.4	+4120	12.7	0.7×0.6	small and faint; exploding gal.; Perseus A
3	1432/35	Tau	RN	0343.3	+23 42	-	30×30	Pleiades nebl'y; brightest around Merope
4	1499	Per	EN	0400.1	+3617	-	145×40	California Neb.; very large and faint
5	$\begin{aligned} & \text { IC434/35/ } \\ & \text { B33/2023 } \end{aligned}$	Ori	E/R/DN	0538.6	-02 26	-	60/3/10	complex of nebl'y S. of zeta Ori., B33 is famous dark Horsehead Neb.; difficult
6	$\begin{aligned} & \text { IC431/32/ } \\ & \text { NGC } 2024 \end{aligned}$	Ori	E/RN	0539.4	-01 52	-	4/6/30	complex of nebl'y N. of zeta Ori., NGC2024 is easy but masked by glow from zeta.
7	IC 443	Gem	SNR	0613.9	+22 48	-	27×5	v. faint supernova remnant NE. of η Gem.
8	J 900	Gem	PN	0623.0	+17 49	12.2	$12^{\prime \prime} \times 10^{\prime \prime}$	bright but starlike; oval at high mag.
9	2237/46	Mon	EN	0629.6	+04 40		60	Rosette Neb.; very large; incl. NGC2244
10	2419	Lyn	GC	0734.8	+39 00	11.5	1.7	most distant known Milky Way GC $\left(2 \times 10^{5} \text { l.y. }\right)$
11	5897	Lib	GC	1514.5	-20 50	10.9	7.3	large, but faint and loose globular cl.
12	B 72	Oph	DN	1721.0	-23 35	-	30	Barnard's dark S-Nebula; RFT needed
13	6781	Aql	PN	1916.0	+06 26	11.8	$106 "$	pale version of M97; large, fairly bright
14	6791	Lyr	OC	1919.0	+3740	11	13	large, faint but very rich cl.; $100+$ *
15	M1-92	Cyg	RN	1934.3	+29 27	11	0.2×0.1	Footprint Neb.; bright but starlike; double
16	6822	Sgr	G-irr	1942.1	-14 53	11.0	16.2×11.2	Barnard's Gal.; member Local Grp.; faint
17	6888	Cyg	SNR?	2010.7	+38 16	-	18×12	Crescent Neb.; small faint arc near γ Cyg.
18	IC 5146	Cyg	RN	2151.3	+4702	-	12×12	Cocoon Neb.; faint; at end of long dark neb.
19	7317-20	Peg	G's	2233.7	+33 42	14-15	-	Stephan's Quintet; ${ }^{\frac{1}{2}}{ }^{\circ} \mathrm{SSW}$. of NGC 7331
20	7635	Cas	EN	2318.5	+60 54	-	4×3	Bubble Neb.; v. faint; $\frac{1}{2}^{\circ}$ SW. of M52

GALAXIES

By Barry F. Madore

External galaxies are generally of such low surface brightness that they often prove disappointing objects for the amateur observer. However it must be remembered that many of these galaxies were discovered with very small telescopes and that the enjoyment of their discovery can be recaptured. In addition the central concentration of light varies from galaxy to galaxy making a visual classification of the types possible at the telescope. Indeed the type of galaxy as listed in the first table is in part based on the fraction of light coming from the central bulge of the galaxy as compared to the contribution from a disk component. Disk galaxies with dominant bulges are classified as Sa ; as the nuclear contribution declines, types of Sb, Sc, and Sd are assigned until the nucleus is absent at type Sm. Often the disks of these galaxies show spiral symmetry, the coherence and strength of which is denoted by Roman numerals I through V, smaller numbers indicating well-formed global spiral patterns. Those spirals with central bars are designated SB while those with only a hint of a disk embedded in the bulge are called $\mathrm{S} \phi$. A separate class of galaxies which possess no disk component are called ellipticals and can only be further classified numerically by their apparent flattening: $\mathrm{E} \phi$ being apparently round, E 7 being the most flattened.

Environment appears to play an important role in the determining of the types of galaxies we see at the present epoch. Rich clusters of galaxies such as the system in Coma are dominated by ellipticals and gas-free $\mathbf{S} \phi$ galaxies. The less dense clusters and groups tend to be dominated by the spiral, disk galaxies. Remarkably, in pairs of galaxies the two types are much more frequently of the same Hubble type than random selection would predict. Encounters between disk galaxies may in some cases result in the instabilities necessary to form the spiral structure we often see. M51, the Whirlpool and its companion NGC 519S are an often-cited example of this type of interaction. In the past when the Universe was much more densely packed, interactions and collisions may have been sufficiently frequent that entire galaxies merged to form a single large new system; it has been suggested that some elliptical galaxies formed in this way.
The following table presents the 40 brightest galaxies taken from the Revised Shapley-Ames Catalog. As well as their designations, positions, and types, the table lists the total blue magnitudes, major and minor axis lengths (to the nearest minute of arc), one modern estimate of their distances in thousands of parsecs, and finally their radial velocities corrected for the motion of our Sun about the galactic centre.

THE 40 OPTICALLY BRIGHTEST SHAPLEY-AMES GALAXIES

NGC/IC (Other)	α / δ (1983)	Type	$\stackrel{\mathbf{B}_{\mathrm{T}}}{\mathrm{ma} \times \mathrm{mi}}$	Distance Corrected Radial Vel.
55	$\begin{array}{r} 00^{\mathrm{h}} 14^{\mathrm{m}} 04^{\mathrm{s}} \\ -39^{\circ} 17.1^{\prime} \end{array}$	Sc	$\begin{gathered} 8.22 \mathrm{mag} \\ 25 \times 3 \mathrm{arc} \mathrm{~min} \end{gathered}$	$\begin{gathered} 3100 \mathrm{kpc} \\ +115 \mathrm{~km} / \mathrm{s} \end{gathered}$
$\begin{aligned} & \hline 205 \\ & \text { M110 } \\ & \hline \end{aligned}$	$\begin{array}{r} 003927 \\ +4135.7 \\ \hline \end{array}$	S0/E5pec	$\begin{array}{r} 8.83 \\ 8 \times 3 \\ \hline \end{array}$	$\begin{array}{r} 730 \\ +49 \\ \hline \end{array}$
$\begin{aligned} & \hline 221 \\ & \text { M32 } \\ & \hline \end{aligned}$	$\begin{array}{r} 004149 \\ +4046.3 \end{array}$	E2	$\begin{aligned} & 9.01 \\ & 3 \times 3 \end{aligned}$	$\begin{array}{r} 730 \\ +86 \\ \hline \end{array}$
$\begin{aligned} & \hline 224 \\ & \text { M31 } \\ & \hline \end{aligned}$	$\begin{array}{r} 004149 \\ +4110.5 \\ \hline \end{array}$	Sb I-II	$\begin{gathered} 4.38 \\ 160 \times 40 \\ \hline \end{gathered}$	$\begin{array}{r} 730 \\ -10 \\ \hline \end{array}$
247	$\begin{array}{r} 004619 \\ -2051.2 \end{array}$	Sc III-IV	$\begin{array}{r} 9.51 \\ 18 \times 5 \end{array}$	$\begin{array}{r} 3100 \\ +604 \\ \hline \end{array}$
253	$\begin{array}{r} 004646 \\ -2523.0 \\ \hline \end{array}$	Sc	$\begin{array}{r} 8.13 \\ 22 \times 6 \end{array}$	$\begin{array}{r} 4200 \\ +504 \\ \hline \end{array}$
SMC	$\begin{array}{r} 005210 \\ -7255.3 \\ \hline \end{array}$	Im IV-V	$\begin{gathered} 2.79 \\ 216 \times 216 \\ \hline \end{gathered}$	$\begin{array}{r} 60 \\ +359 \\ \hline \end{array}$
300	$\begin{array}{r} 0054.05 \\ -3746.7 \\ \hline \end{array}$	Sc III	$\begin{gathered} 8.70 \\ 20 \times 10 \\ \hline \end{gathered}$	$\begin{array}{r} 2400 \\ +625 \\ \hline \end{array}$
$\begin{aligned} & \hline 598 \\ & \text { M33 } \\ & \hline \end{aligned}$	$\begin{array}{r} 013255 \\ +3034.0 \\ \hline \end{array}$	Sc II-III	$\begin{gathered} 6.26 \\ 60 \times 40 \end{gathered}$	$\begin{array}{r} 900 \\ +506 \\ \hline \end{array}$
$\begin{aligned} & \hline 628 \\ & \text { M } 74 \\ & \hline \end{aligned}$	$\begin{array}{r} 013549 \\ +1541.6 \\ \hline \end{array}$	Sc I	$\begin{gathered} 9.77 \\ 8 \times 8 \\ \hline \end{gathered}$	$\begin{array}{r} 17000 \\ +507 \\ \hline \end{array}$
$\begin{aligned} & 1068 \\ & \text { M77 } \\ & \hline \end{aligned}$	$\begin{array}{r} 024149 \\ -0005.2 \\ \hline \end{array}$	Sb II	$\begin{array}{r} 9.55 \\ 3 \times 2 \\ \hline \end{array}$	$\begin{array}{r} 25000 \\ +510 \\ \hline \end{array}$
1291	$\begin{array}{r} 031642 \\ -41 \quad 11.3 \\ \hline \end{array}$	SBa	$\begin{gathered} 9.42 \\ 5 \times 2 \\ \hline \end{gathered}$	$\begin{array}{r} 15000 \\ +512 \\ \hline \end{array}$
1313	$\begin{array}{r} 031804 \\ -6633.6 \\ \hline \end{array}$	SBc III-IV	$\begin{gathered} 9.37 \\ 5 \times 3 \\ \hline \end{gathered}$	$\begin{array}{r} 5200 \\ +261 \\ \hline \end{array}$
$\begin{gathered} 1316 \\ \text { Fornax A } \end{gathered}$	$\begin{array}{r} 032203 \\ -3716.1 \\ \hline \end{array}$	Sa (pec)	$\begin{array}{r} 9.60 \\ 4 \times 3 \\ \hline \end{array}$	$\begin{array}{r} 30000 \\ +1713 \\ \hline \end{array}$
LMC	$\begin{array}{r} 052345 \\ -6946.3 \\ \hline \end{array}$	SBm III	$\begin{gathered} 0.63 \\ 432 \times 432 \\ \hline \end{gathered}$	$\begin{array}{r} 50 \\ +34 \\ \hline \end{array}$
2403	$\begin{array}{r} 073513 \\ +6538.2 \\ \hline \end{array}$	Sc III	$\begin{gathered} 8.89 \\ 16 \times 10 \end{gathered}$	$\begin{array}{r} 3600 \\ +299 \\ \hline \end{array}$
2903	$\begin{array}{r} 093102 \\ +2134.4 \\ \hline \end{array}$	Sc I-III	$\begin{array}{r} 9.50 \\ 11 \times 5 \\ \hline \end{array}$	$\begin{array}{r} 9400 \\ +472 \\ \hline \end{array}$
$\begin{aligned} & 3031 \\ & \text { M81 } \end{aligned}$	$\begin{array}{r} 095411 \\ +6908.9 \end{array}$	Sb I-II	$\begin{gathered} 7.86 \\ 16 \times 10 \end{gathered}$	$\begin{array}{r} 3600 \\ +124 \end{array}$
$\begin{aligned} & 3034 \\ & \text { M82 } \\ & \hline \end{aligned}$	$\begin{array}{r} 095424 \\ +6945.5 \\ \hline \end{array}$	Amorphous	$\begin{aligned} & 9.28 \\ & 7 \times 2 \end{aligned}$	$\begin{array}{r} 3600 \\ +409 \\ \hline \end{array}$
3521	$\begin{array}{r} 110457 \\ +0003.5 \end{array}$	Sb II-III	$\begin{aligned} & 9.64 \\ & 7 \times 2 \end{aligned}$	$\begin{array}{r} 13000 \\ +627 \end{array}$

[^11]| $\begin{aligned} & \text { NGC/IC } \\ & \text { (Other) } \end{aligned}$ | α / δ (1983) | Type | $\begin{gathered} \mathbf{B}_{\mathrm{T}} \\ \mathrm{ma} \times{ }_{\mathrm{mi}} \\ \hline \end{gathered}$ | Distance Corrected Radial Vel. |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 3627 \\ & \text { M66 } \end{aligned}$ | $\begin{array}{r} 111922 \\ +1305.0 \end{array}$ | Sb II | $\begin{gathered} 9.74 \\ 8 \times 3 \\ \hline \end{gathered}$ | $\begin{array}{r} 12000 \\ +593 \end{array}$ |
| $\begin{aligned} & \hline 4258 \\ & \text { M106 } \end{aligned}$ | $\begin{array}{r} 121807 \\ +4724.1 \\ \hline \end{array}$ | Sb II | $\begin{gathered} 8.95 \\ 20 \times 6 \end{gathered}$ | $\begin{array}{r} 10000 \\ +520 \end{array}$ |
| 4449 | $\begin{array}{r} 122724 \\ +4411.4 \end{array}$ | Sm IV | $\begin{gathered} 9.85 \\ 5 \times 3 \\ \hline \end{gathered}$ | $\begin{array}{r} 5000 \\ +250 \\ \hline \end{array}$ |
| $\begin{aligned} & 4472 \\ & \text { M49 } \end{aligned}$ | $\begin{array}{r} 122855 \\ +0805.8 \\ \hline \end{array}$ | E1/S \dagger | $\begin{aligned} & 9.32 \\ & 5 \times 4 \\ & \hline \end{aligned}$ | $\begin{array}{r} 22000 \\ +822 \\ \hline \end{array}$ |
| $\begin{aligned} & 4486 \\ & \text { M87 } \\ & \hline \end{aligned}$ | $\begin{array}{r} 122958 \\ +1229.2 \\ \hline \end{array}$ | E \downarrow | $\begin{array}{r} 9.62 \\ 3 \times 3 \\ \hline \end{array}$ | $\begin{aligned} & 22000 \\ & +1136 \\ & \hline \end{aligned}$ |
| $\begin{gathered} 4594 \\ \text { M104 } \end{gathered}$ | $\begin{array}{r} 123907 \\ -1131.8 \\ \hline \end{array}$ | Sa/b | $\begin{aligned} & 9.28 \\ & 7 \times 2 \end{aligned}$ | $\begin{array}{r} 17000 \\ +873 \\ \hline \end{array}$ |
| 4631 | $\begin{array}{r} 124118 \\ +3238.0 \\ \hline \end{array}$ | Sc | $\begin{array}{r} 9.84 \\ 12 \times 1 \\ \hline \end{array}$ | $\begin{array}{r} 12000 \\ +606 \\ \hline \end{array}$ |
| $\begin{aligned} & \hline 4649 \\ & \text { M60 } \\ & \hline \end{aligned}$ | $\begin{array}{r} 124249 \\ +1138.7 \\ \hline \end{array}$ | \mathbf{S} ¢ | $\begin{array}{r} 9.83 \\ 4 \times 3 \\ \hline \end{array}$ | $\begin{aligned} & \hline 22000 \\ & +1142 \end{aligned}$ |
| $\begin{aligned} & 4736 \\ & \text { M94 } \end{aligned}$ | $\begin{array}{r} 125006 \\ +4112.9 \end{array}$ | Sab | $\begin{gathered} 8.92 \\ 5 \times 4 \\ \hline \end{gathered}$ | $\begin{array}{r} 6900 \\ +345 \\ \hline \end{array}$ |
| $\begin{aligned} & 4826 \\ & \text { M64 } \\ & \hline \end{aligned}$ | $\begin{array}{r} 125555 \\ +2146.5 \\ \hline \end{array}$ | Sab II | $\begin{array}{r} 9.37 \\ 8 \times 4 \\ \hline \end{array}$ | $\begin{array}{r} 7000 \\ +350 \\ \hline \end{array}$ |
| 4945 | $\begin{array}{r} 130428 \\ -4922.5 \\ \hline \end{array}$ | Sc | $\begin{array}{r} 9.60 \\ 12 \times 2 \\ \hline \end{array}$ | $\begin{array}{r} 7000 \\ +275 \\ \hline \end{array}$ |
| $\begin{aligned} & 5055 \\ & \text { M63 } \\ & \hline \end{aligned}$ | $\begin{array}{r} 131504 \\ +4207.4 \\ \hline \end{array}$ | Sbc II-III | $\begin{array}{r} 9.33 \\ 8 \times 3 \\ \hline \end{array}$ | $\begin{array}{r} 11000 \\ +550 \\ \hline \end{array}$ |
| $\begin{array}{r} 5128 \\ \text { Cen A } \\ \hline \end{array}$ | $\begin{array}{r} 132429 \\ -4235.7 \\ \hline \end{array}$ | $\mathbf{S} \boldsymbol{\phi}$ (pec) | $\begin{array}{r} 7.89 \\ 10 \times 3 \\ \hline \end{array}$ | $\begin{array}{r} 6900 \\ +251 \\ \hline \end{array}$ |
| $\begin{aligned} & 5194 \\ & \text { M51 } \\ & \hline \end{aligned}$ | $\begin{array}{r} 132910 \\ +4717.2 \end{array}$ | Sbc I-II | $\begin{gathered} 8.57 \\ 12 \times 6 \end{gathered}$ | $\begin{array}{r} 11000 \\ +541 \end{array}$ |
| $\begin{aligned} & 5236 \\ & \text { M83 } \\ & \hline \end{aligned}$ | $\begin{array}{r} 133602 \\ -2946.8 \\ \hline \end{array}$ | SBc II | $\begin{gathered} 8.51 \\ 10 \times 8 \\ \hline \end{gathered}$ | $\begin{array}{r} 6900 \\ +275 \\ \hline \end{array}$ |
| $\begin{array}{r} 5457 \\ \text { M101 } \\ \hline \end{array}$ | $\begin{array}{r} 140239 \\ +5426.4 \\ \hline \end{array}$ | Sc I | $\begin{gathered} 8.18 \\ 22 \times 22 \\ \hline \end{gathered}$ | $\begin{array}{r} 7600 \\ +372 \\ \hline \end{array}$ |
| 6744 | $\begin{array}{r} 190809 \\ -6353.0 \\ \hline \end{array}$ | Sbc II | $\begin{array}{r} 9.24 \\ 9 \times 9 \\ \hline \end{array}$ | $\begin{array}{r} 13000 \\ +663 \end{array}$ |
| 6822 | $\begin{array}{r} 194359 \\ -1450.8 \\ \hline \end{array}$ | Im IV-V | $\begin{gathered} 9.35 \\ 20 \times 10 \end{gathered}$ | $\begin{array}{r} 680 \\ +15 \\ \hline \end{array}$ |
| 6946 | $\begin{array}{r} 203430 \\ +6005.9 \\ \hline \end{array}$ | Sc II | $\begin{array}{r} 9.68 \\ 13 \times 9 \\ \hline \end{array}$ | $\begin{array}{r} 6700 \\ +336 \\ \hline \end{array}$ |
| 7793 | $\begin{array}{r} 235657 \\ -3241.1 \end{array}$ | Sd IV | $\begin{aligned} & 9.65 \\ & 6 \times 4 \end{aligned}$ | $\begin{array}{r} 4200 \\ +241 \end{array}$ |

The following table contains the positions and catalogue designations of all those galaxies known to have proper names which usually honour the discoverer (Object McLeish), identify the constellation in which the galaxy is found (Fornax A) or describe the galaxy in some easily remembered way (Whirlpool galaxy).

GALAXIES WITH PROPER NAMES

Name/Other	α / δ (1950)	Name/Other	α / δ (1950)
Andromeda Galaxy $=\mathrm{M} 31=\mathrm{NGC} 224$	$\begin{array}{r} 00^{\mathrm{h}} 40^{\mathrm{m}} 0 \\ +41^{\circ} 00^{\prime} \end{array}$	Holmberg III	$\begin{array}{r} 09^{h} 09^{m}{ }^{6} \\ +74^{\circ} 26^{\prime} \end{array}$
Andromeda I	$\begin{array}{r} 0043.0 \\ +3744 \end{array}$	$\begin{aligned} & \text { Holmberg IV } \\ & =\text { DDO } 185 \end{aligned}$	$\begin{array}{r} 1352.8 \\ +5409 \end{array}$
Andromeda II	$\begin{array}{r} 0113.5 \\ +3309 \end{array}$	Holmberg V	$\begin{array}{r} 1338.8 \\ +5435 \end{array}$
Andromeda III	$\begin{array}{r} 0032.6 \\ +3614 \end{array}$	Holmberg VI $=\mathrm{NGC} 1325 \mathrm{~A}$	$\begin{array}{r} 0322.6 \\ -2131 \end{array}$
Andromeda IV	$\begin{array}{r} 0039.8 \\ +4018 \end{array}$	$\begin{aligned} & \text { Holmberg VII } \\ & =\text { DDO } 137 \end{aligned}$	$\begin{array}{r} 1233.2 \\ +0635 \end{array}$
$\begin{aligned} & \text { Antennae } \\ & =\text { NGC } 4038 / 39 \end{aligned}$	$\begin{array}{r} 1159.3 \\ -1835 \end{array}$	$\begin{aligned} & \text { Holmberg VIII } \\ & =\text { DDO } 166 \end{aligned}$	$\begin{array}{r} 1311.0 \\ +3629 \end{array}$
$\begin{aligned} & \text { Barnard's Galaxy } \\ & =\text { NGC } 6822 \end{aligned}$	$\begin{array}{r} 1942.1 \\ -1453 \end{array}$	$\begin{aligned} & \text { Holmberg IX } \\ & =\text { DDO } 66 \end{aligned}$	$\begin{array}{r} 0953.5 \\ +6917 \end{array}$
BL Lac	$\begin{array}{r} 2201.9 \\ +4211 \end{array}$	Hydra A	$\begin{array}{r} 0915.7 \\ -1153 \end{array}$
Capricorn Dwarf $=\text { Pal } 13$	$\begin{array}{r} 2144.0 \\ -2129 \end{array}$	Keenan's System $=\text { NGC } 5216 / 18=\operatorname{Arp} 104$	$\begin{array}{r} 1331.1 \\ +6252 \end{array}$
Caraffe Galaxy	$\begin{array}{r} 0426.6 \\ -4801 \end{array}$	Large Magellanic Cloud	$\begin{array}{r} 0524.0 \\ -6948 \end{array}$
Carina Dwarf	$\begin{array}{\|r\|} 0645.1 \\ -5100 \end{array}$	Leo I = Harrington-Wilson \#1 = Regulus Dwarf = DDO 74	$\begin{array}{r} 1005.8 \\ +1233 \end{array}$
Cartwheel Galaxy	$\begin{array}{\|r\|r\|} 0035.0 \\ -3401 \end{array}$	$\begin{aligned} & \text { Leo II }=\text { Harrington-Wilson \#2 } \\ & =\text { Leo } \mathrm{B}=\mathrm{DDO} 93 \end{aligned}$	$\begin{array}{r} 1110.8 \\ +2226 \end{array}$
$\begin{aligned} & \text { Centaurus A } \\ & =\text { NGC } 5128=\operatorname{Arp} 153 \end{aligned}$	$\begin{array}{r} 1322.5 \\ -4246 \end{array}$	Leo A $=$ Leo III = DDO 69	$\begin{array}{r} 0956.5 \\ +3059 \end{array}$
Circinus Galaxy	$\begin{array}{r} 1409.3 \\ -6506 \end{array}$	Lindsay-Shapley Ring	$\begin{array}{r} 0644.4 \\ -7411 \end{array}$
Copeland Septet $=\text { NGC } 3745 / 54=\operatorname{Arp} 370$	$\begin{array}{r} 1135.1 \\ +2218 \end{array}$	McLeish's Object	$\begin{array}{r} 2005.0 \\ -6622 \end{array}$
Cygnus A	$\begin{array}{r} 1957.7 \\ +4036 \end{array}$	Maffei I	$\begin{array}{r} 0232.6 \\ +5926 \end{array}$
$\begin{aligned} & \text { Draco Dwarf } \\ & =\text { DDO } 208 \end{aligned}$	$\begin{array}{r} 1719.2 \\ +5758 \end{array}$	Maffei II	$\begin{array}{r} 0238.1 \\ +5923 \end{array}$
Fath 703	$\begin{array}{r} 1511.0 \\ -1517 \end{array}$	Mayall's Object $=\text { Arp } 148=\mathrm{VV} 32$	$\begin{array}{\|c} 1101.1 \\ +4107 \end{array}$
$\begin{aligned} & \text { Fornax A } \\ & =\text { NGC } 1316 \end{aligned}$	$\begin{array}{r} 0320.8 \\ -3723 \end{array}$	$\begin{aligned} & \text { Mice } \\ & =\text { NGC } 4676=\text { Arp } 242 \end{aligned}$	$\begin{array}{r} 1244.7 \\ +3054 \end{array}$
Fornax Dwarf	$\begin{array}{r} 0237.8 \\ -3444 \end{array}$	Pegasus Dwarf = DDO 216	$\begin{array}{r} 2326.0 \\ +1428 \end{array}$
Fourçade-Figueroa Object	$\begin{array}{r} 1332.4 \\ -3338 \end{array}$	$\begin{aligned} & \text { Perseus A } \\ & =\text { NGC } 1275 \end{aligned}$	$\begin{array}{r} 0316.5 \\ +4120 \end{array}$
$\begin{aligned} & \text { GR8 (Gibson Reaves) } \\ & =\text { DDO } 155 \end{aligned}$	$\begin{array}{r} 1256.2 \\ +1429 \end{array}$	Pinwheel Galaxy $=\text { M101 = NGC } 5457$	$\begin{array}{r} 1401.5 \\ +5436 \end{array}$
Hardcastle Nebula	$\begin{array}{r} 1310.2 \\ -3226 \end{array}$	Regulus Dwarf $=\text { Leo I = DDO } 74$	$\begin{array}{r} 1005.8 \\ +1233 \end{array}$
Hercules A	$\begin{aligned} & 1648.7 \\ & +0506 \end{aligned}$	Reticulum Dwarf	$\begin{array}{r} 0435.4 \\ -5856 \end{array}$
Holmberg I $\text { = DDO } 63$	$\begin{array}{r} 0936.0 \\ +7125 \end{array}$	$\begin{aligned} & \text { Reinmuth } 80 \\ & =\mathrm{NGC} 4517 \mathrm{~A} \end{aligned}$	$\begin{array}{r} 0057.6 \\ -3358 \end{array}$
Holmberg II $=\text { DDO } 50=\operatorname{Arp} 268$	$\begin{array}{r} 0813.7 \\ +7052 \\ \hline \end{array}$	Seashell Galaxy	$\begin{aligned} & 1344.5 \\ & -3010 \end{aligned}$

Name/Other	α / δ (1950)	Name/Other	α / δ (1950)
Serpens Dwarf	$\begin{aligned} & 15^{\mathrm{h}} 13^{\mathrm{m} 5} \\ &+00^{\circ} 03^{\prime} \end{aligned}$	Triangulum Galaxy $\text { = M33 = NGC } 598$	$\begin{array}{r} 01^{\mathrm{l}} 31^{\mathrm{m}} \cdot \mathrm{om} \\ +30^{\circ} 24^{\prime} \end{array}$
$\begin{aligned} & \text { Seyfert's Sextet } \\ & =\text { NGC } 6027 \mathrm{~A}-\mathrm{D} \end{aligned}$	$\begin{array}{r} 1557.0 \\ +2054 \end{array}$	Ursa Minor Dwarf $=\text { DDO } 199$	$\begin{aligned} 1508.2 \\ +6723 \end{aligned}$
Sextans A $=\mathrm{DDO} 75$	$\begin{array}{\|r\|} 10 \\ \\ -04.6 \\ -08 \end{array}$	Virgo A $=\mathrm{M} 87=\mathrm{NGC} 4486=\operatorname{Arp} 152$	$\begin{array}{r} 1228.3 \\ +1240 \end{array}$
Sextans B $=\text { DDO } 70$	$\begin{array}{r} 0957.4 \\ +0534 \end{array}$	Whirlpool Galaxy $=\mathrm{M} 51=\mathrm{NGC} 5194$	$\begin{array}{r} 1327.8 \\ +4727 \end{array}$
Sextans C	$\begin{array}{rl} 10 & 03.0 \\ +0019 \end{array}$	$\begin{aligned} & \text { Wild's Triplet } \\ & =\text { Arp } 248 \end{aligned}$	$\begin{array}{\|r\|} 1144.2 \\ -0333 \end{array}$
Small Magellanic Cloud	$\begin{array}{\|r\|r\|} 0051.0 \\ -7306 \end{array}$	Wolf-Lundmark-Melotte = DDO 221	$\begin{array}{r} 2359.4 \\ -1544 \end{array}$
Sombrero Galaxy $=\text { M104 = NGC } 4594$	$\begin{array}{r} 1237.6 \\ -1121 \end{array}$	$\begin{aligned} & \text { Zwicky No. } 2 \\ & =\text { DDO } 105 \end{aligned}$	$\begin{array}{r} 1155.9 \\ +3821 \end{array}$
$\begin{aligned} & \text { Spindle Galaxy } \\ & =\text { NGC } 3115 \end{aligned}$	$\begin{array}{r} 1002.8 \\ -0728 \end{array}$	$\begin{aligned} & \text { Zwicky's Triplet } \\ & =\text { Arp } 103 \end{aligned}$	$\begin{array}{r} 1648.0 \\ +4533 \end{array}$
Stephans Quintet $=\text { NGC } 7317-20=\operatorname{Arp} 319$	$\begin{array}{r} 2233.7 \\ +3342 \end{array}$		

The nearest galaxies listed below form what is known as our Local Group of galaxies. Many of the distances are still quite uncertain.

THE NEAR-BY GALAXIES: OUR LOCAL GROUP

Name	$\alpha \quad$ (19	.0) δ	B_{T}	Type	Distance (kpc)
M31 = NGC 224	$00^{\mathrm{h}} 41^{\mathrm{m}} .8$	$+41^{\circ} 11^{\prime}$	4.38	Sb I-II	730
Galaxy		-	-	Sb / c	
M33 = NGC 598	0132.9	+30 34	6.26	Sc II-III	900
LMC	0523.8	-69 46	0.63	SBm III	50
SMC	0052.2	-7255	2.79	Im IV-V	60
NGC 6822	1944.0	-1451	9.35	Im IV-V	520
IC 1613	0103.9	+0202	10.00	Im V	740
M110 = NGC 205	0039.5	+4136	8.83	S0/E5 pec	730
M32 = NGC 221	0041.8	+40 46	9.01	E2	730
NGC 185	0038.0	+4815	10.13	dE3 pec	730
NGC 147	0032.3	+4825	10.36	dE5	730
Fornax	0239.2	-34 36	9.1	dE	130
Sculptor	0059.0	-33 47	10.5	dE	85
Leo I	1007.6	+1224	11.27	dE	230
Leo II	1112.6	+2215	12.85	dE	230
Draco	1719.8	+5756	-	dE	80
Ursa Minor	1508.6	+6716	-	dE	75
Carina	0647.2	-5059	-	dE	170
And I	0044.6	+3757	13.5	dE	730
And II	0115.5	+3321	13.5	dE	730
And III	0034.5	+3625	13.5	dE	730
LGS 3	0102.9	+2148	-	?	730

RADIO SOURCES

By Ken Tapping

This list gives examples of the various classes of radio sources to be found among the several thousand objects that have been catalogued. In addition, sources lying within the reach of small (amateur-built) radio telescopes are included. Where possible, the flux densities (S) at the frequencies 100,500 , and 1000 MHz are given. The flux unit equals $10^{-26} \mathrm{~W} \mathrm{~m}{ }^{-2} \mathrm{~Hz}^{-1}$.

For information on radio astronomy, see Radio Astronomy, by J. D. Kraus, (McGraw Hill, 1966). Radio maps of the sky can be found in Sky and Telescope, 63, 230 (1982). Amateur radio astronomy is discussed in Astronomy, 5, no. 12, 50 (1977), in a series of articles in J. Roy. Ast. Soc. Canada, 72, L5, L22, L38, ... (1978), and in Sky and Telescope, 55, 385 and 475, and 56, 28 and 114 (1978).

Source	$\alpha(2000) \delta$		S (at $100,500,1000 \mathrm{MHz}$)
3 C 10	$00^{\mathrm{h}} 25^{\text {m }} 3$	$+64^{\circ} 08^{\prime}$	$180,85,56$ Remnant of Tycho's Supernova of 1572
W3	0225.4	+62 06	$\begin{aligned} & \overline{\text { IC }} 1795 \text {; Multiple HII region; } \mathrm{OH} \text { source } \end{aligned}$
Algol	0307.9	+40 56	Eclipsing binary star
3C84	0319.8	+4132	$\begin{aligned} & \text { 70, } 25,17 \\ & \text { NGC 1275; Seyfert galaxy; } \mathrm{m}=12.7, \mathrm{z}=0.018 \end{aligned}$
Fornax-A	0320.4	-3722	$900,160,110$ NGC 1316; Galaxy; $m=10.1, z=0.006$
Pictor-A	0519.9	-4547	$\begin{aligned} & \text { 440, } 140,100 \\ & \text { Galaxy; } m=15.8, z=0.034 \end{aligned}$
V371 Orionis	0533.7	+0155	Red dwarf, flare star
Taurus-A	0534.5	+2201	$1450,1250,1000$ Crab Nebula; Remnant of 1054 Supernova
NP0532	0534.4	+2201	$\begin{aligned} & 15,0.5,1 \\ & \text { Crab Pulsar; Period }=0.0331 \mathrm{~s} \end{aligned}$
Orion-A	0535.3	-05 25	$90,200,360$ Orion Neb.; HII region; OH, IR source
3C157	0617.6	+22 42	$360,195,180$ IC443; Supernova remnant
VY CMa	0723.1	-20 44	Optical var.; $\mathrm{IR}, \mathrm{OH}, \mathrm{H}_{2} \mathrm{O}$ source
Puppis-A	0820.3	-42 48	650, 300, 100
Hydra-A	0918.1	-1205	$\begin{aligned} & \begin{array}{l} 390,110,65 \\ \text { Galaxy; } m=14.8, z=0.052 \end{array} \end{aligned}$
3C273	1229.1	+02 03	$150,57,49$ Strongest quasar; $\mathrm{m}=13.0, \mathrm{z}=0.158$

\because *Important but weak or sporadic radio source. Mean flux density $\leqq 1$ flux unit.

[^12]
MAPS OF THE NIGHT SKY

The maps on the next seven pages cover the entire sky. Stars are shown down to a magnitude of 4.5 or 5 , i.e. those which are readily apparent to the unaided eye on a reasonably dark night.

The first six maps are drawn for $45^{\circ} \mathrm{N}$ latitude, but are useful for latitudes several degrees north or south of this. They show the hemisphere of sky visible to an observer at various times of year. Because the aspect of the night sky changes continuously with both longitude and time, while time zones change discontinuously with both longitude and time of year, it is not possible to state simply when, in general, a particular observer will find that his or her sky fits exactly one of the six maps. The month indicated below each map is the time of year when the map will match the "late evening" sky. On any particular night, successive maps will represent the sky as it appears every four hours later. For example, at 2 or 3 am on a March night, the May map should be used. Just after dinner on a January night, the November map will be appropriate. The center of each map is the zenith, the point directly overhead; the circumference is the horizon. To identify the stars, hold the map in front of you so that the part of the horizon which you are facing (west, for instance) is downward. (The four letters around the periphery of each map indicate compass directions.)

The southern sky map is centred on the south celestial pole, and extends to $20^{\circ} \mathrm{S}$ declination at its periphery. There is thus considerable overlap with the southern areas of the other maps. Note that the orientation of the various names is generally inverted compared to that on the first six maps. This was done in recognition that most users of this Handbook will be residents of the Northern Hemisphere, and will make use of the southern sky map when they go on infrequent trips to the tropics. Thus in "normal" use this map will be read in an area above its centre, unlike the first six maps which are normally read below their centres. The months indicated around the edge of the map may be used to orient it to each of the preceding six maps, and have the same "late evening" significance as explained above. Tick marks around the edge of the map indicate hours of right ascension, with hours $0,3,6$, etc. labelled. Starting at the centre of the map, the series of small crosses along 0 h right ascension indicates southern declinations $90^{\circ}, 80^{\circ}, 70^{\circ}, \ldots, 20^{\circ}$. With the aid of a drawing compass, an observer in the Northern Hemisphere can quickly locate a circle, centred on the south celestial pole, which represents the southern limit of his or her sky.

On all seven maps, stars forming the usual constellation patterns are linked by straight lines, constellation names being given in upper case letters. Three constellations (Horologium, Mensa, and Microscopium) consist of faint stars; hence no patterns are indicated and the names are placed in parentheses. The names in lower case are those of first magnitude stars, except Algol and Mira which are famous variable stars, and Polaris which is near the north celestial pole. Small clusters of dots indicate the positions of bright star clusters, nebulae, or galaxies. Although a few of these are just visible to the naked eye, and most can be located in binoculars, a telescope is needed for good views of these objects. The pair of wavy, dotted lines indicates roughly the borders of the Milky Way. Small asterisks locate the directions of the galactic centre (GC), the north galactic pole (NGP), and the south galactic pole (SGP). LMC, SMC, and CS signify, respectively, the Large Magellanic Cloud, the Small Magellanic Cloud, and the Coal Sack. Two dashed lines appear on each of the first six maps. The one with more dashes is the celestial equator. Tick marks along this indicate hours of right ascension, the odd hours being labelled. The line with fewer dashes is the ecliptic, the apparent annual path of the Sun across the heavens. Letters along this line indicate the approximate position of the Sun at the beginning of each month. Also located along the ecliptic are the vernal equinox (VE), summer solstice (SS), autumnal equinox (AE), and winter solstice (WS). The Moon and the other eight planets are found near the ecliptic, but since their motions are not related in a simple way to our year, it is not feasible to show them on a general set of star maps.

JANUARY

MARCRI

$\mathbb{M} \mathbb{A}$

$\mathbb{J} \mathbb{U} \mathbb{I}$

$\operatorname{SEPTEMIBER}$

$\mathbb{N} \mathbb{O} \mathbb{E} \mathbb{M} \mathbb{B} \mathbb{R}$

TIBIE
 $\mathbb{S O U T} \mathbb{I} \mathbb{E} \mathbb{R} \mathbb{N}$
 $\mathbb{S} \mathbb{K} \mathbb{Y}$

KEY TO LEFT-HAND MARGIN SYMBOLS

D BASIC DATA
 t TIME
 THE SKY MONTH BY MONTH
 SUN
 of MOON
 P PLANETS, SATELLITES, AND ASTEROIDS
 \. METEORS, COMETS, AND DUST
 救 STARS
 \because NEBULAE

INDEX

Anniversaries and Festivals, 23
Asteroids, 121
Aurora, 51
Clusters, 158
Comets, 130
Constellations, 136
Coordinates and Terminology, 7
Cover Photograph, 2
Craters: Impact, 128
Eclipses, 76
Galaxies, 169
Gegenschein, 134
Interplanetary Dust, 134
Julian Day Calendar, 20
Jupiter: General, 100; Phenomena of Satellites, 109
Mars, General, 99
Mercury, 96
Messier's Catalogue, 163
Meteors, Fireballs, Meteorites, 126
Miscellaneous Astronomical and Physical Data, 13
Moon: Observation, 22; see also "Occultations"; Map, 59; Full Moon Dates, 62
Moonrise and Moonset, 62
Nebulae, 162
Neptune, 106
NGC Objects, 166
Occultations: Lunar Grazing, 88; Lunar Total, 83; Planetary, 124

Planets: General, 93; Elements, 8;
Pronunciation of Names, 94
Pluto, 106
Precession, 16
Radio Sources, 174
Reporting of Discoveries, 3
Satellites, 9; Pronunciation of Names, 95
Saturn: General, 103; Satellites, 120
Sky and Astronomical Phenomena Month by Month, 22
Solar System: Elements, 8; List of Satellites, 9
Star Maps, 176
Stars: Brightest, 139; Clusters, 158; Double and Multiple, 152; Finding List and
Names, 138; Nearest, 150; Variable, 153
Sun: Ephemeris, 48; Solar Activity, 51
Sunrise and Sunset, 54
Symbols: 7
Telescope Parameters, 12
Time: General, 17; Conversion to Standard,
54; Correction to Sundial, 50; Sidereal
Time Diagram, 21; Time Signals, 20;
Time Zones, 18, 19
Twilight: Diagram, 21; Table, 58
Uranus, 105
Venus, 97
Visiting Hours at Observatories and Planetaria, 5
Zodiacal Light, 134

January	February	March	April
S M T W T F S	S M T W T F S	S M T W T F S	S M T W T F S
$\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}$	12	12	$\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6\end{array}$
$\begin{array}{lllllllll}6 & 7 & 8 & 9 & 10 & 11 & 12\end{array}$	$\begin{array}{lllllll}3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$	$\begin{array}{lllllll}3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$	
13141516171819	10111213141516	10111213141516	
20212223242526	17181920212223	17181920212223	21222324252627
2728293031	2425262728	24252627282930	282930
		31	
May	June	July	August
S M T W T F S	S M T W T F S	S M T W T F S	S M T W T F S
$\begin{array}{llll}1 & 2 & 3 & 4\end{array}$	- 1	$\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6\end{array}$	123
$\begin{array}{lllllllll}5 & 6 & 7 & 8 & 9 & 10 & 11\end{array}$	$\begin{array}{llllllll}2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$	$\begin{array}{llllllllllll}7 & 8 & 9 & 10 & 11 & 1213\end{array}$	$\begin{array}{llllllll}4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$
12131415161718	9101112131415		
19202122232425	16171819202122	21222324252627	18192021222324
262728293031	23242526272829	28293031	25262728293031
	30		
September	October	November	December
S M T W T F S	S M T W T F S	S M T W T F S	S M T W T F S
$\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$	$\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}$	12	$\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$
891011121314	$\begin{array}{llllll}6 & 7 & 8 & 9 & 101112\end{array}$	$\begin{array}{lllllll}3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$	$8 \quad 91011121314$
15161718192021	13141516171819	10111213141516	15161718192021
22232425262728	20212223242526	17181920212223	22232425262728
2930	2728293031	24252627282930	293031

CALENDAR

1986

January	February	March	April
S M T W T F S	S M T W T F S	S M T W T F S	S M T W T F S
$\begin{array}{lllll}1 & 2 & 3 & 4\end{array}$	1		$\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}$
$\begin{array}{lllllllll}5 & 6 & 7 & 8 & 9 & 10 & 11\end{array}$	$\begin{array}{llllllll}2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$	$\begin{array}{llllllll}2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$	$\begin{array}{lllllllll}6 & 7 & 8 & 9 & 10 & 11 & 12\end{array}$
12131415161718	9101112131415	9101112131415	$\begin{array}{llllllllllll}13 & 14 & 15171819\end{array}$
19202122232425	16171819202122	16171819202122	20212223242526
262728293031	232425262728	23242526272829	27282930
		3031	
May	June	July	August
S M	S M T W	S M	S M T W
	$\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$		
$\begin{array}{llllllll}4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$	$8 \quad 91011121314$	$\begin{array}{llllllllll}6 & 7 & 8 & 9 & 10 & 11 & 12\end{array}$	$\begin{array}{lllllll}3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$
11121314151617	15161718192021		10111213141516
18192021222324	22232425262728	20212223242526	17181920212223
25262728293031	2930	2728293031	24252627282930
			31
September	October	November	December
S M T W T F S	S M T W T F S	S M T W T F S	S M T W T F S
$\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6\end{array}$	$1 \begin{array}{llll}1 & 2 & 3 & 4\end{array}$	1	$\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6\end{array}$
$\begin{array}{llllllllllll}7 & 8 & 9 & 10 & 11 & 1213\end{array}$	$\begin{array}{lllllllll}5 & 6 & 7 & 8 & 9 & 10 & 11\end{array}$	$\begin{array}{llllllll}2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$	
14151617181920	12131415161718	9101112131415	$\begin{array}{lllllllllll}14 & 1617181920\end{array}$
21222324252627	19202122232425	16171819202122	21222324252627
282930	262728293031	23242526272829	28293031

[^0]: *With the assistance of Virginia A. Fabro.

[^1]: ${ }^{1}$ Visible from N. of S. America, N. Atlantic, N. Africa, Europe, Central Asia

[^2]: ${ }^{1}$ visible from S. America, S. Atlantic, Antarctica
 ${ }^{2}$ visible from Indian Ocean, S. of Australia, New Zealand

[^3]: ${ }^{1}$ visible from Central and N. America, N. of S. America, N. and S. Atlantic, S. Africa

[^4]: *Editor's Note: Some of the hazards in viewing the sun and some effective safety precautions are discussed by B. Ralph Chou (J. Roy. Astron. Soc. Can., 75, 36, 1981; Sky and Telescope, 62, 119, 1981).

[^5]: $\overline{\mathrm{a}}$ dāte; ă tăp; â câre; à àsk; ē wē; ě mět; ẽ makẽr; ī īce; ī bĭt; $\overline{\mathrm{o}}$ gō; ǒ hǒt; ô ôrb; oo book; $\overline{00}$ moon; ū ūnite; ŭ ŭp; û ûrn.

[^6]: The path of Halley's Comet during the time it comes within reach of large amateur telescopes. The path is marked (for 0h UT) at 5-day

[^7]: *suspected unseen companion
 tradial velocity is zero
 \ddagger radial velocity only

[^8]: *There is a marked colour difference between the components.
 \dagger The separation of the two pairs of $\epsilon \mathrm{Lyr}$ is $208^{\prime \prime}$.

[^9]: $\dagger \mathrm{IC}=$ Index Catalogue; $\mathrm{Tr}=$ Trumpler; Mel = Melotte.
 **basic for distance determination.

[^10]: Footnote to Messier Catalogue: The identifications of M91 and M102 are controversial; some believe that these two objects are duplicate observations of M58 and M101 respectively. Also, objects M104 to M110 are not always included in the standard version of the Messier Catalogue. Like many other objects in the catalogue, they were discovered by Mechain and reported to Messier for verification and inclusion in the catalogue.

[^11]: $\therefore:$

[^12]: *Important but weak or sporadic radio source. Mean flux density $\leqslant 1$ flux unit.

