OBSERVER'S HANDBOOK - 1981

CONTRIBUTORS AND ADVISORS

Alan H. Batten, Dominion Astrophysical Observatory, Victoria, B.C., Canada V8X 3X3 (The Nearest Stars).
Terence Dickinson, Editor, Star and Sky, 44 Church Lane, Westport, Conn. 06880 (The Planets).
Alan Dyer, Queen Elizabeth Planetarium, 10004-104 Ave., Edmonton, Alta. T5J 0K1 (Messier Catalogue, Deep-Sky Objects).
Marie Fidler, Royal Astronomical Society of Canada, 124 Merton St., Toronto, Ont., Canada M4S 2 Z2 (Observatories and Planetariums).
Victor Gaizauskas, Herzberg Institute of Astrophysics, National Research Council, Ottawa, Ont., Canada K1A 0R6 (Sunspots).
John A. Galt, Dominion Radio Astrophysical Observatory, Penticton, B.C., Canada V2A 6K3 (Radio Sources).
Ian Halliday, Herzberg Institute of Astrophysics, National Research Council, Ottawa, Ont., Canada K1A 0R6 (Miscellaneous Astronomical Data).
Helen S. Hogg, David Dunlap Observatory, University of Toronto, Richmond Hill, Ont., Canada L4C 4Y6 (Foreword).
Donald A. MacRae, David Dunlap Observatory, University of Toronto, Richmond Hill, Ont., Canada L4C 4Y6 (The Brightest Stars).
Brian G. Marsden, Smithsonian Astrophysical Observatory, Cambridge, Mass., U.S.A. 02138 (Comets, Minor Planets).

Janet A. Mattei, American Association of Variable Star Observers, 187 Concord Ave., Cambridge, Mass. U.S.A. 02138 (Variable Stars).
Peter M. Millman, Herzberg Institute of Astrophysics, National Research Council, Ottawa, Ont., Canada K1A 0R6 (Meteors, Fireballs and Meteorites).
Anthony F. J. Moffat, Département de Physique, Universitéde Montréal, Montréal, P.Q., Canada H3C 3J7 (Star Clusters).

Leslie V. Morrison, H.M. Nautical Almanac Office, Royal Greenwich Observatory, Hailsham, Sussex, England BN27 1RP (Total and Grazing Lunar Occultations).
John R. Percy, Erindale College and Department of Astronomy, University of Toronto, Toronto, Ont., Canada M5S 1A7 (Editor).
Rene Racine, Département de Physique, Université de Montréal, Montréal, P.Q., Canada H3C 3J7 (Galactic Nebulae).
P. Blyth Robertson, Earth Physics Branch, Energy, Mines and Resources Canada, Ottawa, Ont., Canada K1A 0Y3 (Meteorite Impact Sites).
Th. Schmidt-Kaler, Institute of Astronomy, Ruhr University Bochum, 463 Bochum-Querenburg, F.R. Germany (Star Clusters).
Gordon E. Taylor, H.M. Nautical Almanac Office, Royal Greenwich Observatory, Hailsham, Sussex, England BN27 1RP (Planetary Appulses and Occultations).
Sidney van den Bergh, Dominion Astrophysical Observatory, Victoria, B.C., Canada V8X 3X3 (Galaxies).
Joseph F. Veverka, Department of Astronomy, Cornell University, Ithaca, N.Y., U.S.A. 14853 (Planetary Satellites).

Charles E. Worley, U.S. Naval Observatory, Washington, D.C., U.S.A. 20390 (Double Stars).

OBSERVER'S HANDBOOK

 1981

SEVENTY-THIRD YEAR OF PUBLICATION
EDITOR: JOHN R. PERCY
v:) ROYAL ASTRONOMICAL SOCIETY OF CANADA 1980 124 MERTON STREET, TORONTO, CANADA M4S $2 Z 2$

ISSN 0080-4193

QUICK
INDEX

INTRO
$1-5$
BASIC
DATA
$6-9$
TIME
$9-14$
SUN
TABLES
14-21
MOON
TABLES
22-27
SKY
MONTHLY
28-53
SUN.
ECLIPSES
$54-57$
TOTAL
OCC'NS
$58-69$
GRAZE
OCC'NS
$70-77$
PLANETS
FOR 1981
$78-91$
JUPITER'S
MOONS
$92-94$
SATURN'S
MOONS
94
MINOR
BODIES
$95-101$
STARS
$102-123$
NEBULAE
CLUSTERS
GALAXIES
124-135
STAR MAPS
136-141

FULL
INDEX
143

LOOKING BACKWARD AT THE OBSERVER'S HANDBOOK

The first volume of the observer's handbook was that for 1907. Many of today's users of the handbook do not have easy access to that first issue so we will describe some of its purposes and contents.

The handbook was published by the Royal Astronomical Society of Canada just as it is now, but it was titled "The Canadian Astronomical Handbook". The editor was the remarkable Dr. C. A. Chant of the University of Toronto, then President of the Society. For precisely fifty years until his death in 1956, Chant edited both the HANDBOOK and the JOURNAL of the Society.

First printed in 1906, the HANDBOOK consisted of 108 pages and in format was smaller than now, one-half inch narrower and two inches shorter. Chant explains in the Preface that for a number of years astronomical annuals have been published in several foreign countries, designed chiefly for use of amateur observers, "and have been very effective in extending the interest in Astronomy. The present HANDBOOK aims to do a similar service for Canada." Chant further notes that "The Royal Astronomical Society of Canada aims to unite in a common bond of interest all such students of nature," that is, "those who have a profound interest in the celestial bodies above and in the natural phenomena about them." He hopes many "will add their names to the Society's roll of membership. Anyone interested in Astronomy, Astronomical Physics or allied subjects is eligible for membership"-a statement which still holds true.

The first handbook has basic tables which have appeared in the handbooks ever since. Sunrise and sunset tables are there, but moonrise and moonset are included in the same table. The values are given for every day of the year for five places in Canada from the Atlantic to the Pacific. "Satellites of the Solar System" was a simpler listing than now. Jupiter had only seven moons, with the last three discoveries still unnamed. Saturn had ten moons, Uranus four, and Neptune one which was nameless. The planet Pluto was unknown.

Readers were encouraged by J. Miller Barr of St. Catharine's, Ontario, to observe variable stars. In fact Barr's section on "The Study of Variable Stars", was so well written and informative that it was republished in its entirety in the April 1907 issue of Popular Astronomy, volume XV. The table of "New Stars" was relatively small, with 28 objects from the new star of 134 B.C. in Scorpio to that of 1905 in Aquila. Barr describes the famous "Pilgrim Star" of 1572 as the most striking instance of stellar variation on record. In November 1572 it rivalled Venus in brightness and was distinctly visible in the daytime.

A section entitled "The Most Beautiful Double Stars" lists them under two headings, "I, The Most Luminous Pairs, Diamonds" and "II, The Finest Coloured Pairs, Rubies, Garnets, Sapphires, Topazes, Emeralds". Mizar and Castor were in the first category, γ Andromedae and α Canum Venaticorum in the second.

The star maps were "borrowed from that valuable annual 'Knowledge Diary and Scientific Handbook'." The table of Meteor Showers was supplied by W. F. Denning of Bristol, England, still well known for his meteor studies. Instructions on observing sunspots were included in "Observing the Sun, Moon and Planets" by Andrew Elvins, one of the pioneers who started the Society in Toronto. Elvins also set down some philosophical reflections in a poem whose authorship is not given.

> "The Planets
> Are planets peopled like the Earth, And do the people come by birth? Do they resemble people here, Or are they only half as queer? When old do they renew their youth? Does falsehood pass for more than truth?"

Dr. Chant earnestly requested that those who use the handbook send in any suggestions which may come to them regarding methods of improving it. This policy, followed throughout the intervening decades, has led to a greatly improved hANDBOOK. Especially in recent years Editor John Percy has made many agreeable changes and valuable additions.
the observer's handbook for 1981 is the seventy-third edition. On behalf of myself and the Royal Astronomical Society of Canada, I thank all those who have contributed to its production: the contributors listed on the inside front cover, and my editorial assistant Paul Ford.

Special thanks are due to Helen Sawyer Hogg for her unfailing interest and helpful comments. Ian McGregor kindly previewed the 1981 sky for me in the Star Theatre of the McLaughlin Planetarium. Alan Dyer provided the extensive new version of Messier's catalogue, as well as his list of the 110 finest NGC objects. Brian Marsden provided ephemerides of a score of bright asteroids, making the asteroids section considerably more complete and rational. Doug Welch drew the maps of the paths of Uranus, Neptune and Pluto. Terence Dickinson, David Dunham, Ken HewittWhite and Walter Scott Houston provided valuable advice on a number of points.

As always, the R.A.S.C. National Council, the editor Lloyd Higgs, and the executive secretary Rosemary Freeman have given me their cheerful support and assistance. The handbook also benefits greatly from the direct and indirect support of the Department of Astronomy and Erindale College, University of Toronto.

The handbook is particularly indebted to H.M. Nautical Almanac Office (U.K. Science Research Council) and to the Nautical Almanac Office, (U.S. Naval Observatory). I am especially grateful to Leslie Morrison and the Occultation Section of H.M.N.A.O. for providing the wealth of information on total and grazing lunar occultations, and to LeRoy Doggett of the U.S. Naval Observatory for providing proof pages of the American Ephemeris in advance of its publication.

I hope the observer's handbook serves you well. If you have comments or suggestions, let me know. Good observing!

John R. Percy, Editor

THE ROYAL ASTRONOMICAL SOCIETY OF CANADA

The history of the Royal Astronomical Society of Canada goes back to the middle of the nineteenth century. The origins of the Society were outlined by Dr. Helen Sawyer Hogg in her article on the inside front cover of the 1979 edition of this handbook. The subsequent development of the Society was described by Dr. Hogg in the 1980 edition. The Society was incorporated in 1890, received its Royal Charter in 1903, and was federally incorporated in 1968. The National Office of the Society is located at 124 Merton Street, Toronto, Ontario M4S 2 Z2 (telephone 416-484-4960); the business office and astronomical library are housed here.

The Society is devoted to the advancement of astronomy and allied sciences, and any serious user of this handbook would benefit from membership. Applicants may affiliate with one of the eighteen Centres across Canada established in St. John's, Halifax, Quebec, Montreal, Ottawa, Kingston, Toronto, Hamilton, Niagara Falls, London, Windsor, Winnipeg, Saskatoon, Edmonton, Calgary, Vancouver and Victoria, or join the National Society direct, as an unattached member.

Members receive the publications of the Society free of charge: the obSERVER's handbook (published annually in November), and the bimonthly journal and national newsletter, which contain articles on many aspects of astronomy. Membership applies to a given calendar year; new members joining after October 1 will receive membership and publications for the following calendar year. Annual fees are currently $\$ 16.00$, and $\$ 10.00$ for persons under eighteen years.

COVER PHOTOGRAPH

The great globular cluster 47 Tuc (NGC 104) photographed by W. E. Harris and R. Racine with the University of Toronto 24 -inch telescope on Las Campanas in Chile. North is to the right.

SUGGESTIONS FOR FURTHER READING

The observer's handbook is an annual guide to astronomical phenomena and data. The following is a brief list of publications which may be useful as an introduction to astronomy, as a companion to the handbook or for advanced work.

Becvar, A. Atlas of the Heavens. Cambridge, Mass.: Sky Publishing Corp., 1962. Useful star charts to magnitude 7.5.
Burnham, Robert. Burnham's Celestial Handbook, Volumes 1, 2 and 3 New York: Dover Publications Inc., 1978. An observer's guide to the universe beyond the solar system.
Hartmann, W. K. Astronomy: The Cosmic Journey. Belmont, Calif.: Wadsworth Publ., 1978. An excellent non-technical college text.
Hogg, Helen S. The Stars Belong to Everyone. Toronto: Doubleday Canada Ltd., 1976. Superb introduction to the sky.

Mayall, R. N., Mayall, M. W. and Wyckoff, J. The Sky Observer's Guide. New York: Golden Press, 1971. Useful guide to practical astronomy.
Mitton, S. ed. The Cambridge Encyclopaedia of Astronomy. Toronto: Prentice-Hall of Canada; New York: Crown Publ. Co., 1977. An exciting comprehensive guide to modern astronomy.
Roth, G. D. Astronomy: A Handbook. New York: Springer-Verlag, 1975. A comprehensive advanced guide to amateur astronomy.
Satterthwaite, G. ed. Norton's Star Atlas. Cambridge, Mass.: Sky Publishing Corp., 1973. A classic observing guide.

Sky and Telescope. Sky Publishing Corp., 49-50-51 Bay State Rd., Cambridge, Mass. 02138. A monthly magazine containing articles on all aspects of astronomy.

ANNIVERSARIES AND FESTIVALS 1981

New Year's Day	Thur. Jan.	Trinity Sunday	June 14
Epiphany.	.Tues. Jan.	Corpus Christi	r. June 18
Accession of Queen		St. John Baptist	Wed. June 24
Elizabeth II (1952)	Fri. Feb	Canada Day	Wed. July
Lincoln's Birthday.	.Thur. Feb. 12	First Day of Rama	Fri. July
Septuagesima Sunday	Feb. 15	Independence Day	Sat. July
Washington's Birthda	.Mon. Feb. 16	Civic Holiday	Mon. Aug.
St. David.	. Sun. Mar. 1	Labour Day.	on. Sept.
Quinquagesima		St. Michael	
(Shrove) Sunda	Mar. 1	(Michaelmas D	Tues. Sept. 29
Ash Wednesday.	Mar. 4	Rosh Hashana	Tues. Sept. 29
St. Patrick.	Tues. Mar. 17	Yom Kippur	Thur. Oct. 8
Palm Sunday	Apr. 12	Thanksgiving (Can.)	Mon. Oct. 12
Good Friday.	Apr. 17	Columbus Day	Mon. Oct. 12
Easter Sunday	Apr. 19	Islamic New Year	Fri. Oct. 30
First Day of Passover	Sun. Apr. 19	All Saints' Day	Sun. Nov.
Birthday of Queen		Election Day.	Tues. Nov. 3
Elizabeth II (1926)	Tues. Apr. 21	Remembrance Day	Wed. Nov. 11
St. George	Thur. Apr. 23	Veterans' Day.	Wed. Nov. 11
Victoria Day.	. Mon. May 18	Thanksgiving (U.S.)	Thur. Nov. 26
Rogation Sunday	May 24	First Sunday in Advent.	Nov. 29
Memorial Day	Mon. May 25	St. Andrew.	Mon. Nov. 30
Ascension Day	.Thur. May 28	Christmas	Dec. 25
Pentecost (Whit Sund	June 7		

All dates are given in terms of the Gregorian calendar. January 14 corresponds to January 1, Julian reckoning. Italicized holidays are celebrated in the U.S. only.

SYMBOLS AND ABBREVIATIONS

SUN, MOON AND PLANETS

(d) The Moon generally
© Mercury
of Venus
\oplus Earth
σ^{7} Mars

2 Jupiter
b Saturn
$\widehat{\circ}$ Uranus
Ψ Neptune
P Pluto

SIGNS OF THE ZODIAC

红 Leo........... 120°
m Virgo......... 150°
\bumpeq Libra.......... 180°
m Scorpius. 210°

THE GREEK ALPHABET

A, α	Alpha
$\mathbf{B}, \boldsymbol{\beta}$	Beta
Γ, γ	Gamma
Δ, δ	Delta
E, ε	Epsilon
Z, ζ	Zeta
\mathbf{H}, η	Eta
$\Theta, \theta, \vartheta$	Theta

I, l Iota	P, ρ Rho
K, к Kappa	Σ, σ Sigma
Λ, λ Lambda	T, τ Tau
$\mathrm{M}, \mu \mathrm{Mu}$	r, v Upsilon
$\mathrm{N}, v \mathrm{Nu}$	Φ, ϕ Phi
$\Xi, \xi \mathrm{Xi}$	X, χ Chi
O, o Omicron	Ψ, ψ Psi
$\Pi, \pi \mathrm{Pi}$	Ω, ω Omega

CO-ORDINATE SYSTEMS AND TERMINOLOGY

Astronomical positions are usually measured in a system based on the celestial poles and celestial equator, the intersections of the earth's rotation axis and equatorial plane, respectively, and the infinite sphere of the sky. Right ascension (R.A. or α) is measured in hours (h), minutes (m) and seconds (s) of time, eastward along the celestial equator from the vernal equinox. Declination (Dec. or δ) is measured in degrees (${ }^{\circ}$), minutes (${ }^{\prime}$) and seconds (${ }^{\prime \prime}$) of arc, northward (N or +) or southward (S or -) from the celestial equator toward the N or S celestial pole. One hour of time equals 15 degrees.
Positions can also be measured in a system based on the ecliptic, the intersection of the earth's orbit plane and the infinite sphere of the sky. The sun appears to move eastward along the ecliptic during the year. Longitude is measured eastward along the ecliptic from the vernal equinox; latitude is measured at right angles to the ecliptic, northward or southward toward the N or S ecliptic pole. The vernal equinox is one of the two intersections of the ecliptic and the celestial equator; it is the one at which the sun crosses the celestial equator moving from south to north.
Objects are in conjunction if they have the same longitude or R.A., and are in opposition if they have longitudes or R.A.'s which differ by 180°. If the second object is not specified, it is assumed to be the sun. For instance, if a planet is "in conjunction", it has the same longitude as the sun. At superior conjunction, the planet is more distant than the sun; at inferior conjunction, it is nearer.

If an object crosses the ecliptic moving northward, it is at the ascending node of its orbit; if it crosses the ecliptic moving southward, it is at the descending node.
Elongation is the difference in longitude between an object and a second object (usually the sun). At conjunction, the elongation of a planet is thus zero.

PRINCIPAL ELEMENTS OF THE SOLAR SYSTEM
MEAN ORBITAL ELEMENTS

Planet	Mean Distance from Sun (a)		Period of Revolution		Eccen-tricity (e)	In-clination (i)	Long. of Node (८)	Long. of Perihelion (π)	Mean Long. at Epoch (L)
	A. U.	millions of km	Sidereal (P)	$\begin{array}{c\|} \hline \text { Syn- } \\ \text { odic } \end{array}$					
				days					
Mercury	0.387	57.9	88.0d.	116	. 206	7.0	47.9	76.8	222.6
Venus	0.723	108.1	224.7	584	. 007	3.4	76.3	131.0	174.3
Earth	1.000	149.5	365.26		. 017	0.0	0.0	102.3	100.2
Mars	1.524	227.8	687.0	780	. 093	1.8	49.2	335.3	258.8
Jupiter	5.203	778.	11.86 y .	399	. 048	1.3	100.0	13.7	259.8
Saturn	9.539	1427.	29.46	378	. 056	2.5	113.3	92.3	280.7
Uranus	19.18	2869.	84.01	370	. 047	0.8	73.8	170.0	141.3
Neptune	30.06	4497.	164.8	367	. 009	1.8	131.3	44.3	216.9
Pluto	39.44	5900.	247.7	367	. 250	17.2	109.9	224.2	181.6

These elements, for epoch 1960 Jan. 1.5 E.T., are taken from the Explanatory Supplement to the American Ephemeris and Nautical Almanac.

PHYSICAL ELEMENTS

Object	Equat. Diam. km	Ob-lateness	Mass $\oplus=1$	$\begin{aligned} & \text { Den- } \\ & \text { sity } \\ & \mathrm{g} / \mathrm{cm}^{3} \end{aligned}$		Esc. Vel. km/s	Rotn. Period d	Incl.	Albedo
\bigcirc Sun	1,392,000	0	332,946	1.41	27.8	616	25-35*		
(1) Moon	3,476	0	0.0123	3.36	0.16	2.3	27.3215	6.7	0.067
\% Mercury	4,878	0	0.0553	5.44	0.38	4.3	58.67	<7	0.056
\% Venus	12,104	0	0.8150	5.24	0.90	10.3	$243 \dagger$	~179	0.76
\oplus Earth	12,756	1/298	1.000	5.52	1.00	11.2	0.9973	23.4	0.36
σ^{7} Mars	6,794	1/192	0.1074	3.93	0.38	5.0	1.0260	24.0	0.16
24 Jupiter	142,796	1/16	317.9	1.33	2.87	63.4	0.4101	3.1	0.73
b Saturn	120,000	1/10	95.17	0.70	1.32	39.4	0.426	26.7	0.76
¢ Uranus	50,800	1/16	14.56	1.28	0.93	21.5	0.45 ?	97.9	0.93
Ψ Neptune	48,600	1/50	17.24	1.75	1.23	24.2	0.67 ?	28.8	0.62
L Pluto	3,000?	?	$0.0015 ?$	0.7 ?	0.03?		6.3868	?	0.5?

[^0]*depending on latitude $\quad \dagger$ retrograde

SATELLITES OF THE SOLAR SYSTEM

By Joseph Veverka

Name	Vis. Mag.	Diam. km	Mean Distance from Planet		Revolution Period			Orbit Incl.。	Discovery
			km/1000	arc sec	d	h	m		
Satellite of the Earth									
Satellites of Mars									
1 Phobos	11.6	23	9.4	25	0			1.1	A. Hall, 1877
11 Deimos	12.7	13	23.5	63	1		18	1.8 v	A. Hall, 1877
Satellites of Jupiter									
XIV 1979J1	17.6	(40)	128	42	0	07	04	-	D. Jewitt, 1979
\checkmark Amalthea	14.1	170	180	59				0.4	E. Barnard, 1892
XV 1979J2	16.1	(80)	223	73	0		16	-	S. Synnott, 1979
I Io	5.0	3630	422	138	1		28	0	Galileo, 1610
II Europa	5.3	3140	671	220	3		14	0.5	Galileo, 1610
III Ganymede	4.6	5260	1,070	351	7		43	0.2	Galileo, 1610
IV Callisto	5.6	4800	1,885	618	16		32	0.2	Galileo, 1610
XIII Leda	20	(10)	11,110	3640	240			26.7	C. Kowal, 1974
VI Himalia	14.7	170	11,470	3760	251			27.6	C. Perrine, 1904
X Lysithea	18.4	(20)	11,710	3840	260			29.0	S. Nicholson, 1938
VII Elara	16.4	80	11,740	3850	260			24.8	C. Perrine, 1905
XII Ananke	18.9	(20)	20,700	6790	617			147	S. Nicholson, 1951
XI Carme	18.0	(30)	22,350	7330	692			164	S. Nicholson, 1938
VIII Pasiphae	17.7	(40)	23,330	7650	735			145	P. Melotte, 1908
IX Sinope	18.3	(30)	23,370	7660	758			153	S. Nicholson, 1914
Satellites of Saturn									
XI 1966S2	14	(200)	151	25	0	16	40	0.0	J. Fountain, S. Larson, 1978
* X Janus	14	(200)	160	26	0		59	0.0	A. Dollfus, 1966
1 Mimas	12.9	(400)	187	30	0		37	1.5	W. Herschel, 1789
II Enceladus	11.8	(500)	238	38	1		53	0.0	W. Herschel, 1789
III Tethys	10.3	1000	295	48	1		18	1.1	G. Cassini, 1684
${ }^{* *}$ IV Dione	10.4	1000	378	61	2		41	0.0	G. Cassini, 1684
\checkmark Rhea	9.7	1600	526	85	4		25	0.4	G. Cassini, 1672
VI Titan	8.4	5800	1,221	197	15		41	0.3	C. Huyghens, 1655
VII Hyperion	14.2	220	1,481	239	21		38	0.4	G. Bond, 1848
VIII Iapetus	11.0 v	1450	3,561	575	79		56	14.7	G. Cassini, 1671
IX Phoebe	16.5	(240)	12,960	2096	550	11		150	W. Pickering, 1898
Satelitites of Uranus									
V Miranda	16.5	(300)	130	9	1		56	3.4	G. Kuiper, 1948
I Ariel	14.4	(800)	192	14	2		29	0	W. Lassell, 1851
II Umbriel	15.3	(550)	267	20	4		27	0	W. Lassell, 1851
III Titania	14.0	(1000)	438	33	8		56	0	W. Herschel, 1787
IV Oberon	14.2	(900)	587	44	13	11	07	0	W. Herschel, 1787
Satellites of Neptune									
I Triton	13.6	(4400)	354	17	5		03	160.0	W. Lassell, 1846
II Nereid	18.7	(300)	5600	264	365	5		27.6	G. Kuiper, 1949
Satellite of Pluto									
1 Charon \|	17	1300	20.0\|	0.8	6	09	17	115\|	J. Christy, 1978

Apparent magnitude and mean distance from planet are at mean opposition distance. The inclination of the orbit is referred to the planet's equator; a value greater than 90° indicates retrograde motion.

Values in brackets are uncertain.
*Probably the same as 1966 S2.
**At least one other satellite has been reported in the same orbit, near the preceding Lagrangian point. (Disc., B. Smith, 1980).

MISCELLANEOUS ASTRONOMICAL DATA

Units of Length

Angstrom unit	$=10^{-8} \mathrm{~cm}$	1 micrometre, $\mu=10^{-4} \mathrm{~cm}=10^{4} \mathrm{~A}$.
1 inch	$=$ exactly 2.54 centimetres	$1 \mathrm{~cm}=10 \mathrm{~mm}=0.39370 \ldots$ in
1 yard	$=$ exactly 0.9144 metre	$1 \mathrm{~m}=10^{2} \mathrm{~cm}=1.0936 \ldots \ldots$ yd
1 mile	$=$ exactly 1.609344 kilometres	$1 \mathrm{~km}=10^{5} \mathrm{~cm}=0.62137 \ldots \mathrm{mi}$
1 astronomical unit	$=1.49597870 \times 10^{8} \mathrm{~km}=9.2956 \times 10^{7} \mathrm{mi}$	
1 light-year	$=9.461 \times 10^{12} \mathrm{~km}=5.88 \times 10^{12} \mathrm{mi}=0.3068$ parsecs	
1 parsec	$=3.086 \times 10^{13} \mathrm{~km}=1.917 \times 10^{13} \mathrm{mi}=3.2621 . \mathrm{y}$.	
1 megaparsec	$=10^{6}$ parsecs	

Units of Time

Sidereal day	$=23 h 56 m 04.09 s$ of mean solar time
Mean solar day	$=24 h 03 m 56.56 s$ of mean sidereal time
Synodic month	$=29 d 12 h 44 m 03 \mathrm{~s}=29 \mathrm{~d} 5306 \quad$ Sidereal month $=27 d 07 h 43 \mathrm{~m} 12 \mathrm{~s}$
Tropical year (ordinary)	$=365 d 05 h 48 \mathrm{~m} 46 \mathrm{~s}=365^{\mathrm{d}} 2422 \quad$

Sidereal year $\quad=365 d 06 h 09 \mathrm{~m} \mathrm{10s}=365 \mathrm{~d} 2564$
Eclipse year $\quad=346 d 14 h 52 m 52 s=346^{\mathrm{d}} 6200$

The Earth

Equatorial radius, $a=6378.140 \mathrm{~km}=3963.19 \mathrm{mi}$: flattening, $c=(a-b) / a=1 / 298.257$
Polar radius, $\quad b=6356.755 \mathrm{~km}=3949.904 \mathrm{mi}$
1° of latitude $\quad=111.133-0.559 \cos 2 \phi \mathrm{~km}=69.055-0.347 \cos 2 \phi \mathrm{mi}($ at lat. ϕ)
1° of longitude $\quad=111.413 \cos \phi-0.094 \cos 3 \phi \mathrm{~km}=69.229 \cos \phi-0.0584 \cos 3 \phi \mathrm{mi}$
Mass of earth $\quad=5.976 \times 10^{24} \mathrm{~kg}=13.17 \times 10^{24} \mathrm{lb}$
Velocity of escape from $\oplus=11.2 \mathrm{~km} / \mathrm{sec}=6.94 \mathrm{mi} / \mathrm{sec}$

Earth's Orbital Motion

Solar parallax $=8^{\prime \prime} .794$ (adopted)
Constant of aberration $=20^{\prime \prime} .496$ (adopted)
Annual general precession $=50^{\prime \prime} .26$; obliquity of ecliptic $=23^{\circ} 26^{\prime} 35^{\prime} \quad$ (1970)
Orbital velocity $=29.8 \mathrm{~km} / \mathrm{sec}=18.5 \mathrm{mi} / \mathrm{sec}$
Parabolic velocity at $\oplus=42.3 \mathrm{~km} / \mathrm{sec}=26.2 \mathrm{mi} / \mathrm{sec}$

Solar Motion

Solar apex, R.A. $18 h 04 m$, Dec. $+30^{\circ}$; solar velocity $=19.75 \mathrm{~km} / \mathrm{sec}=12.27 \mathrm{mi} / \mathrm{sec}$
The Galactic System
North pole of galactic plane R.A. $12 h 49 m$, Dec. $+27 .{ }^{\circ} 4$ (1950)
Centre of galaxy R.A. $17 \mathrm{~h} 42.4 m$, Dec. $-28^{\circ} 55^{\prime}$ (1950) (zero pt. for new gal. coord.)
Distance to centre $\sim 10,000$ parsecs; diameter $\sim 30,000$ parsecs
Rotational velocity (at sun) $\sim 250 \mathrm{~km} / \mathrm{sec}$
Rotational period (at sun) $\sim 2.46 \times 10^{8}$ years
Mass $\sim 1.4 \times 10^{11}$ solar masses

External Galaxies

Red Shift $=+50-75 \mathrm{~km} / \mathrm{s} /$ megaparsec (depending on method of determination)
Radiation Constants
Velocity of light, $c=2.99792458 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Frequency, $v=c / \lambda ; v$ in Hertz (cycles per sec), c in $\mathrm{cm} / \mathrm{sec}, \lambda$ in cm
Solar constant $=1.947 \mathrm{cal} / \mathrm{cm}^{2} / \mathrm{min}=0.1358 \mathrm{~W} / \mathrm{cm}^{2}$
Light ratio for one magnitude $=2.512 \ldots ; \log$ ratio $=$ exactly 0.4
Stefan's constant $=5.66956 \times 10^{-5} \mathrm{erg} / \mathrm{cm}^{2} / \mathrm{s} /{ }^{\circ} \mathrm{K}^{4}$
Miscellaneous
Constant of gravitation, $G=6.6727 \times 10^{-8} \mathrm{dyn} \mathrm{cm}{ }^{2} / \mathrm{g}^{2}$
Mass of the electron, $m=9.1096 \times 10^{-28} \mathrm{~g}$: mass of the proton $=1.6727 \times 10^{-24} \mathrm{gm}$
Planck's constant, $h=6.6262 \times 10^{-27} \mathrm{erg} \mathrm{sec}$
Absolute temperature $=T^{\circ} \mathrm{K}=T^{\circ} \mathrm{C}+273^{\circ}=5 / 9\left(T^{\circ} \mathrm{F}+459^{\circ}\right)$
1 radian $=57^{\circ} .2958 \quad \pi=3.141,592,653,6$

$$
\begin{array}{ll}
=3437.75 & \\
=206,265^{\prime \prime} & \\
=1 \mathrm{gram}=0.03527 \mathrm{oz}
\end{array}
$$

SUN—EPHEMERIS AND CORRECTION TO SUN-DIAL

Date	$\begin{gathered} \text { Apparent } \\ \text { R.A. } \\ \text { Oh E.T. } \end{gathered}$			Apparent Dec. Oh E.T.		Corr. to Sun-dial 12h E.T.		Date	Apparent R.A. Oh E.T.			Apparent Dec. Oh E.T.		Corr. to Sun-dial 12h E.T.	
	h	m	S				S		h	m	s	-		m	S
Jan. 1	18	45	38	-23	01.5	$+3$	38	July 3	6	47	45	$+22$	59.2	+ 4	08
4	18	58	51	-22	45.0	$+5$	02	6	7	00	07	+22	43.3	+ 4	39
7	19	12	01	-22	24.5	+ 6	21	9	7	12	26	+22	23.8	+ 5	08
10	19	25	07	-22	00.0	+ 7	37	12	7	24	41	+22	00.9	+5	32
13	19	38	07	-21	31.6	+8	46	15	7	36	51	+21	34.5	+5 +5	52
16	19	51	02	-20	59.4	+9	50	18	7	48	57	$+21$	04.9	+ 6	08
19	20	03	51	-20	23.7	$+10$	48	21	8	00	59	$+20$	32.0	+ 6	19
22	20	16	32	-19	44.5	+11	39	24	8	12	55	+19	56.1	$+6$	25
25	20	29	07	-19	02.0	+12	23	27	8	24	46	+19	17.1	+6	25
28	20	41	35	-18	16.4	+13	00	30	8	36	32	+18	35.3	+ 6	21
31	20	53	56	-17	27.8	$+13$	30								
								Aug. 2	8	48	13	$+17$	50.7	+ 6	11
Feb. 3	21	06	09	-16	36.4	$+13$	53	5	8	59	48	+17	03.5	+ 5	55
6	21	18	16	-15	42.4	+14	08	8	9	11	18	$+16$	13.9	+ 5	34
9	21	30	15	-14	46.0	+14	16	11	9	22	42	+15	21.8	+ 5	08
12	21	42	06	-13	47.3	+14	17	14	9	34	01	+14	27.6	+ 4	37
15	21	53	51	-12	46.7	+14	11	17	9	45	15	+13	31.3	+ 4	00
18	22	05	29	-11	44.1	+13	58	20	9	56	24	+12	33.1	+ 3	19
21	22	17	01	-10	39.9	+13	39	23	10	07	29	+11	33.1	+ 2	34
24	22	28	27	-9	34.3	+13	15	26	10	18	31	$+10$	31.5	+ 1	45
27	22	39	48	-8	27.3	$+12$	45	29	10	29	29	+ 9	28.3	+ 0	53
Mar. 2	22	51	04	-7	19.2	$+12$	12	Sept. 1	10	40	24	+ 8	23.7	- 0	02
5	23	02	16	- 6	10.1	+11	32	4	10	51	16	+7 +7	18.0	-1	00
8	23	13	23	-5	00.3	+10	50	7	11	02	06	+ 6	11.2	- 2	01
11	23	24	28	- 3	49.9	$+10$	04	10	11	12	53	+ 5	03.5	- 3	03
14	23	35	29	- 2	39.0	+ 9	15	13	11	23	40	+ 3	55.0	- 4	06
17	23	46	28	-1	28.0	+ 8	24	16	11	34	25	+ 2	45.9	- 5	10
20	23	57	25	-0	16.8	+7 $+\quad$	30	19	11	45	11	+ 1	36.3	- 6	14
23	0	08	20	+ 0	54.2	+ 6	36	22	11	55	57	+ 0	26.4	- 7	18
26	0	19	15	+ 2	05.0	+ 5	42	25	12	06	44	-0	43.7	-8	20
29	0	30	10	+ 3	15.4	$+4$	47	28	12	17	32	-1	53.9	- 9	21
Apr. 1	0	41	06	+ 4	25.3	+ 3	53	Oct. 1	12	28	23	- 3	03.9	-10	20
4	0	52	02	$+5$	34.5	+ 3	00	4	12	39	15	- 4	13.6	-11	16
7	1	03	00	+ 6	42.7	+ 2	09	7	12	50	11	- 5	22.9	-12	10
10	1	14	00	+ 7	50.0	+1	19	10	13	01	11	-6	31.5	-12	59
13	1	25	02	+ 8	56.0	+ 0	32	13	13	12	14	-7	39.3	-13	45
16	1	36	07	$+10$	00.7	-0	12	16	13	23	22	-8	46.2	-14	26
19	1	47	15	+11	03.9	- 0	53	19	13	34	35	-9	52.0	-15	01
22	1	58	26	$+12$	05.5	-1	31	22	13	45	54	-10	56.4	-15	31
25	2	09	42	+13	05.3	-2	04	25	13	57	20	-11	59.5	-15	54
28	2	21	02	+14	03.1	- 2	33	28	14	08	51	-13	00.9	-16	11
								31	14	20	30	-14	00.4	-16	21
May 1	2	32	27	$+14$	58.9	-2	57								
4	2	43	57	+15	52.4	- 3	16	Nov. 3	14	32	15	-14	58.0	-16	24
7	2	55	32	$+16$	43.6	- 3	30	6	14	44	08	-15	53.3	-16	20
10	3	07	11	+17	32.3	- 3	39	9	14	56	08	-16	46.3	-16	09
13	3	18	56	+18	18.4	- 3	43	12	15	08	15	-17	36.7	-15	50
16	3	30	46	$+19$	01.6	- 3	42	15	15	20	30	-18	24.3	-15	23
19	3	42	40	+19	42.0	- 3	36	18	15	32	53	-19	09.1	-14	49
22	3	54	40	$+20$	19.3	- 3	26	21	15	45	23	-19	50.7	-14	07
25	4	06	45	$+20$	53.5	- 3	10	24	15	58	01	-20	29.1	-13	17
28	4	18	54	$+21$	24.5	- 2	50	27	16	10	46	-21	04.2	-12	21
31	4	31	07	$+21$	52.1	- 2	25	30	16	23	38	-21	35.6	-11	18
June 3	4	43	25	$+22$	16.4		57	Dec. 3	16	36	35	-22	03.4	-10	10
6	4	55	45	$+22$	37.1	- 1	25	6	16	49	37	-22	27.3	- 8	56
9	5	08	09	+22	54.3	- 0	51	9	17	02	45	-22	47.3	-7	38
12	5	20	34	$+23$	07.9	- 0	15	12	17	15	56	-23	03.2	-6	15
15	5	33	01	$+23$	17.7	+ 0	22	15	17	29	10	-23	15.1	- 4	50
18	5	45	29	+23	23.9	+11	01	18	17	42	27	-23	22.7	- 3	22
21	5	57	58	$+23$	26.4	+ 1	40	21	17	55	46	-23	26.2	-1	53
24	6	10	26	+23	25.1	+ 2	18	24	18	09	06	-23	25.4	- 0	23
27	6	22	54	$+23$	20.1	+ 2	56	27	18	22	25	-23	20.4	+ 1	06
30	6	35	21	+23	11.5	+ 3	33	30	18	35	43	-23	11.2	+ 2	34

TIME

Any recurring event may be used to measure time. The various times commonly used are defined by the daily passages of the sun or stars caused by the rotation of the earth on its axis. The more uniform revolution of the earth about the sun, causing the return of the seasons, defines ephemeris time. Time can also be defined in terms of the vibrations within atoms. Atomic time is maintained in various labs, and an internationally acceptable atomic time scale has now been adopted.

A sundial indicates apparent solar time, but this is far from uniform because of the earth's elliptical orbit and the inclination of the ecliptic. If the real sun is replaced by a fictitious mean sun moving uniformly in the equator, we have mean (solar) time. Apparent time - mean time $=$ equation of time.

Another useful quantity is the correction to sundial (see page 9), which differs from equation of time only in its sign. As the name implies, mean time - apparent time $=$ correction to sundial.

If instead of the sun we use stars, we have sidereal time. The sidereal time is zero when the vernal equinox or first point of Aries is on the meridian. As the earth makes one more rotation with respect to the stars than it does with respect to the sun during a year, sidereal time gains on mean time $3^{\mathrm{m}} 56^{\mathrm{s}}$ per day or 2 hours per month. Right Ascension (R.A.) is measured east from the vernal equinox, so that the R.A. of the body on the meridian is equal to the sidereal time.

Sidereal time is equal to mean solar time plus 12 hours plus the R.A. of the fictitious mean sun, so that by observation of one kind of time we can calculate the other. Sidereal time is useful to an observer for setting his telescope on an object of known right ascension. The hour angle of the object is equal to the sidereal time right ascension. There are several ways of calculating sidereal time if you do not have a sidereal clock; an article by Hardie and Krebs, Sky and Telescope 41, 288 (May 1971) provides helpful information. See also the table on p. 11.

Local mean time varies continuously with longitude. The local mean time of Greenwich, now known as Universal Time (UT) is used as a common basis for timekeeping. Navigation and surveying tables are generally prepared in terms of UT.

To avoid the inconveniences to travellers of a changing local time, standard time is used. The earth is divided into 24 zones, each ideally 15 degrees wide, the zero zone being centered on the Greenwich meridian. All clocks within the same zone will read the same time. See map on p. 11.

In Canada and the United States there are 9 standard time zones as follows: Newfoundland (N), $3^{\mathrm{h}} 30^{\mathrm{m}}$ slower than Greenwich; 60th meridian or Atlantic (A), 4 hours; 75th meridian or Eastern (E), 5 hours; 90th meridian or Central (C), 6 hours; 105th meridian or Mountain (M), 7 hours; 120th meridian or Pacific (P), 8 hours; 135th meridian or Yukon (Y), 9 hours; 150th meridian or Alaska-Hawaii, 10 hours; and 165th meridian or Bering, 11 hours slower than Greenwich.

The mean solar second, defined as $1 / 86400$ of the mean solar day, has been abandoned as the unit of time because random changes in the earth's rotation make it variable. The unit of time has been redefined twice within the past decades. In 1956 it was defined in terms of Ephemeris Time (ET) as $1 / 31,556,925.9747$ of the tropical year 1900 at January 0 at 12 hrs . ET. In 1967 it was redefined as 9,192,631,770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of cesium 133 atom. Ephemeris Time is required in celestial mechanics, while the cesium resonator makes the unit readily available. The difference, $\Delta \mathrm{T}$, between UT and ET is measured as a small error in the observed longitude of the moon, in the sense $\Delta T=E T$ - UT. The moon's position is tabulated in ET, but observed in UT. Δ T was zero near the beginning of the century, but in 1981 will be about 52 seconds.

RADIO TIME SIGNALS

National time services distribute co-ordinated time called UTC, which on January 1, 1972, was adjusted so that the time interval is the atomic second. Atomic time gains on mean solar time at a rate of about a second a year. An approximation to UT1, which is a close approximation to UT, is maintained by stepping the atomic time scale in units of 1 second on June 30 or December 31, when required so that the predicted difference DUT1 = UT1 - UTC does not exceed 0.9 second. The first such "leap second" occurred on June 30, 1972. These changes are coordinated through the Bureau International de l'Heure (BIH), so that most time services are synchronized to the tenth of a millisecond.

Radio time signals readily available in Canada include:
CHU Ottawa, Canada $\quad 3330,7335,14670 \mathrm{kHz}$
WWV Fort Collins, Colorado $2.5,5,10,15,20 \mathrm{MHz}$
WWVH Kauai, Hawaii $\quad 2.5,5,10,15 \mathrm{MHz}$.
For those without short wave radios, or in areas of poor reception, time service is available from Ottawa by telephone: 613-745-1576 (English) and 613-745-9426 (French).

SIDEREAL TIME 1981
The following is the Greenwich sidereal time (GST) on day 0.0 (0 h U.T.) of each month:

Jan. $006^{\text {h }} 38 \mathrm{~m} 3$	Apr. 0 12 ${ }^{\text {h }} 33{ }^{\text {m }} 1$	July $018{ }^{\text {h }} 31{ }^{\text {m. }} 9$	Oct. 000
Feb. 00840.5	May 01431.4	Aug. 02034.1	Nov. 00236.
Mar. 01030.9	June 01633.6	Sept. 02236.3	Dec. 004

GST at hour t U.T. on day d of the month

$$
=\text { GST at } 0 \mathrm{~h} \text { U.T. on day } 0+0.0657 d+1^{\mathrm{h}} .0027 t
$$

Local sidereal time $=$ GST + east longitude (or - west longitude). Be sure to convert your time and date to U.T. to calculate t and d.

WORLD MAP OF TIME ZONES

Taken from Astronomical Phenomena for the Year 1981 (Washington: U.S. Government Printing Office and London: Her Majesty's Stationery Office)

ASTRONOMICAL TWILIGHT AND SIDEREAL TIME
The diagram gives (i) the local mean time (L.M.T.) of the beginning and end of astronomical twilight (curved lines) at a given latitude on a given date and (ii) the local sidereal time (L.S.T., diagonal lines) at a given L.M.T. on a given date. The L.S.T. is also the right ascension of an object on the observer's celestial meridian. To use the diagram, draw a line downward from the given date; the line cuts the curved lines at the L.M.T. of beginning and end of twilight, and cuts each diagonal line at the L.M.T. corresponding to the L.S.T. marked on the line. See pages 10 and 21 for definitions of L.M.T., L.S.T. and astronomical twilight.

MAP OF STANDARD TIME ZONES

PRODUCED BY THE SURVEYS AND MAPPING BRANCH, DEPARTMENT OF ENERGY, MINES AND RESOURCES, OTTAWA, CANADA, 1973.

The map shows the number of hours by which each time zone is slower than Greenwich, that is, the number of hours which must be added to the zone's standard time to give Greenwich (Universal) Time.

Note: Since the preparation of the above map, the standard time zones have been changed so that all parts of the Yukon Territory now observe Pacific Standard Time. The Yukon Standard Time Zone still includes a small part of Alaska, as shown on the above map. Also, the part of Texas west of longitude 105° is in the Mountain Time Zone.

TIMES OF RISING AND SETTING OF THE SUN AND MOON

The times of sunrise and sunset for places in latitudes ranging from 30° to 54° are given on pages 15 to 20, and of twilight on page 21 . The times of moonrise and moonset for the 5 h meridian are given on pages 22 to 27 . The times are given in Local Mean Time, and in the table below are given corrections to change from Local Mean Time to Standard Time for the cities and towns named.

The tabulated values are computed for the sea horizon for the rising and setting of the upper limb of the sun and moon, and are corrected for refraction. Because variations from the sea horizon usually exist on land, the tabulated times can rarely be observed.

The Standard Times for Any Station

To derive the Standard Time of rising and setting phenomena for the places named, from the list below find the approximate latitude of the place and the correction in minutes which follows the name. Then find in the monthly table the Local Mean Time of the phenomenon for the proper latitude on the desired day. Finally apply the correction to get the Standard Time. The correction is the number of minutes of time that the place is west (plus) or east (minus) of the standard meridian. The corrections for places not listed may be obtained by converting the longitude found from an atlas into time ($360^{\circ}=24 \mathrm{~h}$).

It is possible to extrapolate these tables northward and southward a few degrees (but not more) without significant loss of accuracy.

CANADIAN CITIES AND TOWNS						AMERICAN CITIES		
	Lat.	Corr.		Lat.	Corr.		Lat.	Corr.
Athabasca	55°	+33M	Peterborough	44	$+13 \mathrm{E}$	Atlanta	34°	$+37 \mathrm{E}$
Baker Lake	64	$+24 \mathrm{C}$	Port Harrison	59	$+13 \mathrm{E}$	Baltimore	39	$+06 \mathrm{E}$
Brandon	50	$+40 \mathrm{C}$	Prince Albert	53	$+63 \mathrm{C}$	Birmingham	33	$-13 \mathrm{C}$
Brantford	43	$+21 \mathrm{E}$	Prince Rupert	54	+41P	Boston	42	-16E
Calgary	51	+36M	Quebec	47	$-15 \mathrm{E}$	Buffalo	43	+15E
Charlottetown	46	$+12 \mathrm{~A}$	Regina	50	$+58 \mathrm{C}$	Chicago	42	$-10 \mathrm{C}$
Churchill	59	$+17 \mathrm{C}$	St. Catharines	43	$+17 \mathrm{E}$	Cincinnati	39	+38E
Cornwall	45	-1E	St. Hyacinthe	46	-08E	Cleveland	42	+26E
Edmonton	54	+34M	Saint John, N.B.	45	$+24 \mathrm{~A}$	Dallas	33	$+27 \mathrm{C}$
Fredericton	46	+27A	St. John's, Nfld.	48	$+01 \mathrm{~N}$	Denver	40	00M
Gander	49	$+8 \mathrm{~N}$	Sarnia	43	$+29 \mathrm{E}$	Detroit	42	$+32 \mathrm{E}$
Glace Bay	46	00A	Saskatoon	52	+67C	Fairbanks	65	- 10AL
Goose Bay	53	+ 2A	Sault Ste. Marie	47	+37E	Flagstaff	35	$+27 \mathrm{M}$
Granby	45	$-09 \mathrm{E}$	Shawinigan	47	-09E	Indianapolis	40	$-15 \mathrm{C}$
Guelph	44	$+21 \mathrm{E}$	Sherbrooke	45	$-12 \mathrm{E}$	Juneau	58	$+58 \mathrm{P}$
Halifax	45	$+14 \mathrm{~A}$	Stratford	43	$+24 \mathrm{E}$	Kansas City	39	+18C
Hamilton	43	+20E	Sudbury	47	+24E	Los Angeles	34	-07P
Hull	45	$+03 \mathrm{E}$	Sydney	46	+01A	Louisville	38	-17C
Kapuskasing	49	$+30 \mathrm{E}$	The Pas	54	+45C	Memphis	35	00C
Kingston	44	+ 06 E	Timmins	48	$+26 \mathrm{E}$	Miami	26	$+21 \mathrm{E}$
Kitchener	43	+22E	Toronto	44	+18E	Milwaukee	43	-09C
London	43	$+25 \mathrm{E}$	Three Rivers	46	$-10 \mathrm{E}$	Minneapolis	45	+13C
Medicine Hat	50	+23M	Thunder Bay	48	$+57 \mathrm{E}$	New Orleans	30	00C
Moncton	46	+19A	Trail	49	-09P	New York	41	-04E
Montreal	46	-06E	Truro	45	+13A	Omaha	41	+24C
Moosonee	51	+23E	Vancouver	49	+12P	Philadelphia	40	$+01 \mathrm{E}$
Moose Jaw	50	+62C	Victoria	48	+13P	Phoenix	33	+28M
Niagara Falls	43	$+16 \mathrm{E}$	Whitehorse	61	00Y	Pittsburgh	40	+20E
North Bay	46	+18E	Windsor	42	$+32 \mathrm{E}$	St. Louis	39	+01C
Ottawa	45	$+03 \mathrm{E}$	Winnipeg	50	$+29 \mathrm{C}$	San Francisco	38	+10P
Owen Sound	45	$+24 \mathrm{E}$	Yellowknife	62	+38M	Seattle	48	+09P
Penticton	49°	-02P				Washington	39	+08E

Example-Find the time of sunrise at Owen Sound, on February 12.
In the above list Owen Sound is under " 45° ", and the correction is +24 min . On page 15 the time of sunrise on February 12 for latitude 45° is 7.06 ; add 24 min . and we get 7.30 (Eastern Standard Time).

	玉かOmba すいいいか ェのにいいい	NngNㅡ응 －OVO	$\begin{aligned} & \text { जNNM } \\ & \text { ONை } \end{aligned}$	のヴッに ○たしたし	か゚ブロー 으ㄴㅗㅗㅗㅗ	のヘNウ๓ NNN上N
	をの $\infty \times$ N $工 \infty \infty \infty \infty$	$\pm n=85$ $\infty \infty \infty \infty$	すoininin $\infty \infty$ Nr	がすボか へNへN	๓Nペーす NRNNT	$\begin{aligned} & \text { OnON } \\ & \text { NNT } \end{aligned}$
$\stackrel{0}{0}_{0}$ $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \text { NMN NN } \\ & \text { Novon } \\ & \text { ovN } \end{aligned}$	maNな운 06000	Noかぷ ○ーロN	$\begin{aligned} & 0 m \in O m \\ & N N N T \end{aligned}$	NomNo N上N上N
	GOかைN をからいいい 	ぞがい゚ NNRN		$\begin{aligned} & \text { monnc } \\ & \text { MNNNN } \end{aligned}$	$\begin{aligned} & 06 m 96 \\ & \text { nin } \\ & \text { NHN } \end{aligned}$	Nos ペーした
$\begin{aligned} & \infty \\ & \hline+\infty \end{aligned}$ 0				$\begin{aligned} & \infty 0_{0}^{\infty}= \\ & 0 N N N= \end{aligned}$	ォNOMN NRNNR	mmon へヘNさN
	 cハへへ人	$\underset{+}{\infty} \underset{寸}{+} \underset{寸}{+}$ RNRN	すがलmm NRNRN	๓ヘNへNの NRNNT	$\begin{aligned} & \text { ONGOS } \\ & \text { NNTN } \end{aligned}$	のnぃがす ○したした
$$			$\begin{aligned} & \text { ginno } \\ & \text { ono } \end{aligned}$	$\begin{aligned} & \text { mognn } \\ & n N r n \end{aligned}$	かतNi유N NHNNT	がのベすす NNNNN
	$\begin{aligned} & \text { ENNGF } \\ & \text { 上NRNRN } \end{aligned}$	寸のかmme NNNNT	$\begin{aligned} & \text { mलan } \\ & \text { NNNNN } \end{aligned}$	NNONJ NANNT	$\begin{aligned} & =\infty 0^{\infty} \mathrm{O}^{\infty} \\ & \text { NNN } \end{aligned}$	nNがが ○○○○っ
				$\begin{aligned} & \text { givNa } \\ & \text { NNNNN } \end{aligned}$	NへNलm N上N上N	がのず寸 NNNNN
	$\begin{aligned} & \text { Ennnず } \\ & \text { ェnNMNN } \end{aligned}$	लツNーO NNNNN	ヘNヘNกN NRNAN	$\begin{aligned} & \text { GNGNO } \\ & \text { NHNN } \end{aligned}$	$\begin{aligned} & \text { OJOinn } \\ & \text { rron } \end{aligned}$	NGYN ○ーにした
		そうがすす ooor	$\begin{aligned} & \circ \infty=m= \\ & N N=N= \end{aligned}$	๓กペNへ NㅡNN	○Nサ゚の ックmmm N上N上N	ヲ寸 $\overbrace{+}^{\infty}$ ヘペー
	$\begin{aligned} & \text { ENNNN } \\ & \text { ENNNT } \end{aligned}$	NNNㅇ NRNN	$\begin{aligned} & \infty \ln m \mathrm{~m} \\ & n+n N \end{aligned}$	$\begin{aligned} & 0 \infty 0.0 \% \\ & \text { NHN } \end{aligned}$	Oんいかわ Noーにo	「寸ヲがm －0 OV
$\begin{aligned} & \text { in U } \\ & \text { लy } \\ & \text { Un } \end{aligned}$	$\begin{aligned} & \text { En ONOO } \\ & \text { 上NNTN上 } \end{aligned}$		$\begin{aligned} & \text { monnu } \\ & \text { NNNN } \end{aligned}$	NONJ゚ Nmmmm ヘN上N	か〇ポ゙チ NNNN	守夺にが
		RNNRN	\＆ぞすがす RNRN	 ヘローに	NOががす いいした。	$\begin{aligned} & \text { Fobmm } \\ & \text { o o o Mo } \end{aligned}$
	$\begin{aligned} & \text { EON土ロN } \\ & \text { 上NNNN } \end{aligned}$	$\begin{aligned} & \text { aNNオ } \begin{array}{l} \text { NN } \\ \text { NNNN } \end{array} \end{aligned}$	$\begin{aligned} & \text { かNウヅ } \\ & \text { NNN } \end{aligned}$	$\begin{aligned} & \text { nomqun } \\ & \text { NNNNN } \end{aligned}$		Nサにかの いいいから へ上上へへ
	Eかn がn ェーローもー	いいいいい ーしたした	がいべ ○ーしたし	シ여寸゚か ○ーロー	甘がのが ーヒールー	になNON ○したしっ
T		$\underbrace{\text { 玉の气の }}_{\text {Aranuer }}$	NNヘNA	$\bar{m} N+\infty$	$\underbrace{\text { ONF }}_{\text {KIEnAqo्H }}$	어NNN NNNN世

		ñㅇㅇํ․ $\wedge \infty \rightarrow \infty$	ミスペ～N $\infty \times \infty$	๗ッヂッ $\infty \infty \underset{\sim}{\infty} \underset{\sim}{\infty}$	Winčio －ロののの	$\begin{aligned} & \text { moNN } \\ & \text { のgのgの } \end{aligned}$
		NN․ㅇㅇㅇ ソーい○	かべが系 いいいいい	M゚゙さのさ いいいいい	$0 \because 8 \% \pi$ $\text { nnn } \sigma 寸$	サ- FNNN $\forall \forall \forall \forall \forall$
	$\begin{aligned} & \text { goom } \\ & \text { anNin } \end{aligned}$		にのベへが 으ํㅗํ	べべがす寸 $\infty \times \infty$	Finnini $\infty \infty \infty$	
		$\begin{aligned} & \text { 우N Non } \\ & 060 \text { No } \end{aligned}$	いいいいい	ヘmño いいいいい	능ㅇㅇ いいいいい	n～がす？ ナナナナ寸
	$\begin{aligned} & \text { E N N N N } \\ & \text { NNNN } \end{aligned}$	$\begin{aligned} & 8 \infty 88= \\ & \infty \infty \infty \infty=\infty \end{aligned}$	n $\infty \underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\infty}$	유№ñ $\underset{\sim}{\infty} \boldsymbol{\sim} \infty$	寸チㅇNin $\infty \infty \infty$	気すす응 －ののののの
	$\begin{aligned} & \text { E ONNN N } \\ & \text { s o Nov } \end{aligned}$	$\begin{aligned} & \text { No№n } \\ & \text { ovoo } \end{aligned}$	がいにな年 いいいいい	がmべッ いいいいい	のッニがす いいいいい	8がが品 い $\downarrow 寸+寸$
		$\infty \infty \infty \infty$	nํㅜN゙～ $\infty \infty \infty \infty$	N－Mが 	デ寸テ욱 $\infty \times \infty$	inn 8 Ní かのののの
	E ${ }^{\infty}$ サiㅇNN ュ	のにこ「す 06006	O゚Nがす onいいい	Fलmスñ いいいいい	Nのシニへ いいいいい	す8告告 いいよ $+寸$
			$\begin{aligned} & \pm N の N さ ~ \\ & \infty \infty \infty \infty \end{aligned}$	$\infty \infty \underset{\sim}{\infty}$		 $\infty \infty \infty$
	E ๗లNべNN ェ00000	かnこ「べ －000	8からすか onnいい	いいいいい	さスさむニ いいいいい	oすす。inn いいいよか
	$\begin{aligned} & \text { gninno } \\ & \text { anNNo } \end{aligned}$		サーローNN $\infty \times \infty$	ホNowon $\underset{\sim}{\infty} \boldsymbol{\infty} \boldsymbol{\infty} \boldsymbol{\sim}$	サionq～ $\underset{\sim}{\infty} \infty \times \infty$	寸 웅N $\infty \infty \infty$
	$\begin{aligned} & \text { घ NNNNत } \\ & \text { anovo } \end{aligned}$	ヘッニへす 06000	8気苟にか ものいいい	寸テ～～NN いいいいい	츄ำ슨 いいいいい	士ニか8゚ いいいいい
		ㄴㅇㅇㅇ으클 $\infty \times \infty$	$\begin{aligned} & \cdots \pm \underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\infty} \end{aligned}$	ヘベฟへへ $\underset{\sim}{\infty} \boldsymbol{\infty} \boldsymbol{\infty} \boldsymbol{\infty}$	$\begin{aligned} & \text { Nopmm } \\ & \infty \infty \infty \times \infty \end{aligned}$	nem $\infty \times \infty$
		nํㅇㅇ 06000	－innin ○いいいい	今～Nのが いいいいい	লーがNべ いいいいい	スのーホさ いいいいい
		$\begin{aligned} & 8080= \\ & \infty \infty \infty=\infty \end{aligned}$		－ํㅔNก ${ }_{\sim}^{\infty} \infty$	NNNW゚ $\infty \times \infty$	シヘNMた $\infty \underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\infty}$
		士＝88\％ 60000	NoñiN onnいい	여寸゚～゚ いいいいい	がずが nnmun	へへべッコ いいいいい
7	$N+6 \infty 0$		N్స్జ్లి	romen	$\underbrace{\text { ヨッに }}_{\text {I! IIVV }}$	NNNN NN

	E mल̃ No	gNoñ	ㅇํNn	NNNNN	লNmホn	৩ーピーに mmmmmm
	上のの9のa	agono	ㅇopo NNNNN	ㅇNㅇNㅇ	Nodond	엥NㅇN
		$\mathfrak{n} \sigma \dot{\sim}$	∞	○ホNーO mmmmm	ㅇNNN NNNNN	NNNNMm
	ェナナナナナ	ナナmmm	mmmmm	nmmmm	mmmmm	mmmmmm
	$\text { g } \underset{\sim}{N} \underset{N}{N}$	$\text { mon } \underset{\sim}{\mathrm{m}} \mathrm{~F}$		nomno	$\infty 8 ㅇ=1$	NッMmmm
	ののののの	のロのロの	9の9の9	acoinc	ㅇNNㅇNNN	엉융ㅇㅇ กतNกNत
	Emmoñ	ㅇNNㅇㅇ	Sオ NO융	かんがN	noino	がいがべい
	コナナナナナ	ナナナナナ	ナナナナm	mmmmm	mmmmm	mmmmmm
	$\text { En๒o } \sim \underset{\sim}{N}$	NeNm	ONにগの	シnnon	is	○すすすすす
	－9の9の9	ののののの	のaのaの	ののののの	IONNㅇN	엉ㅇㅇㅇㅇ กกNกNत
	घ Naimmo	Nホーำ	$\pm \cong O \propto$	$\because O O_{0}$	oningin	is in
	エナサナナナ	ササナ寸ナ	サナナ寸ナ	ナナナ寸ナ	寸mmmm	mmすササ寸
	$\text { E } \infty \text { ○은 }$	○ハnかo NNNNM	mnल	$\underset{\forall}{\sim} \neq \infty$	innnin	すへにいにい いいいいいか
	とののののの	ののைのの	ののののの	ののののの	ののののの	ののロの9の
	$\text { E } 寸 \forall \exists_{m}^{\infty}$			$\cdots \sim=9$		か8ㅇㅇ은N
	コナナナナ寸	ナナナ寸ナ	ナサササナ	ナナナナサ	サナナ寸ナ	サササササナ
	E	オNのNオ	$0 \infty 0$ NJ NNMmm	nल mo	Nツサの๒ ザ寸	守守守守守
	-ののロのの	のの9の9	99090	9の9の9	のののタの	ののタののの
		abvNO mलmmm	NヘNNN ナ ナ 寸 寸			
	E	$\pm 6 \infty 0 N$	サnNoo	N』n NN NNNNN	かo NMM	NNmmmm мmmmmm
	－ $0 \times \infty$ の	の9の9の	응ㅇ	ののののの	99099	ののターのの
	$\text { E } \sigma^{\infty} \min _{n}$	のベッツテ	O	サMNMm	nलm	mmNNmJ
	エいサササナ	サすが，	サササササ	ササナナナ	サナナ寸ナ	ナナナナナナ
	En	ッポーの いいいいか		$\infty 90 \simeq m$	サnner	$\text { N }-\infty \infty \infty$
	$\text { 〔 } \infty \infty \infty \infty \infty$	$\infty \infty \infty \infty \infty$	のタののロ	99999	99090	のののののの
	EsioncN	¢がnか	ninogq	$\hat{y} \hat{F}$	そのにぃ゚	$\underset{+}{\circ}+\infty$
	上いいいいい	のササササ	ササササナ	ナサナナナ	ナナナナナ	ナナナナナナ
		$\mathfrak{寸} \mathfrak{\forall}$	onnmn	on in o	অত융	ずがわいろも
	$\text { _ }{ }_{-\infty}^{\infty} \underset{\sim}{\infty} \underset{=}{\infty}$	$\infty \infty \infty \underset{\sim}{\infty}$	$\infty \infty \infty$	$\infty \infty \infty \infty$	ののののの	のタのののの
	E O J＝	90500\％	サツNE		\cdots	Nincos
	上いいいいい	いいいいい	いいいいい	い	サ寸ナナ寸	ササいいいい
T		arnsa	NNヘN	लNJ	人Nサーか	NNNNNM

			$\begin{aligned} & \text { nNoisi } \\ & \text { 웅NㅇNㅇN } \end{aligned}$	$\begin{aligned} & \text { がゥテツ } \\ & \text { のgのgの } \end{aligned}$	$\begin{aligned} & \text { minn } \\ & \text { gagag } \end{aligned}$	ラッロ゚が品 のののののが
	 上 $\quad \mathrm{mmmmm}$	がががn m寸mmm	ingoyo $m み ナ ナ+$	$\begin{aligned} & \text { moNNへ } \\ & \forall \forall サ サ サ \end{aligned}$		がniño サササ寸んい
	$\begin{aligned} & \text { Nㅡㅇㅇㅇ } \\ & \text { = 셋NㅅNㅇN } \end{aligned}$		$\begin{aligned} & \text { nデロの } \\ & \text { のgのgの } \end{aligned}$	जonmo ののののの	$\begin{aligned} & \text { NㅡNに } \\ & \text { の9の9の } \end{aligned}$	ののローが，
	$\begin{aligned} & \text { gnining } \\ & \text { smmmtt } \end{aligned}$		のがオポ ナ寸ナナ寸	べべべがす ナナナナ寸	ま゚のN゙ 寸 寸 寸 寸	がすすへO～ シいいいいい
		$\begin{aligned} & \text { ninñ } \\ & \text { の9のgの } \end{aligned}$	$\begin{aligned} & \text { gウッポ } \\ & \text { のgのgの } \end{aligned}$		$\begin{aligned} & \text { 굥́ } \\ & \text { 으ํํㅇ } \end{aligned}$	mininno のペーローロ
		$\begin{aligned} & N \pm \because \infty O \\ & \forall \forall \forall \forall \forall \end{aligned}$	NฟNomm ナナ サナ		ずらが か寸ナ寸ん	ベロロ゚ーำ いいいいいい
		$\begin{aligned} & \text { ngチ寸寸 } \\ & \text { のgのgの } \end{aligned}$	Nominm ののののの	ํํNヘNの ののののの	$\begin{aligned} & \text { 뇽․ } \\ & \text { gのg99 } \end{aligned}$	がん～がすま $\underset{\sim}{\infty} \infty \times \infty$
	$\begin{aligned} & \text { EサホN } \\ & \text { ニサササナ } \end{aligned}$	유NNN サナナ寸ナ	$\begin{aligned} & \text { mimmm } \\ & \forall 寸 \forall 寸 \forall \end{aligned}$	$\begin{aligned} & \underset{寸}{寸} 寸 \mathscr{F} \\ & \forall \forall \forall \forall \forall \end{aligned}$	思べす。 寸 寸 寸んい	
	$\begin{aligned} & \text { Eがロサ } \\ & \text { ェのgののg } \end{aligned}$	$\begin{aligned} & \forall ナ チ \mathrm{~m} \\ & \text { のコロコの } \end{aligned}$	mmmNN のロののの	さNのこさ ののののの	＝oño ののののロ	in Nơ～～～～ $\propto \infty \subseteq \infty \infty$
			Mのザか ナナ寸ナナ	 ナ寸寸ナ	がすO゙ロロ \downarrow いいいい	으ッニニํN いいのいいか
		유NNNべ ののののの	NNN은 ののの゚のの	士ำ웅 ののののの	NON゙心N ののローが	ずすがす․․ $\infty \times \infty \times \infty$
	$\begin{aligned} & \text { Enjngor } \\ & \text { n } \forall+\forall 寸+ \end{aligned}$	$\text { ヲツ寸 } \underset{寸}{\infty}$ $\forall \forall \forall \nabla \forall$	のーぶが ナナナナ	か8Oず \ddagger nnnn	numine	へのスペホ いいいいいい
		ののののの	$\begin{aligned} & =8 \infty 8 \% \\ & \text { 으응․ㅇ } \end{aligned}$	 のロローロー	べらがす寸 $\infty \times \infty$	$\infty \infty \infty \infty \infty$
		系伿会合 寸ナナ寸い	ざoñoo いいいいい	ターミサッ いいいいい	노ำ～ いいいいい	NNNNNN いいいいいい
		$\begin{aligned} & \text { MoNOO } \\ & \text { gogag } \end{aligned}$	8ininin のロッローロ	nninq $\infty \rightarrow \infty$		へMMN～N $\infty \rightarrow \infty$
	を őoずóo sいいいいい	いいいいい	のホの 0 • かんいいい	の유ニウホ いいいいい	NNN～O いいいいい	MNMホNが いいいいいか
$\overline{+}$	$N+\omega \infty \text { O }$		N゙ホN～N	かmonra	玉ッnッの	

少菏		ホのコロ゙ ๓ロェローロ	 ミヘミヘへ	noñำ ヘヘットへ	च\＆ơñ ミヘニセ゚	まominno のヒローロ
			そすべ积	¢๐원	तָञసెm	デすがへ0
	上いnnum	nnunm	nnmun	00000	－0000	か0000
		츠№m	らが号ず	mmõत	능oni	
	$=\infty \infty \infty$	$\infty \times \infty$	ミニミスヘ	ミニミミニ	ヘヘッペ	ำセローロ
	E	m				
	さんいい	い		00000	\bigcirc	\bigcirc
		O			¢サ으이	
		$\infty \times \infty$	ミニミベ	ミニヘミミ	ミミヘミミ	ำローロ
	ε	minc	¢ 9	8088	－－	8 mmon
	sunminu	n	nu	00000	6000	0
$\begin{aligned} & \text { og } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	घ Mm̃～N	かサーロイ	～	mえn	스ำ8	Ǒninno
		$\infty \times \infty$	ミニベ込	ペミニン	ヘヘミベ	ํローツロ
	－	m			Nー	
	工			n	0000	00000
	をべへべへ	－	が忒らす	mimeñ	－	\cdots
	上 $\infty \times \infty \times \infty$	$\cdots \times \infty$	ミニヘミミ	ヘヘッミン	ニッペン	－ 0
		n		no	－	べへべが
	sunumin	nnunn	nnunn	no	\bigcirc	00000
						8
		$\infty \times \infty$	ニミヘミニ	ヘヘミニン	ヘヘヘニン	こ
	E	mJ	ナ	にんすくつ	，	¢OべさN
	sいいろnn	いいいろu	いいいい	niooo	00000	0000
	ENぺへさ	ㄱ88\％8	いい	\checkmark	－	${ }_{\circ}^{\circ}$
		$\infty \times \infty$	ミニヘミニ	ニヘミニニ	ヘミニミミ	ミニミミミ
	Emm	タホデす\％	¢ ${ }_{\text {¢ }}$	nn	0000－	この
	sいmonno	nin	いい	n	00000	0060
	E กั	OSすぐ心	ninct	子寸が	mmNतN	に
	$\simeq \sim \infty$	$\infty \times$	ヘッペン	へヘットへ	ニッペへ	ニミへへへ
		ずがす	かすらべ		8才すず	$8 \% 8=\simeq$
	sいろい	n	いいいろ心㇒	n	00	00000
F	$\cdots+\infty \infty$	サー으수	Now	＋ヵかo	꺼으NN	NTN（N00
					دеqоı0	

		$\begin{aligned} & \text { ond } \\ & \text { ón } \\ & \text { onnn } \end{aligned}$			$\infty \infty \infty \infty$ クMmmm いいいいい	いいいいいい
		$\begin{aligned} & \text { OMNMn } \\ & \text { NNNM } \end{aligned}$		べかすすへ へへ $\infty \infty$	のニッレー $\infty \infty \infty \infty$	へーのののの $\infty \infty \infty \infty \infty$
			$\begin{aligned} & \text { gin in } \\ & \text { óo } \end{aligned}$	－8かの o onのn	$\infty \infty \infty$ の いいのが いのにのに	$\begin{aligned} & 800 寸 00 \\ & 0.000 \end{aligned}$
	 ェーレーON	$\begin{aligned} & \text { ogno } \\ & \text { NNNN } \end{aligned}$	Nべがが NRNN	navito NRNR	かったが へ人Nべ	○か かいいいいい NNNNN
	ENGOMO ㄷ	かnNom ○OOOO	$0 \pm r 1=0$ 	는ㅇ	우웅 ○OOO	
		$\begin{aligned} & 8 m \circ g r \\ & n N H N \end{aligned}$	$\begin{aligned} & n \infty \pi \underset{N N}{N} \\ & \text { NNNN } \end{aligned}$	へべけがか NNNN	$\begin{aligned} & \text { OH寸N } \\ & N N H N \end{aligned}$	かのタ゚운 nrarr
		$\begin{aligned} & \text { mलinn } \\ & \text { onowo } \end{aligned}$	$\begin{aligned} & \text { NNONN } \\ & \text { No } 0 \text { N } \end{aligned}$			
		nn ino ○○NトN	$\begin{aligned} & \infty= \pm N a \\ & 0 N N N R \end{aligned}$	NホNが NHNNT	べがmか NNTNN	$\underset{\sim}{9} \mathcal{F} \mathcal{F} \mathcal{F} \mathcal{F}$ RNNNN
		mo mNM 00000	－OOO O	NNNÑ ○○ー৩ー	तNNMM 00000	$\forall \curvearrowleft N \infty$－ NतNNmm ○ーローロー
		かN心NO ○○○○N	$\begin{aligned} & \text { Nomon } \\ & N N N N \end{aligned}$	$\begin{aligned} & n N a n M \\ & n N N N \end{aligned}$	 NNNN	べツボい クMmmmm NNNNNT
				いいいいい mmmmm $\underline{0} \underline{0} \underline{0}$	のいいoN クツッmm OOOO O	
		がぞ号 ーヒーい	Nがいか。 ○OOV	$\begin{aligned} & \text { SOO O } \\ & \text { NTNN } \end{aligned}$	$\begin{aligned} & \text { NMJON } \\ & \text { NNNNR } \end{aligned}$	
	$\begin{aligned} & \text { E ONO } \\ & \text { 上NN上 } \end{aligned}$	かわんnN ソ゚ーピ	に合の夺夺 ○0600	$\underset{寸}{\checkmark} \stackrel{\infty}{+} \stackrel{\infty}{+}+$ 00000	夺の윤 00000	Nのホn o o がいいい ○ローローロ
	を ュ	○Nポ N がmmm ○ー৩した	寸ホ寸寸ポ ○ーにーに	のーぶが ○ーにOー	が8NM oontr	
	$\begin{aligned} & \text { ENOSN } \\ & \text { LNNNN } \end{aligned}$	○そすぶ N人N下N	중8 へ人N上卜	88888 へ人へへ	ころづつす NNNN	$\begin{aligned} & \text { nosion } \\ & \text { NㅗㄴNㅡㄴ } \end{aligned}$
		NヘNNペ ○ O O O		がチヲサ寸 	ー৩ーロー	Nのホべった いいいいいか ○ーにーにー
＋	monta	№ns	NNMNA	－muna	$\Rightarrow \operatorname{mvg}$	NNNNAM

TWILIGHT-BEGINNING OF MORNING AND ENDING OF EVENING

$+1$		Latitude 35°		Latitude 40°		Latitude 45°		Latitude $50{ }^{\circ}$		Latitude $54{ }^{\circ}$	
		Morn	Eve	Morn.	Eve.	Morn.	Eve.	Morn.	Eve.	Morn.	Eve.
		h m	,	h m	h m	h m	h m	h m	m	h m	
Dec.	31	537	1829	544	1821	552	1814	600	1807	606	1800
Ja	10	539	1837	546	1830	553	1823	600	1816	605	18
	20	537	1845	543	1840	548	1834	555	1829	600	182
	30	534	1854	539	1850	542	1846	546	1843	549	184
Feb.	9	527	1903	530	1901	531	1859	533	1858	534	1858
	19	518	1911	518	1911	519	1911	518	1913	515	1916
Mar	1	507	1920	505	1922	502	1925	458	1930	454	1935
	11	454	1928	450	1932	444	1938	437	1946	429	195
	21	439	1937	433	1944	425	1952	414	2004	402	2017
	31	424	1946	415	1956	404	2008	349	2024	332	2041
	10	408	1956	357	2008	342	2024	321	2045	259	2108
	20	353	2007	338	2022	319	2042	253	2109	224	2140
	30	339	2018	320	2036	257	2101	223	2136	140	2219
May	10	325	2029	303	2051	235	2121	151	2206	037	2329
	20	314	2041	249	2106	214	2142	115	2242		
	30	304	2051	237	2119	156	2201	027	2337		
June	9	300	2059	230	2130	145	2215				
	19	259	2104	228	2135	140	2223				
	29	301	2105	230	2136	143	2223				
Jul	9	308	2102	239	2131	155	$22 \quad 13$				
	19	317	2054	250	2120	212	2158	101	2306		
	29	327	2044	304	2107	231	2139	140	2228		
Aug.	8	339	2031	319	2051	252	2118	212	$\begin{array}{lll}21 & 55\end{array}$	118	224
	18	349	2017	332	2033	311	2055	240	2124	204	215
	28	400	2002	346	2015	328	2032	304	2055	238	212
Sept.	17	409	1946	358	1956	344	2010	326	2028	306	204
,	17	418	1930	410	1938	359	1948	345	2001	330	201
	27	427	1914	421	1919	413	1927	403	1937	352	194
Oct.	7	434	1900	431	1903	427	$\begin{array}{lll}19 & 07 \\ 18 & 50\end{array}$	420	$\begin{array}{lll}19 & 13 \\ 18 & 53\end{array}$	412	$\begin{aligned} & 1920 \\ & 18 \end{aligned}$
	17	443	1847	441	1848	439	1850	436	1853	431	185
	27	450	1836	451	1835	452	1835	451	1835	449	1836
Nov.	6	459	1828	501	1824	504	1822	506	1820	507	181
	16	$\begin{array}{ll}5 & 07\end{array}$	1822		1817	515	1813	519	1808	5 5 5	180
	26	515	1819	521	1813	526	1807	532	$\begin{array}{lll}18 & 01 \\ 17 & 57\end{array}$	538	1755
Dec.	6	523	1818	529	1812	536	1805	544	1757	550	1750
	16	529	1821	537	1814	544	1806	553	1758	600	175
	26	535	1826	542	1819	550	1811	558	1802	605	175
Jan.	5	538	1832	545	1826	552	1819	600	1811	606	1805

[^1]MOONRISE AND MOONSET, 1981 - LOCAL MEAN TIME

Date	Latitude 30° Moon		Latitude 35° Moon Rise Set		Latitude 40° Moon Rise Set		Latitude 45° Moon Rise Set		Latitude 50° Moon Rise Set		Latitude 54° Moon Rise Set	
n.		h m							h m			
1	0235	1359	0241	1352	0247	1345	0255	1336	0304	1325	0313	1315
2	0328	1436	0336	1428	0345	1418	0355	1407	0407	1354	0419	1341
3	0422	1518	0432	1508	0442	1457	0455	1443	0510	1427	0525	1412
4	0517	1604	0528	1553	0540	1540	0554	1526	0611	1508	0629	1450
5	0611	1654	0623	1643	0635	1630	0651	1615	0709	1556	0728	1538
67	0704	1749	0715	1739	0728	1726	0743	1711	0801	1653	0820	1635
	0755	1848		1838	0817	1827	0830	1814	0847			1742
8	0842	1949	0851	1941	0901	1932	0912	1921	0927	1907	0940	1854
9	0926	2051	0933	2045	0940	2038	0949	2030	1000	2020	1011	2011
10	1007	2153	1011	2149	1017	2145	1023	2141	1030	2135	1037	2130
11	1046	2255	1048	2254	1051	2253	1054	2252	1057	225	1100	22
12	1125	2358	1124		1124		1123		1123		1123	
13	1204		1201	0000	1157	0002	1154	0004	1149	0006	1145	0009
14	1244	0102	1239	0106	1233	0111	1226	0116	1218	0123	1210	0129
15	1328	0206	1320	0212	1312	0220	1302	0229	1250	0239	1238	0250
16	1415	0310	1406	0319	1355	0329	1343	0340	1328	0355	1313	09
17	1507	0414	1456	0424	1444	0436	1430	0450	1413	0507	1355	0524
18	1603	0515	1552	0526	1539	0539	1524	0554	1506	0612	1447	0631
19	1702	0612	1651	0623	1638	0636	1624	0651	1606	0709	1548	0727
20 (2)	1801	0705	1752	0715	1741	0726	1728	0740	1712	0756	1656	0813
21	1901	0751	1853	0800	1844	0810	1833	0821	1820	0835	1807	0849
22	1958	0833	1952	0840	1946	0848	1938	0857		0907	1919	0918
23	2054	0911	2050	0915	2046	0921	2041	0927	2035	0934	2029	0942
24	2148	0945	2146	0948	2145	0951	2143	0954	2140	0958	2138	1002
25	2241	1018	2241	1019	2242	1019	2243	1020	2244	1020	2245	1021
26	2333	1050	2336	1049	2339	1047	2343	1045	2347	1042	2351	1039
27		1123		1119		1115		1110		1104		1058
28	0025	1156	0030	1150	0035	1144	0042	1136	0050	1127	0057	1119
29	0117	1232	0124	1225	0132	1216	0141	1206	0152	1154	0203	1142
30	0211	1311	0219	1302	0229	1252	0241	1239	0255	1225	0309	1210
31	0305	1355	0315	1344	0326	1332	0340	1318	0356	1301	0413	1244
b.		h m	h m	h m	h m	h m	h m	h m	h m	h m	h m	
1	0359	1443	0410	1432	0423	1419	0438	1404	0456	1346	0514	1327
2	0453	1536	0504	1525	0517	1513	0532	1458	0551	1439	0609	1421
3	0545	1634	0556	1624	0608	1612	0622	1558	0640	1541	0658	1524
4 (3)	0634	1735	0644	1727	0655	1716	0707	1704	0723	1650	0738	1635
5	0721	1839	0728	1832	0737	1824	0747	1815	0800	1804	0812	1753
6	0804	1943	0810	1938	0816	1933	0823	1927	0832	1920	0840	1913
7	0845	2047	0848	2045	0852	2043	0856	2040	0900	2038	0905	2035
8	0925	2151	0925	2152	0926	2153	0927	2154	0927	2155	0928	2156
9	1004	2255	1002	2258	1000	2302	0957	2307	0954	2312	0951	2318
10	1045	2359	10		10		1029		1022		1015	
11	1127		1120	0005	1112	0012	1103	0020	1053	0029	1042	0039
12	1213	0103	1204	0111	1154	0120	1142	0131	1128	0144	1114	0157
13	1302	0206	1252	0216	1240	0227	1226	0240	1209	0256	1153	0312
14	1355	0307	1344	0318	1331	0330	1316	0345	1258	0403	1240	0421
15	1451	0404	1440	0415	1428	0428	1413	0443	1354	0501	1336	0520
16	1549	0457	1539	0507	1528	0520	1514	0534	1457	0551	1440	0608
17	1648	0545	1639	0554	1629	0605	1618	0617	1603	0632	1549	0647
18 (3)	1746	0628	1739	0636	1731	0644	1722	0654	1711	0706	1700	0718
19	1842	0707	1838	0713	1832	0719	1826	0726	1818	0735	1811	0744
20	1937	0743	1935	0746	1932	0750	1929	0755	1925	0800	1921	0806
21	2031	$08 \cdot 16$	2031	0818	2030	0819	2030	0821	2029	0823	2029	0825
22	2124	0849	2125	0848	2128	0847	2130	0846	2133	0845	2136	0844
23	2216	0921	2220	0918	2224	0915	2230	0911	2236	0907	2243	0902
24	2308	0954	2314	0949	2321	0944	2329	0937	2339	0929	2349	0922
25		1029		1022		1014		1005		0954		0944
	0001	1106	0009	1058	0018	1048	0028	1036	0041	1023	0054	1009
	0054	1147	0103	1137	0114	1126	0127	1112	0143		0158	1040
28	0147	1232	0158	1221	0210	1209	0224	1154	0242	1136	0300	1118

The symbols (. . .) indicate that the phenomenon will occur the next day.

1 Mate	Latitude 30° Moon		Latitude 35° Moon		Latitude 40° Moon		Latitude 45° Moon		$\begin{aligned} & \text { Latitude } 50^{\circ} \\ & \text { Moon } \\ & \text { Rise } \quad \text { Set } \end{aligned}$		Latitude 54° Moon	
	Rise	Set	Rise	Set	Rise	Set	Rise	Set			Rise	
Mar.	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m		
1	0240	1323	0252	1311	0304	1258	0320	1243	0338	1225	0357	1206
2	0332	1418	0343	1407	0356	1354	0411	1340	0429	1322	0448	1304
3	0423	1517	0433	1507	0444	1456	0458	1443	0515	1427	0531	1411
4	0510	1619	0519	1612	0529	1602	0540	1552	0554	1539	0608	1526
5	0555	1724	0602	1718	0609	1712	0618	1705	0629	1655	0639	1647
	0638	1830	0642	1827	0647	1823	0653	1819	0659	1815	0706	1810
7	0719	1936	0721	1936	0723	1936	0725	1935	0727	1935	0730	1934
8	0800	2043	0759	2045	0758	2048	0757	2051	0755	2055	0753	2059
9	0842	2149	0838	2154	0834	2200	0829	2207	0823	2215	0818	2223
10	0925	2255	0918	2302	0911	2311	0903	2321	0854	2333	0844	2345
11	1010		1002		0952		0941		0928		0915	
12	1059	0000	1049	0009	1037	0020	1024	0033	1008	0048	0952	0103
13	1151	0102	1140	0112	1128	0125	1113	0139	1055	0157	1037	0215
14	1246	0200	1235	0211	1222	0224	1207	0239	1149	0258	1130	0317
15	1343	0254	1333	0305	1320	0317	1306	0332	1249	0350	1231	0408
16	1441	0343	1431	0352	1421	0404	1408	0417	1353	0433	1338	0448
17	1538	0426	1530	0435	1522	0444	1512	0455	1500	0508	1448	0521
18	1634	0506	1629	0512	1622	0520	1615	0528	1606	0538	1558	0548
19	1729	0542	1726	0546	1722	0551	1718	0557	1712	0604	1707	0610
20-3)	1823	0616	1822	0618	1821	0621	1819	0624	1817	0627	1816	0630
21	1916	0649	1917	0649	1918	0649	1920	0649	1922	0649	1923	0649
22	2008	0721	2012	0719	2015	0716	2020	0713	2025	0710	2030	0707
23	2101	0753	2106	0749	2112	0744	2119	0739	2128	0732	2137	0726
24	2153	0827	2201	0821	2209	0814	2219	0806	2231	0756	2242	0746
25	2246	0903	2255	0855	2305	0846	2317	0836	2332	0823	2347	0810
26	2339	0942	2349	0933		0922		0909		0854		0838
27		1025		1015	0001	1002	0015	0948	0032	0930	0049	0913
28	0031	1112	0042	1101	0055	1048	0110	1033	0129	1014	0147	0955
29	0123	1204	0134	1153	0147	1140	0202	1125	0221	1106	0240	1047
30	0212	1300	0223	1250	0235	1238	0250	1224	0308	1206	0325	1149
31	0300	1400	0309	1351	0320	1341	0333	1329	0349	1314	0404	1259
Apr.	$\begin{array}{cc}\mathrm{h} & \mathrm{m} \\ 03 & 45\end{array}$	$\begin{array}{lll}\mathrm{h} & \mathrm{m} \\ 15\end{array}$	$\begin{array}{cc}\mathrm{h} & \mathrm{m} \\ 03 & 53\end{array}$	h m	$\begin{array}{cc}\mathrm{h} & \mathrm{m} \\ 04 & \end{array}$	$\begin{array}{lll}\mathrm{h} & \mathrm{m} \\ 14 & 48\end{array}$	h m	h m	$\begin{array}{cc}\mathrm{h} & \mathrm{m} \\ 04\end{array}$		h m 04	
$\frac{1}{2}$	0345 0428	15 03	O3 53	1456	04 04 04 02	1448	$\begin{array}{lll}04 & 12 \\ 04 & 47\end{array}$	14 149	04 24	1427	04 05 05 04 04	1416
3	0510	1714	0513	1712	0516	1710	0520	1708	0525	1705	0529	1702
4 (4)	0551	1821	0551	1822	0552	1824	0552	1825	0553	1827	0553	1829
5	0633	1930	0630	1934	0628	1938	0624	1943	0621	1950	0617	1956
6	0716	2038	0711	2045	0705	2053	0659	2101	0651		0643	
7	0802	2146	0755	2155	0746	2205	0736	2217	0724	2232	0712	2246
8	0851	2252	0842	2303	0831	2315	0818	2329	0803	2346	0748	
9	0944	2354	0933		0921		0906		0848		0831	0004
0	1040		1029	0005	1016	0018	1000	0034	0941	0052	0923	
115	$\begin{array}{ll}11 & 38 \\ 12\end{array}$	0051	1127	0102	1114	0115	1059	0130	1041	0148	1023	0207
12	1236	0142	1226	0152	1215	0204	1201	0218	1145	0234	1129	0251
13	1333	0227	1325	0236	1316	0246	1305	0258	1251	0312	1238	0326
84	1429	0307	1423	0314	1416	0322	1408	0332	1358	0343	1348	0354
15	1524	0344	1520	0349	1515	0355	1510	0401	1504	0409	1457	0417
16	1618	0418	1616	0421	1614	0424	1611	0428	1608	0433	1606	0437
17	1711	0451	1711	0451	1711	0452	1712	0453	1713	0454	1713	0455
88	1803	0522	1806	0521	1809	0519	1812	0517	1816	0515	1820	0513
190	1855	0554	1900	0551	1906	0547	1912	0542	1919	0537	1927	0531
20	1948	0628	1955	0622	2002	0616	2011	0608	2022	0559	2033	05
21	2041	0703	2049	0655	2059	0647	2111	0637	2125	0625	2139	0613
22	2134	0741	2144	0731	2155	0721	2209	0709	2225	0654	2242	0639
23	2226	0822	2237	0811	2250	0759	2305	0745	2323	0728	2342	0711
24	2317	0907	2329	0856	2342	0843	2358	0828		0809		0750
25		0956		0945		0932		0916	0017	0857	0036	0838
26	0007	1050	0018	1039	0031	1026	0046	1011	0105	0953	0123	0935
27 c	0054	1146	0104	1137	0116	1125	0130	1112	0147	1056	0203	1040
28	0139	1246	0147	1238	0157	1229	0209	1218	0223	1205	0237	1152
29	0221	1348	0228	1342	0236	1336	0244	1328	0255	1319	0305	1310
30	0302	1452	0306	1449	0311	1445	0317	1441	0324	1436	033	14

	$\begin{aligned} & \text { Latitude } 30^{\circ} \\ & \text { Moon } \end{aligned}$		Latitude 35° Moon		$\begin{aligned} & \text { Latitude } 40^{\circ} \\ & \text { Moon } \end{aligned}$		Latitude 45° Moon Rise Set		Latitude 50° Moon Rise Set		$\begin{aligned} & \text { Latitude } 54^{\circ} \\ & \text { Moon } \end{aligned}$			
	Rise	Set	Rise	Set	Rise	Set			Rise					
May														
1	0342	1557	0344	1557	0346	1557	0348	1556	0351	1555	0354	1555		
2	0423	1705	0422	1707	0421	1710	0419	1713	0418	1717	0416	1721		
3 (e)	0505	1814	0501	1819	0457	1825	0452	1832	0446	1841	0441	1849		
	0549	1924	0543	1932	0536	1941	0527	1951	0517	2004	0508	2017		
5	0638	2033	0629	2043	0619	2055	0608	2108	0554	2124	0540	2141		
6	0731	2140	0720	21	0708		0654		0637	2238	0620	$22 \quad 56$		
7	0827	2241	0816	2253	0803	2306	0747	2322	0729	2341	0710			
8	0927	$23 \quad 37$	0915	2347	0902		0847		08 28		0809	$\because 000$		
9	1027		1016		1004	0000	0950	0015	0933	0032	0915	0050		
103	1126	0025	1117	0035	1107	0046	1055	0058	1040	0114	1026	0129		
11	12	01	1217	0116	1209	0125	1159	0135	1148	0147		0200		
12	1320	0146	1315	0152	1309	0159	1303	0206	1255	0215	1247	0224		
13	1414	0221	1411	0225	1408	0229	1404	0234	1400	0239	1356	0245		
14	1506	0254	1506	0255	1506	0257	1505	0259	1505	0301	1504	0303		
15	1559	0325	1601	0325	1603	0324	1605	0323	1608	0322	1611	0321		
16	16	03	16	03	1700	0351	1705	0347	17	03	1718	38		
17	1743	0429	1749	0424	1756	0419	1805	0412	1815	0404	1824	0357		
18	1836	0503	1844	0457	1854	0449	1904	0439	1917	0428	1930	0418		
19	1929	0540	1939	0532	1950	0522	2003	0510	2019	0456	2035	0442		
20	2022	0620	2033	0610	2046	0559	2101	0545	2119	0528	2137	0512		
21			21	0653	2139	06	2155	0625	2214	0607		48		
22	2205	0752	2216	0741	2229	0728	2245	0712	2304	0652	2323	0633		
23	2252	0844	2303	0833	2315	0820	2330	0805	2348	0746		0727		
24	2337	0939	2347	0929	2357	0917		0903		0846	0005	0829		
25		1037		1028		1018	0010	1006	0025	0952	0040	0938		
26	00	11	0027		0035		0046		0058	1102	0109	1051		
27	0059	1237	0105	1233	0111	1228	0118	1222	0126	1215				
28	0138	1340	0141	1338	0144	1336	0148	1334	0153	1331	0157	1329		
29	0217	1444	0217	1446	0217	1447	0218	1448	0218	1450	0219	1451		
30	0256	1551	0254	1555	0251	1559	0248	1604	0245	1610	0241			
31	0338	1659	0333	1706	0327	1713	0321	1722	0313	1733	0306	1743		
June	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m			
		1809	0416	1818	0408	1828	0358	1840	0346	1855	0334	1909		
2 23	0514	1918	0505	1929	0454	1941	0441	1955	0425	2013	0410	2031		
3	0610	2024	0558	2035	0546	2049	0531	2104	0512	2124	0454			
4	0709	2124	0657		0644		0628	2204	0609	2223	0550	2242		
5	0811	2217	0800	2228	0747	22	0732	2253	0713	2310	0655	2327		
6			0903			23		2334	0822	2348				
7	1013	2345	1005	2352	$\begin{array}{ll}09 & 56 \\ 10\end{array}$		0945		0932		0920	0002		
8			1105		1059	0000	1051	0008	1042	0019	1033	0029		
93	1207		1203		1159	0032	1155	0038	1149	0045	1144	0052		
10	1301	0056	1300	0058	1258	0101	1256	0104	1255	0107	1253	0111		
1	1354		1355							0128	1400			
12	1446	0159	1449	0157	1453	0155	1457	0152	1502	0149	1507	0146		
13	1538	0231	1543	0227	1550	0222	1557	0217	1605	0210	1614	0204		
14	1631	0305	1638	0258	1647	0251	1657	0243	1709	0233	1720	0224		
15	1724	0340	1733	0332	1744	0323	1756	0312	1811	0259	1826	0246		
16	1817	0419	1828	0409	1840		1855	0345	1912	0329	1930	0314		
176	1910	0502	1922	0451	1935	0438	1951	0424	2010	0406	2029	0348		
18	2002	0549	2013	0537	2027	0524	2043	0508	2102	0449	2122	0430		
19	2051	0640	2102	0628	2115	0615	2130	0559	2148	0540	2207	0521		
20	2137	0735	2147	0724	2158	0711	2212	0657	2228	0639	2244	0621		
21	2220	0832	2228	0822	2238	0811	2249	0759		0743	2315	0728		
22	2300	0930	2306	0923	2313	0914	2321	0904	2331	0852	2341	0840		
23	2338	1030	23	1025	2347	1019	2352	1012	2358	1004		0955		
24 ©		1131		1128		1125		1121		1117	0004			
25	0016	1233	0017	1233	0019	1233	0021	1232	0023	1232	0025	1232		
26	0054	1336	0052	1339	0051	1342	0049	1345	0047	1349	0046	1353		
27	0133	1441	0129	1447	0125	1453	0120	1500	0114	1508	0108	1517		
28	0215	1548	0209	1556	0201	1605	0153	1616	0143	1628	0133	1641		
29	03 03 03	1656	0253	1706	0243	1718	0232	1731	0218	1747	0204	1804		
30	0353	1803	034	1814	0331	1827	0317	1843	0300	1901	0243	1920		

Date	Latitude 30° Moon		Latitude 35° Moon Rise Set		Latitude 40° Moon Rise Set		$\begin{aligned} & \text { Latitude } 45^{\circ} \\ & \text { Moon } \\ & \text { Rise } \quad \text { Set } \end{aligned}$		$\begin{aligned} & \text { Latitude } 50^{\circ} \\ & \text { Moon } \\ & \text { Rise Set } \end{aligned}$		Latitude 54° Moon Rise Set	
	Rise	Set										
July	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m		
1	0450	1906	0439	1918	0426	1931	0410	1947	0351	2006	0332	2026
2	0551	2004	0540	2015	0527	2027	0511	2042	0452	2100	0432	2118
3	0654	2055	0644	2104	0632	2115	0617	2128	0600	2144		
4	0757	2139	0748	2147	0738	2156	0726	2206	0711	2218	0657	2230
5	0858	2219	0851	2225	0843	2231	0834	2238	$08 \quad 23$	2247	0812	2255
6	0956	22	0951	2258	0946	2302	0940	2306	0933	2311	0926	2316
	1052	2328	1049	2329	1047	2330	1044	2332	1040	2333	1037	2335
8	1146		1146	2359	1146	2358	1146	2356	1146	2354	1146	2352
	1239	0000	1241		1244		1247		1250		1254	
10	1331	0032	1336	0029	1341	0025	1347	0020	1354	0015	1401	0010
11	14	01	1430	0059	1438	0053	1447	0046	1457	0037	1508	0029
12	1517	0139	1525	0132	1535	0124	1546	0114	1600	0102	1614	0050
13	1610	0217	1620	0208	1632	0157	1645	0145	1702	0130	1719	0116
14	1703	0258	1715	0248	1727	0236	1743	0221	1801	0204	1820	0147
15	1756	0344	1808	0332	1821	0319	1837	0304	1856	0245	1916	0226
	1847	0434	1858	0422	1911	0409	1926	0353	1945	0333	2005	
17	1934	0528	1945	0517	1957	0504	2011	0449	2028	0430	2045	0411
18	2019	0625	2028	0615	2038	0604	2050	0550	2104	0534	2118	0517
19	2101	0724	2108	0716	2115	0707	2125	0656	2136	0642	2146	0629
20	2140	0824	2144	0818	2150	0812	2156	0804	2203	0754	2210	0744
21	2217	0925	2220	0922	2222	0918	2225	0913	2228	0907	2232	0902
22	2255	1026	2254	1026	2254	1025	2253	1023	2253	1022	2252	1020
23	2333	1129	2330	1130	2326	1132	2322	1135	2318	1137	2313	1140
24 C		1232		1236		1241	2354	1247	2345	1254	2337	1301
25	0013	1336	0007	1343	0001	1351		1400		1412		1423
26	0056	1442	0048	1451	0039	1501	0029	1514	0016	1529	0004	1544
27	0144	1547	0134	1558	0123	1610	0110	1625	0054	1643	0038	1701
28	0237	1651	0226	1702	0213	1715	0158	1731	0140	1750	0121	1810
29	0335	1750	0323	1801	0310	1814	0254	1830	0235	1849	0216	1908
30 (3)	0436	1843	0425	1854	0413	1906	0357	1919	0339	1936	0320	1953
31	0539	1931	0529	1940	0518	1950	0505	2001	0449	2015	0433	2029
Aug.	h m	h m	${ }^{\text {h }} \mathrm{m}$	h m	h m	$\mathrm{h}^{\mathrm{m}} \mathrm{m}$	h m	h m	$h \mathrm{~m}$	$h \mathrm{~m}$	h m	
	0641	2013	0633	2020	0624	2027	0614	2036	0601	2046	0548	2056
2	0741	2051	0736	2055	0729	2100	0722	2106	0713	2113	0704	2119
3	0839	2126	0836	2128	0832	2130	0828	2133	0823	2136	0817	2139
4	0935	2159	0934	2159	0933	2158	0932	2158	0930	2158	0929	
5	1029	2231	1030	2229	1032	2226	1034	2223	1036	2219	1038	2215
6	1122	2304	1126	2259	1130		$11 \begin{array}{ll}11 & 35 \\ 125\end{array}$	2248	1141	2240		
7	1215	2338	1221	2331	1227	2323	1235	2315	1244	2304	1254	2254
8	1308		1315		1324	2356	1335	2344	1348	2331	1400	2317
9	1401	0014	1410	0005	1421		1434		1450		1505	2346
10	1454	0053	1505	0043	1517	0032	1532	0018	1550	0002	1608	
11	1547	0137	1558	0126	1612	0113	1627	0058	1647	0040	1706	0021
12	1638	0225	1650	0213	1703	0200	1719	0144	1738	0125	1758	0105
13	1728	0318	1739	0306	1751	0253	1806	0237	1824	0218	1842	0159
14	1814	0414	1824	0404	1835	0351	1847	0337	1903	0320	1918	0302
15(3)	1858	0513	1905	0504	1914	0454	1924	0442	1937	0428	1949	0413
16	1938	0615	1944	0608	1950	0600	1957	0551	2006	0540	2014	0529
17	2017	0717	2020	0712	2024	0707	2028	0701	2032	0654	2037	0647
18	2055	0819	2056	0817	2056	0815	2057	0813	2057	0810	2058	0807
19	2133	0922	2131	0923	2129	0924	2126	0925	2122	0927	2119	0928
20	2213	1025	2208	1029	2203	1033	2156	1038	2149	1044	2142	1049
21	2255	1130	2248	1136	2239	1143	2230	1151	2219	1201	2208	
22 (6)	2341	1234	2331	1243	2321	1253	2308	1304	2253	1318	2239	1332
23		1339		1349		1401	2353	1415	2335	1432	2318	1449
24	0031	1441	0020	1453	0008	1506		1521		1540		1600
25	0126	1541	0114	1552	01	1606	0045	1621	0026	1641	0007	1700
26	0225	1635	0213	1646	0200	1658	0144	1713	0125	1731	0106	1749
27	0326	1724	0315	1733	0303	1744	0249	1757	0232	1812	0215	1827
28	0427	1808	0418	1815	0408	1824	0357	1834	0342	1846	0328	1857
29	0528	1847	0521	1852	0513	1858	0504	1905	0454	1914	0443	1922
30	0626	1923	0622	1926	0617	1929	0611	1933	0604	1938	0558	1942
31	0723	1957	0721	1957	0719	1958	0716	1959	0713	2000	0710	2001

	Latitude 30° Moon		Latitude 35° Moon Rise Set		Latitude 40° Moon Rise Set		Latitude 45° Moon Rise Set		Latitude 50° Moon Rise Set		Latitude 54° Moon	
Sept												
	0818	2029	0819	2028	0819	2026	0820	2024	0821	2021	0821	2019
2	0912	2102	0915	2058	0918	2054	0922	2049	0926	2043	0931	2037
3	1005	2135	1010	2129	1016	2123	1023	2115	1031	2106	1039	2057
4	1058	2210	1106	2203	1114	2154						
5	1151	2248	1200	2239	1211	2228	1223	2215	1237	2200	1252	2145
69	12	2330	1255	2319	1307	2307	1321	2252	1338	2234	1355	
	1337		1348		1401	2351	1417	2335	1436	2316	1455	
8	1428	0016	1440	000	1454		1510		1529		1549	45
9	1518	0106	1530	0054	1543	0041	1558	0025	1617	0005	1636	
10	1606	0200	1616	01	1628		1642	0121	1659	0103	1715	00
11	1650	0258	16	02	1709	0237	1720	02	1734	0208	1748	0152
12	1733	0359	1739	0351	1747	0342	1755	0331	1805	0319	1815	
13 (3)	1813	0501	1817	0456	1822	0450	1827	0442	1833	0433	1839	0425
14	1852	0605	1853	0602	1855	0559	1857	0555	1859	0550	1901	0546
15	1931	0709	1930	0709	1928	0709	1926	0709	1925	0709	1923	
16	20	0815	20	08	2002	0820	1957	08	1951	0828	1945	33
17	2053	0921	2046	0926	2039	0932	2030	0939	2020	0948	2010	0957
18	2138	1027	2129	1035	2119	1044	2108	1054	2054	1107	2040	1120
19	2228	1132	2217	1142	2205	1154	2151	1207	2134	1224	2117	1240
20 (6	2321	1236	2310	1247	2256	1300	2241	1316	2222	1335	2202	1354
21		1336		13	2353	14	2337	1417	2318	1437	2258	1457
22	0018	1431	0007	1443		1456		1511		1530		
23	0118	1521	0107	1531	0055	1543	0040	1556	0002	1612	0003	1629
24	0218	1605	0209	1614	0158	1623	0145	1634	0130	1647	0114	1700
25	0318	1645	0311	1651	0302	1658	0252	1707	0240	1716	0228	1726
26	0417	1722	0411	17	0405	17	0358	1735	0350	1741	0342	47
27	0513	1756	0511	1757	0507		0504	1801	0459	1804	0455	
28	0609	1828	0608	1828	0608	1827	0607	1826	0607	1825	0606	1824
29	0703	1901	0705	1858	0707	1854	0710	1850	0713	1846	0716	1841
30	0757	1934	0801	1928	0806	1923	0811	1916	0818	1908	0825	1900
Oct.		h m	$\begin{array}{ll}\text { h } & \mathrm{m}\end{array}$	h	h m		h m	h m	$\mathrm{h}_{\mathrm{h}} \mathrm{m}$	m h	h m	
1	0850	2008	0857	2001	0904	1953	0912	1943	0923	1932	0933	1921
2	0943	2045	0952	2036	1001	2025	1012	2013	1026	1959	1040	1945
3	1036	2125	1046	2114	1058	2102	1111	2048	1128	2031	1144	2014
5		2208	1140	2157	1153	2143	1208	2128	1227	2109	1245	2050
5	1220	2256	1232		1245	2230	1302	2214	1321	2154	1341	
		2347	1322	23	1335	2322	1351	2307	1411	2247	1430	
7	1357		1408		1421		1436		1454	2348		
8	1442	0043	1452	0032	1503	0020	1516	0006	1531		1547	
9	1525	0141	1532	01	1541	0122	1551	0110	1604	0055	1615	0041
10	1605	0242	1611	0235	1617	0228	1624	0219	1632	0208	1640	
11						0336	1654	0330	1659	0323	1703	0317
12	1724	0449	1724	0448	1724	0446	1724	0444	1724	0442	1724	0440
13	1804	0555	1801	0557	1758	0558	1754	0600	1750	0603	1746	0605
14	1846	0703	1840	0707	1834	0712	1827	0718	1818	0725	1810	0731
15	1931	0811	1923	0819	1914	0827	1903	0836	1851	0847	1838	0859
16	2021	0920	2011	0930	1959	0940	1945	0953	1929	1008	1913	1024
17	2114	1027	2103	1038	2050	1051	2034	1106	2015	1125	1956	1143
18	2212	1131	2200	1142	2146	1156	2130	1212	2110	1232	2050	1252
19 ©	2312	1229	2301	1240	2248	1254	2232	1309	2213	1329	2154	1348
20		1320		1331	2351	1343	2337	1357	2321	1415	2304	1432
21	0013	1406	0003	1415				1437		1452		06
22	0112	1447	0104	1454	0055	1502	0044	1511	0030	1522	0017	1532
23	0211	1523	0205	1528	0158	1533	0150	1540	0140	1547	0131	1554
24	0307	1557	0304	1600	0300	1603	0255	1606	0249	1609	0243	1613
25	0403	1630	0401	1630	0400	1630	0358	1630	0356	1630	0354	1630
26	0457	1702	0458	1659	0459	1657	0501	1654	0502	1651	0504	1647
276	0550	1734	0554	1730	0558	1724	0602	1719	0608	1712	0613	1705
28	0644	1807	0649	1801	0656	1753	0703	1745	0712	1734	0721	1724
29	0737	1843	0745	1835	0754	1825	0804	1814	0817	1800	0829	1747
30	0830	1922	0840	1912	0851	1900	0904	1846	0919	1830	0935	1814
31	09	20	09	1952	09	19	10	19	10	19	0	1846

Whie	Latitude 30° Moon		Latitude 35° Moon		Latitude 40° Moon		Latitude 45° Moon		Latitude 50° Moon		Latitude 54° Moon	
	Rise	Set										
Nour.	h	h m	h	h m	h	h	h	h	h	h	h m	
1	1015	2049	1026	2037	1040	2024	1056	2007	1116	1947	1136	1927
:	1105	2139	1117	2127	1130	2113	1147	2057	1207	2037	1227	2016
1	1152	2232	1204	2220	1217	2208	1233	2152	1252	2134	1311	2115
4	1237	2328	1247	2318	1259	2306	1313	2253	1330	2237	1347	2221
5	1319		1328		1338		1349	2358	1403	2345	1417	2332
	1359	0026	1406	0018	1413	0009	1422		1432		1442	
7	1438	0126	1442	0120	1446	0114	1452	0106	1458	$00 \quad 37$	1505	$\ddot{00} 49$
8	1516	0228	1517	0225	1519	0222	1521	0218	1523	0213	1526	0208
${ }^{\prime \prime}$	1554	0332	1553	0332	1552	0332	1550	0331	1548	0331	1546	0331
11	1635	0438	1631	0441	1626	0444	1621	0448	1615	0452	1609	0456
	1719	0547	1712	0553	1704	0559	1655	0607	1645	0616	1634	0625
12	1807	0657	1758	0706	1747	0715	1735	0726	1720	0740	1706	
13	1901	0808	1850	0818	1837	0830	1822	0845	1804	0902	1746	0919
14	1959	0916	1947	0928	1933	0941	1917	0957	1857	1017	1837	1037
15	2101	1019	2049	1031	2035	1045	2019	1101	1959	1121	1939	1142
	2203	1115	2153	1127	2140	1140	2126	1155	2108	1213	2050	1232
17	2305	1205	2256	1215	2246	1226	2234	1239	2219	1254	2204	1310
18		1248	2358	1256	2350	1304	2341	1315	2330	1327	2319	1339
19	0005	1326		1331		1338		1345		1354		
20	0103	1401	0058	1404	0053	1407	0047	1412	0040	1417	0033	
21	0158	1433	0156	1434	0154	1435	$\begin{array}{lll}01 & 51\end{array}$	1436	0148	1437	0144	1439
22	0252	1505	0253	1503	0253	1502	0253	1500	0254	1457	0254	
23	0346	1536	0348	1533	0351	1528	0355	1524	0359	1518	0403	12
24	0439	1609	0444	1603	0449	1556	0456	1549	0504	1539	0511	1530
25	0532	1643	0539	1636	0547	1627	0556	1616	0608	1604	0619	
26	0625	1721	0634	1711	0644	1700	0657	1647	0711	1632	0726	1616
27	0718	1801	0729	1750	0741	1738	0755	$17 \quad 23$	0813	1705	0831	
28	0811	1846	0822	1834	0836	1820	0852	1804	0911	1744	0931	1724
29	0901	1934	0914	1922	0928	1908	0944	1851	1005	1831	1025	1810
110	0950	2026	1002	2014	1015	2001	1032	1945	1051	1925	1112	1905
nec.	h m	h m	h m	h m	h m	h m	h m	h m	$h \mathrm{~m}$	h m	h m	h m
1	1035		1046	2109	1059	2057	1114	2043	1132	2026	1150	2008
	1118	2216	1127	2207	1138	2157	1151	2145	1206	2131	1221	
3	1157	2314	1205	2307	1213	2300	1223	2251	1235	2240	1247	2229
4	1235		1240		1246		1253	2358	1301	2352	$\begin{array}{ll}13 & 09 \\ 13 & 30\end{array}$	2345
5	1311	0013	1314	0009	1317	0004	1321		1325		1330	
6	1348		1348	0112	1348	0110	1349	0108	1349	0106	1349	
7	1426	0217	1423	0218	$14 \quad 20$	0219	1417	0221	1413	0223	$14 \quad 10$	0224
8	1507	0322	1501	0326	1455	0331	1448	0336	1440	0343	1432	
9	1551	0430	1544	0437	1535	0445	1524	0454	1512	0505	1459	0516
10	1642	0540	1632	0550	1620	0601	1607	0613	1550	0629	1534	0644
								0730	1638	0749	1619	
12	1840	0759	1828	0811	1814	$08 \quad 25$	1758	0841	1737	0902	1717	0922
13	1945	0901	1934	0913	1920	0926	1905	0943	1845	1002	1826	1022
14	2050	0956	2040	1006	2029	1019	2015	1033	1959	1050	1942	
15	2154	1043	2146	1052	2137	1102	2126	1114	$21 \quad 13$	1128	2101	1141
,		1125		11.31	2242	1139	2235	1147	2226		2217	
17	2352	1202	2348	1206	2345	1210	2341	1216	2336	1222	$23 \quad 32$	1228
18 (6)		1235		1237		1239		1241		1244		1247
19	0047	1307	0046	1307	0046	1306	0045	1305	0044	1304	0043	1303
20	0141	1339	0142	1336	0145	$13 \quad 33$	0147	1329	0150	1324	0153	1320
,	0234	1411	0238	1406	0243	1400	0248	1353	0255	1345	0301	1338
22	0327	1445	0333	1437	0340	1429	0349	1420	0359	1408	0409	1357
23	0420	1521	0428	1512	0438	1501	0449	1449	0503	1435	0516	1420
24	0513	1600	0523	1549	0535	1537	0548	1523	0605	1506	0622	1448
25	0606	1643	0617	1632	0630	1618	0646	1602	0705	1543	0724	1523
	0658	1731	0710	1718	0724	1704	0740	1648	0801	1627	0821	1607
27	0747	1821	0800	1810	0813	1756	0830	1740	0850	1719	0911	1659
28	0834	1915	0846	1904	0859	1852	0914	1837	0933	1818	0952	1800
29	0918	2011	0928	2002	0939	1951	0953	1938	1009	1923	1026	1907
10	0958	2108	1006	2101	1016	2052	1027	2042	1040	2030	1053	2018
1	1036	2206	104	2201	10	2155	1057	21	1107	21	11	213

THE SKY MONTH BY MONTH

Introduction-In the monthly descriptions of the sky on the following pages, positions of the sun and planets are given for 0 h Ephemeris Time, which differs only slightly from Standard Time on the Greenwich meridian. The times of transit at the 75th meridian are given in local mean time; to change to Standard Time, see p. 14. Estimates of altitude are for an observer in latitude $45^{\circ} \mathrm{N}$. Unless noted otherwise, the descriptive comments about the planets apply to the middle of the month.

The Sun-The values of the equation of time are for noon E.S.T. on the first and last days of the month. For times of sunrise and sunset and for changes in the length of the day, see pp. 15-20. See also p. 9.

The Moon-Its phases, perigee and apogee times and distances, and its conjunctions with the planets are given in the "Astronomical Phenomena Month by Month". For times of moonrise and moonset, see pp. 22-27.

Age, Elongation and Phase of the Moon-The elongation is the angular distance of the moon from the sun in degrees, counted eastward around the sky. Thus, elongations of $0^{\circ}, 90^{\circ}, 180^{\circ}$, and 270° correspond to new, first quarter, full, and last quarter moon. For certain purposes the phase of the moon is more accurately described by elongation than by age in days because the moon's motion per day is not constant. However, the equivalents in the table below will not be in error by more than half a day.

Elong.	Age	Elong.	Age	Elong.	Age.
0°	$0^{\mathrm{d}} .0$	120°	$9^{\mathrm{d} .8}$	240°	$19^{\mathrm{d}} .7$
30°	2.5	150°	12.3	270°	22.1
60°	4.9	180°	14.8	300°	24.6
90°	7.4	210°	17.2	330°	27.1

The sun's selenographic colongitude is essentially a convenient way of indicating the position of the sunrise terminator as it moves across the face of the moon. It provides an accurate method of recording the exact conditions of illumination (angle of illumination), and makes it possible to observe the moon under exactly the same lighting conditions at a later date. The sun's selenographic colongitude is numerically equal to the selenographic longitude of the sunrise terminator reckoned eastward from the mean centre of the disk. Its value increases at the rate of nearly 12.2° per day or about $\frac{1}{2}^{\circ}$ per hour; it is approximately $270^{\circ}, 0^{\circ}, 90^{\circ}$ and 180° at New Moon, First Quarter, Full Moon and Last Quarter respectively. Values of the sun's selenographic colongitude are given on the following pages for the first day of each month.

Sunrise will occur at a given point east of the central meridian of the moon when the sun's selenographic colongitude is equal to the eastern selenographic longitude of the point; at a point west of the central meridian when the sun's selenographic colongitude is equal to 360° minus the western selenographic longitude of the point. The longitude of the sunset terminator differs by 180° from that of the sunrise terminator.

Libration is the shifting, or rather apparent shifting, of the visible disk of the moon. Sometimes the observer sees features farther around the eastern or the western limb (libration in longitude), or the northern or southern limb
(libration in latitude). When the libration in longitude is positive, the mean central point of the disk of the moon is displaced eastward on the celestial sphere, exposing to view a region on the west limb. When the libration in latitude is positive, the mean central point of the disk of the moon is displaced towards the south, and a region on the north limb is exposed to view.

The dates of the greatest positive and negative values of the libration in longitude and latitude are given in the following pages.

The Moon's Orbit. In 1981, the ascending node of the moon's orbit regresses from longitude 132.5° to 114° (Cancer into Gemini).

The Planets-Further information in regard to the planets, including Pluto, is found on pp. 78-91. For the configurations of Jupiter's satellites, see "Astronomical Phenomena Month by Month", and for their eclipses, see p. 92.

In the diagrams of the configurations of Jupiter's four Galilean satellites, the central vertical band represents the equatorial diameter of the disk of Jupiter. Time is shown by the vertical scale, each horizontal line denoting 0^{h} Universal Time. (Be sure to convert to U.T. before using these diagrams.) The relative positions of the satellites at any time with respect to the disk of Jupiter are given by the four labelled curves (I, II, III, IV). In constructing these diagrams, the positions of the satellites in the direction perpendicular to the equator of Jupiter are necessarily neglected. Note that the orientation is for an inverting telescope.

The motions of the satellites, and the successive phenomena (see p. 92) are shown in the diagram at right. Satellites move from east to west across the face of the planet, and from west to east behind it. Before opposition, shadows fall to the west, and after opposition, to the east. The sequence of phenomena in the diagram is: transit ingress (TI), transit egress (Te), shadow ingress (SI), shadow egress (Se), occultation disappearance (OD), occultation reappearance (OR), eclipse disappearance (ED) and eclipse reappearance (ER), but this sequence will depend on the actual sun-Jupiter-earth
 angle.

Minima of Algol-The times of mid-eclipse are given in "Astronomical Phenomena Month by Month" and are calculated from the ephemeris

$$
\text { heliocentric minimum }=2440953.4657+2.8673075 \mathrm{E}
$$

and are rounded off to the nearest ten minutes.
Occultations of Stars and Planets-For information about occultations of stars and planets visible in North America, see pp. 58-77.

THE SKY FOR JANUARY 1981

Observing Meteors. This year, the Quadrantid meteor shower occurs near new moon, and it could well be the most favourable shower of the year. The Perseids, which occurred near new moon in 1980, occur near full moon in 1981.

Two good articles on meteor observing appeared in 1980, both by Mark T. Adams: in Mercury, 9, 31 (March/April 1980) and in Star and Sky, 2, 42 (August 1980). These articles emphasize the enjoyment and simplicity of meteor observing: no elaborate equipment is needed. The following articles are helpful, however; dark-adapted eyes, deck chair or ground sheet, flashlight with red filter, reliable timepiece, short wave radio for monitoring time signals, notebook or tape recorder, and a working knowledge of the constellations.

Good records are essential. Each night's record should include: observer's name and location, date, starting and ending times of observations, record of sky conditions and anything affecting them, and an estimate of the magnitude of the faintest stars visible at the zenith.

Visual observations are particularly useful for monitoring the activity and characteristics of meteor streams, both major and minor, from year to year. Serious meteor observers might wish to join the American Meteor Society, c/o Dr. D. Meisel, Dept. of Physics and Astronomy, SUNY, Geneseo, NY 14454, U.S.A.

The Sun-During January, the sun's R.A. increases from 18 h 46 m to 20 h 58 m and its Decl. changes from $-23^{\circ} 02^{\prime}$ to $-17^{\circ} 11^{\prime}$. The equation of time changes from -3 m 44 s to -13 m 32 s . The earth is at perihelion on Jan. 1 (E.S.T.), at a distance of $147,102,400 \mathrm{~km}(91,405,000 \mathrm{mi})$ from the sun.

The Moon-On Jan. 1.0 E.S.T., the age of the moon is 24.2 d . The sun's selenographic colongitude is 212.6° and increases by 12.2° each day thereafter. The libration in longitude is maximum (west limb exposed) on Jan. 21 (5°) and minimum (east limb exposed) on Jan. 7 (5°). The libration in latitude is maximum (north limb exposed) on Jan. $14\left(7^{\circ}\right)$ and minimum (south limb exposed) on Jan. $28\left(7^{\circ}\right)$. There is a penumbral eclipse of the moon on the night of Jan. 19-20, visible in North America.

Mercury on the 1st is in R.A. 18 h 48 m , Decl. $-24^{\circ} 47^{\prime}$, and on the 15th is in R.A. 20 h 27 m , Decl. $-21^{\circ} 16^{\prime}$. Early in the month, it is too close to the sun (superior conjunction having been on Dec. 31), but by the end of the month, it can be seen low in the south-west after sunset (see "February"). On Jan. 23, it is $0.3^{\circ} \mathbf{S}$. of Mars.

Venus on the 1 st is in R.A. 17 h 04 m , Decl. $-21^{\circ} 58^{\prime}$, and on the 15 th it is in R.A. 18 h 20 m , Decl. $-23^{\circ} 06^{\prime}$, mag. -3.3 , and transits at 10 h 44 m . It rises shortly before the sun, and is very low in the south-east just before sunrise. On Jan. 5, it is $0.6^{\circ} \mathrm{S}$. of Neptune.

Mars on the 15th is in R.A. 20 h 59 m , Decl. $-18^{\circ} 18^{\prime}$, mag. +1.4 , and transits at 13 h 20 m . In Capricorn, it is very low in the south-west at sunset, and sets shortly after. See also "Mercury" above.

Jupiter on the 15th is in R.A. 12 h 40 m , Decl. $-2^{\circ} 48^{\prime}$, mag. -1.7 , and transits at 5 h 01 m . In Virgo, it rises shortly before midnight, and is in the south-west at sunrise. In the middle of the month, it passes 1.1° south of Saturn (which is fainter) which in turn is only a fraction of a degree south of the famous double star γ Vir (which is fainter still).

Saturn on the 15 th is in R.A. 12 h 40 m , Decl. $-1^{\circ} 39^{\prime}$, mag. +1.0 , and transits at 5 h 01 m . In Virgo, it rises shortly before midnight, and is in the south-west at sunrise. See also "Jupiter" above.

Uranus on the 15th is in R.A. 15 h 48 m , Decl. $-19^{\circ} 44^{\prime}$, mag. +6.0 , and transits at 8 h 08 m . It is in Libra until early December.

Neptune on the 15 th is in R.A. 17 h 32 m , Dec. $-21^{\circ} 59^{\prime}$, mag. +7.8 , and transits at 9 h 53 m . It is in Ophiuchus throughout the year. See also "Venus" above. On Jan. 29-30, it passes near 52 Oph.

ASTRONOMICAL PHENOMENA MONTH BY MONTH

[^2]Observing Asteroids. This is a good month to observe asteroids. Ceres and Vesta are bright and well-placed, and several other asteroids are within the grasp of a small telescope. (See tables and maps in the "Asteroids" section). The bright asteroids can be seen visually, using binoculars or a small telescope. Fainter asteroids can best be seen photographically. The asteroid can be identified by its position on a map, by its absence on a star chart, or by its motion against the background stars.

Many asteroids are irregular in shape. As a result, they vary in brightness as they present varying surface areas to the sun and to the earth. In many cases, the variation in brightness can be detected visually. In other cases, it can only be detected by accurate photoelectric techniques (which are quite within the scope of the serious amateur observer).

Another interesting and useful activity is observing occultations of stars by asteroids. Coordinated observations of this kind can help to determine the shape, size and orbit of the asteroid, and the position and possible duplicity of the star.

Serious asteroid observers may wish to subscribe to Tonight's Asteroids, a bimonthly newsletter with interesting facts and high quality tracking charts for currently observable asteroids. This publication is available for a modest price from Jay Gunter, 1411 N. Magnum Street, Durham, North Carolina 27701, U.S.A.

The Sun-During February, the sun's R.A. increases from 20 h 58 m to 22 h 47 m and its Decl. changes from $-17^{\circ} 11^{\prime}$ to $-7^{\circ} 42^{\prime}$. The equation of time changes from -13 m 40 s to -12 m 32 s . There is an annular eclipse of the sun on Feb. 4.

The Moon-On Feb. 1.0 E.S.T., the age of the moon is 25.5 d . The sun's selenographic colongitude is 229.6° and increases by 12.2° each day thereafter. The libration in longitude is maximum (west limb exposed) on Feb. $16\left(5^{\circ}\right)$ and minimum (east limb exposed) on Feb. 3 (5°). The libration in latitude is maximum (north limb exposed) on Feb. 10 (7°) and minimum (south limb exposed) on Feb. 24 (7°). There is an occultation of Aldebaran by the moon on Feb. 12, visible (in daylight hours) over much of North America. The graze path cuts the continent almost exactly in two.

Mercury on the 1st is in R.A. 22 h 09 m , Decl. $-11^{\circ} 16^{\prime}$, and on the 15 th is in R.A. 22 h 09 m , Decl. $-7^{\circ} 41^{\prime}$. It is at greatest elongation east $\left(18^{\circ}\right)$ on Feb . 1, at which time it is visible low in the south-west just after sunset. By mid-month it is in inferior conjunction, after which it emerges into the dawn sky. By the end of the month it is visible very low in the south-east at sunrise.

Venus on the 1st is in R.A. 19 h 52 m , Decl. $-21^{\circ} 25^{\prime}$, and on the 15 th it is in R.A. 21 h 05 m , Decl. $-17^{\circ} 42^{\prime}$, mag. - 3.4, and transits at 11 h 26 m . Early in the month, it can be seen with great difficulty very low in the south-east before sunrise. By the end of the month, it is too close to the sun to be seen.

Mars on the 15 th is in R.A. 22 h 34 m , Decl. $-10^{\circ} 06^{\prime}$, mag. +1.4 , and transits at 12 h 53 m . Early in the month it can be seen with great difficulty very low in the south-west just after sunset. By the end of the month, it is too close to the sun to be seen.

Jupiter on the 15th is in R.A. 12 h 38 m , Decl. $-2^{\circ} 27^{\prime}$, mag. -1.9 , and transits at 2 h 57 m . In Virgo, it rises about 3 hours after sunset, and is in the south-west at sunrise. Again it passes 1.1° south of Saturn in mid-month, but this time in retrograde motion. Again, γ Vir is part of the scene. (see "January").

Saturn on the 15 th is in R.A. 12 h 38 m , Decl. $-1^{\circ} 16^{\prime}$, mag. +0.8 , and transits at 2 h 57 m . In Virgo, it rises about 3 hours after sunset, and is in the south-west at sunrise. See also "Jupiter" above.

Uranus on the 15 th is in R.A. 15 h 51 m , Decl. $-19^{\circ} 55^{\prime}$, mag. +5.9 , and transits at 6 h 10 m .

Neptune on the 15 th is in R.A. 17 h 36 m , Decl. $22^{\circ} 01^{\prime}$, mag. +7.8 , and transits at 7 h 54 m .

${ }^{1}$ Visible in New Zealand, S. Pacific, Antarctic, S. America.
${ }^{2}$ Visible in N. America, Greenland, Arctic, N.W. Europe; see "Occultations" section for specific times and circumstances.

THE SKY FOR MARCH 1981

Observing Light Pollution. Light pollution, or "waste lighting" is light which was meant to illuminate streets and buildings but which illuminates the sky instead. It is a hindrance to virtually all astronomical observations, and is a waste of energy as well.

Two interesting articles on light pollution have recently appeared: by Norman Sperling in Sky and Telescope, 60, 17 (July, 1980) and by Leo Henzl in Star and Sky, 2, 58 (August, 1980). Sperling's article reviews the accomplishments of amateur groups in combatting light pollution, and suggests some strategies: "The struggle against light pollution is most successful when the objectors have direct personal access to an influential public official, or, more often, when the objections address economics, conservation, the environment, and realities of crime fighting Unfortunately, astronomical points are not well appreciated by public officials unless a major professional observatory is significant to the community's economy or pride." Henzl's article deals with the nature of light pollution, the poor design of street lighting, and some solutions to the problem-reflective shields, fewer lights, and fewer hours of lighting each light.

Light pollution can have its aesthetic pleasures, though. In Sky and Telescope, 50, 155 (Sept., 1975), James Cuffey describes how you can photograph city lights through a transmission diffraction grating using a 35 mm camera and colour film. The spectrum of each light is strung out above the light, providing a colourful "second dimension" to the city skyline.

The Sun-During March, the sun's R.A. increases from 22 h 47 m to 0 h 41 m and its Decl. changes from $-7^{\circ} 42^{\prime}$ to $+4^{\circ} 25^{\prime}$. The equation of time changes from -12 m 20 s to -4 m 7 s . The sun reaches the vernal equinox on Mar. $20,12 \mathrm{~h} 03 \mathrm{~m}$ E.S.T., and spring begins in the northern hemisphere.

The Moon-On Mar. 1.0 E.S.T., the age of the moon is 23.9 d . The sun's selenographic colongitude is 210.2° and increases by 12.2° each day thereafter. The libration in longitude is maximum (west limb exposed) on Mar. $15\left(6^{\circ}\right)$ and minimum (east limb exposed) on Mar. $2\left(7^{\circ}\right)$ and Mar. $30\left(7^{\circ}\right)$. The libration in latitude is maximum (north limb exposed) on Mar. 9 (7°) and minimum (south limb exposed) on Mar. 23 (7°).

Mercury on the 1 st is in R.A. 21 h 27 m , Decl. $-12^{\circ} 48^{\prime}$, and on the 15 th is in R.A. 21 h 57 m , Decl. $-13^{\circ} 18^{\prime}$. Throughout the month, it can be seen, with great difficulty, very low in the south-east just before sunrise. Greatest elongation west (28°) occurs on Mar. 15, but despite the greater-than-average elongation, the orientation is very unfavourable for northern observers.

Venus on the 1 st is in R.A. 22 h 14 m , Decl. $-12^{\circ} 21^{\prime}$, and on the 15 th it is in R.A. 23 h 20 m , Decl. $-5^{\circ} 55^{\prime}$, mag. -3.4 , and transits at 11 h 50 m . It is too close to the sun to be seen.

Mars on the 15th is in R.A. 23 h 55 m , Decl. $-1^{\circ} 24^{\prime}$, mag. +1.3 , and transits at 12 h 24 m . It is too close to the sun to be seen.

Jupiter on the 15th is in R.A. 12 h 28 m , Decl. $-1^{\circ} 18^{\prime}$, mag. -2.0 , and transits at 0 h 57 m . In Virgo, it rises shortly before sunset and sets at about sunrise. Jupiter and Saturn are still only a few degrees apart. Opposition occurs on Mar. 26.

Saturn on the 15 th is in R.A. 12 h 31 m , Decl. $-0^{\circ} 30^{\prime}$, mag. +0.7 , and transits at 1 h 00 m . In Virgo, it rises shortly before sunset and sets at about sunrise. Opposition occurs on Mar. 27. See also "Jupiter" above.

Uranus on the 15th is in R.A. 15 h 52 m , Decl. $-19^{\circ} 57^{\prime}$, mag. + 5.9, and transits at 4 h 20 m .

Neptune on the 15 th is in R.A. 17 h 38 m , Decl. $-22^{\circ} 01^{\prime}$, mag. +7.8 , and transits at 6 h 06 m .

1981			MARCH E.S.T.	$\begin{array}{r} \text { Min. } \\ \text { of } \\ \text { Algol } \end{array}$	Configuration of Jupiter's Satellites (Date Markers are U.T.)
	d	$\mathrm{h} \quad \mathrm{m}$		h m	
Siun.	1	10	Mercury stationary		west
Mon.	2			$22 \quad 10$	${ }^{0.0} \mathrm{O}$
Wed.	4	09	Mercury $2^{\circ} \mathrm{N}$. of Moon		
		21	Uranus stationary		
Thur.	5			1900	
Iri.	6	$05 \quad 31$	(23) New Moon		5.0 ¢
Siat.	7				, 1
Sun.	8	07	Moon at perigee ($362,698 \mathrm{~km}$)	$15 \quad 50$	7.0 (12 (II) ${ }^{\text {III }}$
Mon.	9				0×1
Tues.	10		Mercury at descending node		9.0
Wed.	11	23	Aldebaran 1:0 S. of Moon. Occ' ${ }^{1}$	1240	10.0
Thur.	12	$20 \quad 50$	\$ First Quarter		$11.0-8$
Iti.	13				12.0
Sait.	14			930	13.0 -
Sun.	15	20	Mercury at greatest elong. W. (28 ${ }^{\circ}$)		14.0 ¢
Mon.	16		Mercury at greatest elong. W. (28)		$15.0 \text { - }$
Tues. 1	17			610	16.0 -
Wed.	18		Venus at greatest hel. lat. S.		17.0 -
Ihur. 1	19				18.0
Iti.	20	$10 \quad 22$	(3) Full Moon	300	19.0
		1203	Vernal Equinox. Spring begins.		20.0
		20	Jupiter 3. S. of Moon		21.0 IV
		23	Saturn 1.7 S. of Moon		22.0
Sit.	21		Mercury at aphelion		23.0
Siun.	22			2350	24.0 -
Mon. 23	23				25.0
Tues. 2	24	04	Moon at apogee ($405,719 \mathrm{~km}$)		26.0
Wed. 25	25	09	Uranus $5^{\circ} \mathrm{S}$. of Moon	$20 \quad 40$	27.0 -
Thur. 26	26	01	Jupiter at opposition		${ }_{28.0}$
Iti.	27	00	Saturn at opposition		29.0
		02	Neptune stationary		30.0
		13	Neptune $2^{\circ} \mathrm{S}$. of Moon		
Sitt.	28	$14 \quad 34$	© Last Quarter	$17 \quad 30$	32.0
Sun.	29				
Mon. 3	30				
Tues. 3	31			$14 \quad 20$	

[^3]Focus on Virgo. Jupiter and Saturn are in Virgo throughout 1981, and will be joined there by Mars at the end of the year.

Virgo is a constellation which is dominated by its brightest star, namely Spica. There is an easy way to find Spica, starting at the Big Dipper. Follow the arc of the handle of the Big Dipper to the orange star Arcturus ("arc to Arcturus"). Then continue past Arcturus to Spica ("Spike to Spica"). Of course, with so many bright planets in Virgo, it won't be hard to find the constellation. The problem will be keeping track of which planet or star is which. The map in "The Planets" section should help.

Spica is one of the most noteworthy and well-studied stars in the sky. It is actually a pair of stars, of comparable size and brightness, circling each other in a close 4 day orbit. Its distance has been accurately measured using a unique telescope: the intensity interferometer developed by Hanbury-Brown and Twiss in Australia. The stars are each about 10 times as massive as the sun, 5 times as large, and 1000 times as luminous. The brighter of the two is slightly variable in brightness, partly because of tidal distortion by its companion, and partly because of an internal pulsational instability.

The Sun-During April, the sun's R.A. increases from 0 h 41 m to 2 h 32 m and its Decl. changes from $+4^{\circ} 25^{\prime}$ to $+14^{\circ} 59^{\prime}$. The equation of time changes from -3 m 49 s to +2 m 51 s .

The Moon-On Apr. 1.0 E.S.T., the age of the moon is 25.4 d . The sun's selenographic colongitude is 227.9° and increases by 12.2° each day thereafter. The libration in longitude is maximum (west limb exposed) on Apr. $11\left(7^{\circ}\right)$ and minimum (east limb exposed) on Apr. $28\left(8^{\circ}\right)$. The libration in latitude is maximum (north limb exposed) on Apr. 6 (7°) and minimum (south limb exposed) on Apr. 19 (7°).

Mercury on the 1st is in R.A. 23 h 20 m , Decl. $-6^{\circ} 52^{\prime}$, and on the 15th is in R.A. 0 h 46 m , Decl. $+2^{\circ} 48^{\prime}$. Early in the month, it is well west of the sun but unfavourably placed (see "March"). By the end of the month, it is too close to the sun to be seen, superior conjunction being on Apr. 27.

Venus on the 1 st is in R.A. 0 h 37 m , Decl. $+2^{\circ} 33^{\prime}$, and on the 15 th it is in R.A. 1 h 41 m , Decl. $+9^{\circ} 24^{\prime}$, mag. -3.5 , and transits at 12 h 10 m . It is too close to the sun to be seen, superior conjunction being on April 7.

Mars on the 15 th is in R.A. 1 h 23 m , Decl. $+8^{\circ} 10^{\prime}$, mag. +1.4 , and transits at 11 h 50 m . It is too close to the sun to be seen, conjunction being on Apr. 2.

Jupiter on the 15 th is in R.A. 12 h 14 m , Decl. $+0^{\circ} 14^{\prime}$, mag. -2.0 , and transits at 22 h 36 m . In Virgo, about 2° west of Saturn, it is low in the south-east at sunset, and sets at about sunrise. On Apr. 2-3, it passes near η Vir.

Saturn on the 15 th is in R.A. 12 h 23 m , Decl. $+0^{\circ} 26^{\prime}$, mag. +0.8 , and transits at 22 h 45 m . In Virgo, about 2° east of Jupiter, it is low in the south-east at sunset, and sets at about sunrise. On Apr. 30-May 1, it passes near η Vir.

Uranus on the 15th is in R.A. 15 h 49 m , Decl. $-19^{\circ} 48^{\prime}$, mag. +5.8 , and transits at 2 h 16 m .

Neptune on the 15 th is in R.A. 17 h 37 m , Decl. $-21^{\circ} 59^{\prime}$, mag. +7.7 , and transits at 4 h 04 m .

Observing the Moon. The moon is certainly the most versatile and dependable subject to observe. Its motion, phases and larger surface features are clearly visible to the unaided eye. The more ambitious observer can watch for earthshine, the faint glow seen within the thin crescent moon (sometimes called "the old moon in the new moon's arms").

How close to new moon can the crescent moon be seen? The record seems to be 14 hours. You would need a clear, unobstructed horizon (and binoculars, probably) to break that record.

Another horizon phenomenon is the "moon illusion"-the moon appears larger near the horizon than high in the sky. This appears to be a psychological-physiological effect-and a very striking one indeed.

How much brighter is the full moon than the quarter moon? Not twice as bright, as you might think, but over ten times as bright! That isn't an illusion, either. It's due to the microscopic roughness of the moon's surface. The quarter moon is heavily shadowed, even on its apparently illuminated half. The full moon is completely illuminated. The sun shines straight down into all the microscopic crevices. There are no shadows at all.

For more on naked-eye moon watching, see Robert Burnham's article in Astronomy, 8, 46 (June, 1980).

The Sun-During May, the sun's R.A. increases from 2 h 32 m to 4 h 35 m and its Decl. changes from $+14^{\circ} 59^{\prime}$ to $+22^{\circ} 01^{\prime}$. The equation of time changes from +2 m 58 s to +2 m 23 s .

The Moon-On May 1.0 E.S.T., the age of the moon is 26.0 d . The sun's selenographic colongitude is 233.8° and increases by 12.2° each day thereafter. The libration in longitude is maximum (west limb exposed) on May $9\left(7^{\circ}\right)$ and minimum (east limb exposed) on May $26\left(7^{\circ}\right)$. The libration in latitude is maximum (north limb exposed) on May $3\left(6^{\circ}\right)$ and May $30\left(7^{\circ}\right)$ and minimum (south limb exposed) on May $16\left(7^{\circ}\right)$.

Mercury on the 1st is in R.A. 2 h 48 m , Decl. $+16^{\circ} 25^{\prime}$, and on the 15th is in R.A. 4 h 42 m , Decl. $+24^{\circ} 26^{\prime}$. After about May 10, it can be seen low in the west, below Castor and Pollux, just after sunset. Greatest elongation east (23°) is on May 26, and this elongation is a favourable one for northern observers.

Venus on the 1 st is in R.A. 2 h 57 m , Decl. $+16^{\circ} 19^{\prime}$, and on the 15 th it is in R.A. 4 h 08 m , Decl. $+20^{\circ} 58^{\prime}$, mag. -3.4 , and transits at 12 h 38 m . Early in the month, it is too close to the sun to be seen, but by the end of the month it can be seen with difficulty, below Mercury in the west, just after sunset.

Mars on the 15 th is in R.A. 2 h 49 m , Decl. $+16^{\circ} 01^{\prime}$, mag. +1.5 , and transits at 11 h 18 m . It is too close to the sun to be easily seen.

Jupiter on the 15th is in R.A. 12 h 05 m , Decl. $+1^{\circ} 05^{\prime}$, mag. -1.8 , and transits at 20 h 30 m . In Virgo, about 2° west of Saturn, it is east of south at sunset and sets after midnight.

Saturn on the 15 th is in R.A. 12 h 16 m , Decl. $+1^{\circ} 02^{\prime}$, mag. +1.0 , and transits at 20 h 42 m . In Virgo, about 2° east of Jupiter, it is east of south at sunset, and sets after midnight.

Uranus on the 15th is in R.A. 15 h 44 m , Decl. $-19^{\circ} 34^{\prime}$, mag. +5.8 , and transits at 0 h 13 m . It is at opposition on May 18, 23 h .

Neptune on the 15 th is in R.A. 17 h 35 m , Decl. $-21^{\circ} 57^{\prime}$, mag. +7.7 , and transits at 2 h 04 m . On May 25-26, it passes near 52 Oph .

THE SKY FOR JUNE 1981

Observing the Sun. The sun provides an unending source of interest for the amateur with a small telescope. But be careful! Never look directly at the sun with the unaided eye or with any unfiltered optical instrument. Even filters can be unreliable. Eyepiece filters are extremely hazardous, and are not recommended. Herschel wedges or prisms, in conjunction with eyepiece filters, are acceptable in some cases, but potentially dangerous in others. Full-aperture filters on glass or Mylar are generally regarded as safest, if they are of good quality and are carefully maintained. These filters are placed on the front of the telescope, and reflect away most sunlight before it enters the telescope tube.

An alternate approach is to view the sun's image by projecting it onto a screen. This, however, has its dangers: unsupervised bystanders may try to look through the eyepiece; heat may build up inside the telescope and cause permanent damage.

There are many rewarding activities for the careful observer of the sun: counting sunspots, watching, drawing or photographing spots and spot groups, studying solar prominences with a narrow-band filter, or watching for rare "white-light flares" in the vicinity of sunspots.

For more information, see "Exploring the Sun from your Backyard" by Rodger Gordon, Star and Sky, 2, 21 (July, 1980). Serious observers of the sun should join the Solar Division of the American Association of Variable Star Observers, 187 Concord Ave., Cambridge, MA 02138, U.S.A.

The Sun-During June, the sun's R.A. increases from 4 h 35 m to 6 h 39 m and its Decl. changes from $+22^{\circ} 01^{\prime}$ to $+23^{\circ} 08^{\prime}$. The equation of time changes from +2 m 14 s to -3 m 35 s . The sun reaches the summer solstice on June $21,06 \mathrm{~h} 45 \mathrm{~m}$ E.S.T., and summer begins in the northern hemisphere.

The Moon-On June 1.0 E.S.T., the age of the moon is 27.6 d . The sun's selenographic colongitude is 252.4° and increases by 12.2° each day thereafter. The libration in longitude is maximum (west limb exposed) on June $7\left(7^{\circ}\right)$ and minimum (east limb exposed) on June $22\left(6^{\circ}\right)$. The libration in latitude is maximum (north limb exposed) on June $27\left(7^{\circ}\right)$ and minimum (south limb exposed) on June $13\left(7^{\circ}\right)$.

Mercury on the 1 st is in R.A. 6 h 11 m , Decl. $+24^{\circ} 40^{\prime}$, and on the 15 th is in R.A. 6 h 18 m , Decl. $+21^{\circ} 08^{\prime}$. At the beginning of the month, it is well-placed, standing about 16° above the western horizon at sunset. By June 21, it is in inferior conjunction, and is not visible for the rest of the month. On June 9 , it is 1.7° south of Venus.

Venus on the 1 st is in R.A. 5 h 37 m , Decl. $+24^{\circ} 03^{\prime}$, and on the 15 th it is in R.A• 6 h 52 m , Decl. $+24^{\circ} 05^{\prime}$, mag. -3.3 , and transits at 13 h 20 m . Throughout the month, it can be seen low in the west just after sunset. On June 9 , it is 1.7° north of Mercury. By month's end, it makes a striking pattern with Castor and Pollux. See also "Jupiter" below.

Mars on the 15th is in R.A. 4 h 20 m , Decl. $+21^{\circ} 35^{\prime}$, mag. +1.7 , and transits at 10 h 47 m . As it gradually moves away from the sun, it becomes more conspicuous in the eastern sky just before sunrise. In Taurus, it passes between the Hyades and Pleiades around June 10, and 6° north of Aldebaran on June 19.

Jupiter on the 15th is in R.A. 12 h 06 m , Decl. $+0^{\circ} 52^{\prime}$, mag. -1.7 , and transits at 18 h 29 m . In Virgo a few degrees west of Saturn, it is slightly west of the meridian at sunset, and sets about 5 hours later. By the end of the month, Venus, Regulus, Jupiter, Saturn and Spica form a striking configuration across the evening sky.

Saturn on the 15th is in R.A. 12 h 15 m , Decl. $+1^{\circ} 02^{\prime}$, mag. +1.1 , and transits at 18 h 39 m . In Virgo a few degrees east of Jupiter, it is slightly west of the meridian at sunset, and sets about 5 hours later. See also "Jupiter" above.

Uranus on the 15th is in R.A. 15 h 39 m , Decl. $-19^{\circ} 17^{\prime}$, mag. +5.8 , and transits at 22 h 02 m . On June 25-26, it passes about $2^{\prime} \mathrm{N}$ of 41 Lib .

Neptune on the 15 th is in R.A. 17 h 32 m , Decl. $-21^{\circ} 55^{\prime}$, mag. +7.7 , and transits at 23 h 54 m . It is at opposition on June 14, 11 h .

THE SKY FOR JULY 1981

Early this month the earth is in aphelion; early in January it was at perihelion. The difference in distance from earth to sun between these two extremes is about $5,000,000 \mathrm{~km}$ or 3.3 per cent, which makes a difference in radiant heat received by the earth of nearly 7 per cent. Thus for the northern hemisphere the difference tends to warm our winters and cool our summers. However, the preponderance of large land masses in the northern hemisphere works the other way and tends to make our winters colder and summers hotter than those of the southern hemisphere. [by John F. Heard, reprinted from the 1976 HANDBOOK-Ed.]

The Sun-During July, the sun's R.A. increases from 6 h 39 m to 8 h 44 m and its Decl. changes from $+23^{\circ} 08^{\prime}$ to $+18^{\circ} 06^{\prime}$. The equation of time changes from -3 m 47 s to -6 m 17 s . The earth is at aphelion on July 3 at a distance of $152,103,500 \mathrm{~km}$ $(94,513,000 \mathrm{mi})$ from the sun. There is a total eclipse of the sun on July 31 .

The Moon-On July 1.0 E.S.T., the age of the moon is 28.3 d . The sun's selenographic colongitude is 259.1° and increases by 12.2° each day thereafter. The libration in longitude is maximum (west limb exposed) on July $5\left(6^{\circ}\right)$ and minimum (east limb exposed) on July $19\left(5^{\circ}\right)$. The libration in latitude is maximum (north limb exposed) on July $24\left(7^{\circ}\right)$ and minimum (south limb exposed) on July $10\left(7^{\circ}\right)$. There is a partial eclipse of the moon on the night of July 16-17, visible in North America.

Mercury on the 1st is in R.A. 5 h 46 m , Decl. $+18^{\circ} 44^{\prime}$, and on the 15th is in R.A. 6 h 08 m , Decl. $+20^{\circ} 50^{\prime}$. Throughout the month, it is very low in the east just before sunrise. Greatest elongation west $\left(21^{\circ}\right)$ is on July 14, but this is not a particularly favourable elongation for several reasons: the greatest elongation is less than average, the planet is south of the ecliptic, and the ecliptic is not steeply inclined to the horizon.

Venus on the 1st is in R.A. 8 h 16 m , Decl. $+21^{\circ} 21^{\prime}$, and on the 15 th it is in R.A. 9 h 25 m , Decl. $+16^{\circ} 52^{\prime}$, mag. - 3.3, and transits at 13 h 55 m . It can be seen low in the west just after sunset. Moving from Cancer into Leo, it passes through the Praesepe Cluster around July 5-6, and north of Regulus on July 23.

Mars on the 15 th is in R.A. 5 h 50 m , Decl. $+23^{\circ} 52^{\prime}$, mag. +1.7 , and transits at 10 h 18 m . It rises about 2 hours before the sun, and is low in the east at sunrise. Moving from Taurus into Gemini, it makes a pretty picture with the Hyades, the Pleiades, and the several bright stars in this region.

Jupiter on the 15 th is in R.A. 12 h 16 m , Decl. $-0^{\circ} 19^{\prime}$, mag. -1.5 , and transits at 16 h 41 m . In Virgo, it is in the south-west at sunset, and sets about 3 hours later. At the beginning of the month, it is about 2° west of Saturn, but by July 30, it passes 1.2° south of Saturn, moving in direct motion. On July 21-22, it passes close to η Vir.

Saturn on the 15 th is in R.A. 12 h 20 m , Decl. $+0^{\circ} 27^{\prime}$, mag. +1.2 , and transits at 16 h 45 m . In Virgo, it is in the south-west at sunset, and sets about 3 hours later. See also "Jupiter" above.

Uranus on the 15 th is in R.A. 15 h 36 m , Decl. $-19^{\circ} 06^{\prime}$, mag. +5.8 , and transits at 20 h 01 m .

Neptune on the 15 th is in R.A. 17 h 29 m , Decl. $-21^{\circ} 53^{\prime}$, mag. +7.7 , and transits at 21 h 53 m .

THE SKY FOR AUGUST 1981

The Perseid meteor shower occurs on August 12, and for a few days around this date, meteors will be numerous, especially after midnight. The shower meteors will appear to radiate from the constellation Perseus, hence the name of the shower. Unfortunately the moon is close to full at this time, and will certainly reduce the visibility of the meteors.

The Perseids could still provide a pleasant surprise in 1981. Meteor showers are associated with comets. The meteoric particles are the gritty debris left behind when the volatile ices in the comet turn to vapour. The Perseid shower is associated with Comet 1862 III Swift-Tuttle, which was last seen in 1862. According to Brian G. Marsden (pg. 98), this comet will be making its first predicted return to perihelion on Sept. 16, 1981 (give or take two years). As Peter M. Millman therefore points out (pg. 99) "a better than average shower in August is a possibility".

The Sun-During August, the sun's R.A. increases from 8 h 44 m to 10 h 40 m and its Decl. changes from $+18^{\circ} 06^{\prime}$ to $+8^{\circ} 24^{\prime}$. The equation of time changes from -6 m 14 s to -0 m 13 s .

The Moon-On Aug. 1.0 E.S.T., the age of the moon is 0.6 d . The sun's selenographic colongitude is 278.0° and increases by 12.2° each day thereafter. The libration in longitude is maximum (west limb exposed) on Aug. 2 (5°) and Aug. $29\left(5^{\circ}\right)$ and minimum (east limb exposed) on Aug. $15\left(5^{\circ}\right)$. The libration in latitude is maximum (north limb exposed) on Aug. 20 (7°) and minimum (south limb exposed) on Aug. 6 (7°).

Mercury on the 1 st is in R.A. 8 h 03 m , Decl. $+21^{\circ} 26^{\prime}$, and on the 15 th is in R.A. 9 h 59 m , Decl. $+14^{\circ} 07^{\prime}$. It is too close to the sun to be easily seen, being in superior conjunction on Aug. 10.

Venus on the 1st is in R.A. 10 h 44 m , Decl. $+9^{\circ} 31^{\prime}$, and on the 15th it is in R.A. 11 h 46 m , Decl. $+2^{\circ} 34^{\prime}$, mag. -3.4 , and transits at 14 h 13 m . It is very low in the west just after sunset. Moving from Leo into Virgo, it passes 2° south of Saturn on Aug. 25, and 0.9° south of Jupiter on Aug. 27.

Mars on the 15th is in R.A. 7 h 20 m , Decl. $+22^{\circ} 57^{\prime}$, mag. +1.8 , and transits at 9 h 46 m . It rises about $2 \frac{1}{2}$ hours before the sun, and-thanks to the steep angle between the ecliptic and the horizon-it is well up in the east at sunrise. Watch its changing position relative to Castor and Pollux during the month. It passes $1.5^{\circ} \mathrm{S}$. of ε Gem on Aug. $1-2,3^{\circ} \mathrm{N}$. of $\zeta \mathrm{Gem}$ on Aug. 8-9, and $1^{\circ} \mathrm{N}$. of $\delta \mathrm{Gem}$ on Aug. 14.

Jupiter on the 15 th is in R.A. 12 h 33 m , Decl. $-2^{\circ} 18^{\prime}$, mag. -1.3 , and transits at 14 h 57 m . In Virgo, it is very low in the south-west at sunset, and sets about 2 hours later. During the month, it gradually moves eastward away from the nearby Saturn. See also "Venus" above.

Saturn on the 15th is in R.A. 12 h 29 m , Decl. $-0^{\circ} 38^{\prime}$, mag. +1.2 , and transits at 14 h 52 m . In Virgo, it is very low in the south-west at sunset, and sets about 2 hours later. See also "Jupiter" and "Venus" above.

Uranus on the 15th is in R.A. 15 h 35 m , Decl. $-19^{\circ} 05^{\prime}$, mag. +5.9 , and transits at 17 h 58 m .

Neptune on the 15th is in R.A. 17 h 26 m , Decl. $-21^{\circ} 53^{\prime}$, mag. +7.7 , and transits at 19 h 49 m .

1981			AUGUST E.S.T.	$\begin{gathered} \hline \begin{array}{c} \text { Min. } \\ \text { of } \\ \text { Algol } \end{array} \end{gathered}$	Configuration of Jupiter's Satellites (Date Markers are U.T.)
	d	$\mathrm{h} \quad \mathrm{m}$		$\begin{array}{cc} \hline h & \mathrm{~m} \\ \partial 1 & \partial 0 \end{array}$	west east
Sun.	2	08	Venus $2^{\circ} \mathrm{S}$. of Moon		${ }^{0.0} 0$
Mon.	3		Venus 2 S. of Moon		${ }^{1.0}$. 0
$\begin{aligned} & \text { Mon. } \\ & \text { Tues. } \end{aligned}$	4	07	Jupiter $4^{\circ} \mathrm{S}$. of Moon	$18 \quad 10$	2.0
		07	Saturn $3^{\circ} \mathrm{S}$. of Moon		
		08	Uranus stationary		- 8
Wed.	5				5.0
$\begin{aligned} & \text { Thur. } \\ & \text { Fri. } \end{aligned}$	6				7.0
	7		Occultation by (18) Melpomene, pg. 56-7	$15 \quad 00$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$
		$14 \quad 26$	3 First Quarter		10.0
Sat.	8	07	Moon at apogee ($404,227 \mathrm{~km}$)		${ }_{1120}^{10.0}$
			Uranus $5^{\circ} \mathrm{S}$. of Moon		${ }_{12.0}^{12.0}$
Sun. Mon.	9				${ }_{12.0}^{12.0} \mathrm{IV}^{\text {I2 }}$ /II ${ }^{\text {IV }}$
	10		Mercury at greatest hel. lat. N .	$11 \quad 50$	${ }_{14.0}^{13.0}$
		01	Mercury in superior conjunction		14.0 ¢ \%
		17	Neptune $2^{\circ} \mathrm{S}$. of Moon		15.0 16.0
Tues.	11				17.0
Wed.	12	03	Perseid Meteors		18.0
Thur.	13			$8 \quad 40$	18.0
Fri.	14				${ }_{20.0}^{19.0}{ }^{\text {IV }}$ IV ${ }^{\text {I2 III }}$
Sat.	15	$11 \quad 37$	(3) Full Moon		20.0 21.0
Sun.	16			$5 \quad 20$	${ }_{22,0}^{22.0}$ [
Mon.	17				${ }_{23.0}^{22.0}$ -
Tues.	18				${ }_{24.0}^{23.0}-6$
Wed.	19			$2 \quad 10$	${ }^{24.0}$ 25.0
Thur.	20				${ }^{26.0}$ —保
Fri.	21	16	Moon at perigee (369,652 km)	$23 \quad 00$	${ }_{27.0}^{26.0}$ -
Sat.	22	0916	(1) Last Quarter		27.0 ¢
Sun.	23	12	Mars $6^{\circ} \mathrm{S}$. of Pollux		28.0 -
Mon.	24			$19 \quad 50$	${ }^{29.0}$ -
Tues.	25	17	Venus $2^{\circ} \mathrm{S}$. of Saturn		${ }^{30.0}$ <
Wed.	26	10	Mars 1.4 N. of Moon		31
Thur.	27		Occultation by (105) Artemis, pg. 56-7	$16 \quad 40$	
		20	Venus 0.9 S. of Jupiter		
Fri.	28				
Sat.	29	$09 \quad 43$	(3) New Moon		
Sun.	30	18	Mercury $4^{\circ} \mathrm{S}$. of Moon	$13 \quad 30$	
Mon.	31	20	Saturn $3^{\circ} \mathrm{S}$. of Moon		

THE SKY FOR SEPTEMBER 1981

Notice that the Harvest Moon occurs on September 13. By definition the Harvest Moon is the full moon nearest the autumnal equinox. Around this time, the moon provides an extra measure of light in the early evening, light that was (and is) useful for farmers gathering the harvest.

On the average, the moon rises 50 minutes later from one night to the next, because of its eastward motion around the sky. However, at autumnal equinox, the sun is moving southward at its maximum rate, and the full moon is therefore moving northward at its maximum rate. This northward motion partly counteracts the moon's tendency to rise later from night to night: as a result, the delay in rising may be as little as 20 minutes. Check the tables of moonrise to see that this is so.

Other "moons" have special but less-well-known names. According to Robert Burnham (Astronomy, June 1980, pg. 46), "January, for instance, is the Old Moon or the Moon after Yule. February's is the Wolf or the Hunger Moon. March has the Sap or Crow Moon, while April gets the Egg or Grass Moon. The Planting Moon comes in May, and the Rose or Flower Moon in June. July's is called the Thunder or Hay Moon. August has the Grain or Green Corn Moon, while September and October have the Harvest and Hunter's Moons, respectively. The year finishes off with the Frosty or Beaver Moon in November and the Long Night Moon in December."

The Sun-During September, the sun's R.A. increases from 10 h 40 m to 12 h 28 m and its Decl. changes from $+8^{\circ} 24^{\prime}$ to $-3^{\circ} 04^{\prime}$. The equation of time changes from +0 m 06 s to +10 m 05 s . The sun reaches the autumnal equinox on Sept. 22, 22 h 05 m E.S.T., and autumn begins in the northern hemisphere.

The Moon-On Sept. 1.0 E.S.T., the age of the moon is 2.2 d . The sun's selenographic colongitude is 296.7° and increases by 12.2° each day thereafter. The libration in longitude is maximum (west limb exposed) on Sept. 24 (5°) and minimum (east limb exposed) on Sept. 11 (6°). The libration in latitude is maximum (north limb exposed) on Sept. $16\left(7^{\circ}\right)$ and minimum (south limb exposed) on Sept. 2 (7°) and Sept. $29\left(7^{\circ}\right)$.

Mercury on the 1st is in R.A. 11 h 49 m , Decl. $+1^{\circ} 25^{\prime}$, and on the 15th is in R.A. 13 h 00 m , Decl. $-8^{\circ} 10^{\prime}$. Throughout the month, it can be seen with difficulty, low in the west at sunset. Greatest elongation east ($\mathbf{2 6}^{\circ}$) is on Sept. 23, but this is a classic unfavourable elongation for northern observers. It passes 4° south of Saturn on Sept. 10, 3° south of Jupiter on Sept. 13, and 0.4° south of Spica on Sept. 20.

Venus on the 1st is in R.A. 12 h 59 m , Decl. $-6^{\circ} 11^{\prime}$, and on the 15th it is in R.A. 14 h 00 m , Decl. $-13^{\circ} 01^{\prime}$, mag. -3.5 , and transits at 14 h 25 m . It is low in the southwest at sunset, and sets soon thereafter. Moving from Virgo into Libra, it passes 1.9° north of Spica on Sept. 6.

Mars on the 15th is in R.A. 8 h 43 m , Decl. $+19^{\circ} 17^{\prime}$, mag. +1.8 , and transits at 9 h 07 m . It rises about 4 hours before the sun, and is well up in the east at sunrise. Moving eastward through Cancer, it passes just north of the Praesepe Cluster around Sept. 13.

Jupiter on the 15th is in R.A. 12 h 55 m , Decl. $-4^{\circ} 42^{\prime}$, mag. -1.2 , and transits at 13 h 17 m . Early in the month, it can be seen very low in the south-west just after sunset, but by the end of the month, it is too low to be easily seen. It is 3° north of Mercury on Sept. 13.

Saturn on the 15th is in R.A. 12 h 41 m , Decl. $-2^{\circ} 01^{\prime}$, mag. +1.1 , and transits at 13 h 03 m . Early in the month, it can be seen very low in the south-west just after sunset, but by the end of the month, it is too low to be easily seen. It is 4° north of Mercury on Sept. 10.

Uranus on the 15th is in R.A. 15 h 38 m , Decl. $-19^{\circ} 15^{\prime}$, mag. +5.9 , and transits at 15 h 59 m . On Sept. 12-13, it passes very close to 41 Lib .

Neptune on the 15 th is in R.A. 17 h 26 m , Decl. $-21^{\circ} 54^{\prime}$, mag. +7.7 , and transits at 17 h 47 m .

[^4]
THE SKY FOR OCTOBER 1981

Mars, which is moving into Leo, begins this month to rise about midnight and so commands the attention of the average sky gazer. It hasn't been very exciting this year, being between oppositions (the last one in February 1980, the next one in March 1982). On average the interval between oppositions is 780 days which is known as the synodic period. This is about 50 days longer than two years, so that oppositions work their way through the calendar at the average rate of 50 days per opposition and the position of Mars at opposition works its way around the ecliptic at a corresponding rate. When opposition occurs in August or September it is very favourable because Mars is then near its perihelion and so its distance to the earth is close. September 1968 was such an opposition, but the 1982 opposition will be rather poor and the February 251980 opposition was about as unfavourable as an opposition of Mars can be.

The Sun-During October, the sun's R.A. increases from 12 h 28 m to 14 h 24 m and its Decl. changes from $-3^{\circ} 04^{\prime}$ to $-14^{\circ} 20^{\prime}$. The equation of time changes from +10 m 24 s to +16 m 21 s .

The Moon-On Oct. 1.0 E.S.T., the age of the moon is 2.6 d . The sun's selenographic colongitude is 302.7° and increases by 12.2° each day thereafter. The libration in longitude is maximum (west limb exposed) on Oct. 21 (7°) and minimum (east limb exposed) on Oct. $9\left(7^{\circ}\right)$. The libration in latitude is maximum (north limb exposed) on Oct. 13 (7°) and minimum (south limb exposed) on Oct. 27 (7°).

Mercury on the 1st is in R.A. 13 h 56 m , Decl. $-15^{\circ} 29^{\prime}$, and on the 15th is in R.A. 13 h 45 m , Decl. $-13^{\circ} 23^{\prime}$. For most of the month, it is too close to the sun to be easily seen, inferior conjunction being on Oct. 18. By the end of the month, however, it is well placed in the morning sky, above Jupiter and Spica, below Saturn, and about 17° above the south-eastern horizon at sunrise.

Venus on the 1st is in R.A. 15 h 12 m , Decl. $-19^{\circ} 42^{\prime}$, and on the 15 th it is in R.A. 16 h 18 m , Decl. $-24^{\circ} 00^{\prime}$, mag. -3.8, and transits at 14 h 45 m . Throughout the month, it is in the south-west at sunset. It passes 2° south of Uranus on Oct. 7, 1.9° north of Antares on Oct. 17, and 5° south of Neptune on Oct. 29.

Mars on the 15 th is in R.A. 9 h 57 m , Decl. $+14^{\circ} 02^{\prime}$, mag. +1.7 , and transits at 8 h 22 m . It rises about 5 hours before the sun, and is near the meridian at sunrise. Moving from Cancer into Leo, it passes 1.1° north of Regulus on Oct. 19.
Jupiter on the 15th is in R.A. 13 h 19 m , Decl. $-7^{\circ} 10^{\prime}$, mag. -1.2 , and transits at 11 h 43 m . Early in the month, it is too close to the sun to be seen, conjunction being on Oct. 14. By the end of the month, it can be seen very low in the east just before sunrise. See also "Mercury" above.

Saturn on the 15th is in R.A. 12 h 55 m , Decl. $-3^{\circ} 27^{\prime}$, mag. +1.0 , and transits at 11 h 19 m . Early in the month, it is too close to the sun to be seen, conjunction being on Oct. 5. By the end of the month, it can be seen low in the east just before sunrise. See also "Mercury" above.

Uranus on the 15th is in R.A. 15 h 44 m , Decl. $-19^{\circ} 34^{\prime}$, mag. +6.0 , and transits at 14 h 07 m . See also "Venus" above.

Neptune on the 15 th is in R.A. 17 h 28 m , Decl. $-21^{\circ} 57^{\prime}$, mag. +7.8 , and transits at 15 h 51 m . See also "Venus" above.

1981			$\begin{gathered} \text { OCTOBER } \\ \text { E.S.T. } \end{gathered}$	$\begin{array}{\|c} \substack{\text { Min. } \\ \text { of } \\ \text { Algol }} \end{array}$	Configuration of Jupiter's Satellites) (Date Markers are U.T.)
	d	h m	Venus 7° S. of Moon Uranus $4^{\circ} \mathrm{S}$. of Moon Moon at apogee ($405,333 \mathrm{~km}$) Mercury at greatest hel. lat. S. Neptune 1.7 S. of Moon Saturn in conjunction with Sun \$ First Quarter Mercury stationary Occultation by (88) Thisbe, pg. 56-7 Venus at aphelion Venus $2^{\circ} \mathrm{S}$. of Uranus	h m	
Thur.	1	16		220	wEst
Fri.	2	05			(1)
		20			1.0
Sat.	3			2310	
Sun.	4	09			3.0
Mon.	5	23			
Tues.	6	$02 \quad 45$		$20 \quad 00$	5.0
		06			6.0
Wed.	7				7.0 (1)
					(
		06			9.0
Thur.	8				10.0 -
Fri.	9			1650	12.0×1
Sat.	10				12.0×1
Sun.	11				13.0
Mon.	12			1340	14.0
Tues.	13	0749	() Full Moon. Hunters' Moon.		- X
Wed. 1	14	00	Jupiter in conjuction with Sun		17.0
		21	Moon at perigee ($360,481 \mathrm{~km}$)		
Thur.	15			$10 \quad 20$	18.0 - (
Fri.	16				${ }_{20.0}^{19.0}$
Sat.	17	01	Venus 1:9 N. of Antares		${ }_{21.0}^{20.0}$
		13	Pluto in conjunction with Sun		${ }_{22.0}^{22.0}=\text { f }$
$\begin{aligned} & \text { Sun. } \\ & \text { Mon. } \end{aligned}$	18	06	Mercury in inferior conjunction	$7 \quad 10$	${ }_{23.0}^{22.0}$
	19	12	Mars 1:1 N. of Regulus		23.0
		$22 \quad 40$	© Last Quarter		24.0 \%
Tues.	20				25.0×1
	21	07	Orionid Meteors	400	26.0
Thur. 2	22		Mercury at ascending node		27.0 -
		12	Mars 1.4 S. of Moon		28.0 -
Fri.	23				$29.0{ }^{\text {IV }}$ (in) ${ }^{\text {I }}$) II
Sat.	24			050	30.0
Sun.	25	23	Saturn $3^{\circ} \mathrm{S}$. of Moon		31.0 R
Mon.	26	16	Mercury stationary	2140	32.0
Tues.	27		Mercury at perihelion		
		$15 \quad 13$	(3) New Moon		
Wed. Thur.	28				
			Venus at greatest hel. lat. S.	$18 \quad 30$	
		15	Uranus $4^{\circ} \mathrm{S}$. of Moon		
		20	Venus $5^{\circ} \mathrm{S}$. of Neptune		
Fri.	30	11	Moon at apogee ($406,288 \mathrm{~km}$)		
Sat.	31	17	Neptune 1.4 S. of Moon		
		22	Venus $6^{\circ} \mathrm{S}$. of Moon		

THE SKY FOR NOVEMBER 1981

If you are a Venus watcher you may be puzzled to notice (or to read what we say about Venus this month) that although Venus is at greatest eastern elongation this month (on Nov. 10, E.S.T.), it is no higher in the south-western sky at sunset than it has been since mid-year. How can this be since Venus is moving away from the sun? (Want to think about it for a while?) Well, the answer lies mostly in the fact that the ecliptic (which nearly represents the path of motion of most planets) makes a much shallower angle with the horizon at early autumn sunset than at early summer sunset. This shallower angle more than makes up for the greater elongation of Venus from the sun.

This same phenomenon is also involved in the explanation of the Harvest Moon, and in the explanation of why some elongations of Mercury (and Venus) are more favourable than others.

The Sun-During November, the sun's R.A. increases from 14 h 24 m to 16 h 28 m and its Decl. changes from $-14^{\circ} 20^{\prime}$ to $-21^{\circ} 45^{\prime}$. The equation of time changes from +16 m 23 s to +11 m 14 s .

The Moon-On Nov. 1.0 E.S.T., the age of the moon is 4.0 d . The sun's selenographic colongitude is 320.5° and increases by 12.2° each day thereafter. The libration in longitude is maximum (west limb exposed) on Nov. 18 (8°) and minimum (east limb exposed) on Nov. $6\left(8^{\circ}\right)$. The libration in latitude is maximum (north limb exposed) on Nov. $10\left(7^{\circ}\right)$ and minimum (south limb exposed) on Nov. 23 (7°).

Mercury on the 1st is in R.A. 13 h 17 m , Decl. $-5^{\circ} 58^{\prime}$, and on the 15th is in R.A. 14 h 25 m , Decl. $-12^{\circ} 40^{\prime}$. Greatest elongation west (19°) occurs on Nov. 2, and this is a favourable elongation for northern observers: the planet stands about 17° above the south-eastern horizon at sunrise. Jupiter, Saturn and Spica figure prominently in this picture. Mercury is 5° north of Spica on Nov. 2, and 1.2° north of Jupiter on Nov. 5.

Venus on the 1st is in R.A. 17 h 39 m , Decl. $-26^{\circ} 40^{\prime}$, and on the 15 th it is in R.A. 18 h 43 m , Decl. $-26^{\circ} 34^{\prime}$, mag. -4.1 , and transits at 15 h 07 m . It can be seen low in the south-west, just after sunset. Greatest elongation east (47°) occurs on Nov. 10, but this is an unfavourable elongation for northern observers, in part because of the shallow angle between the ecliptic and the horizon, and in part because Venus is south of the ecliptic.

Mars on the 15 th is in R.A. 11 h 04 m , Decl. $+7^{\circ} 51^{\prime}$, mag. +1.5 , and transits at 7 h 27 m . It rises after midnight, and is nearly at the meridian by sunrise. Throughout the month, it moves eastward under the lion towards Virgo.

Jupiter on the 15 th is in R.A. 13 h 44 m , Decl. $-9^{\circ} 35^{\prime}$, mag. -1.2 , and transits at 10 h 06 m . In Virgo, it rises about 4 hours after midnight, and is well up in the south-east at sunrise. As the end of the year approaches, Spica, Jupiter, Saturn, Mars and Regulus form a conspicuous parade across the morning sky.

Saturn on the 15th is in R.A. 13 h 08 m , Decl. $-4^{\circ} 47^{\prime}$, mag. +1.0 , and transits at 9 h 30 m . In Virgo, it rises about 3 hours after midnight, and is well up in the south-east at sunrise. See also "Jupiter" above. On Nov. 16-17, it passes near θ Vir.

Uranus on the 15th is in R.A. 15 h 51 m , Decl. $-19^{\circ} 58^{\prime}$, mag. +6.0 , and transits at 12 h 13 m . It is in conjunction on Nov. 22, 14 h .

Neptune on the 15 th is in R.A. 17 h 32 m , Dec. $-22^{\circ} 01^{\prime}$, mag. +7.8 , and transits at 13 h 53 m .

Looking Ahead to 1982 . Observers who want to know about astronomical phenomena well in advance should obtain the booklet Astronomical Phenomena for the Year 1982 (or whatever). It is prepared by the Nautical Almanac Office at the U.S. Naval Observatory, and by Her Majesty's Nautical Almanac Office at the Royal Greenwich Observatory in England. It can be obtained from the U.S. Government Printing Office, Washington, or from Her Majesty's Stationery Office, London.

According to this booklet, there will be seven eclipses in 1982, three of the moon (all total) and four of the sun (all partial). Two of the former are visible from North America, but none of the latter. This is the maximum number of eclipses in a year, and it occurs when the "eclipse seasons" are in January and December.

There will be a series of 12 occultations of Neptune by the moon. None of these is visible from North America.

Late in the year, the sun and major planets will gather together in Virgo to produce the notorious "alignment" which you may have read about. The alignment, however, is far from exact, and the combined gravitational and other effects of the assembled planets will be minuscule compared with the normal gravitational and other effects of the sun. Unfortunately, with the major planets so near the sun in the sky, it will be a rather unrewarding time for planet-watchers.

The Sun-During December, the sun's R.A. increases from 16 h 28 m to 18 h 45 m and its Decl. changes from $-21^{\circ} 45^{\prime}$ to $-23^{\circ} 03^{\prime}$. The equation of time changes from +10 m 51 s to -3 m 09 s . The sun reaches the winter solstice on Dec. 21.17 h 51 m , E.S.T., and winter begins in the northern hemisphere.

The Moon-On Dec. 1.0 E.S.T., the age of the moon is 4.2 d . The sun's selenographic colongitude is 325.5° and increases by 12.2° each day thereafter. The libration in longitude is maximum (west limb exposed) on Dec. $16\left(8^{\circ}\right)$ and minimum (east limb exposed) on Dec. $4\left(8^{\circ}\right)$. The libration in latitude is maximum (north limb exposed) on Dec. $7\left(7^{\circ}\right)$ and minimum (south limb exposed) on Dec. $20\left(7^{\circ}\right)$.

Mercury on the 1st is in R.A. 16 h 05 m , Decl. $-20^{\circ} 58^{\prime}$, and on the 15th is in R.A. 17 h 40 m , Decl. $-24^{\circ} 53^{\prime}$. Throughout the month it is too close to the sun to be easily seen, being in superior conjunction on Dec. 10.

Venus on the 1st is in R.A. 19 h 46 m , Decl. $-24^{\circ} 12^{\prime}$, and on the 15th it is in R.A. 20 h 26 m , Decl. $-20^{\circ} 52^{\prime}$, mag. -4.4 , and transits at 14 h 50 m . Throughout the month it can be seen low in the south-west, just after sunset. Greatest brilliancy (-4.4) is on Dec. 16.

Mars on the 15 th is in R.A. 12 h 02 m , Decl. $+2^{\circ} 07^{\prime}$, mag. +1.2 , and transits at 6 h 26 m . In Virgo, it rises about midnight and is west of the meridian at sunrise.
Jupiter on the 15th is in R.A. 14 h 06 m , Decl. $-11^{\circ} 33^{\prime}$, mag. -1.3 , and transits at 8 h 30 m . In Virgo, it rises about 3 hours after midnight and is near the meridian by sunrise.

Saturn on the 15 th is in R.A. 13 h 19 m , Decl. $-5^{\circ} 46^{\prime}$, mag. +1.0 , and transits at 7 h 43 m . In Virgo, it rises about 2 hours after midnight, and is on the meridian by sunrise.

Uranus on the 15th is in R.A. 15 h 59 m , Decl. $-20^{\circ} 21^{\prime}$, mag. +6.0 , and transits at 10 h 22 m .

Neptune on the 15 th is in R.A. 17 h 36 m , Decl. $-22^{\circ} 04^{\prime}$, mag. +7.8 , and transits at 11 h 59 m . On Dec. 1, it passes very close to 52 Oph , but it is also very close to the sun at this time, being in conjunction on Dec. 16, at 10 h .

For 0 h U.T.

Date	P	B_{0}	L_{0}	Date	P	B_{0}	L_{0}
Jan. 1	$+2.06$	-3.06	154.46	July 5	- 0.92	+3.33	232.72
6	- 0.36	-3.63	88.61	10	+ 1.34	+3.85	166.55
11	- 2.77	-4.17	22.77	15	+ 3.58	+4.35	100.38
16	- 5.13	-4.68	316.93	20	+ 5.78	+4.81	34.22
21	- 7.43	-5.15	251.09	25	+ 7.92	+5.25	328.07
26	- 9.65	-5.58	185.26	30	+ 9.99	+5.65	261.93
31	-11.77	-5.97	119.42				
b.	-13.78	-6.31	53.59	Aug. 4	+11.97 +13.86	+6.01 +6.33	195.81 129.69
10	-15.66	-6.60	347.76	14	+15.64	+6.60	63.59
15	-17.41	-6.84	281.92	19	+17.31	+6.83	357.50
20	-19.02	-7.03	216.08	24	+18.86	+7.01	291.43
25	-20.49	-7.16	150.23	29	+20.28	+7.14	225.37
Mar. 2	-21.80	-7.	84.37	Sept. 3	+21.57	+7.22	159.32
	-22.95	-7.25	18.50	8	+22.72	+7.25	93.29
12	-23.94	-7.21	312.61	13	+23.72	+7.23	27.27
17	-24.76	-7.12	246.71	18	+ 24.56	+7.15	321.25
22	-25.42	-6.98	180.79	23	+ 25.25	+7.02	255.26
27	-25.90	-6.78	114.86	28	+25.77	$+6.84$	189.27
Apr. 1	-26.20	-6.	48.90	Oct.	+26.13	+6.61	123.29
	-26.32	-6.24	342.93		+26.30	+6.33	57.32
11	-26.26	-5.90	276.94	13	+26.30	+6.00	351.36
16	-26.02	-5.51	210.92	18	+26.11	+5.63	285.41
21	-25.59	-5.09	144.89	23	+ 25.73	+5.21	219.46
26	-24.98	-4.64	78.83	28	+25.15	+4.75	153.52
May 1	-24.19	-4.15	12.76	Nov. 2	+24.38	+4.26	87.59
6	-23.22	-3.63	306.67	7	+23.41	+3.73	21.67
11	-22.07	-3.09	240.56	12	+22.25	+3.17	315.74
16	-20.75	-2.53	174.44	17	+20.89	+2.59	249.83
21	-19.27	-1.95	108.30	22	+19.35	+1.98	183.92
26	-17.64	-1.36	42.15	27	+17.64	+1.36	118.02
31	-15.86	-0.76	335.98				
	-13.96	-0.16	269.82	Dec. ${ }^{2}$	+15.76 +13.74	+0.73 +0.09	52.13 346.24
10	-11.95	+0.45	203.64	12	+11.59	-0.55	280.35
15	- 9.85	+1.05	137.46	17	+ 9.33	-1.19	214.48
20	- 7.68	+1.64	71.27	22	+ 7.00	-1.82	148.61
25	- 5.45	+2.22	5.08	27	+ 4.61	-2.43	82.75
30	- 3.19	+2.78	298.90				

P is the position angle of the axis of rotation, measured eastward from the north point on the disk. B_{0} is the heliographic latitude of the centre of the disk, and L_{0} is the heliographic longitude of the centre of the disk, from Carrington's solar meridian, measured in the direction of rotation (see diagram). The rotation period of the sun depends on latitude. The sidereal period of rotation at the equator is $25.38^{\text {d }}$.

Carrington's Rotation Numbers-Greenwich Date of Commencement of Synodic Rotations 1981

No.	Commences	No.	Commences		No.		Commences	
1703	Dec.	16.40	1708	May	1.97	1713	Sept.	15.07
1704	Jan.	12.73	1709	May	29.18	1714	Oct.	12.35
1705	Feb.	9.07	1710	June	25.38	1715	Nov.	8.64
1706	Mar.	8.40	1711	July	22.59	1716	Dec.	5.96
1707	Apr.	4.71	1712	Aug.	18.81	1717	Jan.	2.28

PLANETARY HELIOCENTRIC LONGITUDES 1981

	Planet					
Date						
U.T.	M	V	E	M	J	S
	\circ	\circ	\circ	\circ	\circ	\circ
Jan. 1.0	282	225	100	315	179	184
Feb. 1.0	51	274	132	335	181	185
Mar. 1.0	197	318	160	352	184	186
Apr. 1.0	288	8	190	12	186	187
May 1.0	57	56	221	30	188	188
June 1.0	210	105	250	48	191	189
July 1.0	297	154	279	64	193	190
Aug. 1.0	83	205	309	80	195	191
Sept. 1.0	223	254	338	96	197	192
Oct. 1.0	310	301	8	110	200	193
Nov. 1.0	108	351	38	124	202	194
Dec. 1.0	232	39	69	137	204	195
Jan. 1.0	324	88	100	151	207	196

The heliocentric longitude is the angle between the vernal equinox and the planet, as seen from the sun. It is measured in the ecliptic plane, counterclockwise from the vernal equinox. Knowing the heliocentric longitudes, and the approximate distances of the planets from the sun (page 6), the reader or his students can reconstruct the orientation of the sun and planets on any date.
The heliocentric longitude of Uranus increases from 236° to 241° during the year; that of Neptune increases from 263° to 265°, and that of Pluto increases from 202° to 205°.
ECLIPSES DURING 1981
In 1981 there will be four eclipses, two of the sun and two of the moon.

1. A penumbral eclipse of the moon on the night of January 19-20, visible in North America and elsewhere. Penumbral magnitude* of the eclipse: 1.039.
Moon enters penumbra.
January 20
0035.9 E.S.T.
Middle of eclipse.
0249.9 E.S.T.

Moon leaves penumbra
0503.9 E.S.T.
2. An annular eclipse of the sun on February 4. The path of annularity extends from just south of Australia (passing through Tasmania), just south of New Zealand, and across the South Pacific almost to Chile. The eclipse is visible as a partial eclipse in parts of Australia, New Zealand, Antarctica, South and Central America.
3. A partial eclipse of the moon on the night of July 16-17, visible in North America (except certain northern parts) and elsewhere. Magnitude of the eclipse: 0.554 .

Moon enters penumbra July 16 21 05.2 E.S.T.
Moon enters umbra....................................... 22 24.8 E.S.T.
Middle of eclipse.
2346.8 E.S.T.

Moon leaves umbra.
0108.9 E.S.T.

Moon leaves penumbra
0228.4 E.S.T.
4. A total eclipse of the sun on July 31. The path of totality extends from the Black Sea, across the U.S.S.R., north of Japan, and eastward across the North Pacific almost to Hawaii. The eclipse is visible as a partial eclipse in most of Scandinavia, northeastern Europe, most of Asia, the north Pacific, Alaska, British Columbia except the southern portion, most of the Northwest Territories, and the northwestern half of Alberta.

[^5]
SUNSPOTS

By V. Gaizauskas

The present sunspot cycle (21) is compared with the mean of cycles 8 to 20 in the diagram adapted from "Solar-Geophysical Data" (U.S. Dept. of Commerce, Boulder, Colorado). The data plotted in the graph are monthly smoothed relative sunspot numbers from Zürich. The vertical bar defines the interval in which the most recent value in the graph can be predicted with a confidence of 90%. The predicted maximum value for this cycle has been revised to 159 ± 5, a figure reached already for November 1979.

The general upward trend of solar activity slowed during 1979-80; it is expected to fluctuate around peak levels throughout 1980-81. Another measure of solar activity is the 10 cm microwave flux which has been monitored daily since 1947 by the National Research Council of Canada (Covington, A. E. 1967, J. Roy. Astron. Soc. Can., 61, 314). The 10 cm flux correlates closely with sunspot number and has the advantage of being reproducible without subjective bias by an observer. These microwave data show that activity experienced a sharp peak in November 1979 and another of almost equal intensity in May 1980.

Amateurs who make sunspot observations may wish to try their hand at detecting white light flares (Pike, R. 1974, J. Roy. Astron. Soc. Can., 68, 330). 5 or 6 white light flares are estimated to occur each year during a few years around peak sunspot activity. These rare events are visible in the solar photosphere for a few minutes at most and are not to be confused with long-enduring "light-bridges" or bright facular patches adjacent to sunspots. White light flares erupt as one or more intensely bright and compact structures (a few arc-sec or less) during the explosive phase of highly energetic flares. They are most likely to occur in complex, rapidly-evolving sunspot groups with many closely-packed umbrae enclosed by a single penumbra. Forewarning of such energetic events may be given for several hours by a realignment of penumbral filaments or a major increase in penumbral size.

PLANETARY APPULSES AND OCCULTATIONS

A planetary appulse is a close approach of a star and a planet, minor planet or satellite, as seen from the earth. At certain locations on the earth, the appulse may be seen as an occultation: the nearer object passes directly between the observer and the star. The study of such occultations has been particularly fruitful in recent years: it has provided important information about the sizes and atmospheres of the planets, and it led to the recent discovery of rings about Uranus.

Gordon E. Taylor of H.M. Nautical Almanac Office has issued a list of about 75 predicted occultations of stars by asteroids or planets. This list has been augmented and refined by Dr. David W. Dunham. The ones listed below may be visible from North America or are of special interest. The predictions are based on current ephemerides of the asteroids and planets, and on catalogue positions of the stars. Because of uncertainties in these data, improved predictions may be issued nearer to the dates of the events. In the first table, Δt is the predicted maximum duration in seconds, and $\Delta \mathrm{m}_{\mathrm{v}}$ is the visual magnitude change at occultation.

Observations of these events are co-ordinated in North America by the International Occultation Timing Association (IOTA). Dr. David W. Dunham of IOTA has published a useful article on "Planetary Occultations of Stars in 1980" in Sky and Telescope, January 1980, p. 38, and he expects to publish a similar article on planetary occultations of stars in 1981 in the same magazine in early 1981.

No.	Date		U.T.	Asteroid	m_{v}	$\Delta \mathrm{m}_{\mathrm{v}}$	Δt	Path Includes
		h	m					
1	Jan. 26	7	14 ± 2	365 Corbuba	13.3	4.5	14	Hawaii? W. U.S.A.
2	Mar. 19	11	42 ± 2	48 Doris	11.4	2.5	12	N. Cent. U.S.A., Can.
3	Apr. 4	10	06 ± 4	91 Aegina	13.0	4.2 5.4	12	U.S.A.-Can. border
4	Apr. 20	3	12 ± 3	36 Atalante	14.2	5.4	6 46	Maritimes?
5	Apr. 21	6	50 ± 2	${ }_{56}$ Ceres	8.4	0.7	46	Hawail?
6	May 9	8	12 ± 2	56 Melete	14.2	6.0	8 11	Hawaii?
7	May 10	22	39 ± 2	2 Pallas	8.7 13.5	2.2 8.3	11 4	N. Brazil Hawaii?
8	May 13	7	08 512	95 Arethusa	13.5	8.3	4	Hawaii? ${ }^{\text {N.W. Canada, Alaska }}$
9	May 14	7	51 ± 2	54 Alexandra	13.9	4.1	${ }_{11}$	N.W. Canada, Alaska
10	May 20	0	20 ± 2 16 ± 4	451 Patientia	12.3 10.2	2.3.2v	21	E. Can., N.E. U.S.A.
11	June 5 June 13	3	16 ± 4 56 ± 10	129 Antigone	10.2 10.2	3.2 v 2.5	21	E. Can., N.E. U.S.A. ${ }_{\text {N. South Amer., Hawaii ? }}$
12	June 11	14	57 ± 2	110 Lydia	13.1	3.3	4	Hawaii?
14	Aug. 7	12	06 ± 15	18 Melpomene	8.5	0.5	23	W. U.S.A.
15	Aug. 12	9	17 ± 2	89 Julia	11.8	3.1	4	Alaska
16	Aug. 20	13	26 ± 2	110 Lydia	13.1	4.0	5	Hawaii?
17	Aug. 20	0	15 ± 6	409 Aspasia	11.2	3.0	21	Labrador, Quebec
18	Aug. 27		40 ± 8	105 Artemis	11.3	2.7	10	E. Can.? E. U.S.A.?
19	Sept. 20	9	54 ± 6	14 Irene	10.9	2.8	14	W. U.S.A., Hawaii?
20	Sept. 23	6	18 ± 2	39 Laetitia	12.1	5.3	4	Hawaii?
21	Oct. 7	2	01 ± 2	88 Thisbe	11.5	2.7	10	W. North America
22	Nov. 2	6	22 ± 2	88 Thisbe	11.7	5.4	7	Hawaii?
23	Nov. 7	6	34 ± 2	6 Hebe 471 Papagena	11.4 9.7	2.2 1.1	6 13	Labrador? North Am., Hawaii?
24	Nov. 30	14	25 ± 6	471 Papagena	9.7	1.1	13	W. North Am., Hawaii?

No.	Date	Star		m_{v}	$\begin{gathered} \text { R.A. } \\ \text { (1950) } \end{gathered}$			$\begin{aligned} & \text { Dec. } \\ & (1950) \end{aligned}$	
					h	m	s	。	
1	Jan. 26	SAO	111635	8.8	4	07	14	+04	15.0
2	Mar. 19	SAO	118832	9.0	11	21	52	+02	11.6
3	Apr. 4	SAO	158864	8.8	14	49	19	-17	37.4
4	Apr. 20	SAO	205617	8.8	14	27	05	-32	57.2
5	Apr. 21	SAO	60300	8.5	7	40	14	+30	24.9
6	May 9	SAO	97880	8.2	8	28	44	+12	55.2
7	May 10	SAO	131847	6.3	5	08	27	-02	18.8
8	May 13	SAO	95447	5.4	6	12	32	+16	09.6
9	May 14	AGK3	$+22^{\circ} 0920$	9.8	7	42	54	+22	01.8
10	May 20	AGK3	+29 ${ }^{\circ} 1008$	10.2	$\stackrel{8}{8}$	55	34	+29 +07	58.3
11	June 5	SAO	142674	7.1 v	18	47	37	-07	58.0
12	June 13	SAO	186977	7.8	18	30	44	-24	09.7
13	July 11	AGK3	+230466	9.9	4	59	59	+23	21.7
14	Aug. 7	SAO	145972	9.0	22	12	31		18.2
15	Aug. 12	SAO	58135	8.8	5	27	38	+36	11.7
16	Aug. 20	SAO	78007	9.1	6	05	06	+24	55.0
17	Aug. 20	SAO	108373	8.3	23	01	42	+12	33.6
18	Aug. 27	SAO	126198	8.7	20	44	11	+09	40.6
19	Sept. 20	SAO	191415	8.2	22	45	24	-21	53.6
20	Sept. 23	SAO	140280	6.8	14	59	24	-08	08.9
21	Oct. 7	SAO	187124	8.9	18	37	54	-20	32.6
22	Nov. 2	SAO	162511	6.3	19	18	41	-19	19.8
23	Nov. 7	SAO	118858	9.3	11	23	38	+07	03.6
24	Nov. 30	AGK3	$+20^{\circ} 0540$	9.2	5	37	08	+20	26.3

Occultation of σ Sagittarii by Venus on 1981 November 17: Information on this event can be found on page 91.

OCCULTATIONS BY THE MOON

Prepared by H.M. Nautical Almanac Office, Royal Greenwich Observatory, Herstmonceux Castle, England

The moon often passes between the earth and a star; the phenomenon is called an occultation. During an occultation a star suddenly disappears as the east limb of the moon crosses the line between the star and observer. The star reappears from behind the west limb some time later. Because the moon moves through an angle about equal to its own diameter every hour, the longest time for an occultation is about an hour. The time can be shorter if the occultation is not central. Occultations are equivalent to total solar eclipses, except that they are total eclipses of stars other than the sun. The following pages give tables of predictions, and tables and maps of northern or southern limits for many cases where grazing occultations may be seen. The predictions are for the 15 standard stations identified on the map below; the coordinates of these stations are given in the table headings. The predictions are generally limited to stars brighter than $7^{\mathrm{m}} 5$ at the dark limb of the moon.

The first five columns in the tables give for each occultation the date, ZC number of the star (see page 77), its magnitude, the phenomenon ($1=$ disappearance, $2=$ reappearance) and the elongation of the moon from the sun in degrees (see page 28). Under each station are given the U.T. of the event, factors a and b (see below) and the position angle P (from the north point, eastward around the moon's limb to the point of occurrence of the phenomenon). In certain cases, predictions have been omitted and letters showing the reasons are put in their places: A, below or too near the horizon; G, near-grazing occultation; N, no occultation; S, sunlight interferes. Certain other cases where satisfactory observations would be impossible are also omitted.

The terms a and b are for determining corrections to the times of the phenomena for stations within 300 miles of the standard stations. Thus if λ_{0}, ϕ_{0}, be the longitude and latitude of the standard station and λ, ϕ, the longitude and latitude of the observer, then for the observer we have U.T. of phenomenon $=$ U.T. of phenomenon at the standard station $+a\left(\lambda-\lambda_{0}\right)+b\left(\phi-\phi_{0}\right)$ where $\lambda-\lambda_{0}$ and $\phi-\phi_{0}$ are expressed in degrees. This formula must be evaluated with due regard for the algebraic signs of the terms. Note that all predictions are given in U.T.; to convert to Standard Time or Daylight Saving Time, see page 10.

An observer located between two standard stations can often make more accurate predictions by replacing a and b of the nearer station by a^{\prime} and b^{\prime}, which are found as
follows. First compute the interpolation factor $q=\left(\phi-\phi_{01}\right) / 2\left(\phi_{02}-\phi_{01}\right)$, where ϕ_{01} and ϕ_{02} are the latitudes of the nearer and further standard station, respectively. Then $a^{\prime}=a_{1}+q\left(a_{2}-a_{1}\right)$ and $b^{\prime}=b_{1}+q\left(b_{2}-b_{1}\right)$, where a_{1}, b_{1} and a_{2}, b_{2} are the a and b values at the nearer and further standard station, respectively. These a^{\prime} and b^{\prime} factors can then be used just as a and b, to find the correction to the time given for the nearer standard station.

As an example, consider the occultation of ZC 444 on Jan. 14, 1981, as seen from Ottawa. For Ottawa, $\lambda=75.72^{\circ}$ and $\phi=45.40^{\circ}$. The nearest standard station is Montreal, for which $\lambda_{0}=73.60^{\circ}$ and $\phi_{0}=45.50^{\circ}$. Therefore, the U.T. of the ingress (" 1 ") is $23^{\mathrm{h}} 54.5-2^{\mathrm{m}} .4(75.72-73.60)-1^{\mathrm{m}} .0(45.40-45.50)=23^{\mathrm{h}} 49 \mathrm{~m} 5$. Note that almost the same result is obtained by using Toronto as the standard station.

The elongation of the moon is 111° which means that the moon is about two days past first quarter. The star therefore disappears at the dark limb of the moon. The position angle of immersion is about 114°.

The International Occultation Timing Association (IOTA), P.O. Box 596, Tinley Park, Ill. 60477, U.S.A. provides valuable information, prediction and co-ordination services for occultation observers. Detailed predictions of the limit of any occultation are available (currently for $\$ 1.50$ U.S., each); papers describing the use of these predictions can also be obtained (currently for $\$ 2.00$ U.S.). Annual membership in IOTA currently costs $\$ 7.00$ U.S. in North America, $\$ 9.00$ U.S. overseas. Included are free graze predictions, descriptive materials and a subscription to Occultation Newsletter (available separately for $\$ 4.00$ U.S.), which contains prediction maps, finder charts, observations of planetary and asteroidal occultations, lists of close double stars discovered during occultations, as well as articles and information on all aspects of occultations. Predictions of total occultations, for any location in North America, can be obtained from Walter V. Morgan, P.O. Box 2987, Livermore, Calif. 94550, U.S.A., provided that accurate geographical co-ordinates and a long, stamped, self-addressed envelope are provided.

Since observing occultations is rather easy, provided the weather is good and the equipment is available, timing occultations should be part of any amateur's observing program. The method of timing is as follows: Using as large a telescope as is available with a medium power eyepiece, the observer starts a stopwatch at the time of immersion or emersion. The watch is stopped again on a time signal from the WWV or CHU station. The elapsed time is read from the stopwatch and is then subtracted from the standard time signal to obtain the time of occultation. All times should be recorded to 0.1 second and all timing errors should be held to within 0.5 second if possible. The position angle P of the point of contact on the moon's disk reckoned from the north point towards the east may also be estimated.

The following information should be recorded. (1) Description of the star (catalogue number), (2) Date, (3) Derived time of the occultation, (4) Longitude and latitude to nearest second of arc, height above sea level to the nearest 20 metres. [These data can be scaled from a 7.5 - or $15-$ minute U.S. Geological Survey map. Observers east of the Mississippi River should write to U.S. Geological Survey, 1200 S. Eads St., Arlington, Va. 22202; west of the Mississippi the address is U.S. Geological Survey, Denver Federal Center, Bldg. 41, Denver, Colo. 80225. Topographic maps for Canada are available from Map Distribution Office, Department of Mines and Technical Surveys, 615 Booth St., Ottawa K1A 0E9], (5) Seeing conditions, (6) Stellar magnitude (7) Immersion or emersion, (8) At dark or light limb; presence or absence of earthshine, (9) Method used, (10) Estimate of accuracy, (11) Anomalous appearance: gradual disappearance, pausing on the limb. All occultation data should be sent to the world clearing house for occultation data: H.M. Nautical Almanac Office, Royal Greenwich Observatory, Herstmonceux Castle, Hailsham, Sussex, England.

Date	$\begin{aligned} & \text { Z.C. } \\ & \text { No. } \end{aligned}$		$\text { Mag. P. of of } \begin{gathered} \text { El. } \\ \text { Moon } \end{gathered}$			$\begin{array}{\|llll} \text { Ha } & \text { HALIFAX, N.S. } \\ & \circ & & \circ \\ \text { W. } & 63.600 & \text { N. } & 44.600 \\ \text { U.T. } & & & \\ \text { a } & \text { P } \end{array}$			MO MONTREAL, Q.P. W. 73.600 , N. 45.500 U.T. a b P					TO TORONTO, ONT. W. 79.400 , N. 43.700 U.T. a b P				
					\bigcirc	h m	m m			m m	m		\bigcirc		m	m	m	-
Jan.	8	$3157 d$	7.1	1	31					17.	-1.3	-1.6				S		
	14	306	6.9	1	98	106.5	.	357			N					N		
	14	444	6.2	1	111	2425.4		141		54.5	-2.4	-1.0	114		42.0	-2.3	-0.5	111
	15	453	7.3	1	112	328.2	-0.9-0.4	64		3.17 .9	-1.1	-0.1	60		10.9	-1.3	0.0	64
	15	462	5.9	1	113	530.6	-0.1-1.0	78		527.	-0.4	-1.0	79		26.5	-0.5	-1.2	87
Feb.	18	913	5.2	1	153	409.7	$-1.7+0.1$			352.8	-1.7	+0.6	68		41.4	-1.8	+0.6	73
	18	940	5.7	1	154		G			825.8	-1.1	+0.9	32		19.4	-0.9	+0.1	48
	10	405	4.4	1	80	2310.1	$-1.2+1.4$	36	23	00.9	-0.9	+2.4	21		50.9	-0.9	+2.7	20
	12	692d	1.1	1	106		N				G				09.3	.	.	141
	12	692d	1.1	2	106		N				G				33.3	.	.	
	13	729	7.2	1	109	524.9	+0.7-4.0	151			G					N		
	14	862	7.5	1	121	220.9	-1.2-4.0	143		02.4	-1.8	-3.6	140		59.3			151
	14	863	6.7	1	121	237.7	- \cdot	148		20.6			146			G		
		1733	5.2	2	207	415.4	$-1.7+0.7$	277		00.6	-1.4	+1.2	271		50.0	-1.3	+1.9	
		1950	5.8	2	230	719.8	$-2.6+0.7$	259		53.9		.	242			N		
	26	2291	5.5	2	264		S				S				43.0	-2.7	+1.0	
Mar.	9	364	4.3	1	49		N			56.8			137			S		
	11	516	7.3	1	65		N			308.					00.9	-0.6	+1.1	26
	13	971	7.3	1	103	2304.6	-1.9-0.4	101			S					S		
	14	995d	4.1	1	104		N				N				19.8	-		20
	15	1135	6.8	1	118	444.7	-0.8-0.8	68		35.0	-1.0	-0.9	77		30.6	-1.1	-1.1	88
	15	1245d	7.5	1	128	2301.9	-1.6 +1.5				S					S		
	16	1259	5.9	1	129	341.2	-1.6-0.5	72		23.8	-1.8	-0.4	81		14.3	-1.9	-0.6	92
		1385	6.5	1	142	611.4	-0.3-2.1	126		05.	-0.5	-2.3	135		07.1	-0.4	-2.7	147
		2128	5.8	2	222		N			B 16.	.	.	355		16.4	-1.0	-2.2	
		2223d	4.0	2	232	443.4	$-0.9+0.3$	303		35.8	-0.7	+0.7	294			A		
	28	2633d	4.0	1	267	854.1	$-2.3+1.6$	54		34.5	-1.9	+1.8	61		21.1	-1.6	+1.7	72
	28	2633d	4.0	2	267		S			41.5	-1.5	-0.5	315		33.5	-1.5	-0.2	
Apr.		453	7.3	1	31		A			13.8	-0.2	-2.0	110			S		
		618	7.2	1	47		A				A				20.5	-0.1	-0.9	77
	9	764d	5.0	1	60	055.1	$-0.8+0.2$	45		45.9	-1.0	+0.1	50		39.6	-1.2	-0.1	60
	10	940	5.7		74	242.3	0.0-1.8	112	2	39.7	-0.2	-2.1	119		42.8	-0.2	-2.5	131
	12	1217	6.1	1	98	108.1	-0.6-3.4	152		58.0		.	162			N		
	13	1345	7.1	1	111		N			06.3			34		44.4	-2.6	+1.4	58
	15	1562	7.3	1	134	120.3	-1.7-1.1	118		03.0	-1.6	-0.9	126		56.3	-1.4	-1.3	
May $\begin{array}{r}1 \\ 1 \\ 1 \\ 1 \\ 23\end{array}$	9	1186	6.1	1	69	310.8	+0.3-1.6	116		11.1	+0.1	-1.9	123		15.4	+0.1	-2.2	134
	10	1319	7.5	1	81	305.8	+0.1-2.0	130	3	03.9	-0.1	-2.3	139		08.3	0.0	-2.8	150
	14	1741	7.2	1	127		N			24.			59			S		
	16	1950	5.8	1	150	210.3	-1.6-1.0	124		54.7	-1.3	-0.9	135		49.9	-1.0	-1.3	148
		2838	5.6	2	228		S			28.8	-2.0	+1.5			13.7	-2.1	+2.2	218
June	8	1506	7.1		75		N				N				59.4	-0.8	+0.1	46
	9	1603	7.1	1	85	048.9	-1.7-0.9	78			S					S		
	12	1923	7.1	1	120	321.4	-1.1-1.8	116		07.3	-1.3	-1.8	122		02.6	-1.4	-1.8	131
	14	2128	5.8	1	142		N				G				06.5			62
	15	2247	5.6	1	153	435.3 -	-1.8-0.7	72		15.2	-2.1	-0.3			02.8	-2.3	-0.2	84
July	19	2779d	3.9	2	197	259.3	$-1.2+0.4$	299			A					A		
	2.1	3069	6.2	2	222		S			17.	-1.6	+1.3	223		05.5	-1.7	+1.6	
	22	3190d	3.0	2	232	410.7	$-0.8+0.8$	295			A					A		
	7	1684	7.0	1	66		A			22.7	-0.4	-1.6	99		23.0	-0.5	-1.7	105
	19	3171	3.8	1	204	726.6	-1.7-0.4	80	7	10.0	-1.6	+0.3			59.3	-1.7	+0.6	

LUNAR OCCULTATIONS 1981

$\begin{aligned} \text { Date } & \text { Z.C. } \\ & \text { No. } \end{aligned}$	Mag.	$\begin{aligned} & \text { P. of } \\ & \text { Moon } \end{aligned}$	$\begin{array}{lllll} \text { Ha } & \text { HALIFAX, N.S. } \\ & 0 & 0 & & 0 \\ \text { W. } & 63.600, & \text { N. } & 44.600 \\ \text { U.T. } & \text { a } & \text { b } & \text { P } \\ \hline \end{array}$	Mo MONTREAL, Q.P. W. 73.600 , N. 45.500 U.T. a b P	$\begin{aligned} & \text { To TORONTO, ONT. } \\ & \circ \\ & \text { W. } 79.400, \\ & \text { N. } \\ & \text { U.T. } 43.700 \\ & \text { U. a } \\ & \hline \end{aligned}$
		\bigcirc	h m m m o	h m m m o.	h m m m o
July 193171	3.8	2204	S	$829.0-1.4-0.3249$	$820.7-1.6-0.1252$
21 3428d	5.2	2227	$402.1-0.8+2.4210$	A	A
28888	6.0	2322	$730.1-0.1+0.9289$	A	A
28895	5.9	2322	S	S	$829.2+0.2+1.5251$
Aug. 41741	7.2	146	A	A	$128.1-0.4-1.487$
61950	5.8	169	$053.7-0.6-2.5149$	S	S
102408	6.9	1113	$148.9-1.7-1.2102$	$129.9-1.9-0.8102$	$\begin{array}{llllll}1 & 19.8-2.0-0.7107\end{array}$
132838	5.6	1148	3 49.9-1.9-1.2 109	$329.6-2.0-0.5101$	$318.7-2.1-0.3102$
132851	6.0	1149	A	A	$632.3-0.2+0.827$
21405	4.4	1252	$803.5-1.0+2.135$	$758.3-0.4+2.916$	$750.9-0.2+3.211$
21405	4.4	2252	S	849.1 -2.3-0.4 290	$836.1-2.4-0.4295$
Sept. 62361	4.8	182	A	$109.9-1.4-1.8120$	$104.2-1.6-1.8122$
9 2779d	3.9	1116	A	$328.4-0.5+0.631$	$323.6-0.7+1.028$
113035	6.8	1139	030.0 . . 17	017.5 . . 11	S
12 3190d	3.0	1152	$251.1-1.2+1.136$	$240.7-1.1+1.922$	$230.4-1.2+2.320$
12 3190d	3.0	2152	358.1 -2.0-0.9 279	$335.2-2.4-1.0296$	$322.4-2.6-0.9300$
17364	4.3	1221	N	$\begin{array}{llllll}7 & 17.2-2.8-1.7122\end{array}$	$703.6-2.6-0.9117$
17364	4.3	2221	N	$755.3-0.2+3.8183$	$747.1-0.4+3.4187$
19650	5.7	2248	$819.5-1.2+2.3217$	$809.1-1.2+1.8231$	$759.0-1.1+1.9233$
22 1113d	5.2	$2 \quad 287$	$739.1-0.4+2.6230$	$737.7-0.3+2.0243$	$733.0-0.1+1.9244$
25 1493d	6.4	2325	S	$902.3-0.1+1.3274$	A
Oct. 83113	5.4	1118	2313.6 . . 11	G	S
103271	7.1	1131	N	152.0 。 . 134	136.9 . . 128
103288	5.9	1133	A	A	$616.2-0.6-0.564$
11 3419d	4.5	1146	$540.2+0.1+2.08$	N	N
113425	4.6	1146	$\begin{array}{lllll}6 & 16.1-0.7-1.182\end{array}$	$607.6-0.9-0.669$	$603.0-1.0-0.468$
18894	4.6	$2 \quad 241$	$230.60 .0+1.4261$	A	A
191086	6.5	2258	$927.7-1.8-1.8309$	9 07.8-1.9-1.7 314	$859.3-1.9-1.1309$
201205	6.3	2269	$445.6+0.6+3.6210$	$453.0+0.4+2.3228$	A
231576	5.3	2307	$829.5-0.6+3.2238$	$828.0-0.2+2.5245$	$822.70 .0+2.7240$
Nov. 32929	7.1	175	$2222.8-1.5+0.449$	S	S
53069	6.2	187	022.6 . . 356	N	N
73356	5.9	1113	A	A	$500.5-1.1-2.1106$
860	7.0	1137	$2308.9-1.2+1.563$	$2300.2-0.9+1.853$	$2252.2-0.7+1.952$
83506	6.3	1127	A	A	$628.7-0.4-0.358$
14 881d	5.9	2213	N	S	$1103.3-0.4-3.3320$
171322	6.1	2253	$936.0-1.3-2.5324$	9 19.7-1.5-1.9 320	$913.3-1.7-1.2310$
292762	6.0	134	A	$2206.9-1.0-0.663$	S
Dec. 55	4.7	1104	2113.0 - . 128	S	S
5 3428d	5.2	192	$025.7-1.4-0.371$	$011.6-1.4+0.555$	$002.2-1.5+0.851$
625	7.5	1106	340.2 . . 346	N	N
8291	7.1	1133	$235.2-2.1-1.7109$	214.1 -1.9-0.3 91	$203.0-2.0+0.188$
8306	6.9	1134	$559.5-0.4+0.340$	$554.5-0.6+0.635$	$549.5-0.8+0.640$
161504	5.7	2246	$638.4-1.5+0.5282$	$625.6-1.2+0.8283$	$617.7-1.0+1.1276$
232271	4.3	2327	$1027.4-1.7+2.8243$	A	N
282988	6.8	126	A	21 53.7-1.2-1.2 88	S

Date	$\begin{aligned} & \text { Z.C. } \\ & \text { No. } \end{aligned}$		$\text { Ma.g. P. of } \begin{gathered} \text { El. } \\ \text { Moon } \end{gathered}$			Wi WINNIPEG, MAN.. W. 97.200 , N. 49.900	Ed EDMONTON, ALTA. W. 113.400 , N. 53.600				Va VANCOUVER, B.C. W. 123.100 , N. 49.200				
Jan.					\bigcirc	h m m m 0		h m	m m	-		h	m		
		208	7.0	1	87	A			A			702.3	-0.4	-2.5	114
	15	453	7.3	1	112	$253.5-1.0$ +1.7 31			N				G		
	15	462	5.9	1	113	$506.8-1.0-0.568$		449.4	$-1.1+0.5$	51		435.1	-1.4	+0.7	
	16	608d	+ 6.0	1	127	N		441.7	-1.7-2.2			433.5	.	.	139
	18	913	5.2	1	153	$323.6-1.1+2.443$			G			306.9	.		15
	18	940	5.7	1	154	$800.3-1.3+0.644$		740.8	-1.4+1.4			721.4	-1.6	+0.9	59
	29	2223d	4.0	1	286	$1253.2-1.7+0.1100$		1231.6	$-1.1+0.6$	110		220.5	-0.7	+0.2	129
	29	2223d	4.0	2	286	S		1350.5	-1.4-0.1			335.0	-1.6	+0.7	277
Feb.	1	2633d	4.0	1	321	S			S			1504.3	-1.0	+0.6	117
	9	150d	6.2	1	55	$310.7-0.2+1.514$			N			304.7	.	.	355
	10	291	7.1	1	69	$346.5-0.5-2.0104$		329.3	-0.9-1.3			324.9	-1.3	-1.4	
	11	444	6.2	1	84	A		623.4	-0.2-2.2	110		633.5	-0.3	-3.8	134
	12	692d	1.1	1	106	$2051.9-0.5+1.397$		2053.6	$0.0+1.6$	79		O 47.7	+0.2	+1.4	79
	12	692d	1.1	2	106	$2148.4-0.4+2.2229$		150.5	$-0.2+1.8$	249		141.7	0.0	+1.7	250
	13	729	7.2	1	109	N		433.5	-1.3-3.7	139			N		
	14	862	7.5	1	121	$\begin{array}{lllll}1 & 11.1 & -1.6 & 0.0 & 109\end{array}$			S				S		
	14	863	6.7	1	121	$126.6-1.7-0.4115$			S				S		
	15	1025	7.4	1	134	$039.0-1.4+0.1121$			S				S		
	21	1733	5.2	2	207	$345.2-0.5+1.4276$			A				A		
	26	2291	5.5	2	264	1007.6 - . 232			A				N		
Mar.	1	2704	5.8	2	299	$1151.8-1.8$ +2.5 222			A				N		
	11	526	6.9	1	66	A		504.0	-0.4-0.7			503.1	-0.6	-1.0	
	13	862	7.5	1	94	A		757.8	+0.1-1.6	101		806.6	+0.1	-2.0	
	13	863	6.7	1	94	A		808.1	+0.2-1.6	103		817.6	+0.2	-2.1	121
	14	1025	7.4	1	107	$753.3+0.2-1.7111$.		747.3	-0.1-2.0	116		756.5	0.0	-2.7	137
	15	1135	6.8	1	118	$400.9-1.5-0.685$		335.3	$-1.5+0.3$	81		319.0		+0.2	96
	15	1138	7.1	1	118	N			N			400.2	-1.8	+2.3	48
	16	1259	5.9	1	129	$241.3-1.7+0.683$		221.5	$-1.2+1.6$	72			S		
	16	1275	5.6	1	131	N						715.2	.	-	
	17	1385	6.5	1	142	$539.0-0.7-2.9153$		515.0	-0.9-2.9	158			N		
	24	2128	5.8	2	222	$750.6-0.8-0.9329$		737.2	-0.6 0.0	319		29.4	-0.7	+0.6	
	25	2247	5.6	2	234	10 06.7-1.8-0.1 274		940.0	$-1.6+0.9$			15.4	-2.1	+2.6	
Apr.	7	462	5.9	1	33	$\begin{array}{llllllllll}1 & 56.9 & -0.1 & -2.5120\end{array}$			S				S		
	8	618	7.2	1	47	$209.3-0.5-0.870$			S				S		
	8	627	6.8	1	48	A		432.1	-0.2-0.7			33.4	-0.3	-1.1	
	9	787d	7.5	1	62	$433.2+0.3-2.4131$		426.0	0.0-2.8				N		
	9	800	7.5	1	63	A			A			29.1	-0.2	-0.7	59
	10	940	5.7	1	74	$218.3-0.8-2.4126$			S				S		
	10	971	7.3	1.	76	A A		620.5	-0.1-1.4			25.6	-0.2	-1.7	
	11	1109	7.3	1	89	$636.3+0.5-2.4146$		633.1	+0.4-3.2				N		
	12	1245d	7.5	1	101	$\begin{array}{lllll}6 & 16.9-0.9-0.3 ~\end{array} 7$		558.1	-1.2-0.5	59		49.6	-1.3	-0.9	81
	12	1259	5.9	1	103	A			A			30.5		-0.8	60
	14	1481	7.4	1	126	8 58.0-0.1-1.4 85		848.2	-0.4-1.6	91		50.5	-0.6	-1.8	
May	7	888	6.0	1	43	$337.0-0.2-0.5 \quad 51$			S				S		
	7	895	5.9	1	43	A		425.7	-0.1-1.3	83		31.1	-0.1	-1.6	
	91	1186	6.1	1	69	2 59.6-0.3-2.5 138			S				N		
	9	1202	6.9	1	71	A		654.0	. .	173			N		
	10	1319	7.5	1	81	$247.6-0.2-3.3158$			S				N		
	10	1327	6.8	1	82	$505.4-0.5-1.378$		450.0	-0.8-1.4	86		47.8	-1.0	-1.6	105
	10	1331	$5.9-7.5$	1	83	6 06,1-0.1-1.2 74		556.1	-0.5-1.4			57.3	-0.6	-1.6	
	10	1335	6.3	1	83	A		646.8	-0.3-1.3	73		49.6	-0.4	-1.4	
	12	1562	7.3	1	107	A		803.4	-0.3-1.6	90		07.3	-0.4	-1.7	102
	141	1758	7.0	1	130	$722.6-0.6-1.8102$		702.5	-1.0-1.7	108		59.3	-1.2	-1.7	123
	23	2851	6.0	2	229	s			N			01.2	-0.7	-0.2	325
June		1506	7.1	1	75	3 38.5-1.3-0.5 56			S				S		

Date	$\begin{aligned} & \text { z.c. } \\ & \text { No. } \end{aligned}$	Mag.	P. of Moon		Ma MASSACHUSETTS W. 72.500 , N. 42.500	Wa WASHINGTON, D.C. W. 77.000 , N. 38.900	$\begin{array}{cc}\text { AG } & \text { ALABAMA-GEORGIA } \\ 0 & \circ \\ \text { W. } 85.000, \text { N. } 33.000\end{array}$		
July $\begin{array}{r}19 \\ \\ 21\end{array}$				\bigcirc	h m m m o	. 23	h	m m	
	3171	3.8	2	204	8 31.0-1.3 0.0241	$824.2-1.5+0.3239$	807.4	-1.9 +0.8	236
	3428d	5.2	2	227	$350.1-0.7+2.6207$	A		N	
25	444	6.2	2	282	S	S	901.5	+0.1 +3.4	190
Aug. $\begin{array}{r}4 \\ 6\end{array}$	1741	7.2	1	46	A	$135.7-0.3-1.494$	141.3	-0.5-1.6	
	1950	5.8	1	69	$052.9-0.7-2.8157$	$100.8-0.6-3.5170$		N	
	2291	5.5	1	103	A	A	409.1	-1.2-0.7	74
	2408	6.9	1	113	$134.7-2.0-1.0106$	$128.9-2.2-1.0114$	118.2	-2.2-1.5	132
	2838	5.6	1	148	$333.8-2.1-0.8107$	$3 \mathrm{l} 26.3-2.4-0.7111$	311.1	-2.5-1.0	123
	2851	6.0	1	149	A	$631.1-0.6+0.246$	623.0	$-1.1+0.4$	51
	405	4.4	1	252	$750.8-0.7+2.527$	$738.4-0.7+2.629$	718.4	$-0.5+2.5$	32
Sept. $\begin{array}{r}21 \\ 6 \\ 8 \\ 8 \\ 9\end{array}$	405	4.4	2	252	$852.1-2.20 .0278$	$841.6-2.2+0.4275$	821.3	$-2.0+0.7$	272
	2361	4.8	1	82	117.3 -1.5-2.0 125	117.7 -1.7-2.2 131	116.7	-2.1-2.8	
	2618	6.6	1	104	N	N	114.7	.	36
	2635	5.7	1	105	A	A	446.0	-1.3-1.8	112
	2779d	3.9	1	116	$327.8-0.7+0.341$	$322.6-1.1+0.445$	308.3	$-1.8+0.7$	52
	3035	6.8	1	139	2409.6 . . 21	$2351.3-1.8+2.733$		S	
	3190d	3.0	1	152	$236.7-1.3+1.730$	$223.6-1.5+2.0 \quad 33$	158.0	$-1.8+2.1$	42
12	3190d	3.0	2	152	3 40.5-2.4-0.8 287	$331.8-2.5-0.5285$	312.5	-2.6 0.0	280
19	650	5.7	2	248	$804.3-1.1+2.3220$	$750.8-0.9+2.6215$	728.6	$-0.5+2.9$	209
22	1113d	5.2	2	287	$731.4-0.2+2.3233$	$722.6+0.1+2.5226$	710.2	+0.6 +2.7	216
Oct. $\begin{array}{r}25 \\ 8 \\ 10 \\ 11 \\ 11\end{array}$	1493d	6.4	2	325	$858.3-0.1+1.5264$	A		A	
	3113	5.4	1	118	2255.3 . . 12	S		S	
	3288	5.9	1	133	A	$621.3-0.7-0.981$	619.4	-1.3-1.1	91
	3419d	4.5	1	146	$536.8+0.3+2.91$	$528.0-0.1+2.310$	512.2	$-0.6+2.2$	17
	3425	4.6	1	146	6 10.8-1.0-0.9 79	$608.9-1.3-0.985$	602.0	-1.9-1.0	93
Nov. $\begin{array}{r}19 \\ 20 \\ 23 \\ 7 \\ 8\end{array}$	1086	6.5	2	258	$913.9-2.0-1.0301$	$907.2-2.0-0.3289$	850.3	-1.9 +0.6	273
	1205	6.3	2	269	$444.7+0.7+2.9215$	A		N	
	1576	5.3	2	307	$819.2-0.1+3.7229$	N		N	
	3356	5.9	1	113	A	$520.5 \cdot 141$		N	
		7.0	1	137	$2255.9-1.0+1.759$	$2245.4-0.9+1.761$		S	
8151729Dec.4	3506	6.3	1	127	A	$632.4-0.4-0.876$	632.9	-0.9-1.1	91
	1047d	5.2	2	227	N	N	1039.5	-1.4-2.9	316
	1322	6.1	2	253	$926.5-1.7-1.5309$	$922.2-2.0-0.7294$	905.8	$-2.1+0.6$	270
	2762	6.0	1	34	22 10.0-1.1-0.7 70	S		S	
	3428d	5.2	1	92	$2412.1-1.6+0.363$	$2402.8-1.8+0.565$	2342.3	$-2.2+1.0$	66
6	25	7.5	1	106	335.4 . . 346	$322.0 \quad 0.0+3.0 \quad 3$	304.8	$-0.5+2.3$	16
8	291	7.1	1	133	218.1 -2.3 -0.9 102	$210.2-2.8-1.0108$	151.9	-3.4-1.1	112
8	306	6.9	1	134	$554.0-0.7+0.246$	$\begin{array}{lllll}5 & 50.2 & -0.9 & 0.0 & 58\end{array}$	542.6	-1.3-0.3	75
13	1125	6.4	2	207	N	N	1048.2	-0.6-2.6	317
	1129d	5.3	2	208	N	$1103.4+0.4-4.0342$	1118.5	-0.6-2.1	
	1504	5.7	2	246	$624.2-1.3+1.1272$	$613.7-1.1+1.7259$	552.8	$-0.6+3.1$	
	2988	6.8	1	26	21 59.1-1.3-1.4 97	S		S	
	3271	7.1	1	51	A	A	113.4	-1.1-1.2	

Date		$\begin{aligned} & \text { Z.C. } \\ & \text { No. } \end{aligned}$		P. of Moon		$\begin{aligned} & \text { Il IllinoIs } \\ & \text { W. } 91.000, \text { N. } 40.000 \end{aligned}$	$\begin{array}{\|l} \mathrm{Te} \quad{ }^{\circ} \text { TEXAS } \\ \text { W. } 98.000, \text { N. } 31.000 \end{array}$		De DENVER, COLO. W. 105.000 , N. 39.800			
Jan. 1					\bigcirc	h m m m o	h m m m	-		h m	m m	\bigcirc
	12	49	6.3	1	72	$329.3-0.4+0.343$	$324.7-0.9-0.2$	70		322.0	$-0.6+1.0$	32
	15	453	7.3	1	112	$252.7-1.7+0.369$	$238.0-2.6-0.4$	92		228.3	$-1.6+1.3$	55
	15	462	5.9	1	113	$523.5-0.9-1.7102$	N			506.4	-1.6-1.5	101
	16	618	7.2	1	127	$711.7-0.9+1.0 \quad 34$	$703.5-1.0-0.4$	73		656.6	$-1.2+0.8$	43
	17	$764 d$	5.0	1	140	N	$554.7-2.1+2.5$	35			N	
	18	913	5.2	1	153	$\begin{array}{llll}3 & 17.2-1.9+0.8 & 81\end{array}$	$259.3-2.3-0.1$	106		254.2	$-1.3+1.6$	70
	18	940	5.7	1	154	809.1 -1.1-0.6 73	8 10.9-1.1-1.6	108		751.2	-1.5-0.7	85
	29	2223d	4.0	1	286	S	S			1241.9	-1.5-0.6	129
Feb.	9	150d	6.2	1	55	A	$310.1-0.5-0.9$	87		302.3	-0.6 0.0	53
	12	692d	1.1	1	106	20 49.7-1.5-0.4 131	N			2037.6	$-0.4+0.7$	111
	12	692d	1.1	2	106	$2122.5+0.4+3.8192$	N			2123.7	+0.1 +2.5	214
	14	862	7.5	1	121	N	N			104.8	. .	143
	14	895	5.9	1	124	N	829.2	16			N	
	16	1186	6.1	1	149	N	$851.0-1.5+0.4$	55			N	
	21	1733	5.2	2	207	327.7 -0.8 +3.6 235	N				A	
Mar.	1	2708	5.9	2	299	S	S			1215.6	-1.3 +0.6	288
	11	516	7.3	1	65	$251.2-0.8+0.249$	$247.6-1.0-0.7$	83		237.8	-1.2 +0.3	53
	14	995d	4.1	1	104	$247.9-2.1+1.055$	$230.6-2.4-0.4$	92		218.3	-2.1 +1.3	60
	14	1025	7.4	1	107	A	N			816.2	+0.6-2.6	145
	15	1135	6.8	1	118	4 21.2-1.4-1.6 110	$435.0-0.9-4.0$	151		359.7	-1.7-1.9	122
	15	1138	7.1	1	118	$454.8-1.8+0.359$	4 46.4-1.8-1.1	98		427.4	-2.1 0.0	75
	16	1259	5.9	1	129	$254.9-2.0-1.0113$	300.3 . .	154		227.1	-2.0-0.7	119
	16	1275	5.6	1	131	N	755.3-1.1-0.4	70		745.1	$-1.8+0.5$	51
	17	1385	6.5	1	142	621.5 . . 186	N				N	
	24	2128	5.8	2	222	$807.1-1.5-1.0314$	$758.2-2.4+0.1$	281		745.3	-1.5 +0.1	
	25	2247	5.6	2	234	$1021.9-2.5-0.2262$	G			942.4	$-3.2+1.9$	
	28	2633d	4.0	2	267	$916.5-1.3+0.6288$	$857.6-1.6+1.5$	257			A	
	29	2797	3.0	1	279	947.2 - 34	$913.8-1.2+1.6$	74			A	
	29	2797	3.0	2	279	1027.8 . - 333	$\begin{array}{lllllll}10 & 25.4 & -1.3 & 0.0\end{array}$	298		1018.0	-0.6-0.2	315
Apr.	8	618	7.2	1	47	$222.8-0.2-1.497$	$240.7+0.2-3.6$	140		217.1	-0.6-1.8	
	12	1245d	7.5	1	101	$626.4-0.4-0.767$	$632.3-0.3-1.2$	98		618.4	-0.7-1.1	84
	13	1345	7.1	1	111	$113.5-2.3+0.585$	S				S	
	14	1481	7.4	1	126	A	A			912.3	-0.1-1.5	
May	7	888	6.0	1	43	A	A			343.6	-0.1-1.0	
	9	1186	6.1	1	69	$328.3+0.6-3.6162$	N				N	
	10	1327	6.8	1	82	5 19.8-0.2-1.2 91	$531.60 .0-1.6$	117		516.0	-0.4-1.6	
	10	1331	5.9-7.5	1	83	A	A			$618.0=$	-0.1-1.4	99
	14	1758	7.0	1	130	$743.6-0.4-1.8113$	758.3 -0.4-2.2 1	134		735.8	-0.8-2.0	121
	16	1950	5.8	1	150	153.3 • - 186	N			,	N	
	23	2851	6.0	2	229	S	$955.6-2.8-0.72$			930.9	$-2.1-0.9$	
	25	3113	5.4	2	253	$949.2-1.6+2.4206$	N			925.4 -	$-1.6+2.8$	
	25	3115	6.3	2	253	N	953.2 - . 3	315			N	
June	5	1123d	7.2	1	36	N	$205.2-0.7-0.2$	65		S		
		1127	5.9	1	36	$229.3-0.2-0.874$	237.6 0.0-1.2	104				
	8	1506	7.1	1	75	$352.4-0.8-0.972$	$356.9-0.8-1.41$	101		338.5	-1.2-1.2	
	101	1733	5.2	1	99	A	A			652.6	-0.2-2.3	142
	12	1923	7.1	1	120	$254.8-1.1-2.4154$	N					
	13	2035	7.1	1	132	N	531.1 .	62				
		2043	6.6	1	133	A	. 7 58.4-0.7-1.0	84		745.0 -	-1.1-0.6	63
		2047	6.7	1	133	A	A			802.9 -	-0.9-1.3	

Date Z.C.			$\begin{gathered} \text { E1. } \\ \text { of of } \\ \text { Moon } \end{gathered}$	$\begin{array}{llll} \text { II } & \stackrel{\circ}{\text { ILLINOIS }} \\ \text { W. } & \stackrel{\circ}{\circ} .000, & \text { N. } & 40.000 \\ \text { U.T. } & \text { a } & \text { b } & \text { P } \end{array}$	$\begin{aligned} & \text { Te } \quad{ }^{\circ} \text { TEXAS } \\ & \text { W. } 98.000, \\ & \text { U.T. } \\ & \text { U. } \quad 31.000 \\ & \text { a } \\ & \hline \end{aligned}$	$\begin{array}{lccc} \text { De DENVER, COLO. } \\ \circ & 0 \\ \text { W. } & 05.000, & \text { N. } & 39.800 \\ \text { U.T. } & \text { a } & \text { b } & \text { P } \end{array}$
June 152247			-	h m m m o	h m m m	h m m m o
	5.6	1	153	3 37.3-2.1-0.1 105	$329.2-1.6-1.2136$	$\begin{array}{llllll}3 & 12.8 & -1.3-0.2124\end{array}$
213069	6.2	2	222	$638.1-1.7+2.4216$	N	$614.5-1.6+3.3207$
July 41345	7.1	1	30	A	A	$306.8+0.2-1.8129$
71684	7.0	1	66	$222.2-0.8-1.9120$	$237.0-0.6-2.6147$	S
193171	3.8	1	204	$634.9-1.8+1.262$	$610.0-2.0$ +1.2 77	$611.0-1.5+1.759$
193171	3.8	2	204	$758.8-2.1+0.3258$	$737.7-2.3+1.0247$	$729.3-2.0+0.6270$
19 3190d	3.0	1	206	S	$1109.8-2.4-2.1113$	$1047.6-1.6-0.3 \quad 74$
25444	6.2	2	282	$918.8-0.5+2.3219$	855.40 .0 +2.6 206	$913.0-0.3+1.9233$
Aus. 72072	6.7	1	82	A	A	$453.9-0.7-1.9115$
92291	5.5		103	$358.8-1.3-0.154$	3 49.3-2.1-0.5 77	$332.9-2.4+0.358$
132838	5.6	1	148	$255.0-2.0+0.1108$	$244.2-1.8-1.0133$	$231.2-1.3+0.3116$
132851	6.0	1	149	624.5 . . 20	$604.2-1.6+1.340$	N
17 3419d	4.5	1	200	$1042.2-0.6+0.737$	$1030.9-1.3+0.556$	$1034.1-0.4+1.9 \quad 15$
17 3419d	4.5	2	200	S	S	$1124.3-1.8-2.0288$
21405	4.4	1	252	739.3 - . 358	$\begin{array}{lllll}7 & 09.7 & 0.0 & +2.9 & 17\end{array}$	N
21405	4.4	2	252	808.5 . . 308	$755.3-1.8+0.2290$	N
261171	6.3	2	319	S	$1109.5-0.7+0.5286$	$1102.6-1.2-1.3330$
27 1310d	4.2	2	332	S	N	$1153.50 .0+1.8248$
Sept. 42128	5.8	1	61	N	253.5 • 31	N
62361	4.8	1	82	$049.4-2.0-1.7131$	S	S
82635	5.7	1	105	4 28.3-1.2-1.2 88	4 29.0-1.9-1.4 103	$\begin{array}{lllllllll}4 & 08.0 & -1.7 & -0.6 & 78\end{array}$
9 2779d	3.9	1	116	307.2 - . 25	$238.4-2.5+1.548$	G
113069	6.2	1	141	N		$\begin{array}{llll}6 & 13.7\end{array}$
12 3190d	3.0	1	152	$205.6-1.4+2.8122$	$132.2-1.5+2.246$	$145.5-1.3+3.123$
12 3190d	3.0	2	152	$256.0-2.3-0.5304$	$241.3-2.1+0.3285$	$229.7-1.4-0.2309$
$17 \quad 364$	4.3	1	221	$637.1-2.0$ +0.3 106	622.0 . . 122	$616.0-1.1+1.386$
17364	4.3	2	221	$729.8-0.6+2.9197$	656.6 . . 180	$718.5-0.8+2.2220$
19650	5.7	2	248	$740.3-0.9+1.9238$	$717.2-0.4+2.2224$	$729.2-0.6+1.5254$
21991	6.1	2	276	N	N	927.0 . . 196
22 1113d	5.2	2	287	$726.6+0.2+1.7246$	A	A
Oct. 62725 d	5.8	1	85	N	N	331.9 . . 147
103271	7.1	1	131	$109.9-2.2-0.3123$	N	5
103288	5.9	1	133	$608.7-0.9-0.261$	6 01.8-1.7-0.3 76	$554.4-1.0+0.742$
11 3419d	4.5	1	146	N	506.4 . . 346	N
113425	4.6	1	146	$549.4-1.4+0.163$	5 36.1-2.1 +0.1 76	$529.9-1.3+1.143$
191086	6.5	2	258	8 40.5-1.7-0.4 303	$827.9-1.4+0.6278$	$817.5-1.6-1.1321$
Nov. 32822	5.6	1	66	N	N	$235.1-2.3-3.1133$
6 3225d	7.1	1	101	$\begin{array}{llllll}5 & 06.2-1.5 & -2.8 & 119\end{array}$	N	4 45.4-1.6-1.3 95
73356	5.9	1	113	4 51.8-1.6-1.8 103	501.0 . . 135	$427.8-1.8-0.481$
83506	6.3	1	127	$623.6-0.7-0.261$	6-20.2-1.4-0.7 83	$611.7-0.9+0.545$
14 881d	5.9	2	213	$1103.5-1.1-1.9295$	$1103.2-1.8-0.3259$	$1043.7-1.7-1.4288$
15 1047d	5.2	2	227	N	$1020.0-2.2-1.7299$	N
171322	6.1	2	253	8 56.0-1.7-0.2 295	$840.0-1.5+1.1265$	$835.4-1.3+0.1299$
292769	6.3	1	35	$2350.8-1.8-2.3123$	2402.6 - . 146	S
Dec. 4 3428d	5.2	1	92	23 40.5-1.5 +1.6 43	S	S
625	7.5	1	106	N	256.9 - 351	N
$8 \quad 291$	7.1	1	133	$\begin{array}{llll}1 & 38.9-1.8 \\ 5 & 36.9 & 79\end{array}$	$\begin{array}{llll}1 & 17.6-2.0 & +0.8 & 90\end{array}$	$11^{18.4-1.1+1.7} 60$
$8 \quad 306$	6.9	1	134	$\begin{array}{llll}5 & 36.2-1.1+0.7 & 46\end{array}$	$\begin{array}{llll}5 & 22.1-1.8 \\ \text { +0.2 }\end{array}$	$519.6-1.1+1.632$
131125	6.4	2	207	$1022.4-0.4-4.3338$	$1038.5-1.5-1.6293$	$1010.1-1.4-2.7319$
13 1129d	5.3	2	208	$1058.2-0.6-2.8321$	11 09.1-1.4-1.2 283	10 45.3-1.3-2.0 304
161504	5.7	2	246	$603.7-0.6+1.4266$	$543.7+0.1+2.8233$	$558.5-0.2+1.2272$
313271	7.1	1	51	$103.1-0.8-0.360$	$058.2-1.5-0.477$	$050.7-0.9+0.641$

Date Z.C.	Mag.	P. of Moon		$\begin{array}{lll} \text { Ca CALIFORNIA } \\ \text { W. } 120.000, & \text { N. } & 0 \\ \text { O. } \\ \text { U.T. } & \text { a } & \text { b } \end{array}$	
		\bigcirc	h m m m o	h m m m o	h m m m 0
June 233356	5.9	2248	S	$1103.1-1.1+2.9197$	G
27364	4.3	1301	S	$1154.3-0.5+1.954$	5
July 41345	7.1	130	S	S	$319.5+0.4-2.2147$
193171	3.8	1204	A	$545.3-1.0+1.670$	$555.4-1.4+1.570$
193171	3.8	2204	$704.1-1.4+1.0278$	$658.7-1.5+1.1266$	$716.4-2.0+1.0260$
19 3190d	3.0	1206	$1023.4-1.5+0.848$	$1020.2-1.9+0.663$	$1042.1-2.1-0.383$
19 3190d	3.0	2206	11 39.5-1.8-0.6 266	11 43.6-1.6 0.0 249	S
25444	6.2	2282	$915.0 \quad 0.0+1.6249$	A	$901.1-0.1+2.0225$
28915	4.7	2324	$1158.9-0.2+0.9286$	$1152.7-0.1+1.0270$	S
Aug. 72072	6.7	182	$432.6-1.3-1.8113$	$446.2-1.3-2.0124$	$502.2-0.9-2.1126$
92291	5.5	1103	S	S	$\begin{array}{lllll}3 & 21.9 & -2.7 & 0.0 & 75\end{array}$
132851	6.0	1149	N	N	554.9 . . 14
17 3419d	4.5	1200	N	1022.1 - . 354	$1021.5-0.9+1.628$
17 3419d	4.5	2200	N	1054.0 . . 306	11 25.9-1.8-1.1272
173425	4.6	2200	$1209.9-1.1-0.2243$	$1209.3-0.9+0.7222$	S
261171	6.3	2319	N	A	$1102.9-0.6-0.2310$
27 1310d	4.2	2332	A	A	$1142.4+0.4+2.3232$
Sept. 21923	7.1	139	$\begin{array}{llllll}3 & 23.3 & -0.5 & -1.9 & 117\end{array}$	A	A
52247	5.6	172	$343.6-1.5-0.459$	3 48.5-1.6-0.7 74	$\begin{array}{llllll}4 & 04.0 & -1.0 & -0.9 & 81\end{array}$
82635	5.7	1105	$336.1-2.2+0.369$	$\begin{array}{lllll}3 & 37.4 & -2.5 & 0.0 & 81\end{array}$	$403.8-2.2-0.688$
9 2779d	3.9	1116	S	S	215.5 . . 40
92802	6.4	1118	$703.6-0.5+0.436$	$\begin{array}{lllll}7 & 03.2-0.9 & 0.0 & 56\end{array}$	$713.3-0.8-0.775$
102938	7.3	1130	A	$837.4-0.9-0.879$	A
113069	6.2	$1 \quad 141$	$531.1-2.2-0.199$	$\begin{array}{lllllll}5 & 36.5-2.8 & -0.9 & 115\end{array}$	G
12 3190d	3.0	2152	S	$213.5-0.7+0.5294$	$223.6-1.3+0.3293$
$17 \quad 364$	4.3	1221	$609.1-0.4+1.766$	$559.6-0.5+1.479$	$605.1-1.0+1.0 \quad 94$
17364	4.3	2221	$710.7-0.7+1.7244$	$659.5-0.6+1.9230$	$702.2-0.6+2.4212$
18491	6.2	2234	621.6 - . 178	N	N
19650	5.7	2248	$724.6-0.4+1.1277$	$717.2-0.3+1.3263$	$718.0-0.4+1.6246$
21991	6.1	2276	$936.5 \quad 0.0+2.2231$	$920.1+0.5+3.0209$	N
221127	5.9	2288	$925.1+0.5+2.4222$	N	N
241395	6.3	2314	11 47.1-0.7-1.0 330	$1149.8-0.5+0.1303$	$1156.3-0.8+0.5288$
Oct. 6 2725d	5.8	185	$247.6-2.2-1.3122$	301.9 . . 139	N
103288	5.9	1133	546.3 - 0.5	$\begin{array}{llll}5 & 32.9-1.2 ~+1.8 & 27\end{array}$	$545.1-1.5+0.850$
103303	6.2	1135	$902.7-0.1+1.121$	$858.6-0.5+0.346$	A
113425	4.6	1146	$518.0-0.6+2.610$	$504.0-1.3+2.129$	$517.0-1.7+1.250$
191086	6.5	2258	N	759.4 . . 333	$814.9-1.2-0.1302$
Nov. 32822	5.6	166	1 55.5-2.1-1.1 106	$207.1-2.7-1.9122$	G
53084	6.8	189	$3 \begin{array}{lllll}3 & 10.9 & -2.5 & -1.2 & 111\end{array}$	327.8 • - 136	4 N
6 3225d	7.1 .	1101	$418.2-1.6+0.165$	4 $20.6-2.1-0.3 ~$ 2	$446.5-2.3-1.9108$
73356	5.9	1113	$401.8-1.5+0.952$	$358.5-2.0+0.667$	$422.4-2.4-0.690$
83506	6.3	1127	$603.1-0.4+2.211$	$552.5-1.1+1.434$	$604.6-1.4+0.457$
13730	5.1	2200	13 51.4-0.5-1.6 282	S	S
14 881d	5.9	2213	$1009.6-2.1-1.5301$	$1017.2-2.2-0.3276$	$1041.0-2.0-0.3266$
15 1047d	5.2	2227	N	913.4 - . 338	$949.2-2.4-2.2313$
171322	6.1	2253	8 18.1-0.9-0.6 322	$819.5-0.8+0.3296$	$828.5-1.1+0.7281$
Dec. 23049	7.2	158	$\begin{array}{llllll}3 & 19.9 & -0.6 & 0.0 & 47\end{array}$	$321.8-1.0-0.366$	$333.4-0.9-1.187$
8291	7.1	1133	$\begin{array}{lllllll}1 & 11.4-0.5 & +2.1 & 38\end{array}$	S	$104.4-1.1+1.667$
8306	6.9	$1 \quad 134$	519.9 - . 345	$455.5-0.9+2.621$	$505.6-1.5+1.445$
131125	6.4	$2 \quad 207$	9 37.2-1.8-2.7 323	$950.7-2.1-1.1295$	$1015.2-1.9-1.4293$
13 1129d	5.32	2208	10 15.6-1.7 -1.6 304	$1024.6-2.0-0.6281$	$1047.8-1.8-1.0281$
293007	7.3	128	1 28.1-1.2-1.3	1 40.1-1.7-2.1 113	$\mathrm{N}^{10.8-1.0281}$

OCCULTATION LIMITS FOR 1981

The maps show the tracks of stars brighter than 7.5 which will graze the limb of the Moon when it is at a favourable elongation from the Sun and at least 10° above the observer's horizon (5° in the case of stars brighter than 5.5 and 2° for those brighter than 3m5). Each track starts in the West at the time given in the tables and ends beyond the area of interest, except where the letters A, B or S are given. A denotes that the Moon is at a low altitude, B that the bright limb interferes, and S that daylight interferes. The tick marks along the tracks denote 10 minute intervals which, when added to the time at the beginning of the track, give the time of the graze at places along the tracks.

In the case of a near-grazing occultation, where no a or bactors are given in the table of predictions but the limit line is shown on the map, the time of central occultation can be estimated as the time on the limit line closest to the observer's location. To see a near-graze disappearance, the observer should start watching about a half hour earlier. After timing the disappearance, he can predict the time of reappearance approximately by adding the difference central occultation time minus the observed time of disappearance to the central time.

Observers positioned on or very near one of these tracks will probably see the star disappear and reappear several times at the edge of features on the limb of the Moon. The recorded times of these events (to a precision of a second, if possible) are very valuable in the study of the shape and motion of the Moon currently being investigated at the Royal Greenwich Observatory and the U.S. Naval Observatory. Interested observers situated near to any of these tracks should write to Dr. David W. Dunham, IOTA, P.O. Box 596, Tinley Park, Ill. 60477, U.S.A., at least two months before the event, giving the region of planned observation, and details of the graze path will be supplied (cost $\$ 1.50$ U.S. per event, or free for IOTA members, see pg. 59).

The following table gives, for each track, the date, Zodiacal Catalogue number, magnitude of the star, the time (U.T.) at the beginning of the track in the West, the percent of the Moon sunlit and whether the track is the northern (N) or southern (S) limit of the occultation. An asterisk after the track number refers the reader to the notes following the table; a dagger indicates that the star is a spectroscopic binary.

No.	Date		Z.C.	Mag.	U.T.		\%	L	No.	Date	Z.C.	Mag.			\%	L
80	June	7	1387	6.8	h 2	m 0	26	N	118	Oct. 6	2725	5.8	h	m	46	S
82		8	1506	7.1	3	48	37	N	119*	- 8	3113	5.4	23	3	74	N
84		10	1709	6.7	0	29	56	N	120	10	3288	5.9	6	19	85	N
85		10	1733	5.2	7	37	58	S	122	18	935	6.9	9	11	71	N
87		26	208	7.0	8	36	36	N	123*	18	969	7.1	14	5	69	N
88*		29	636	6.9	10	36	7	N	124	19	1086	6.5	7	48	60	N
89		29	650	5.7	11	54	7	N	126	21	1343	6.6	5	15	39	N
90	July	6	1576	5.3	3	23	22	N	127	Nov. 3	2822	5.6	2	41	30	S
92		11	2089	6.8	1	49	68	N	128	5	3084	6.8	3	37	49	S
95		24	291	7.1	6	0	52	N	129	5	3197	6.5	22	42	58	S
96		25	453	7.3	11	43	38	N	130*	6	3225	7.1	5	6	60	S
98	Aug.		2167	7.5	2	38	52	N	131*	7	3356	5.9	4	54	70	S
99		9	2291	5.5	3	31	62	N	132	15	1057	5.2	8	57	84	N
$100 \dagger$		21	405	4.4	7	17	65	N	133	17	1287	6.7	2	40	67	N
102		25	1031	7.0	10	35	20	N	137	17	1322	6.1	8	0	64	N
103		26	1171	6.3	10	47	12	N	138	17	1340	6.6	12	13	63	S
104	Sept.		2128	5.8	2	33	26	N	139	17	1343	6.6	12	36	63	S
106		8	2614	6.2	0	31	62	N	141	18	1459	7.5	14	5	51	S
107		8	2618	6.6	1	10	63	N	142	19	1576	5.3	14	50	41	S
108		9	2779	3.9	2	27	72	N	143	20	1669	6.7	9	25	33	N
109		19	653	4.8	7	47	68	N	144	30	2769	6.3	0	15	9	S
110*		19	684	6.2	12	19	66	N	146	Dec. 5	3438	7.5	0	58	53	S
111		20	796	6.8	5	53	58	N	$147 \dagger$	5	5	4.7	21	36	62	S
114*		21	989	6.6	9	23	45	N	148	5	18	6.0	23	40	63	S
115		24	1395	6.3	11	31	15	N	151	18	1725	7.5	5	26	50	N
117	Oct.	5	2580	6.6	4	31	37	S								

DOUBLE STAR NOTES 1981

Track No.	Z.C.	
3	3157	is the brighter component of the double star Aitken 15080. The companion is of magnitude 10.5 ; separation $0,{ }^{\prime} 8$ in pa. 31°.
5	3446	is the brighter component of the double star Aitken 16725. The companion is of magnitude 8.2 ; separation $3:^{\prime} 6$ in pa. 165°.
9	608	is the brighter component of the double star Aitken 2999. The companion is of magnitude 8.8 ; separation 3.8 in pa. 221°.
11	2223	is 38γ Lib, G8 III-IV, the brightest component of the triple star Aitken 9704. The brighter companion is of magnitude 4.2 ; separation $0^{\prime \prime} 1$ in pa. 285°. The third component is of magnitude 11.2 at a wide separation.
38	995	is the mean of the triple star Aitken 5103. The brightest component 18 v Gem, B7 IV e, is a 9.6 year spectroscopic binary, combined magnitude 4.0. The second component is of magnitude 8.5 at a wide separation. The third component is of magnitude 8.8 ; separation $0^{\prime}: 2$ in pa. 300°.
42	1275	is 31θ Cnc, gM1, a double star with both components of magnitude 6.4; separation at least 0.11 .
48	3217	is the brighter component of the double star Aitken 15489. The companion is of magnitude 10.9 ; separation $17 \ddots^{\prime} 6$ in pa. 324°.
53	787	is the mean of the double star Aitken 3854. The components are of magnitude 8.0 and 8.5 ; separation $2^{\prime}: 5$ in pa. 163°.
59	1245	is the brighter component of the double star Aitken 6696. The companion is of magnitude 10.5 ; separation $4^{\prime}: 0$ in pa. 340°.
71	1321	is the mean of the double star Aitken 7039. The components are both of magnitude 7.5 ; separation $00^{\prime} 3$ in pa. 31°.
73,119	3113	is 30 Cap , B8, a double star with both components of magnitude 6.1 ; separation at least $0: 1$.
77	1123	is the brighter component of the double star Aitken 6060. The companion is of magnitude 8.3 ; separation $6^{\prime} .4$ in pa 44°.
88	636	is 55 Tau, the mean of the binary star Aitken 3135. The components are of magnitude 7.2 and 8.2 ; separation $0^{\prime}: 3$ in pa. 88°.
100	405	is 87μ Cet, FO IV, a spectroscopic binary with combined magnitude 4.4.
110	684	is the mean of the double star Aitken 3297. The components are of magnitude 7.0 and 7.1 ; separation $3:^{\prime} 0$ in pa. 277°.
114	989	is the brighter component of the double star Aitken 5080. The companion is of magnitude 8.0 at a wide separation.
123	969	is the brightest component of the quadruple star Aitken 4962. The companions are of magnitude $7.7,8.9$ and 10.8. All the components are at a wide separation.
130	3225	is the brighter component of the double star Aitken 15546. The companion is of magnitude 10.6 ; separation $9^{\prime}: 1$ in pa. 271°.
131	3356	is $74 \mathrm{Aqr}, \mathrm{B} 9$, a double star with both components of magnitude 6.7; separation at least 0,2 .
147	5	is $33 \mathrm{Psc}, \mathrm{K} 1$, a spectroscopic binary with combined magnitude 4.7.

Map 1: Tracks 1 to 32; Grazes Jan. 1 to Mar. 10, 1981

Map 2: Tracks 33 to 63; Grazes Mar. 11 to Apr. 27, 1981.

Map 3: Tracks 68 to 96; Grazes May 9 to July 25, 1981.

Map 4: Tracks 98 to 128; Grazes Aug. 8 to Nov. 5, 1981.

Map 5: Tracks 129 to 151; Grazes Nov. 5 to Dec. 18, 1981.

NAMES OF OCCULTED STARS

The stars which are occulted by the moon are stars which lie along the zodiac; hence they are known by their number in the "Zodiacal Catalogue" (ZC) compiled by James Robertson and published in the Astronomical Papers Prepared for the Use of the American Ephemeris and Nautical Almanac, Vol. 10, pt. 2 (U.S. Govt. Printing Office; Washington, 1940). The ZC numbers are used in all occultation predictions, and should be used routinely by observers. The symbol " d " means "a double star".

The brighter ZC stars have Greek letter names or Flamsteed numbers; these are given in the following table.

$\begin{aligned} & \text { Z.C. } \\ & \text { No. } \end{aligned}$	Name	$\begin{aligned} & \text { Z.C. } \\ & \text { No. } \end{aligned}$	Name	$\begin{aligned} & \hline \text { Z.C. } \\ & \text { No. } \end{aligned}$	Name	$\begin{aligned} & \text { Z.C. } \\ & \text { No. } \end{aligned}$	Name
5	33 Psc	940	68 Ori	1493	34 Leo	2779	39 oSgr
150	26 Cet	989	15 Gem	1504	37 Leo	2797	$41 \pi \mathrm{Sgr}$
364	$73 \xi^{2}$ Cet	991	16 Gem	1576	53 Leo	2838	50 Sgr
405	87μ Cet	995	18 vGem	1733	7 Vir	3069	20 Cap
636	55 Tau	1047	36 Gem	1950	80 Vir	3113	30 Cap
650	63 Tau	1077	$43 \zeta \mathrm{Gem}$	2128	13 Lib	3115	31 Cap
653	64 Tau	1113	56 Gem	2223	$38 \gamma \mathrm{Lib}$	3171	40γ Cap
667	75 Tau	1127	61 Gem	2247	44 n Lib	3190	49 S Cap
692	$87 \propto$ Tau	1129	63 Gem	2271	46θ Lib	3256	39 Aqr
730	97 i Tau	1171	79 Gem	2291	49 Lib	3288	50 Aqr
764	104 Tau	1193	85 Gem	2361	7χ Oph	3356	74 Aqr
863	127 Tau	1259	20 Cnc	2633	$13 \mu \mathrm{Sgr}$	3419	$91 \psi^{1} \mathrm{Aqr}$
894	$54 \chi^{2}$ Ori	1275	31θ Cnc	2635	14 Sgr	3425	$93 \psi^{2} \mathrm{Aqr}$
895	57 Ori	1310	47 S Cnc	2725	28 Sgr	3428	$95 \psi^{3} \mathrm{Aqr}$
913	64 Ori	1345	68 Cnc	2739	31 Sgr		
915	$62 \chi^{2}$ Ori	1418	8 Leo	2746	33 Sgr		

MAP OF THE MOON: SOUTH IS AT THE TOP

THE PLANETS FOR 1981

By Terence Dickinson

MERCURY

At just over one-third Earth's distance from the sun, Mercury is the solar system's innermost planet and the only one known to be almost entirely without an atmosphere. Mercury is a small world only 6% as large as the Earth by volume-barely larger than our moon.

Until the advent of interplanetary probes, virtually nothing was known about the surface of Mercury. Only the vaguest smudges have been seen through Earth-based telescopes. In 1974 the U.S. spacecraft Mariner 10 photographed one hemisphere of Mercury revealing it to be extremely heavily cratered, in many respects identical in appearance to the far side of Earth's moon. There is no interplanetary mission planned to photograph the other hemisphere.

Mercury's orbit is the most elliptical of any planet except Pluto's. Once each orbit Mercury approaches to within $0.31 \mathrm{~A} . \mathrm{U}$. of the sun and then half an orbit (44 days) later it is out to 0.47 A.U. This amounts to a 24 million km range in distance from the sun, making the sun in Mercury's sky vary from about four times the area we see it to more than ten times its apparent area from Earth. Mercury's sidereal rotation period of 59 days combines with the 88 day orbital period of the planet to produce a solar day (one sunrise to the next) of 176 days-the longest of any planet.

Of the five planets visible to the unaided eye Mercury is by far the most difficult to observe and is seldom conveniently located for either unaided eye or telescopic observation. The problem for observers is Mercury's tight orbit which constrains the planet to a small zone on either side of the sun as viewed from Earth. When Mercury is east of the sun we may see it as an evening star low in the west just after sunset. When it is west of the sun we might view Mercury as a morning star in the east before sunrise. But due to celestial geometry involving the tilt of the Earth's axis and Mercury's orbit we get much better views of Mercury at certain times of the year.

The best time to see the planet in the evening is in the spring and in the morning in the fall (from the northern hemisphere). Binoculars are of great assistance in searching for the planet about 40 minutes to an hour after sunset or before sunrise during the periods when it is visible. Mercury generally appears about the same colour and brightness as the planet Saturn.

Telescopic observers will find the rapidly changing phases of Mercury of interest. The planet appears to zip from gibbous to crescent phase in about three weeks during each of its elongations. In the table below the visual magnitude, phase and apparent

GREATEST ELONGATIONS OF MERCURY IN 1981

Date E.S.T.	Elong.	Mag.	App. Diam.
		\circ	
Feb. 1	18 E	-0.3	6.8
Mar. 15	28 W	+0.4	7.2
*May 26	23 E	+0.6	8.0
July	14	21 W	+0.5
Sept. 23	26 E	+0.3	6.8
*Nov. 2	19 W	-0.3	6.7

*favourable elongations

MERCURY: TELESCOPIC OBSERVING DATA FOR FAVOURABLE EASTERN ELONGATIONS 1981

$\begin{aligned} & \text { Date } \\ & \text { 19h EST } \end{aligned}$	Magnitude	Apparent Diameter	Phase \% illuminated	R.A.	Dec.	
		"			-	,
Jan. 21	-0.9	5.5	88	$21 \quad 15$	-17	40
25	-0.8	5.6	79	2139	-15	10
29	-0.6	6.4	66	2001	-12	32
Feb. 2	-0.2	7.2	49	2216	-10	05
6	+0.4	8.1	30	$22 \quad 24$	-8	12
May 13	-0.5	6.1	71	434	+24	08
17	-0.1	6.6	60	503	+25	08
21	+0.2	7.2	49	528	+25	33
25	+0.6	7.9	40	449	+25	29
29	+0.9	8.6	31	601	+25	10

diameter of Mercury as seen through a telescope are tabulated for two of the most favourable elongations.

Mercury's phases have been glimpsed with telescopes of 3-inch aperture or less, but generally a 4 -inch or larger telescope is required to distinguish them. In larger instruments under conditions of excellent seeing (usually when Mercury is viewed in the daytime) dusky features have been glimpsed by experienced observers. Recent analysis has shown only a fair correlation between these visually observed features and the surface of the planet as photographed by Mariner 10.

VENUS

Venus is the only planet in the solar system that closely resembles Earth in size and mass. It also comes nearer to the Earth than any other planet, at times approaching as close as 41 million km . Despite the fundamental similarity, Earth and Venus differ greatly according to findings of recent spacecraft missions to the planet.

We now know that Venus is infernally hot over its entire surface, ranging little from a mean of $+480^{\circ} \mathrm{C}$. The high temperature is due to the dense carbon dioxide atmosphere of Venus which, when combined with small quantities of water vapour and other gases known to be present, has the special property of allowing sunlight to penetrate to the planet's surface but not permitting the resulting heat to escape. In much the same way as the glass cover of a greenhouse keeps plants warm, an atmosphere of carbon dioxide can heat up a planetary surface to a higher temperature than would be achieved by normal sunlight.
Venus' atmosphere has a surface pressure in excess of 90 times Earth's sea-level atmospheric pressure. A thick haze layer extends down from a level about 65 kilometers above the surface. However, the Soviet Venera 9 and 10 spacecraft that landed on Venus in 1975 and photographed the planet's surface showed that sunlight similar to that received on Earth on a heavily overcast day does penetrate down to the surface, proving that previously predicted layers of opaque clouds do not exist. The cloud-like haze that cloaks the planet, believed to consist chiefly of droplets of sulphuric acid, is highly reflective making Venus brilliant in the nighttime sky. However, telescopically the planet is virtually a featureless orb.

Results from the U.S. Pioneer and Soviet Venera robot explorations of Venus in 1978 added substantially to our knowledge of the veiled planet. The Soviet and

VENUS: TELESCOPIC OBSERVING DATA 1981

Date	Magnitude	Apparent Diameter	Phase $(\%$ illuminated $)$
			$\prime \prime$
Jan. 1	-3.4	11.1	92
Feb. 1	-3.3	10.4	96
June 1	-3.3	10.2	97
July 1	-3.3	10.9	92
Aug. 11	-3.4	12.2	85
Sept. 11	-3.5	14.2	77
Oct. 1	-3.7	17.2	67
Nov. 11	-3.9	22.5	54
Dec. 1	-4.3	32.2	38
Dec. 10	-4.4	37.1	32
Dec. 20	-4.4	43.1	23
Dec. 30	-4.3	51.1	14

American landing devices detected what appears to be evidence of periods of virtually continuous lightning in the atmosphere and of a continuous glow at night near Venus' surface. "Chemical fires" due to reactions of various compounds in the super-heated atmosphere close to, or on, Venus' surface have been cited as a possible source for the glow. The Pioneer Orbiter's infrared radiometer found both a depression in the clouds at the north pole, and an actual 1100 km hole where there were few or no clouds. This finding strongly suggests a downflow of atmosphere at the pole. New probe findings also show that below the clouds Venus' atmosphere is remarkably uniform in temperature and pressure at all latitudes and in both day and night hemispheres.

Based on extensive radar data returned from the Pioneer Orbiter, nearly the entire planet has been mapped. Sixty percent of Venus' surface is relatively flat; rolling plains varying in height by only about one km between high and low points. Only 16 percent of the surface could be described as lowlands (perhaps comparable to ocean basins on Earth). Only eight percent is true highland, ranging to a maximum altitude of 10.6 km above the rolling plains. Venus' crust appears to be thicker than Earth's-thick enough to choke off plate tectonics. Apparently, Venus' crust is one huge tectonic plate. There is no evidence of features like Earth's midocean ridges.

Venus is the brightest natural celestial object in the nighttime sky apart from the moon and whenever it is visible is readily recognized. Because its orbit is within that of the Earth, Venus is never separated from the sun by an angle greater than 47 degrees. However, this is sufficient for it to be seen in black skies under certain conditions and at these times it is a truly dazzling object. Such circumstances occur during January in the eastern morning sky and, for the last half of the year, in the west during the early evening.

Like Mercury, Venus exhibits phases although they are much easier to distinguish because of Venus' greater size. When it is far from us (near the other side of its orbit) we see the planet nearly fully illuminated, but because of its distance it appears small -about 10 seconds of arc in diameter. As Venus moves closer to Earth the phase decreases (we see less of the illuminated portion of the planet) but the diameter increases until it is a thin slice nearly a minute of arc in diameter. It takes Venus several months to run through from one of these extremes to the other compared to just a few weeks for Mercury.

When Venus is about a 20% crescent even rigidly held good quality binoculars can be used to distinguish that the planet is not spherical or a point source. A 60 mm refractor should be capable of revealing all but the gibbous and full phases of Venus.

Experienced observers prefer to observe Venus during the daytime and indeed the planet is bright enough to be seen with the unaided eye if one knows where to look.

Venus appears to most observers to be featureless no matter what type of telescope was used or what the planet's phase. However, over the past century some observers using medium or large size telescopes have reported dusky, patchy marking usually described as slightly less brilliant than the dazzling white of the rest of the planet. We now know that there are many subtle variations in the intensity of the clouds of Venus as photographed in ultraviolet by Earth-based telescopes and by the cameras of Mariner 10 as it swung by the planet in February 1974. But when the ultraviolet photos are compared to drawings of the patchy markings seen by visual observers the correlation is fair at best.

When Venus is less than 10% illuminated the cusps (the points at the ends of the crescent) can sometimes be seen to extend into the night side of the planet. This is an actual observation of solar illumination being scattered by the atmosphere of Venus. When Venus is a thin sliver of a crescent the extended cusps may be seen to ring the entire planet.

MARS

Mars is the planet that has long captivated the imagination of mankind as a possible abode of life. One of the major objectives of the Viking spacecraft which landed on Mars in 1976 was the quest for Martian microorganisms. The Viking biology experiments completed the search in 1977 and, although the results are somewhat ambiguous, there is no convincing evidence of life we are familiar with.
The landscapes photographed by the Viking landers were basically desert vistas strewn with rocks ranging up to several meters wide. Judging by their texture and colour, and chemistry analysis by Viking, the rocks are fragments of lava flows. The soil composition resembles that of basaltic lavas on the Earth and moon. About 1% of the soil is water, chemically bound in the crystal structure of the rock and soil particles. Some planetary scientists speculate that water in the form of permafrost exists a few meters below the surface. However, Viking and its predecessors have shown that water was once abundant enough on Mars to leave major structures on the planet resembling riverbeds. Analysis of high resolution Viking Orbiter photographs of these structures has led most investigators to conclude that they were likely carved during the planet's early history.

The red planet's thin atmosphere has an average surface pressure only 0.7% of Earth's and consists of 95% carbon dioxide, 2.7% nitrogen, 1.6% argon, 0.6% carbon monoxide, 0.15% oxygen and 0.03% water vapour. Winds in the Martian atmosphere reach velocities exceeding 300 km per hour and in so doing raise vast amounts of dust that can envelop the planet for weeks at a time. The dust storms were thought to occur with seasonal regularity shortly after Mars passed the perihelion point of its elliptical orbit, but the Viking observations revealed more complex weather patterns.

In January Mars is low in the west after sunset and poorly placed for telescopic observation. From February to June it is too close to the sun for convenient viewing, and although it climbs higher in the morning sky as the last half of the year progresses, the planet is not well placed for telescopic scrutiny.

In many ways Mars is the most interesting planet to observe with the unaided eye. It moves rapidly among the stars-its motion can usually be detected after an interval of less than a week-and it varies in brightness over a far greater range than any other planet. Mars may be distinguished by its orange-red colour, a hue that originates with rust-coloured dust that covers much of the planet.

Telescopically Mars is usually a disappointingly small featureless ochre disk except within a few months of opposition when its distance from the Earth is then near minimum. If Mars is at perihelion at these times the separation can be as little as 56 million km . Such close approaches occur at intervals of 15 to 17 years; the most

MARS: EPHEMERIS FOR PHYSICAL OBSERVATIONS 1981

Date U.T.	Dist. A.U.	Vis. Mag.	App. Diam.	\% Ill.	Pos. Ang.	Incl.	$L(1)$	Δ
					$\prime \prime$		\circ	\circ
			\circ	\circ				
July 1.0	2.411	+1.7	3.88	99	329	-2	131.45	9.72
Aug. 1.0	2.347	+1.8	3.99	97	339	+7	190.17	9.71
Sept. 1.0	2.233	+1.8	4.19	96	351	+14	249.10	9.72
Oct. 1.0	2.071	+1.7	4.52	94	2	+20	317.52	9.72
Oct. 15.0	1.977	+1.7	4.73	93	8	+22	181.41	9.72
Nov. 1.0	1.849	+1.6	5.06	92	14	+24	16.24	9.70
Nov. 15.0	1.733	+1.5	5.40	92	19	+24	240.44	9.67
Dec. 1.0	1.590	+1.3	5.88	91	23	+24	85.69	9.63
Dec. 15.0	1.457	+1.1	6.43	90	27	+24	310.88	9.57
Jan. 1.0	1.291	+0.9	7.25	90	30	+23	148.23	-

recent was in 1971. At a perihelion opposition the telescopic disk of Mars is 25 seconds of arc in diameter and much detail on the planet can be distinguished with telescopes of 4-inch aperture or greater. At oppositions other than when Mars is at perihelion the disk is correspondingly smaller. There is no opposition of Mars in 1981.

For selected dates when Mars is favourably placed, the table above gives the distance from the earth, the magnitude, apparent diameter, fraction of the disk illuminated, position angle of the rotation axis (measured from the north through the east), inclination of the rotation axis to the plane of the sky (positive if the north pole is tipped toward the earth) and two quantities $L(1)$ and Δ which can be used to calculate the longitude L of the central meridian of the geometric disc. To calculate L, note the date and time of the observation, and then convert them to U.T. (see section on Time). Take $L(1)$ for the first date in the table preceding the date of observation, and from it subtract Δ times the number of full days elapsed since the first date in the table preceding the date of observation. To the result, add 14.6° for each hour elapsed since 0 h U.T. If the result is less than 0°, add 360°; if the result is greater than

Latitude is plotted on the vertical axis (south at the top); longitude is plotted on the horizontal axis
360°, subtract 360°. This formula replaces the tables given in past years; it is accurate to better than 1°. The value of L can then be compared with the map on pg. 82.

During opposition period the north pole of Mars is tipped strongly toward the Earth and the north polar cap should be the most prominent feature visible in small telescopes. The main features on the map of Mars can be seen with a good 4-inch telescope when the planet is within 1 A.U. of the Earth. The features of the map can be correlated to the planet's rotation by use of the table.

JUPITER

Jupiter, the solar system's largest planet, is a colossal ball of hydrogen and helium without any solid surface comparable to land masses on Earth. In many respects Jupiter is more like a star than a planet. Jupiter likely has a small rocky core encased in a thick mantle of metallic hydrogen which is enveloped by a massive atmospheric cloak topped by a quilt of multi-coloured clouds.

The windswept visible surface of Jupiter is constantly changing. Vast dark belts merge with one another or sometimes fade to insignificance. Brighter zonesactually smeared bands of ammonia clouds-vary in intensity and frequently are carved up with dark rifts or loops called festoons. The equatorial region of Jupiter's clouds rotates five minutes faster than the rest of the planet: 9 hours 50 minutes compared to 9 hours 55 minutes. This means constant interaction as one region slips by the other at about $400 \mathrm{~km} / \mathrm{hr}$. It also means that there are basically two rotational systems from the viewpoint of week-to-week telescopic observation.
In the table below the two quantities $\mathrm{L}(\mathrm{l})$ and Δ can be used to calculate the longitude of the central meridian of the illuminated disk of Jupiter. System I is the most

JUPITER: EPHEMERIS FOR PHYSICAL OBSERVATIONS 1981

Date U.T.	Vis. Mag.	App. Equat. Diam.	System I		System II	
			L(1)	Δ	L(1)	Δ
		"	\bigcirc	-	\bigcirc	-
Jan. 1.0	-1.6	36.9	122.5	157.95	127.4	150.30
Feb. 1.0	-1.8	40.5	338.9	158.00	107.2	150.40
Mar. 1.0	-2.0	43.2	83.2	158.05	357.9	150.40
Apr. 1.0	-2.0	44.2	302.3	157.95	340.4	150.35
May 1.0	-1.9	42.5	1.4	157.85	170.7	150.25
June 1.0	-1.7	39.2	215.2	157.75	147.9	150.15
July 1.0	-1.6	35.9	268.1	157.70	332.0	150.10
Aug. 1.0	-1.4	33.2	116.9	157.65	304.2	150.05
Sept. 1.0	-1.3	31.4	324.7	157.65	275.5	150.05
Oct. 1.0	-1.2	30.6	14.8	157.70	96.7	150.05
Nov. 1.0	-1.2	30.7	223.1	157.75	68.5	150.10
Dec. 1.0	-1.3	31.8	275.2	157.80	251.7	150.15
Jan. 1.0	-1.4	33.9	127.1	157.85	226.9	150.25

rapidly rotating region between the middle of the North Equatorial Belt and the middle of the South Equatorial Belt. System II applies to the rest of the planet. For a given date and time (U.T.) of observation, the central meridian longitude is equal to $L(1)$ for the month in question plus Δ times the number of complete days elapsed since 0 h U.T. on the first of the month plus either 36.58° (for system I) or 36.26° (for system II) times the number of hours elapsed since 0 h U.T. The result will usually exceed 360°; if so, divide the result by 360 and then multiply the decimal portion of the quotient by 360°. This procedure, which is accurate to 1° and is readily computed using a modest calculator, replaces the tables given in previous editions of the HANDBOOK.

Jupiter's rapid rotation also makes the great globe markedly oval so that it appears about 7% "squashed" at the poles. Jupiter's apparent equatorial diameter ranges from $44^{\prime \prime}$ at opposition on March 27 to a minimum of 31 " at conjunction on October 14.

JUPITER'S BELTS AND ZONES

Viewed through a telescope of 6 -inch aperture or greater, Jupiter exhibits a variety of changing detail and colour in its cloudy atmosphere. Some features are of long duration, others are short-lived. The standard nomenclature of the belts and zones is given in the figure.

The Great Red Spot, a towering vortex whose colour may possibly be due to or-ganic-like compounds that are constantly spewed from some heated atmospheric source below, is the most conspicuous and longest-lived structure on the visible surface of Jupiter. The spot and the changing cloud structures can be easily observed in small telescopes because the apparent size of the vişible surface of Jupiter is far greater than that of any other planet.

Two Voyager spacecraft swung through the Jovian system in 1979 and transmitted to Earth superbly detailed photographs of the planet and its five inner moons. Among the most surprising finds was a ring of dust-size particles around the giant planet's equator. The ring apparently extends from the Jovian clouds out to 59,000 km . The outer 1000 km of the ring is its brightest zone but its proximity to the planet makes recent claims of its detection from Earth some years ago controversial.

The smallest of telescopes will reveal Jupiter's four large moons, each of which is equal to or larger than Earth's satellite. The moons provide a never-ending fascination for amateur astronomers. Sometimes the satellites are paired on either side of the belted planet; frequently one is missing-either behind Jupiter or in the planet's shadow. Even more interesting are the occasions when one of the moons casts its shadow on the disk of the planet. The tiny black shadow of one of the moons can be particularly evident if it is cast on one of the bright zones of Jupiter. According to some observers this phenomenon is evident in a good 60 mm refractor. Both the
satellite positions and the times of their interaction with the Jovian disk are given elsewhere in the handbook. Jupiter's other satellites are photographic objects for large instruments.

As 1981 opens Jupiter is in Virgo, flanked by Saturn, which has conjunctions with Jupiter on January 14, February 19, and July 30. Jupiter is by far the brighter of the two planets and is ideally placed for telescopic study for the first half of the year. Despite the fact that it is five times Earth's distance from the sun Jupiter's giant size and reflective clouds make it a celestial beacon that is unmistakable, particularly around opposition.

Opposition this year occurs on March 27 when the giant planet is 666 million km (4.44 A.U.) from Earth. Minimum possible distance between the two planets is 590 million km .

SATURN

Saturn is the telescopic showpiece of the night sky. The chilling beauty of the small pale orb floating in a field of velvet is something no photographs or description can adequately duplicate. The rings consist of billions of particles which, according to recent photometric, radar and other data, are believed to be approximately fistsized and made of-or covered by-water ice. This would account for their exceedingly high reflectivity. The reason that "rings" is plural and not singular is that gaps and brightness differences define distinct rings.

The outer ring A has an external diameter of $274,000 \mathrm{~km}$ and is $16,000 \mathrm{~km}$ wide. Separating ring A from the $26,000 \mathrm{~km}$-wide ring B is a $3,000 \mathrm{~km}$ gap known as Cassini's Division which appears to be virtually free of ring particles. The gap was discovered in 1675 and is visible in good quality telescopes of 60 mm aperture when the ring system is well inclined to our view from Earth. Ring B, the brightest, overpowers ring C to such an extent that it is seen only with difficulty in small telescopes. Ring C, also known as the crepe ring, extends $16,000 \mathrm{~km}$ toward Saturn from the inner edge of ring B.

Pioneer 11, which hurtled by Saturn in 1979, detected particles both inside and outside the three rings visible from Earth as well as in the gaps between them. The content, extent, and structure of the rings are being dramatically refined by examination of data returned from the Voyager 1 spacecraft, which is nearing Saturn as the handbook goes to press.
In addition to the rings Saturn has a family of at least 10 satellites. Titan, the largest, is easily seen in any telescope as an eighth magnitude object orbiting Saturn in about 16 days. At east and west elongation Titan appears about five ring diameters from the planet. Titan is believed to be unique as the only satellite in the solar system with a substantial atmosphere. Estimates of its density range from 0.1 to equal Earth's although its primary known constituent is methane.

Telescopes over 60 mm aperture should reveal Rhea at 10th magnitude less than two ring-diameters from Saturn. The satellite Iapetus has the peculiar property of being five times brighter at western elongation ($10 . \mathrm{m}$) than at eastern elongation (11 ${ }^{\mathrm{m}} 9$). One side of the moon has the reflectivity of snow while the other resembles dark rock. The reason for this is unknown. When brightest, Iapetus is located about 12 ring-diameters west of its parent planet. Of the remaining moons Tethys and Dione may be glimpsed in a 15 cm telescope but the others require larger apertures or photographic techniques.

The disk of Saturn appears about $1 / 6$ the size Jupiter appears through the same telescope with the same magnification. In telescopes less than 4 inches aperture

The Paths of Jupiter and Saturn in 1981. The positions are marked for the first day of each month: (1) January, (2) February, etc.
probably no features will ever be seen on the surface of the planet other than the shadow cast by the rings. As the size of the telescope is increased the whitish equatorial region and the darker polar regions become evident. Basically, Saturn has a belt system like Jupiter's but it is much less active and the contrast is reduced. Seldom in telescopes less than 8 -inch aperture do more than one or two belts come into view. In 1980, the planet's rotation period was established at 10 hours, 40 minutes, four per cent longer than previous estimates. Very rarely a spot among the Saturnian clouds will appear unexpectedly, but less than a dozen notable spots have been recorded since telescopic observation of Saturn commenced in the 17th century.

From year to year the rings of Saturn take on different appearances. The planet's orbit is an immense 29.5 year circuit about the sun, so in the course of an observing season the planet moves relatively little in its orbit (and thus appears to remain in about the same general area of the sky) and maintains an essentially static orientation toward the Earth. In 1973 the rings were presented to their fullest extent $\left(27^{\circ}\right)$ as viewed from the Earth. In apparent width the rings are equal to the equatorial diameter of Jupiter.

As 1981 opens, the rings are tilted 7.3° with respect to Earth with the northern face being visible. This value remains essentially constant through January, then decreases to 6.5° by March $1,5.4^{\circ}$ by April 1, and 4.4° by May 1 . From then until September, when Saturn is too close for observation, the ring inclination slowly increases back to about 7°. By December 31, when Saturn is well up in the morning sky, the rings have opened to 12.2°.

Both Saturn and Jupiter are in Virgo and rise at about midnight as 1981 begins. Both planets remain in Virgo all year and are in conjunction on January 14, February 19, and July 30. Saturn opposition is March 27, when the planet is 1.28 billion km (8.53 AU) from Earth. At that time the planet is $19.5^{\prime \prime}$ in equatorial diameter and the rings are $43.8^{\prime \prime}$ in width.

URANUS

Although Uranus can be seen with the unaided eye under a clear, dark sky it was apparently unknown until 1781 when it was accidentally discovered by William Herschel with a 6 -inch reflecting telescope. It can be easily seen with binoculars and a telescope will reveal its small greenish featureless disk.

The Path of Uranus in 1981. Positions for first day of each month. The faintest stars are about magnitude 8.

Jupiter, Saturn, Uranus and Neptune are rather similar in the sense that their interiors consist mainly of hydrogen and helium and their atmospheres consist of these same elements and simple compounds of hydrogen. Unlike the three other giant planets, the axis of Uranus is tipped almost parallel to the plane of the solar system. This means that we can view Uranus nearly pole-on at certain points in its 84 year orbit of the sun. The northern hemisphere of Uranus is now directed toward the Earth and we will be viewing the planet almost exactly toward its north pole in 1985. Uranus has five satellites, all smaller than Earth's moon, none of which can be detected in small or moderate sized telescopes.

The 1977 discovery of at least five rings encircling Uranus is regarded as one of the major planetary finds in recent years. Their detection emerged during a relatively routine occultation observation from an airborne observatory-an experiment initially intended to provide a more accurate measure of the diameter of Uranus. Refinement of the observations and results from another occultation in 1978 indicates there is evidence for eight (possibly nine) rings relatively evenly spaced from 16,000 to $24,000 \mathrm{~km}$ above the cloudy surface of Uranus. The outer ring is about 100 km wide but curiously eccentric. The others are estimated to be between 5 and 10 km across.

These dimensions are markedly different from Saturn's three major rings, each of which is thousands of kilometers wide. Although different in scale, the composition of the Uranian rings should be fundamentally the same as Saturn's-swarms of particles varying from dust-size up to small flying mountains each in its own orbit. The rings are not as dense as Saturn's major ring since the occulted star did not completely disappear during passage behind them. Also, the albedo of the individual particles is believed to be low suggesting a dark substance compared to Saturn's brilliantly reflective ring material. The Uranian rings are invisible by direct visual observation because of their small dimensions and the enormous distance that separates us from Uranus.

Estimates of Uranus' diameter made over the last half century range from 46,000 to $56,000 \mathrm{~km}$ depending on the technique employed. Some recent work supports the high end of this range. If this proves to be correct then Uranus, like Saturn, has an average density less than that of water. The long quoted rotation period of Uranus (about 11 hours) has come into question recently and may be in error by a factor of
at least 2. A Kitt Peak National Observatory study in 1977 yielded a 23 -hour period while researchers elsewhere have obtained other figures in the 12 to 24 hours range.

Uranus is in Libra for most of 1981, opposition being on May 19 when the planet is 2.66 billion $\mathrm{km}(17.80 \mathrm{AU})$ from Earth. At this time its magnitude is +5.8 and its apparent diameter is 3.9 seconds of arc.

NEPTUNE

The discovery of Neptune in 1846, after its existence in the sky had been predicted from independent calculations by Leverrier in France and Adams in England, was regarded as the crowning achievement of Newton's theory of universal gravitation. Actually Neptune had been seen-but mistaken for a star-several times before its "discovery".

The Path of Neptune in 1981. Positions for first day of each month. The faintest stars are about magnitude 10.

Telescopically the planet appears as a 2.5 second of arc featureless bluish-green disk. Neptune's large moon Triton can be seen by an experienced observer using a 12 -inch telescope. Triton is an exceptionally large satellite and may prove to be the solar system's biggest moon. The moon varies from 8 to 17 seconds of arc from Neptune during its 5.9 day orbit.

No surface features have ever been distinctly seen on Neptune's visible surface. The planet's rotation period, determined spectroscopically, was tentatively revised upward to 22 hours in 1977. Neptune's diameter is known with high precision due to analysis of a series of observations of a rare occultation in 1969.

In 1981 Neptune is buried in the Milky Way in Ophiuchus and is not well placed for northern observers. At opposition on June 14 Neptune is magnitude +7.7 and 4.38 billion km (29.26 A.U.) distant from Earth.

PLUTO

Pluto, the most distant known planet, was discovered at the Lowell Observatory in 1930 as a result of an extensive search started two decades earlier by Percival Lowell. The faint star-like image was first detected by Clyde Tombaugh by comparing photographs taken on different dates.

The Path of Pluto in 1981. The faintest stars are about magnitude 12-13. The co-ordinates are for 1950.

The most important advance in our knowledge of Pluto since its discovery came in 1978 as a result of routine examinations of photographs of the planet taken at the U.S. Naval Observatory, Flagstaff, Arizona, James W. Christy detected an elongation of Pluto's image on some of the photos which has been interpreted as a satellite at an approximate distance of $17,000 \mathrm{~km}$ revolving once every 6.3867 days-identical to the planet's rotation period. This means that the moon is visible only from one hemisphere of Pluto. Calculations made some years ago suggest that this is the only stable orbit a satellite could have with Pluto's slow rotation rate. The moon too would likely have one side constantly turned to Pluto. The name Charon has been proposed for the new-found object.
From the distance and orbital period of Charon, Pluto's mass is estimated to be about one-eighth of the moon's, making it the least massive planet in the solar system. It is also the smallest. Assuming an albedo of 0.5 , Pluto's diameter is a mere 3000 km . These figures yield a density of 0.7 that of water. Thus, Pluto is likely a ball of ice with water, methane and ammonia the major constituents. This conclusion is supported by observations in 1976 that revealed frozen methane on much of Pluto's surface, as well as by 1978 speckle interferometry work with the Hale 200" telescope suggesting a 3300 km diameter for Pluto.

Based on the satellite's distance, brightness and revolution period the Naval Observatory astronomers derived a mass ratio of 12 to one for the Pluto-Charon

The apparent maximum and minimum observable size of seven planets is illustrated along with characteristic telescopic appearance. The large satellites of Jupiter (not shown) appear smaller than Neptune.
system. Charon is therefore so massive in comparison to Pluto that the two are, in effect, a unique double planet system. No other planet and moon approach this ratio. The Earth-moon system, for comparison, has an 81 to one ratio of masses. Charon's diameter is roughly estimated at 1200 km . Its orbital inclination, which is assumed to coincide with Pluto's axial inclination, is about 105° with respect to the sky.

Pluto now appears to be completely different from the other eight planets. Its unique characteristics include its orbit which is relatively higher inclined and so elliptical that the planet will be closer to the sun than Neptune from 1980 to 1999. Just where such a freak fits into the solar system's origin and evolution is unknown. Perhaps Pluto is the largest member of a group of small ice comet-like structures beyond Neptune.

At opposition on April 13, Pluto's astrometric position is R.A. (1950) $13^{\mathrm{h}} 49 \mathrm{~m} 5$, Dec. (1950) $+7^{\circ} 41^{\prime}$ and its distance from Earth will be 4.36 billion km (29.10 A.U.). With an apparent magnitude of +13.7 , Pluto is a difficult target in moderate-sized amateur telescopes.

The magnitudes of the planets in 1981. Conjunctions, oppositions and greatest elongations are indicated.

OCCULTATION OF σ SAGITTARII BY VENUS

Occultation of σ Sagittarii by Venus on 1981 November 17: $\sigma \mathrm{Sgr}$ is a B3 star with a visual magnitude of 2.1. At the time of the occultation, Venus will be 47° from the sun, have an angular diameter of $28^{\prime \prime}$ and a magnitude of -4.1 . It will be 46% illuminated, the position angle of the mid-point of the illuminated limb being 268°. Thus the disappearance will occur at the dark limb and the reappearance at the bright limb.

The area of visibility will be Newfoundland (very low), Central and South America and the Caribbean, Africa, Europe and S.W. Asia. However only in eastern Europe and S.W. Asia will the event occur after sunset.

The times of disappearance and reappearance, as seen from the western hemisphere, are as follows:

Place	Disappearance Nov. 17					Reappearance Nov. 17						
	U.T.		P.A.	Altitude		U.T.		P.A.	Altitude			
			Star	Sun	Star			Sun				
	h	m		${ }^{\circ}$	\bigcirc	-	h		m	-	-	-
Bermuda	15	23.6	58	7	38	15	34.1	290	9	38		
Caracas	15	22.1	76	18	58	15	33.6	273	20	59		
Cerro Tololo	15	23.0	117	31	71	15	32.8	232	34	73		
Buenos Aires	15	23.8	117	43	74	15	33.6	231	45	74		
Rio de Janeiro	15	23.8	101	54	79	15	35.0	247	57	76		

JUPITER-PHENOMENA OF THE BRIGHTEST SATELLITES 1981

Times and dates given are E.S.T. The phenomena are given for latitude $44^{\circ} \mathrm{N}$., for Jupiter at least one hour above the horizon, and the sun at least one hour below the horizon, as seen from most of North America. See also pgs. 28-29.

The symbols are as follows: E-eclipse, O-occultation, T-transit, S-shadow, D-disappearance, R-reappearance, I-ingress, e-egress. Satellites move from east to west across the face of the planet, and from west to east behind it. Before opposition, shadows fall to the west, and after opposition to the east. Thus eclipse phenomena occur on the east side from March 26 until October 14, and on the west otherwise.

JANUARY				d	h m	Sat.	Phen.	d	${ }^{\text {h m }}$	Sat.	Phen.	d	h m	Sat.	Phen.
d	$h \mathrm{~m}$	Sat.	Phen.	26	025	II	OR	14	2306	I	Se	7	751	I	OR
2	810	IV	ED		941	I	SI		2355	1	Te	8	233	I	SI
	845	IV	ER	27	648	I	ED	15	230	III	SI		259	I	TI
3	245	III	S1	28	409	1	SI		530	111	Se		446	,	Se
	549	III	Se		434	111	ED		604	111	TI		510	I	Te
	750	III	TI		514	I	TI		842	III	Te		2340	I	ED
	932	I	Sl		622	,	Se		2102	I	OR	9*	2101	1	SI
4	641	1	ED		726	1	Te	16	314	II	ED		2125	1	T1
5	401	I	SI		737	III	ER		734	11	OR		2315	,	Se
	514	1	TI		906	III	OD	17	2123	II	SI		2336	1	Te
	614	I	Se	29	117	I	ED		2300	II	TI	10	2043	I	OR
	726	1	Te		434		OR	18	006	11	Se	11	506	II	SI
6	109	1	ED		846	11	ED		137	II	Te		551	II	TI
	436	1	OR		2237	I	SI		2224	III	OR		749	II	Se
	603	11	SI		2342	I	TI	19	656	I	ED		829	II	Te
	829	II	TI	30	051	1	Se		2043	II	OR	12	421	III	ED
	846	II	Se		153	1	Te	20	417	I	SI		829	III	OR
	2342	1	TI		2301	I	OR		503	I	TI	13	016	II	ED
7	033	III	OR	31	259	11	SI		631	1	Se		333	11	OR
	043	I	Se		507	11	TI		714	I	Te	14	705	1	ED
	154	I	Te		542	11	Se	21	1.25	I	ED		2107	II	Se
8	100	II	ED		744	11	Te		421	1	OR		2137	II	Te
	612	II	OR		2258	III	TI		2246	1	SI	15	426	I	SI
10	022	11	Te						2329	1	TI		443	1	TI
	642	III	SI		FEBR	UARY		22	- 59	1	Se		640	I	Se
	945	III	Se						141	I	Te		654	I	Te
11	834	I	ED	d	h m	Sat.	Phen.		628	III	SI		1930	III	TI
12	554	1	SI	1	138	III	Te		2248	I	OR		2119	III	Se
	706	I	TI		2204	II	ED	23	549	11	ED		2208	III	Te
	808	I	Se	2	250	II	OR	24	2357	II	SI	16	134	I	ED
	918	1	Te		841	1	ED	25	119 1	II	TI		401	I	OR
13	302	I	ED	4	602	1	SI		240	II	Se		2255	1	SI
	627	1	OR		703	1	TI		356	II	Te		2309	I	TI
	836	II	Si		816	I	Se		2024	III	ED	17	108	1	
	2344	III	ER		831	III	ED	26	148	III	OR		120	1	Te
14	022	,	SI		914	1	Te		850	I	ED		2002	I	ED
	134	1	TI	5	310	1	ED		2301	II	OR		2227	I	OR
	137	III	OD		622	1	OR	27	611	,	SI	18	742	II	SI
	236	I	Se	6	031	I	SI		648	I	TI		806	II	TI
	346	1	Te		130	1	TI		824	1	Se		1937	I	Se
	423	III	OR		244	1	Se		900	1	Te		1946	1	Te
15	055	I	OR		341	I	Te	28	318	I	ED	19	819	III	ED
	336	II	ED		2138	I	ED		607	I	OR	20		II	ED
	843	II	OR	7	049	I	OR						547	11	OR
17	014	II	TI		533	II	SI		MAR	RCH		21	2059	II	SI
		II	Se		730	II	TI						2113	II	TI
	251	II	Te		815	11	Se	d	h m	Sat.	Phen.		2342	II	Se
19	747	I	SI		2208	1	Te	d	039	I	SI		2352	II	Te
	857	1	TI		2233	III	SI			I		$22 \dagger$		I	SI
20	455	I	ED	8	133	III	Se		253	1	Se		626	I	TI
	817	I	OR		234	III	TI		326	I	Te		834	I	Se
21	036	III	ED		512	III	Te		2146	I	ED		2220	III	SI
	216	I	SI	9	039	II	ED	2	033	I	OR		2245	III	TI
	325	I	TI		513	II	OR		823	II	ED	23	116	III	Se
		III	ER	10	2132	11			1941	I	TI		126	III	Te
	429	I	${ }_{\text {Se }}$		2317	II	$\stackrel{\mathrm{Te}}{\mathrm{Se}}$		2121	I	Se		328 545	I	ED
	524	III	OD	11	756	I	SI		2152	,	Te		545		OR
	536	II	Te		850	I	TI	4	232	II	SI		1854	II	OR
	808	III	OR	12	503	I	ED		336	II	TI	24	049	I	SI
	2324	I	ED		809	1	OR		515	II	Se		052	1	TI
22	245	I	OR	13	224	I	SI		613	1 I	Te		302	I	Se
	611	II	ED		317		TI	5	023	III	ED		304	1	Te
	2258	I	Se		437	I	Se		510	III	OR		2156	I	ED
23	004	1	Te		528	I	Te		2141	II	ED	25	011	I	OR
24	026	II	SI		2331	I	ED	6	118	II	OR		1917	1	SI
	241	II	TI	14	236	I	OR		804	I	SI		1918	I	TI
	308	II	Se		806	II	SI		833	I	TI		2130	I	Te
	519	II	Te		2143	I	TI	7	512	I	ED		2131	I	Se

*Add Mar. $9 \mathbf{2 n}^{\mathrm{h}} \mathbf{1 7 m}^{\mathrm{m}}$ I OR

*Add May $241^{\text {h }} 04{ }^{\text {m }}$ I OD

ELONGATIONS OF SATURN'S SATELLITES 1981

Times given are E.S.T. To convert to other times, see pp. 10-11

JANUARY				15	22.3	$\mathbf{R h}$	E			UNE		16	12.7	Rh	E
d	h	Sat.	Elong.	20	10.6	Rh	E	d	h	Sat.	Elong.	21	01.2	Rh	E
2	06.5	Ti	W	22	21.1	Ti	W	2	17.0	Ti	E	21	14.6	Ti	E
2	16.2	$\mathbf{R} h$	E	24	22.9	$\mathbf{R h}$	E	5	04.7	Rh	E	25	13.8	Rh	E
7	04.7	Rh	E	29	11.2	Rh	E	9	17.2	Rh	E	29	09.7	Ti	W
10	10.9	Ti	E	31	01.0	Ti	E	10	10.9	Ti	W	30	02.3	Rh	E
11	17.1	Rh	E	31	07.0	Ia	W	14	05.6	Rh	E				
11	18.0	Ia	W	APRIL				17	23.4	Ia	W	Elongations are not given between Sept. 2			
16	05.5	Rh	E					18	15.8	Ti	E				
18	05.4	Ti	W	d	h	Sat.	Elong.	18	18.1	Rh	E	and Nov. 9, Saturn being near the sun			
20	18.0	Rh	E	2	23.6	Rh	E	23	06.5	Rh	E				
25	06.4	Rh	E	7	11.9	Rh	E	26	10.0	Ti	W				
26	09.6	Ti	E	7	18.6	Ti	W	27	19.0	Rh	E	NOVEMBER			
29	18.8	$\mathbf{R h}$	E	12	00.2	Rh	E	JULY				d	h	Sat.	Elong.
FEBRUARY				15	22.7	Ti	E					10	11.4	Rh	E
				16	12.6	Rh	E	d	h	Sat.	Elong.	15	00.0	Rh	E
d	h	Sat.	Elong.	21	00.9	$\mathbf{R h}$	E	2	07.5	Rh	E	17	12.7	Ti	W
3	03.8	Ti	W	23	16.2	Ti	W	4	15.0	Ti	E	19	12.5	$\mathbf{R h}$	E
3	07.1	$\mathbf{R} h$	E	25	13.3	Rh	E	6	20.0	Rh	E	24	01.1	Rh	E
7	19.5	Rh	E	30	01.6	Rh	E	11	08.5	Rh	E	25	17.1	Ti	E
11	07.8	Ti	E					12	09.4	$\mathrm{Ti}^{\text {R }}$	W	27	02.0	Ia	W
12	07.9	$\mathbf{R h}$	E			MAY		15	21.0	Rh	E	28	13.6	$\mathbf{R h}$	E
16	20.2	Rh	E	d	h	Sat.	Elong.	20	09.5	Rh	E				
19	01.9	Ti	W	1	20.5	Ti	E	20	14.6	Ti	E		DEC	MBE	
21	08.6	$\mathbf{R} \mathbf{h}$	E	4	14.0	$\mathbf{R} \mathbf{h}$	E	24	22.0	Rh	E	d	h	Sat.	Elong.
21	15.3	Ia	E	9	02.3	Rh	E	28	09.2	Ti	W	3	02.1	Rh	E
25	20.9	$\mathbf{R} \mathbf{h}$	E	9	14.1	Ti	W	29	10.5	Rh	E	3	13.0	Ti	W
27	05.8	Ti	E	10	19.6	Ia	E	29	13.1	Ia	E	7	14.7	$\mathbf{R h}$	E
				13	14.7	Rh	E					11	17.2	Ti	E
		RCH		17	18.5	Ti	E			GUST		12	03.2	$\mathbf{R h}$	E
d	h	Sat.	Elong.	18	03.1	Rh	E	d	h	Sat.	Elong.	16	15.7	$\mathbf{R h}$	E
2	09.3	Rh	E	22	15.5	Rh	E	2	23.0	Rh	E	19	13.0	Ti	W
6	21.6	Rh	E	25	12.3	Ti	W	5	14.5	Ti	E	21	04.2	$\mathbf{R h}$	E
6	23.6	Ti	W	27	03.9	Rh	E	7	11.6	Rh	E	25	16.7	Rh	E
11	09.9	$\mathbf{R} \mathbf{h}$	E	31	16.3	$\mathbf{R h}$	E	12	00.1	Rh	E	27	16.9	Ti	E
15	03.5	Ti	E					13	09.3	Ti	W	30	05.2	Rh	E

EPHEMERIDES FOR THE BRIGHTEST ASTEROIDS 1981

Provided By Brian G. Marsden

The following are the ephemerides for the brightest asteroids in 1981: those asteroids which will be brighter than photographic magnitude 11.0 and more than 90° from the sun. The tables give the number and name of the asteroid, the date at 0^{h} E.T. (which differs only slightly from U.T.), the right ascension and declination for the epoch 1950 (for convenience in plotting on commonly-used star charts) and the photographic magnitude (which is normally about $0^{\mathrm{m} 7}$ fainter than the visual magnitude). These data were derived from current osculating elements, and were generously calculated and provided by Dr. Brian G. Marsden of the Smithsonian Astrophysical Observatory.

Note that both Ceres and Vesta are bright and well-placed for northern observers in 1981. Ceres comes to opposition between Castor and Pollux on January 10. Vesta comes to opposition near γ Leo on February 21, Pallas does not come to opposition in 1981, and Juno is very faint. Maps, based on the Atlas Coeli, are provided for Ceres and Vesta. The 1980 edition of this handbook contains maps for Ceres, Pallas and Vesta in late 1980. Readers can make maps for the other asteroids by using the ephemerides and such star atlases as the S.A.O. and the Atlas Coeli.

It is evident from these ephemerides that many asteroids can rival or even exceed Ceres, Pallas, Juno and Vesta in brightness.

The position of Ceres in 1981, plotted at ten-day intervals on the Atlas Coeli. Coordinates are for 1950. The curved dotted lines are contours of the Milky Way.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\[
\begin{gathered}
\text { Date } \\
0^{\text {h }} \text { E.T. }
\end{gathered}
\]} \& \multicolumn{4}{|c|}{(21) LUTETIA} \& \multirow[b]{2}{*}{\[
\begin{gathered}
\text { Date } \\
0^{\text {h }} \text { E.T. }
\end{gathered}
\]} \& \multicolumn{4}{|c|}{(97) KLOTHO} \\
\hline \& R.A. (1950) \& Dec. \& 1950) \& Mag. \& \& R.A. (1950) \& Dec. \& 950) \& Mag. \\
\hline Sept. 13 \& \(\begin{array}{ll}0^{\mathrm{h}} \& 45 \mathrm{~m} 7 \\ 0 \& 37.8 \\ 0 \& 29.8\end{array}\) \& \multicolumn{2}{|l|}{\multirow[t]{4}{*}{\begin{tabular}{ll}
\(-1^{\circ}\) \& \(16^{\prime}\) \\
-2 \& 08 \\
-2 \& 58 \\
-3 \& 37 \\
-3 \& 58 \\
-3 \& 58
\end{tabular}}} \& \multirow[t]{4}{*}{\[
\begin{aligned}
\& 10.8 \\
\& 10.5 \\
\& 11.0
\end{aligned}
\]} \& Jan. 16 \& \multirow[t]{2}{*}{\[
\begin{array}{ll}
8^{\mathrm{h}} \& 15 \mathrm{~m} 8 \\
8 \& 07.1
\end{array}
\]} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{array}{ll}
+5^{\circ} \& 48^{\prime} \\
+7 \& 18 \\
\hline
\end{array}
\]}} \& \multirow[t]{2}{*}{10.9} \\
\hline Oct. 3 \& \(0 \quad 29.0\) \& \& \& \& \multirow[b]{3}{*}{\[
\begin{aligned}
\& \text { Date } \\
\& 0^{\text {Dh }} \text { E.T. }
\end{aligned}
\]} \& \& \& \& \\
\hline \& \(\begin{array}{ll}0 \& 20.5 \\ 0 \& 20.5\end{array}\) \& \& \& \& \& \multicolumn{4}{|c|}{(129) ANTIGONE} \\
\hline Nov. 2 \& \(\begin{array}{lll}0 \& 09.7\end{array}\) \& \& \& \& \& R.A. (1950) \& \multicolumn{2}{|l|}{Dec. (1950)} \& Mag. \\
\hline \multirow[b]{2}{*}{\[
\begin{gathered}
\text { Date } \\
0^{\text {Dh }} \text { E.T. }
\end{gathered}
\]} \& \multicolumn{4}{|c|}{(22) KALLIOPE} \& \multirow[t]{7}{*}{\(\begin{array}{rr}\text { May } \& 16 \\ 26 \\ \text { June } \& 5 \\ \& 15 \\ \& 25 \\ \text { July } \& 5 \\ \& 15 \\ \& 25 \\ \text { Aug. } \& 4 \\ \& 14\end{array}\)} \& \multirow[t]{2}{*}{\[
\begin{array}{ll}
18^{\mathrm{h}} \& 52 \mathrm{~m} 8 \\
18 \& 51.7 \\
18 \& 47.7
\end{array}
\]} \& \multicolumn{2}{|l|}{-7 \({ }^{\circ} 57^{\prime}\)} \& 11.0 \\
\hline \& R.A. (1950) \& \multicolumn{2}{|l|}{Dec. (1950)} \& Mag. \& \& \& -7 \& 58 \& 10.6 \\
\hline Nov. 12 \& \(4^{\text {n }} 40 \mathrm{~m} 3\) \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(\begin{array}{ll}+21^{\circ} \& 06 \\ +21 \& 42\end{array}\)}} \& \multirow[t]{2}{*}{10.9} \& \& \(\begin{array}{ll}18 \& 41.4 \\ 18 \& 33.6\end{array}\) \& -9 \& 24
09 \& \multirow[t]{2}{*}{10.4} \\
\hline - 22 \& 431.0 \& \(+21\) \& \& \& \& \(\begin{array}{ll}18 \& 25.4\end{array}\) \& \multirow[t]{2}{*}{-10
-11} \& 10 \& \\
\hline Dec. 2 \& \(4 \quad 20.6\) \& \multicolumn{2}{|l|}{+22 15} \& 10.4 \& \& \(\begin{array}{ll}18 \& 17.8\end{array}\) \& \& 22 \& 10.6 \\
\hline \& \(\begin{array}{ll}4 \& 10.4 \\ 4 \& 01.6\end{array}\) \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& +22 \\
\& +23
\end{aligned}
\]} \& \& 11.0 \& \& \(18 \quad 12.0\) \& -12 \& 42
03 \& \multirow[t]{2}{*}{11.0} \\
\hline \& \multicolumn{4}{|c|}{\multirow[b]{2}{*}{(23) THALIA}} \& \& \(18 \quad 08.1\) \& -15 \& 21 \& \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Date } \\
0^{\text {hate }} \text { E.T. }
\end{gathered}
\]} \& \& \& \& \& \multirow[b]{3}{*}{Date \(0^{\text {h }}\) E.T.} \& \multicolumn{4}{|c|}{(135) HERTHA} \\
\hline \& R.A. (1950) \& \multicolumn{2}{|l|}{Dec. (1950)} \& Mag. \& \& \multirow[b]{2}{*}{R.A. (1950)} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Dec. (1950)}} \& \multirow[t]{2}{*}{Mag.} \\
\hline \multirow[t]{4}{*}{} \& \(5^{\text {h }} 26 \mathrm{~m} 1\) \& \multirow[t]{4}{*}{\[
\begin{aligned}
\& +31^{\circ} \\
\& +32 \\
\& +32 \\
\& +32 \\
\& +32
\end{aligned}
\]} \& \& \multirow[b]{4}{*}{\[
\begin{aligned}
\& 10.6 \\
\& 11.0
\end{aligned}
\]} \& \& \& \& \& \\
\hline \& \(\begin{array}{ll}5 \& 18.6\end{array}\) \& \& \& \& \multirow[t]{4}{*}{\[
\begin{array}{lr}
\text { July } \& 15 \\
\& 25 \\
\text { Aug. } \& 4 \\
\& 14 \\
\text { Sept. } \& 3
\end{array}
\]} \& \multirow[t]{4}{*}{\begin{tabular}{ll}
20 h \& 57 m 7 \\
20 \& 50.1 \\
20 \& 41.1 \\
20 \& 32.5 \\
20 \& 25.8 \\
20 \& 22.3
\end{tabular}} \& \multicolumn{2}{|l|}{\multirow[t]{4}{*}{\begin{tabular}{ll}
\(-20^{\circ}\) \& \(28^{\prime}\) \\
-20 \& 48 \\
-21 \& 07 \\
-21 \& 18 \\
-21 \& 18 \\
-21 \& 07
\end{tabular}}} \& \multirow[t]{4}{*}{\[
\begin{aligned}
\& \hline 10.8 \\
\& 10.4 \\
\& 10.9
\end{aligned}
\]} \\
\hline \& \(\begin{array}{ll}5 \& 15.1 \\ 5 \& 15.8\end{array}\) \& \& 26 \& \& \& \& \& \& \\
\hline \& \(\begin{array}{ll}5 \& 20.8\end{array}\) \& \& 52 \& \& \& \& \& \& \\
\hline \multirow[b]{2}{*}{\[
\begin{gathered}
\text { Date } \\
0^{\text {h }} \text { E.T. }
\end{gathered}
\]} \& \multicolumn{4}{|c|}{(29) AMPHITRITE} \& \& \& \& \& \\
\hline \& R.A. (1950) \& \multicolumn{2}{|l|}{Dec. (1950)} \& Mag. \& \multirow[b]{2}{*}{\[
\begin{aligned}
\& \text { Date } \\
\& 0^{\text {h }} \text { E.T. }
\end{aligned}
\]} \& \multicolumn{4}{|c|}{(192) NAUSIKAA} \\
\hline Apr. 26 \& \multirow[t]{5}{*}{\(\begin{array}{ll}16^{\mathrm{h}} \& 01 \mathrm{~m} 7 \\ 15 \& 53.2 \\ 15 \& 43.2 \\ 15 \& 32.9 \\ 15 \& 23.4 \\ 15 \& 15.7\end{array}\)} \& \multirow[t]{5}{*}{\[
\begin{aligned}
\& -28^{\circ} \\
\& -28 \\
\& -28 \\
\& -28 \\
\& -27 \\
\& -27
\end{aligned}
\]} \& \multirow[t]{5}{*}{\[
\begin{aligned}
\& 38^{\prime} \\
\& 40 \\
\& 29 \\
\& 06 \\
\& 35 \\
\& 00
\end{aligned}
\]} \& \multirow[t]{5}{*}{\[
\begin{aligned}
\& 11.0 \\
\& 10.7 \\
\& 10.9
\end{aligned}
\]} \& \& R.A. (1950) \& \multicolumn{2}{|l|}{Dec. (1950)} \& Mag. \\
\hline May \({ }_{16}^{6}\) \& \& \& \& \& June 25 \& \(20^{\text {h }} 11 \mathrm{~m} 0\) \& \(-30^{\circ}\) \& \& 10.9 \\
\hline 26 \& \& \& \& \& July 5 \& \(20 \quad 02.7\) \& -30 \& 41 \& \\
\hline June

15 \& \& \& \& \& \& 1952.0 \& -30 \& 58 \& 10.4

\hline \& \& \& \& \& \multirow[t]{3}{*}{} \& $\begin{array}{ll}19 & 40.2 \\ 19 & 29.1\end{array}$ \& -30 \& 59 \&

\hline \multirow[b]{2}{*}{$$
\begin{gathered}
\text { Date } \\
0^{\text {h }} \text { E.T. }
\end{gathered}
$$} \& \multicolumn{4}{|c|}{(44) NYSA} \& \& 1920.4 \& -30 \& 08 \&

\hline \& R.A. (1950) \& \multicolumn{2}{|l|}{Dec. (1950)} \& Mag. \& \& \& \& 20 \& 10.8

\hline \multirow[t]{6}{*}{| Feb. $\begin{array}{r}5 \\ 15 \\ 25 \\ \text { Mar. } \\ \\ \\ \hline\end{array}{ }^{17}$ | |
| :--- | ---: |
| Apr | 6 |
	16	} \& \multirow[t]{6}{*}{	12^{h}	$08 \mathrm{~m}^{\mathrm{m}}$		
12	06.0					
12	00.7					
11	53.2					
11	44.5					
11	36.0					
11	28.9					
11	24.2	} \& \multicolumn{2}{	l	}{\multirow[t]{6}{*}{	$+2^{\circ}$	25
:---	:---					
+3	12					
+4	16					
+5	30					
+6	45					
+7	52					
+8	41					
+9	08	}} \& \multirow[t]{6}{*}{\[

$$
\begin{aligned}
& 10.7 \\
& 10.4 \\
& 10.0 \\
& 10.6
\end{aligned}
$$

\]} \& \multirow[b]{2}{*}{\[

$$
\begin{gathered}
\text { Date } \\
0^{\text {h }} \text { E.T. }
\end{gathered}
$$
\]} \& \multicolumn{4}{|c|}{(349) DEMBOWSKA}

\hline \& \& \& \& \& \& R.A. (1950) \& \multicolumn{2}{|l|}{Dec. (1950)} \& Mag.

\hline \& \& \& \& \& \multirow[t]{4}{*}{} \& \multirow[t]{4}{*}{| 21^{n} | $58 . \mathrm{m}$ |
| :--- | :--- |
| 21 | 49.9 |
| 21 | 40.9 |
| 21 | 32.6 |} \& \multicolumn{2}{|l|}{\multirow[t]{4}{*}{| -25° | 33^{\prime} |
| :--- | :--- |
| -26 | 13 |
| -26 | 40 |
| -26 | 52 |}} \& \multirow[t]{4}{*}{\[

$$
\begin{aligned}
& 10.9 \\
& 10.9
\end{aligned}
$$
\]}

\hline \& \& \& \& \& \& \& \& \&

\hline \& \& \& \& \& \& \& \& \&

\hline \& \& \& \& \& \& \& \& \&

\hline \multirow[b]{2}{*}{$$
\begin{gathered}
\text { Date } \\
0^{\text {h }} \text { E.T. }
\end{gathered}
$$} \& \multicolumn{4}{|c|}{(88) THISBE} \& \multirow[b]{2}{*}{\[

$$
\begin{gathered}
\text { Date } \\
0^{\text {h }} \text { E.T. }
\end{gathered}
$$
\]} \& \multicolumn{4}{|c|}{(471) PAPAGENA}

\hline \& R.A. (1950) \& \multicolumn{2}{|l|}{Dec. (1950)} \& M \& \& R.A. (1950) \& \multicolumn{2}{|l|}{Dec: (1950)} \& Mag.

\hline June 25 \& \multirow[t]{4}{*}{| 18^{h} | 20 m 3 |
| :--- | :--- |
| 18 | 11.0 |
| 18 | 02.6 |
| 17 | 56.4 |} \& \multirow[t]{4}{*}{-23°

-23
-22

-22} \& 46' \& \multirow[t]{4}{*}{\[
$$
\begin{aligned}
& 10.5 \\
& 11.0
\end{aligned}
$$

\]} \& \multirow[t]{4}{*}{$\begin{array}{rr}\text { Nov. } & 12 \\ \text { Dec. } \\ 22 \\ 12 \\ 22\end{array}$} \& \multirow[t]{4}{*}{| 5^{h} | 50 m 6 |
| :--- | :--- |
| 5 | 44.6 |
| 5 | 35.8 |
| 5 | 25.4 |
| 5 | 14.8 |} \& \multicolumn{2}{|l|}{\multirow[t]{4}{*}{| $+18^{\circ}$ | 23^{\prime} |
| :--- | :--- |
| +19 | 27 |
| +20 | 36 |
| +21 | 48 |
| +22 | 57 |}} \& \multirow[t]{4}{*}{\[

$$
\begin{aligned}
& 10.8 \\
& 10.5 \\
& 10.5
\end{aligned}
$$
\]}

\hline July 5 \& \& \& 23 \& \& \& \& \& \&

\hline \& \& \& $\begin{array}{r}57 \\ \hline\end{array}$ \& \& \& \& \& \&

\hline 25 \& \& \& \& \& \& \& \& \&

\hline
\end{tabular}

The position of Vesta in 1981, plotted at ten-day intervals on the Atlas Coeli. Coordinates are for 1950. The elliptical symbols are galaxies, with their NGC or Messier numbers indicated.

COMETS IN 1981
By Brian G: Marsden
The following periodic comets are expected at perihelion during 1981:

Comet	Perihelion		
	Date	Dist.	Period
		A.U.	Yr.
Reinmuth 2	Jan. 29	1.95	6.7
Borrelly	Feb. 20	1.32	6.8
Schwassmann-Wachmann 2	Mar. 17	2.14	6.5
West-Kohoutek-Ikemura	Apr. 12	1.40	6.1
Kohoutek	Apr. 17	1.57	6.2
Finlay	June 20	1.10	7.0
Swift-Tuttle	Oct. 16	0.96	125
Longmore	Oct. 21	2.40	7.0
Gale	Nov 16	1.20	11.1
Saughter-Burnham	Nov. 18	2.34	11.6
Gehrels 2	Nov. 27	1.36	8.0
Swift-Gehrels	Nov. 30	2.22	9.3
Kearns-Kwee			

The returns of Comets Reinmuth 2, Finlay and Gale are rather unfavourable. Comets Swift-Gehrels and Kearns-Kwee will be favourably placed for observation and could attain total magnitude 12-13. Comets West-Kohoutek-Ikemura, Kohoutek and Longmore are making their first predicted returns to perihelion. Comet SwiftTuttle, which is associated with the Perseid meteor stream, is also making its first predicted return; although nominally due at perhelion on the date stated, there is an uncertainty of ± 2 years; if this comet were to come to perihelion during June-

October it could attain naked-eye brightness. Comets Tuttle and Stephan-Oterma, bright objects at the end of 1980, will be likewise early in 1981, and the ephemeris for the latter comet continues as follows:

Date	R.A. (1950.0)	Dec. (1950.0)	Mag.
Jan. 1	$5^{\mathrm{h}} 32^{\mathrm{m} .4}$	$+35^{\circ} 33^{\prime}$	
.6	533.9	+3729	10.3
11	536.2	+3909	
16	539.4	+4033	10.7
21	543.6	+4141	
26	548.8	+4236	11.1

METEORS, FIREBALLS AND METEORITES

By Peter M. Millman

Meteoroids are small solid particles moving in orbits about the sun. On entering the earth's atmosphere they become luminous and appear as meteors or fireballs and in rare cases, if large enough to avoid complete fragmentation and vaporization, they may fall to the earth as meteorites.

Meteors are visible on any night of the year. At certain times of the year the earth encounters large numbers of meteoroids all moving together along the same orbit. Such a group is known as a meteor stream and the visible phenomenon is called a meteor shower. The orbits followed by these meteor streams are very similar to those of short-period comets, and in many cases can be identified with the orbits of specific comets.
The radiant is the position among the stars from which the meteors of a given shower seem to radiate. This is an effect of perspective commonly observed for any group of parallel lines. Some showers, notably the Quadrantids, Perseids and Geminids, are very regular in their return each year and do not vary greatly in the numbers of meteors seen at the time of maximum. Other showers, like the Leonids, are very unpredictable and may arrive in great numbers or fail to appear at all in any given year. The δ Aquarids and the Taurids are spread out over a fairly extended period of time without a sharp maximum.

For more information concerning meteor showers, see the paper by A. F. Cook in "Evolutionary and Physical Properties of Meteoroids", NASA SP-319, pp. 183-191, 1973.

An observer located away from city lights and with perfect sky conditions will see an overall average of seven sporadic meteors per hour apart from the shower meteors. These have been included in the hourly rates listed in the table. Slight haze or nearby lighting will greatly reduce the number of meteors seen. More meteors appear in the early morning hours than in the evening, and more during the last half of the year than during the first half.

When a meteor has a luminosity greater than the brightest stars and planets it is generally termed a fireball. The appearance of any very bright fireball should be reported immediately to the nearest astronomical group or other organization concerned with the collection of such information. Where no local organization exists, reports should be sent to Meteor Centre, Herzberg Institute of Astrophysics, National Research Council of Canada, Ottawa, Ontario, K1A 0R6. If sounds are heard accompanying a bright fireball there is a possibility that a meteorite may have fallen. Astronomers must rely on observations made by the general public to track down such an object.

For the years near 1980 the comet associated with the Perseid meteor shower, 1862 III Swift-Tuttle, is estimated to be in the inner part of the solar system and a better than average shower in August is a possibility.

MAJOR VISUAL METEOR SHOWERS FOR 1981

Shower	Shower Maximum			Radiant				$\begin{array}{\|c} \text { Single } \\ \text { Observer } \\ \text { Hourly } \\ \text { Rate } \end{array}$	Velocity	Normal Duration to 4 strength of Max.
				Position at Max.		Daily Motion				
	Date	E.S.T.	Moon	R.A.	Dec.	R.A.	Dec.			
		h		h m		m			km/sec	days
Quadrantids	Jan. 3	09	NM	1528	$+50$		0	40	41	1.1
Lyrids	Apr. 22	03	FM	1816	$+34$	$+4.4$	0.0	15	48	3
η Aquarids	May 4	09	NM	2224	00	+3.6	$+0.4$	20	65	
S. δ Aquarids	July 28	12	NM	2236	-17	+3.4	$+0.17$	20	41	
Perseids	Aug. 12	03	FM	0304	+58	$+5.4$	+0.12	50	60	4.6
Orionids	Oct. 21	07	LQ	0620	$+15$	+4.9	$+0.13$	25	66	2
S. Taurids	Nov. 2	05	FQ	0332	+14	+2.7	$+0.13$	15	28	-
Leonids	Nov. 17 Dec. 13	01 23	LQ	10 08	+22 +32	+2.8 +4.2	-0.42 -0.07	15 50	71 35	2.6
Ursids	Dec. 22	08	NM	1428	+76		-0.07	15	34	2.
Quadrantids	(1982) 3	15	FQ	1528	+50	-	-	40	41	1.1

A Selection of Minor Visual Meteor Showers

Shower	Dates	$\begin{aligned} & \text { Date } \\ & \text { of Max. } \end{aligned}$	Velocity
			$\mathrm{km} / \mathrm{sec}$ 23
${ }^{\delta}$ L Leonids	Feb. Mar. 21 Mar. ${ }^{\text {ay }} 19$ 13	Feb. Apr. 17	20 15
${ }_{\text {¢ }} \mathrm{\tau}$ Herculids	May 19-June 14	June ${ }^{\text {a }}$	15
α Capricornids	July 15-Aug. 10	July 30	23
S. 1 Aquarids	July $15-$ Aug. 25	Aug. 5	34
N. 1 Aquarids	July 15-Sept. 20	Aug. 20	31
${ }^{\mathrm{K}}$ Cygnids	Aug. 9-Oct. 6	Aug. ${ }^{18}$	25
S. Piscids	Aug. 31-Nov. 2	Sept. 20	26
N. Piscids			
N. Taurids	Sept. 19-Dec. 1	Nov. 13	${ }_{29}^{29}$
Annual Andromedids Coma Berenicids	Sept. 25-Nov. 12 Dec. 12-Jan. 23	Oct. ${ }^{3}$	${ }^{18-23}$

NORTH AMERICAN METEORITE IMPACT SITES

By P. Blyth Robertson

The search for ancient terrestrial meteorite craters, and investigations in the related fields of shock metamorphism and cratering mechanics, have been carried out on a continuing basis since approximately 1950, although a few structures were investigated earlier. In Canada, this research is undertaken largely at the Earth Physics Branch, Dept. Energy, Mines and Resources, and in the United States at the facilities of NASA and the U.S. Geological Survey. Particular aspects of these studies are also carried out at various universities in both countries, and the information in the following table is a compilation from all these sources.

Of the thirty-eight confirmed North American impact structures, which account for almost half of the world's recognized total, meteorite fragments are preserved at only three. In large impacts, where craters greater than approximately 1.5 km in diameter are created, extreme shock pressures and temperatures vapourize or melt the meteorite which subsequently becomes thoroughly mixed with the melted target rocks and is no longer recognizable in its original form. These larger hypervelocity impact craters are therefore identified by the presence of shock metamorphic effects, the characteristic suite of deformation in the target rocks produced by shock pressures exceeding approximately 7 GPa ($1 \mathrm{GPa}=10$ kilobars). The Holyrood structure, in fact, comprises four sites at the surface where definitive shock features have been recognized, but the circular crater outline is not evident.
In addition to the sites whose impact origin is confirmed by identification of diagnostic shock features, there are approximately twenty structures in Canada and the United States for which an impact origin seems highly probable, but where distinctive evidence of shock metamorphism has not been found.
In the table, sites accessible by road or boat are marked "A" or "B" respectively and those sites where data have been obtained through diamond-drilling or geophysical surveys are signified by "D" and "G", respectively.

Name	La:;	Lons.	$\begin{gathered} \text { Diam. } \\ (\mathrm{km}) \end{gathered}$	$\begin{gathered} A \mathrm{Ag}^{\prime} \\ \left.\times 10^{6} \mathrm{yr}\right) \\ \hline \end{gathered}$	Surface Expression	Visible Geologic Fea	tures
Barringer, Meteor Crater, Ariz.	3502	11101	1.2	. 05	rimmed polygonal crater	fragments of "Canyon Diablo'" meteorite, highly shocked sandstone, disturbed rocks	
Bee Bluff, Texas	2902	09951	2.4	40 ± 10	shallow circ. depress'n.; rim remnants	disturbed rocks breccia	${ }_{\mathbf{A}}^{\text {A D G }}$
Brent, Ont.	4605	07829 10930	3.8	450 ± 30	sediment-filled shallow depression	fracturing	ADG
Carswell, Sask.	5827 4732	10930 07018	37	485 ± 50	discontinuous circular ridge	shatter cones, breccia	
			46	360 ± 25	semi-circular trough, central elevatio	breccia, shatter cones, impact melt	
Clearwater Lake East, Que.	5605	07407	22	290 ± 20	circular lake	sedimentary float	D G
Clearwater Lake West, Que.	5613	07430	32	290 ± 20	island ring in circular lake	impact melt	D G
Crooked Creek, Missouri	3750	09123	5.6	320 ± 80	oval area of disturbed rocks, shallow marginal depression	breccia, shatter cones	
Decaturville, Missouri	3754	09243	6	<300	slight oval depression	breccia, shatter cones	A D
Deep Bay, Sask.	5624	10259	12	100 ± 50	circular bay	sedimentary float	D G
Flynn Creek, Tenn.	3616	08537	3.8	360 ± 20	sediment-filled shallow depression with slight central elevation	breccia, shatter cones, disturbed rocks	D G
Gow Lake, Sask.	5627	10429		< 200	lake and central island	breccia	
Haviland, Kansas	3737	09905	0.0011	<0.001	excavated depression	fragments of "Brenham" meteorite	
Haughton, NWT	7522	08940	20	<20	shallow circular depression	shatter cones, breccia	G
Holleford, Ont.	4428	07638	2	550 ± 100	sediment-filled shallow depression	sedimentary fill	A DG
Holyrood, Nfld.	4720	05312	2		4 localities of shocked rock	shatter cones, breccia	
Ile Rouleau, Que.	5041	07353	4	< 300	island is central uplift of submerged structure	shatter cones, breccia dikes	
Kentland, Ind.	4045	08724	13	300	central uplift exposed in quarries, rest buried	breccia, shatter cones, disturbed rocks	A
Lac Couture, Que.	6008	07518	8	420	circular lake	breccia float	
Lac La Moinerie, Que.	5726	06636	8	400	lake-filled, partly circular	breccia float	G
Lake St. Martin, Man.	5147	09833	23	225 ± 40	none, buried and eroded	impact melt	A D G
Lake Wanapitei, Ont.	4644	08044	8.5	37 ± 2	lake-filled, partly circular	breccia float	A G
Manicouagan, Que.	5123	06842	70	210 ± 4	circumferal lake, central elevation	impact melt, breccia	
Manson, Iowa	4235	09431	32	<70 300	none, central elevation buried to 30 m	none ${ }^{\text {disturbed rocks }}$	ADG
Middlesboro, Ky.	3637 55 53	08344 06318	${ }_{28}^{6}$	300 38 ± 4	circular depression elliptical lake and central island	disturbed rocks breccia, impact melt	\mathbf{A}
New Quebec Crater, Que.	6117	07340	3.2	<5	rimmed, circular lake	raised rim	G
Nicholson Lake, NWT	6240	10241	12.5	<450	irregular lake with islands	breccia	G
Odessa, Tex.	3148	10230	0.17	0.03	sediment-filled shallow depression with very slight rim, 4 others buried and smaller	fragments of "Odessa" meteorite	A D G
Pilot Lake, NWT	6017	11101	6	<300	circular lake	fracturing, breccia float	
Redwing Creek, N. Dak.	4740	10230	9	200	none, buried	none.	
Serpent Mound, Ohio	3902	08324	6.4	300	circular area of disturbed rock, slight central elevation and surrounding depression	breccia, shatter cones	A G
Sierra Madera, Tex.	3036	10255	13	100	central hills, annular depression, outer ring of hills	breccia, shatter cones	A D G
Slate Islands, Ont.	4840	08700	30	350	islands are central uplift of submerged structure	shatter cones, breccia dikes	B G
Steen River, Alta.	5931	11738	25	95 ± 7	none, buried to 200 metres	none	D G
Sudbury, Ont.	4636	08111	140	1840 ± 150	elliptical basin	breccia, impact melt, shatter cones	A DG
Wells Creek, Tenn.	3623	08740	14	200 ± 100	basin with central hill, inner and	breccia, shatter cones	ADG
West Hawk Lake, Man.	4946	09511	2.7	100 ± 50	circular lake	none	A D G

TABLE OF PRECESSION FOR 50 YEARS
If Declination is positive, use inner R.A. scale; if declination is negative, use outer R.A.scale, and reverse the sign of the precession in declination

THE CONSTELLATIONS

Latin Names with Pronunciations and Abbreviations

Andromeda, ăn-drǒm'ê-d a.	And Andr
Antlia, ănt'liì-a.	Ant Antl
Apus, ä'pŭs.	Aps Apus
Aquarius, a-kwâr'ǐ-ŭs	. Aqr Aqar
Aquila, ăk'wĭ-la	.Aql Aqil
Ara, à'ra.	Ara Arae
Aries, à'rí-èz	Ari Arie
Auriga, ô-ri'ga	. Aur Auri
Boötes, bō-ō'tēz.	. Boo Boot
Caelum, sē'lŭm	Cae Cael
Camelopardalis, $\mathrm{k} a$-mèl'ō-pär'd a-lǐs	Cam Caml
Cancer, kăn'sẽr	Cnc Canc
Canes Venatici, kā'nēz vē-năt' 1 î-sī .	n CVen
Canis Major, kā'nĭs mā'jẽr.	CMa CMaj
Canis Minor, kā'nǐs' mínẽr.	. CMi CMin
Capricornus,	Capr
Carina, ka-ri'na.	Car Cari
Cassiopeia, kăs'ī-ō-pē'	Cas Cas
Centaurus, sěn-tô'rŭs	Cen Cent
Cepheus, sē'fūs.	Cep Ceph
Cetus, sē'tŭs.	Cet Ceti
Chamaeleon, $\mathrm{k} a$-mē'le-	. Cha Cham
Circinus, sûr'sĭ-nŭs	Cir Circ
Columba, kō-lŭm'ba	Col Colm
Coma Berenices, kō'm a běr'è-ní'sēz	Com Coma
Corona, Australis, kō-rō'n a ôs-trā ${ }^{\prime}$ lis	CrA CorA
Corona Borealis,	
k a-rō n a bō'rē-ā'lı̆s	CrB CorB
Corvus, kôr'vŭs	Crv Corv
Crater, krā'tẽ	Crt Crat
Crux, krŭks.	Cru Cruc
Cygnus, sig'nŭs	Cyg Cygn
Delphinus, dĕl-fí'nŭs	Del Dlph
Dorado, dō-rä'dō	Dor Dora
Draco, drā'kō.	Dra Drac
Equuleus, è-kwoo'lē-ŭs	Equ Equl
Eridanus, è-ríd'a-nŭs.	Eri Erid
Fornax, fôr'năks	For Forn
Gemini, jěm'î-ni	Gem Gemi
Grus, grüs	Gru Grus
Hercules, hûr'kū'lēz.	Her Herc
Horologium, hŏr'ö-lõ'jī-ŭm.	Hor Horo
Hydra, hi'dra.	Hya Hyda
Hydrus, hi'drŭs.	Hyi Hydi

Ind	Ind	Indi
Lacerta, la-sûr'ta .	Lac	Lacr
Leo, lēo	.Leo	Leon
Leo Minor, lēō mínẽr	. LMi	LMin
Lepus, le'pŭs	Lep	Leps
Libra, li'bra	. Lib	Libr
Lupus, lù ${ }^{\text {pugs }}$. Lup	Lupi
Lynx, lingks.	. Lyn	Lync
Lyra, li'ra	. Lyr	Lyra
Mensa, měn's	Men	Mens
Microscopium, mi'krō-skō'pĭ-ŭm.		Micr
Monoceros, m-ōnǒs'ėr-ŏs	Mon	Mono
Musca, muss'ka.	Mus	Musc
Norma, nôr'ma	Nor	Norm
Octans, ơk'tănz	Oct	Octn
Ophiuchus, ŏf 1 İ-ūkŭs	Oph	Ophi
Orion, ō-ríŏn.	Ori	Orio
Pavo, Pā'vō.	. Pav	Pavo
Pegasus, pěg' a-sŭs	.Peg	Pegs
Perseus, pûr'sūs	. Per	Pers
Phoenix, fē'nĭks	. Phe	Phoe
Pictor, pik'tẽr.	.Pic	Pict
Pisces, pǐs'èz.	Psc	Pisc
Piscis Austrinus, pǐs'îs ôs-tri'nūs	. PsA	PscA
Puppis, pŭp'is	. Pup	Pupp
Pyxis, pik'sis	.Pyx	Pyxi
Reticulum, . .	Ret	Reti
Sagitta, sa-jit'a	. Sge	Sgte
	. Sgr	Sgtr
Scorpius, skôr' il -ŭs	. co	Scor
Sculptor, skŭlp'tẽr	. Sc	Scul
Scutum, skū'tŭm .	. Sct	Scut
Serpens, sûr'pĕnz.	.Ser	Serp
Sextans, sěks'tănz	.Sex	Sext
Taurus, tô'rŭs.	Tau	Taur
Telescopium, tēl'ē-skō'pì-ŭm	.Tel	Tele
Triangulum, trī-ăng'gū-lüm.		Tria
Triangulum Australe, . . . trī-ăng'gū-lŭm ôs-trā'lē		TrAu
Tucana, tū-kā'na.	Tuc	Tucn
Ursa Major, ûr's a mā́jêr. .		UMaj
Ursa Minor,		
ûr's a mi'nẽr	.UMi	UMin
Vela, vē'la.	Vel	Velr
Virgo, vûr'gō	Vir	Virg
Volans, vō'lănz	Vol	Voln
Vulpecula, vŭl-pěk'ū-la	.Vul	Vulp

ā fāte; ā chāotic; ă tăp; ă finăl; à ásk; a ide ; â câre; ä älms; au aught; ē bē; e crēate; ě ĕnd; ě angěl; ẽ makẽr; i itime; ǐ bǐt; i lanĭmal; ō nōte; ō anatōmy; ŏ hŏt; ŏ ŏccur; ô ôrb; ōō mōōn; oo book; ou out; ū tūbe; ū unite; ŭ sŭn; \check{u} sŭbmit; û hûrl.

FINDING LIST OF NAMED STARS

Name	Con.	R.A.	Name	Con.	R.A.
Acamar, ā'ka-mär	θ Eri	02	Gienah, jè'na	γ Crv	12
Achernar, ${ }^{\text {ax'kẽr-när }}$	α Eri	01	Hadar, hăd'är	β Cen	14
Acrux, ā'krŭks	$\alpha \mathrm{Cru}$	12	Hamal, hăm'ăl	α Ari	02
Adhara, a-dā'ra	$\varepsilon \mathrm{CMa}$	06	Kaus Australis,		
Al Na'ir, ăl-nâr'	α Gru	22	kôs ôs-trā liss	$\varepsilon \mathrm{Sgr}$	18
Albireo, ăl-bir' ${ }^{\text {ejō }}$	β Cyg	19	Kochab, kō'kăb	β UMi	14
Alcyone, ăl-si'ō-nē	η Tau	03	Markab, mär'kăb	$\alpha \mathrm{Peg}$	23
Aldebaran, ăl-dĕb' - -ran	α Tau	04	Megrez, mē'grěz	δ UMa	12
Alderamin, ăl-děr' a-minn	α Cep	21	Menkar, měn'kär	α Cet	03
Algenib, ăl-jē'nĭb	$\gamma \mathrm{Peg}$	00	Menkent, měn'kěnt	θ Cen	14
Algol, ăl'gǒl	β Per	03	Merak, mē'răk	β UMa	11
Alioth, ăl'İ-ǒth	ε UMa	12	Miaplacidus,		
Alkaid, ăl-kād ${ }^{\text {d }}$	$\eta \mathrm{UMa}$	13	mi'a-plăs'í-dus	β Car	09
Almach, ăl'măk	γ And	02	Mira, mi'ra	o Cet	02
Alnilam, ăl-ni'lăm	ε Ori	05	Mirach, mi'răk	β And	01
Alphard, ăl'färd	α Hya	09	Mirfak, mir'făk	α Per	03
Alphecca, ăl-fěk' a	$\alpha \mathrm{CrB}$	15	Mizar, mī'zär	ζ UMa	13
Alpheratz, ăl-férăts	α And	00	Nunki, nŭn'kē	$\sigma \mathrm{Sgr}$	18
Altair, ǎl-târ ${ }^{\prime}$	α Aql	19	Peacock	$\alpha \mathrm{Pav}$	20
Ankaa	α Phe	00	Phecda, fěk' ${ }^{\text {d }}$	γ UMa	11
Antares, ăn-tā'rēs	α Sco	16	Polaris	$\alpha \mathrm{UMi}$	01
Arcturus, ärk-tū'rŭs	α Boo	14	Pollux, poll'ŭks	β Gem	07
Atria, ā'trì- a	α TrA	16	Procyon, prō'sǐ-ŏn	$\alpha \mathrm{CMi}$	07
Avior, ă-vĭ-ôr'	ε Car	08	Ras-Algethi, ras'sall-jē'the	$\alpha \mathrm{Her}$	17
Bellatrix, bě-lā'trǐks	γ Ori	05	Rasalhague, ras' ${ }^{\text {a l-hā'gwe }}$	α Oph	17
Betelgeuse, bět'el-juz	α Ori	05	Regulus, rěg'u-lŭs	α Leo	10
Canopus, $\mathrm{k} a$-nō' p ŭs	$\alpha \mathrm{Car}$	06	Rigel, rí'jel	β Ori	05
Capella, ka-pěl' a	α Aur	05	Rigil Kentaurus		
Caph, kăf	β Cas	00	ri'jil kěn-tô'rŭs	α Cen	14
Castor, kås'tẽr	α Gem	07	Sabik, sā’bík	η Oph	17
Deneb, děn'ĕb	α Cyg	20	Scheat, shē'ăt	β Peg	23
Denebola, dě-něb'ō-la	β Leo	11	Schedar, shĕd'ar	α Cas	00
Diphda, dif' ${ }^{\text {d }}$ a	β Cet	00	Shaula, shô'la	λ Sco	17
Dubhe, dŭb'ē	$\alpha \mathrm{UMa}$	11	Sirius, sir ${ }^{\prime}$ İ-ŭs	$\alpha \mathrm{CMa}$	06
Elnath, ěl'năth	β Tau	05	Spica, spi'k ${ }^{\text {a }}$	α Vir	13
Eltanin, ěl-tā'nǐn	γ Dra	17	Suhail, sŭ-hāl'	$\lambda \mathrm{Vel}$	09
Enif, èn'íf	ε Peg	21	Vega, vè'ga	$\alpha \mathrm{Lyr}$	18
Fomalhaut, fō'măl-ôt	\propto PsA	22	Zubenelgenubi,		
Gacrux, gä'krŭks	$\gamma \mathrm{Cru}$	12	zōō-běn'êl-jè-nū'bē	α Lib	14

Pronunciations are generally as given by G. A. Davis, Popular Astronomy, 52, 8 (1944). Key to pronunciation on p. 106.

THE BRIGHTEST STARS

by Donald A. MacRae

The 286 stars brighter than apparent magnitude 3.55.
Star. If the star is a visual double the letter A indicates that the data are for the brighter component. The brightness and separation of the second component B are given in the last column. Sometimes the double is too close to be conveniently resolved and the data refer to the combined light, $A B$; in interpreting such data the magnitudes of the two components must be considered.

Visual Magnitude (V). These magnitudes are based on photoelectric observations, with a few exceptions, which have been adjusted to match the yellow coloursensitivity of the eye. The photometric system is that of Johnson and Morgan in $A p . J .$, vol. 117, p. 313, 1953. It is as likely as not that the true magnitude is within 0.03 mag. of the quoted figure, on the average. Variable stars are indicated with a ' v '. The type of variability, range, R, in magnitudes, and period in days are given.

Colour index $(B-V)$. The blue magnitude, B, is the brightness of a star as observed photoelectrically through a blue filter. The difference $B-V$ is therefore a measure of the colour of a star. The table reveals a close relation between $B-V$ and spectral type. Some of the stars are slightly reddened by interstellar dust. The probable error of a value of $B-V$ is only 0.01 or 0.02 mag.

Type. The customary spectral (temperature) classification is given first. The Roman numerals are indicators of luminosity class. They are to be interpreted as follows: Ia-most luminous supergiants; Ib-less luminous supergiants; II-bright giants; III—normal giants; IV-subgiants; V-main sequence stars. Intermediate classes are sometimes used, e.g. Iab. Approximate absolute magnitudes can be assigned to the various spectral and luminosity class combinations. Other symbols used in this column are: p-a peculiarity; e-emission lines; v-the spectrum is variable; m-lines due to metallic elements are abnormally strong; f-the O-type spectrum has several broad emission lines; n or nn -unusually wide or diffuse lines. A composite spectrum, e.g. M1 Ib + B, shows up when a star is composed of two nearly equal but unresolved components. The table now includes accurate spectral and luminosity classes for most stars in the southern sky. These were provided by Dr. Robert Garrison of the Dunlap Observatory. A few types in italics and parentheses remain poorly defined. Types in parentheses are less accurately defined (g-giant, d-dwarf, c-exceptionally high luminosity). All other types were very kindly provided especially for this table by Dr. W. W. Morgan, Yerkes Observatory.

Parallax (π). From "General Catalogue of Trigonometric Stellar Parallaxes" by Louise F. Jenkins, Yale Univ. Obs., 1952.

Absolute visual magnitude $\left(\mathrm{M}_{V}\right)$, and distance in light-years (D). If π is greater than $0.030^{\prime \prime}$ the distance corresponds to this trigonometric parallax and the absolute magnitude was computed from the formula $\mathrm{M}_{V}=V+5+5 \log \pi$. Otherwise a generally more accurate absolute magnitude was obtained from the luminosity class. In this case the formula was used to compute π and the distance corresponds to this "spectroscopic" parallax. The formula is an expression of the inverse square law for decrease in light intensity with increasing distance. The effect of absorption of light by interstellar dust was neglected, except for three stars, ζ Per, σ Sco and ζ Oph, which are significantly reddened and would therefore be about a magnitude brighter if they were in the clear.

Annual proper motion (μ), and radial velocity (R). From "General Catalogue of Stellar Radial Velocities" by R. E. Wilson, Carnegie Inst. Pub. 601, 1953. The information on radial velocities was brought up-to-date in 1975 by Dr. C. T. Bolton of the Dunlap Observatory. Italics indicate an average value of a variable radial velocity.

The star names are given for all the officially designated navigation stars and a few others. Throughout the table, a colon (:) indicates an uncertainty.

		E		$\begin{aligned} & E \\ & E \\ & \dot{+} \\ & E \\ & \underset{~}{+} \\ & \dot{F} \end{aligned}$	
Radial Velocity	\sim	$\begin{gathered} \underset{\sim}{0} \\ \underline{E} \end{gathered}$			
Proper Motion	\pm	：			T
Distance light－years	ค	$\underset{\sim}{i}$			
Absolute Magnitude	\sum^{λ}	\pm + + +			
Parallax	E	こ	 NTOMnNonnm $00^{\circ} 1000000$		
Spectral Classification	$\stackrel{\otimes}{\circ}$	\mathfrak{O}			
Colour Index	－ 1	$\begin{aligned} & \hat{6} \\ & \dot{0} \\ & + \end{aligned}$			$\begin{aligned} & n \\ & i o \\ & ++ \end{aligned}$
Visual Magnitude	λ	N 	ヘiNNimiNiN		
Declination			 $+++11++1++$		$\begin{aligned} & \text { mo } \\ & n 0 \\ & n 0 \\ & ++ \end{aligned}$
Right Ascension		E 工	mーNOmNサーのn 8	$\bar{\sigma}$	$\infty \dot{d}$
	产	Z	ชの てのชம ชのに	$\begin{aligned} & \infty \\ & \mathbb{N} \\ & 0 \\ & \infty \\ & \infty \end{aligned}$	

Star	R.A. 1980 Dec.		V	$B-V$	Type	π	M_{V}	D	μ	R	
	h m	-				"		1.y.	"	km/sec	
α Tri	0152.0	+29 29	3.42	+0.50	F6 IV	0.050	$+2.0$	65	0.230	-12.6	
ε Cas	52.9	+63 34	3.37	-0.15	B3 IV:p	0.007	-2.7	520	0.038	-08.1	
β Ari	53.6	$+2043$	2.65	+0.14	A5 V	0.063	+1.7	52	0.147	-04.0	Sheratan
$\alpha \mathrm{Hyi}$	58.1	-6140	2.84	+0.28	F0 V		$+2.9$	31	0.265	$+07$	
γ And A	0202.7	$+4214$	2.14:	+1.16:	K3 II	0.005	-2.4	260	0.068	-11.7	$B 5.4^{\mathrm{m}} \mathrm{C} 6.2^{\mathrm{m}} A-B C 10^{\prime \prime} B-C 0.6^{\prime \prime}$
α Ari	06.1	+23 22	2.00	+1.15	K2 III	0.043	+0.2	76	0.241	-14.3	γ And $=$ Almach Hamal
β Tri	08.4	+34 54	3.00	$+0.13$	A5 III	0.012	-0.1	140	0.156	$+15.2$	
α UMi A	12.5	+89 11	1.99 v	$+0.60 \mathrm{v}$	F8 Ib	0.003	-4.6	680	0.046	-17.4	Cep., R0.11 ${ }^{\mathrm{m}} 4.0^{\text {d }}, B 8.9^{\mathrm{m}} 18^{\prime \prime} \quad$ Polaris
- Cet A	18.3	-03 04	2.0 v		M5.5e-M9e	0.013	-0.5	103	0.232	$+63.8$	LP, $R 2.0-10.1,332^{\text {d }}$, $B 10^{\mathrm{m}} 1^{\prime \prime} \quad$ Mira
γ Cet $A B$	42.2	+0310	3.48	+0.11	A2 V	0.048	$+2.0$	68	0.203	-05.1	$A 3.57^{\mathrm{m}}$ B $6.23^{\mathrm{m}} 3^{\prime \prime}$
θ Eri $A B$	57.5	-4023	2.92	+0.13	A3 III	0.028	+1.7	65	0.061	$+11.9$	$A 3.25^{\mathrm{m}}$ B $4.36^{\mathrm{m}} 8^{\prime \prime} \quad$ Acamar
α Cet	0301.2	+0400	2.54	$+1.63$	M2 III	0.003	-0.5	130	0.075	-25.9	Menkar
γ Per	03.3	+5325	2.91:	+0.72:	G8 III: + A3	0.011	+0.3	113	0.004	+02.5	
ρ Per	03.7	$+3845$	3.5v		M4 II-III	0.008	-1.0	260	0.172	+28.2	Irr. R 3.2-3.8
β Per	06.6	$+4052$	2.06 v	-0.07	B8 V	0.031	-0.5	105	0.006	+06.0	Ecl. R 2.06-3.28, $2.87{ }^{\text {d }}$ Algol
α Per	22.9	$+4947$	1.80	+0.48	F5 Ib	0.029	-4.4	570	0.035	-02.4	Mirfak
δ Per	41.5	$+4744$	3.03	-0.14	B5 III	0.007	-3.3	590	0.046	+02.8	
η Tau	46.3	+2403	2.86	-0.09	B7 III	0.005	-3.2	541	0.050	+10.1	in Pleiades Alcyone
γ Hyi	47.5	-74 18	3.30	+1.61	M2 III	$-.001$	-1.5	300	0.125	$+16.0$	
$\zeta \operatorname{Per} A$	52.7	+3150	2.83	+0.13	B1 Ib	0.007	-6.1	1000	0.015	$+20.6$	B $9.36{ }^{\mathrm{m}} 13^{\prime \prime}$
ε Per A	56.5	+39 57	2.88	-0.17	B0.5 V	$-.001$	-3.7	680	0.036	-01	B7.99m $9^{\prime \prime}$
γ Eri	57.1	-1334	2.96	$+1.58$	M0 III	0.003	-0.5	160	0.126	$+61.7$	
α Ret A	0414.1	-6232	3.33	+0.91	G9 III	0.008	-2.1	390	0.064	$+35.6$	$B 12^{\text {m }} 49^{\prime \prime}$
ε Tau	27.5	+1908	3.54	+1.02	K0 III	0.018	+0.1	160	0.118	+38.6	
$\theta^{2} \mathrm{Tau}$	27.5	+1549	3.42	+0.17	A7 III	0.025	+0.2	140	0.108	$+39.5$	
α Dor	33.5	-55 05	3.28	-0.08	A0 IIIp	0.011	-1.2	260	0.051	+25.6	Silicon star
α Tau A	34.8	+1628	0.86 v	$+1.52$	K5 III	0.048	-0.7	68	0.202	$+54.1$	Irr.? R0.78-0.93, B13 ${ }^{\text {m }} 31^{\prime \prime}$ Aldebaran
π^{3} Ori	48.3	+0656	3.17	+0.45	F6 V	0.125	+3.65	26	0.468	$+24.3$	
1 Aur	55.7	$+3308$	2.68:	+1.49	K3 II	0.015	-2.4	330	0.021	$+17.5$	

Star	R.A. 1980 Dec.		V	$B-V$	Type	π	M_{V}	D	μ	R	
	h m	-				"		1.9.	"	$\mathrm{km} / \mathrm{sec}$	
ε Aur	0500.5	+43 48	3.0v	+0.50:	F0 Iap	0.004	-7.1	3400	0.008	-01.4	Ecl. $R 0.81^{\mathrm{m}} 9886^{\text {d }}$
ε Lep	04.6	-22 24	3.21	+1.46	K5 III	0.006	-0.4	170	0.077	$+01.0$	
η Aur	05.1	+41 13	3.17	-0.18	B3 V	0.013	-2.1	370	0.077	$+07.4$	
β Eri	06.9	-05 06	2.79	+0.13	A3 III	0.042	+0.9	78	0.122	-08	
μ Lep	12.1	-1613	3.29	-0.09	B9 IIIp	0.018	-2.1	390	0.049	$+27.7$	Manganese star
β Ori A	13.6	-08 13	0.14 v	-0.04	B8 Ia	$-.003$	-7.1	900	0.001	$+20.7$	Irr. ? R 0.08-0.20, B6.65 ${ }^{\prime \prime}$ ' Rigel
α Aur	15.2	+45 59	0.05	$+0.80$	G8 III: +F	0.073	-0.6	45	0.435	+30.2	El $23.32-35080^{\text {d }} 43.59^{\text {m }}$ Capella ${ }^{\text {Cam }}$
η Ori $A B$	23.5	-02 24	3.32 v	-0.18	B0.5 V	0.004	-3.7	940	0.008	+19.8	Ecl. $R 3.32-3.50,8.0^{\text {d }}, A 3.59^{\mathrm{m}} B 4.98^{\mathrm{m}} 1^{\prime \prime}$
γ Ori	24.0	+0620	1.64	-0.23	B2 III	0.026	-4.2	470	0.015	$+18.2$	Bellatrix
β Tau	25.0	+28 36	1.65	-0.13	B7 III	0.018	-3.2	300	0.178	$+08.0$	Elnath
β Lep A	27.4	-20 47	2.81	+0.82	G5 III	0.014	+0.1	113	0.090	-13.5	B 9.4 ${ }^{\mathrm{m}} 3^{\prime \prime}$
δ Ori A	31.0	-00 19	2.20 v	-0.20	O9.5 II	0.004	-6.1	1500	0.002	$+22.0$	Ecl. R 2.20-2.35 5.7 ${ }^{\text {d }}$, B 6.74 ${ }^{\mathrm{m}} 53^{\prime \prime}$
α Lep	31.8	-1751	2.58	$+0.22$	$\mathrm{F} 0 \quad \mathrm{Ib}$	0.002	-4.6	900	0.006	$+24.7$	
λ Ori $A B$	34.1	+09 55	3.40	-0.18	O8	0.006	-5.1	1800	0.006	$+33.5$	$A 3.56^{\mathrm{m}}$ B 5.54 ${ }^{\mathrm{m}} 4^{\prime \prime}$ C ${ }^{\text {c }} 10.92^{\mathrm{m}} 29^{\prime \prime}$
1 Ori $A B$	34.5	-05 56	2.76	-0.24	O9 III	0.021	-6.1	2000	0.005	$+27.6$	$A 2.78^{\mathrm{m}}$ B $7.31^{\mathrm{m}} 11^{\prime \prime}$
ε Ori	35.2	-01 13	1.70	-0.19	B0 Ia	$-.007$	-6.8	1600	0.000	$+26.1$	Alnilam
ζ Tau	36.5	+2108	3.07:	-0.13:	B2 III:p	$-.002$	-4.2	940	0.023	$+22.8$	Shell star
${ }_{\alpha} \operatorname{Col} A$	39.0	-34 05	2.64	-0.11	B8 $5 \quad V e$	$-.005$	-0.6	140	0.026	+35	$B 12^{\mathrm{m}} 12^{\prime \prime}$ Phact
ζ Ori $A B$	39.7	-0157	1.79	-0.22	O9.5 Ib	0.022	-6.6	1600	0.004	+18.1	A 1.91^{m} B4.05 ${ }^{\mathrm{m}} 3^{\prime \prime}$ Alnitak
κ Ori	46.8	-09 41	2.06	-0.17	B0.5 Ia	0.009	-6.9	2100	0.004	+20.6	
$\beta \mathrm{Col}$	50.2	-35 47	3.12	+1.16	K2 III	0.023	$+0.0$	140	0.402	+89.4	
α Ori	54.0	+0724	0.41v	+1.87:	M2 Iab	0.005	-5.6	520	0.028	$+21.0$	Irr. ? R 0.06:-0.75:m Betelgeuse
β Aur	58.0	+4457	1.86	+0.06	A2 V	0.037	-0.3	88	0.051	-18.2	Menkalinan
θ Aur $A B$	58.4	+37 13	2.65 v	-0.07	B9.5pv	0.018	+0.1	108	0.097	$+29.3$	Silicon star $A 2.67^{\mathrm{m}}$ B $7.14^{\mathrm{m}} 3^{\prime \prime}$, var., $1.4^{\text {d }}$
η Gem A	0613.7	+2231	3.33 v	$+1.58$	M3 III	0.013	-0.6	200	0.066	+19.0	$R 0.27^{\mathrm{m}}, B 6.70^{\mathrm{m}} 1^{\prime \prime}$
$\zeta \mathrm{CMa}$	19.6	-3003	3.04	-0.18	B2.5 V	$-.003$	-2.4	390	0.004	$+32.2$	
$\mu \mathrm{Gem}$	21.7	+2232	2.92 v	$+1.63$	M3 III	0.021	-0.6	160	0.129	$+54.8$	$R 0.14^{\text {m }}$
β CMa	21.8	-1756	1.96 v	-0.24	B1 II-III	0.014	-4.8	750	0.004	+33.7	β CMa type variable, $0.25^{\text {d }}$
α Car	23.5	-52 41	-0.72	+0.16	F0 Ib-II	0.018	-3.1	98	0.025	$+20.5$	Canopus
γ Gem	36.6	+16 25	1.93	0.00	A0 IV	0.031	-0.6	105	0.066	-12.5	Alhena

Star	R.A. 19	80 Dec.	V	$\boldsymbol{B}-\boldsymbol{V}$	Type	π	$\mathrm{M}_{\boldsymbol{V}}$	D	μ	R	
	h m	-				"		1.y.	'	km/sec	
v Pup	0637.1	-4311	3.19	-0.10	$B 7 \quad I I I$		-3.2	620	0.010	+28.2	
ε Gem	42.7	+2509	3.00	+1.39	G8 Ib	0.009	-4.6	1080	0.016	+09.9	
ξ Gem	44.2	+1255	3.38	+0.43	F5 IV	0.051	$+1.9$	64	0.224	$+25.3$	
$\alpha \mathrm{CMa} A$	44.2	-16 42	-1.47	+0.01	A1 V	0.375	$+1.45$	8.7	1.324	-07.6	B $8.66^{\mathrm{m}} 1980.0$: $10.0^{\prime \prime}$, P.A. $46^{\circ} \quad$ Sirius
α Pic	48.2	-61 55	3.27	+0.21	A7 Vn		+2.1	57	0.272	$+20.6$	
τ Pup	49.5	-50 36	2.92	+1.21	K0 III		+0.1	124	0.079	$+36.4$	
ε СМа A	57.8	-2857	1.48:	-0.18:	B2 II		-5.1	680	0.004	$+27.4$	$B 7.5{ }^{\text {m }} 8^{\prime \prime} \quad$ Adhara
0^{2} CMa	0702.2	-23 48	3.02	-0.09	B3 Ia		-7.1	3400	0.000	+48.4	
$\delta \mathrm{CMa}$	07.6	-26 22	1.85	+0.65	F8 Ia	$-.018$	-7.1	2100	0.005	+34.3	
L_{2} Pup	12.9	-44.37			(gM5e)	0.016	-3.1	650	0.342	$+53.0$	LP, R 3.4-6.2, $141{ }^{\text {d }}$
π Pup	16.5	-37 04	2.70:	+1.63:	(gK4)	0.023	-0.3	140	0.008	+15.8	
$\eta \mathrm{CMa}$	23.3	-29 15	2.46	-0.08	B5 Ia		-7.1	2700	0.008	+41.1	
$\beta \mathrm{CMi}$	26.2	+08 20	2.91	-0.09	B7 V	0.020	-1.1	210	0.065	+22	
$\sigma \operatorname{Pup} A$	28.6	-4315	3.24	+1.49	K5 III	0.013	-0.4	180	0.195	+88.1	$B 9.4^{\mathrm{m}} 22^{\prime \prime}$
α Gem A	33.3	+3156	1.97	+0.00:	A1 V	0.072	$+1.3$	45	0.199	+06.0	\} $2^{\prime \prime}, B-V+0.02, C 9.08 \mathrm{v}^{\mathrm{m}} 73^{\prime \prime}$ Castor
α Gem B	33.3	+3156	2.95	+0.07:	A5m	0.072	+2.3	45	0.199	-01.2	$2^{2}, B-V+0.02, C 9.08 \mathrm{~V}^{\prime \prime}$ Castor
α CMi A	38.2	+05 17	0.37	+0.41	F5 IV-V	0.288	+2.7	11.3	1.250	-03.2	B 10.7 ${ }^{\text {m }}{ }^{\prime \prime}$ Procyon
β Gem	44.1	+28 05	1.16	$+1.02$	K0 III	0.093	+1.0	35	0.625	$+03.3$	Pollux
ξ Pup	48.4	-24 50	3.34	+1.23	G3 Ib	$-.003$	-4.6	1240	0.005	$+02.7$	
χ Car	56.2	-5256	3.48	-0.18	B3 IVp		-2.1	430	0.039	$+19.1$	
ζ Pup	0802.9	-39.57	2.23	-0.26	O5f		-7.1	2400	0.033	-24	
ρ Pup	06.7	-24 15	2.80 v	+0.42	F6 IIp	0.031	+0.3:	105:	0.098	+46.6	Var. $R 2.72-2.87,0.14^{\text {d }}$
γ Vel A	08.9	-47 18	1.83	-0.26	WC8		-4.1	520	0.011	+35	B $4.31^{\text {m }} 41^{\prime \prime}$
ε Car	22.1	-59 26	1.90:	+1.30:	K3:III + B2:v		-3.1:	340	0.030	+11.5	Avior
- UMa A	28.6	+6047	3.37	+0.83	G5 III	0.004	+0.1	150	0.171	$+19.8$	$B 15^{\mathrm{m}} 7^{\prime \prime}$
$\delta \mathrm{Vel} A B$	44.2	-54 38	1.95	+0.05	A2 V	0.043	+0.2	76	0.086	+02.2	$A 2.0^{\mathrm{m}}$ B 5.1 ${ }^{\mathrm{m}} 3^{\prime \prime}$ CD 10 ${ }^{\mathrm{m}} 69^{\prime \prime}$
ε Hya $A B C$	45.7	+0630	3.39	+0.68	G0 comp.	0.010	+0.6	140	0.198	+36.4	$A 3.7^{\mathrm{m}}$ B5.2 ${ }^{\mathrm{m}} 0.2^{\prime \prime} 15^{\mathrm{y}}, C 6.8^{\mathrm{m}} 3^{\prime \prime} \mathrm{D} 12^{\mathrm{m}} 20^{\prime \prime}$
$\zeta \mathrm{Hya}$	54.3	+06 02	3.11	$+1.00$	K0 II-III	0.029	-1.1	220	0.101	+22.8	
1 UMa A	57.9	+48 07	3.12	+0.19	A7 V	0.066	+2.2	49	0.505	+12.2	$B C 10.8^{\mathrm{m}} 4^{\prime \prime}$

Star	R.A. 19	80 Dec.	V	$B-V$		Type	π	\mathbf{M}_{V}	D	μ	R	
	h m	- ,					"		1.y.	"	km/sec	
$\lambda \mathrm{Vel}$	0907.3	-4321	2.24	+1.64:	K4	Ib-IIa	0.015	-4.6	750	0.026	+18.4	Suhail
a Car	10.5	-5852	3.43	-0.17	B2	IV-V		-2.9	590	0.028	$+23.3$	
β Car	13.0	-69 38	1.67	+0.01	A1	III	0.038	-0.4	86	0.183	-05	Miaplacidus
1 Car	16.6	-59 11	2.25	+0.17	A9	Ib		-4.6	750	0.019	+13.3	
α Lyn	19.9	+34 29	3.17	+1.54	M0	III	0.021	-0.5	180	0.217	$+37.6$	
κ Vel	21.5	-54 56	2.49	-0.20	B2	IV-V	0.007	-3.4	470	0.012	+21.9	
α Hya	26.6	-08 35	1.98	+1.44	K4	III	0.017	-0.3	94	0.034	-04.3	Alphard
N Vel	30.6	-56 57	3.19	+1.56	K5	III	0.015	-0.4	170	0.036	-13.9	
θ UMa A	31.5	+5146	3.12	$+0.46$	F6	IV	0.052	+1.8	63	1.094	+15.4	$B 14^{\mathrm{m}} 5^{\prime \prime}$
ε Leo	44.7	+23 51	2.99	+0.81	G0	II	0.002	-2.1	340	0.048	+05.0	
1 Car	44.7	-6226	4.1		G8	Ia	0.019	-5.5	2700	0.016	+04.0	Cep. max. 3.4^{m} min. $4.8^{\mathrm{m}}, 35.52^{\text {d }}$
ט Car $A B$	46.6	-64 59	2.95	+0.26	A8	Ib	0.020	-2.1	340	0.012	$+13.6$	$A 3.02^{\mathrm{m}}$ B $6.03^{\mathrm{m}} 5^{\prime \prime}$
α Leo A	1007.3	+1204	1.36	-0.11	B7	V	0.039	-0.7	84	0.248	+03.5	B8.1 ${ }^{\text {m }} 177^{\prime \prime}$ Regulus
ω Car	13.2	-69 56	3.33	-0.08	B8	III		-1.5	300	0.029	+04	
ζ Leo	15.7	+23 31	3.46	$+0.30$	F0	III	0.009	+0.5	130	0.023	-15.0	
λ UMa	15.9	+4301	3.45	+0.03	A2	IV	$-.010$	+0.1	150	0.170	+18.3	
q Car	16.4	-61 14	3.41 v	$+1.55$	K3	Ib-II	0.018	-4.6	1300	0.023	+08.6	Var. R 3.38-3.44
γ Leo $A B$	18.8	+1957	1.99	+1.13	K0	IIIp	0.019	+0.1	90	0.350	-36.6	$A 2.29^{\text {m }}$ B 3.54 ${ }^{\text {m }} 4^{\prime \prime}$
$\boldsymbol{\mu}$ UMa	21.1	+4136	3.05	+1.55	M0	III	0.031	+0.5	105	0.086	-20.5	
p Car	31.4	-61 35	3.30 v	-0.11	B4	Vne		-2.3	430	0.021	+26.0	Var. R 3.22-3.39
θ Car	42.2	-64 17	2.74	-0.22	B0.5	Vp		-4.0	710	0.018	+24	
$\mu \mathrm{Vel} A B$	45.9	-49 19	2.67	+0.89	G5	III		+0.1	108	0.085	+06.9	$A 2.7^{\mathrm{m}}$ B $7.2^{\mathrm{m}} 1^{\prime \prime}$
v Hya	48.6	-1605	3.12	+1.25	K3	III	0.022	-0.2	150	0.221	-01.0	
β UMa	1100.6	+56 30	2.37	-0.03	A1	V	0.042	+0.5	78	0.087	-12.0	Merak
α UMa $A B$	02.5	+6152	1.81	+1.06	K0	III	0.031	-0.7	105	0.138	-08.9	A 1.88^{m} B 4.82 ${ }^{\mathrm{m}} 1^{\prime \prime} \quad$ Dubhe
ψ UMa	08.6	+44 36	3.00	+1.14	K1	III		+0.0	130	0.072	-03.8	
δ Leo	13.0	+20 38	2.57	+0.13	A4	V	0.040	+0.6	82	0.201	-20.6	
θ Leo	13.2	+1533	3.34	0.00	A2	V	0.019	+1.1	90	0.104	+07.8	
λ Cen	34.9	-62 54	3.15	-0.05	B9	III		-2.1	370	0.039	-01	
β Leo	48.0	+1441	2.14	+0.09	A3	V	0.076	+1.5	43	0.511	-01	Denebola

Star	R.A. 19	80 Dec.	V	$B-V$	Type	π	M_{V}	D	μ	R	
	$\mathrm{h} \quad \mathrm{m}$					"		1.y.	"	km/sec	
γ UMa	1152.7	$+5349$	2.44	0.00	A0 V	0.020	+0.2	90	0.094	-12.9	Phecda
δ Cen	1207.3	-50 36	2.59v	-0.11:	B2 IVne		-2.7	370	0.042	+09	Var. R 2.56-2.62
ε Crv	09.1	-2230	3.00	+1.33	K3 III		-0.2	140	0.069	+04.9	Var. R 2.56-2.62
δ Cru	14.1	-58 38	2.81 v	-0.23	B2 IV		-3.4	570	0.041	$+26.4$	Var R 2.78-2.84
δ UMa	14.4	$+5709$	3.30	$+0.07$	A3 V	0.052	+1.9	63	0.106	-12.9	Megrez
γ Crv	14.8	-1725	2.59	-0.10	B8 III		-3.1	450	0.163	-04.2	Gienah
α Cru A	25.4	-62 59	1.39	-0.25	B0.5 IV		-3.9	370	0.042	-11.2	
α Cru B	25.4	-62 59	1.86	-0.25	B1 V		-3.4	370	0.042	-00.6	$\}^{\prime \prime}, C 4.90^{\mathrm{m}} 89^{\prime \prime} \quad$ Acrux
δ Crv A	28.8	-1624	2.97	-0.04	B9.5 V:n	0.018	+0.1	124	0.255	+09	B $8.26^{\text {m }} 24^{\prime \prime}$
γ Cru	30.1	-5700	1.69	+1.55	M4 III		-2.5	220	0.274	$+21.3$	Gacrux
β Crv	33.3	-23 17	2.66	$+0.89$	G5 III	0.027	+0.1	108	0.059	-07.7	
α Mus	36.0	-69 01	2.70 v	-0.20	B2 IV-V		-2.9	430	0.037	$+10$	Var. R 2.66-2.73
γ Cen $A B$	40.5	-48 51	2.17	$+0.00$	A0 IV:	0.006	-0.5	160	0.197	-07.5	A 2.9^{m} B $2.9^{\mathrm{m}} 2^{\prime \prime}$
γ Vir $A B$	40.6	-01 20	2.76	+0.34	F0 V	0.101	$+3.5$	32	0.567	-19.7	$A 3.50^{\text {m }}$ B $3.52^{\mathrm{m}} 4^{\prime \prime}$
β Mus $A B$	45.0	-6800	3.06	-0.17:	B2 V		-2.1	470	0.041	$+42$	$A 3.7^{\mathrm{m}}$ B $4.0^{\mathrm{m}} 1^{\prime \prime}$
β Cru	46.6	-59 35	1.28 v	-0.25	B0.5 III		-4.6	490	0.049	$+20.0$	β CMa var., $0.25^{\text {d }}$: Beta Crucis
ε UMa	53.2	+5604	1.79 v	-0.03	A0pv	0.008	+0.2	68	0.113	-09.3	Chromium-europium star Alioth
$\alpha \mathrm{CVn} A$	55.1	+38 26	2.90 v	-0.10	B9.5pv	0.023	+0.1	118	0.238	-03.3	Silicon-europium star. $B 5.61^{\mathrm{m}} 20^{\prime \prime}$
ε Vir	1301.2	+1105	2.83	+0.93	G9 II-III	0.036	+0.6	90	0.274	-14.0	Caroli
γ Hya	17.8	-2304	2.98	+0.92	G8 III	0.021	+0.3	113	0.086	-05.4	
1 Cen	19.5	-36 36	2.76	+0.05	A2 V	0.046	+1.1	71	0.351	+00.1	
$\zeta \mathrm{UMa} A$	23.1	$+5502$	2.26	+0.02	A2 V	0.037	+0.1	88	0.127	-05.6	B $3.94{ }^{\text {m }} 14^{\prime \prime}$ (Alcor, 708 ${ }^{\prime \prime}$) Mizar
α Vir	24.1	-1103	0.91v	-0.24	B1 V	0.021	-3.3	220	0.054	+01.0	Ecl. R 0.91-1.01, 4.0 ${ }^{\text {d }}$, β CMa var., Spica
ζ Vir	33.7	-00 30	3.37	$+0.10$	A3 Vn	0.035	+1.1	93	0.287	-13.2	
ε Cen	38.6	-53 22	2.33 v	-0.23	B1 III		-3.9	570	0.033	+05.6	β CMa var., $0.17{ }^{\text {d }}$
$\eta \mathrm{UMa}$	46.8	+49 25	1.87	-0.20	B3 V	0.004	-2.1	210	0.123	-10.9	Alkaid
v Cen	48.3	-41 35	3.42	-0.22	B2 IV		-3.4	750	0.037	+09.0	
μ Cen	48.4	-42 23	3.12v	-0.13:	B2 V:pne		-2.7	470	0.032	+12.6	Var. R 3.08-3.17
η Boo	53.8	+1830	2.69	$+0.59$	G0 IV	0.102	+2.7	32	0.370	+01.0	
ζ Cen	54.3	-47 12	2.56	-0.23:	B2.5 IV		-3.4	520	0.076	+06.5	

Star	R.A. 1980 Dec.		V	$\boldsymbol{B}-\boldsymbol{V}$		Type	π	$\mathrm{M}_{\boldsymbol{V}}$	D	μ	R	
	h m	-					\%		1.y.	"	km/sec	
β Cen $A B$	1402.4	-60 16	0.63 v	-0.23:	B1	III	0.016	-5.2	490	0.035	-12	A 0.7^{m} B 3.9 ${ }^{\mathrm{m}} 1^{\prime \prime}$, β CMa var. Hadar
π Hya	05.3	-26 35	3.25	+1.13	K2	III	0.039	+1.2	84	0.156	$+27.2$	
θ Cen	05.5	-36 17	2.04	+1.03	K0	III-IV	0.059	$+0.9$	55	0.738	+01.3	Menkent
α Boo	14.8	+19 17	-0.06	+1.23	K2	IIIp	0.090	-0.3	36	2.284	-05.2	Arcturus
γ Boo	31.3	+ 3824	3.05	+0.19	A7	III	0.016	$+0.2$	118	0.186	-35.5	
η Cen	34.2	-4204	2.39 v	-0.21	B1.5	V:ne		-3.0	390	0.049	-00.2	Var, R 2.33-2.45
α Cen A	38.4	-60 46	0.01	+0.68	G2	V	$\} .751$	+4.39 +5.8	4.3	3.676	-24.6	\} 22" Rigil Kentaurus
α Cen B	38.4	-60 46	1.40:	+0.73:	K4	V	$\} \cdot 751$	$+5.8$	4.3	3.676	-20.7	
α Lup	40.7	-47 19	2.32 v	-0.22		V		-3.3	430	0.033	+07.3	β CMa var., $0.26^{\text {d }}$
$\alpha \operatorname{Cir} A B$	40.9	-64 53	3.18	+0.25	A8	p	0.049	$+1.6$	66	0.308	$+07.4$	Strontium star. A 3.19^{m} B $8.61^{\mathrm{m}} 16^{\prime \prime}$
ε Boo $A B$	44.1	$+2709$	2.37	+0.96	K1:	III:+A	0.013	+0.0	103	0.051	-16.5	$A 2.47^{\mathrm{m}}$ B 5.04m ${ }^{\prime \prime}$
$\alpha \operatorname{Lib} A$	49.8	-1554	2.76	+0.15	A3m		0.049	+1.2	66	0.130	-10	$B 5.15^{\mathrm{m}} 231{ }^{\prime \prime} \quad$ Zubenelgenubi
β UMi	50.8	+74 14	2.07	+1.47	K4	III	0.031	-0.5	105	0.033	+16.9	Kochab
β Lup	57.3	-43 03	2.69	-0.23	B2	IV		-3.4	540	0.066	-00.3	
κ Cen	57.8	-4201	3.15	-0.21		V		-2.7	470	0.033	+09.1	
$\boldsymbol{\beta}$ Boo	1501.2	+4028	3.48	+0.95	G8	III	0.022	+0.3	140	0.059	-19.9	
σ Lib	02.9	-2512	3.31	+1.65	M4	III	0.056	+2.0:	58:	0.089	-04.3	
$\zeta \operatorname{Lup} A$	10.8	-5201	3.42	+0.90:	K0	III	0.036	+1.2	90	0.135	-09.7	$B 7.8^{\mathrm{m}} 71^{\prime \prime}$
δ Boo A	14.7	+3324	3.47	+0.95	G8	III	0.028	+0.3	140	0.148	-12.2	B $7.84{ }^{\text {m }} 105^{\prime \prime}$
$\beta \mathrm{Lib}$	15.9	-09 18	2.61	-0.11	B8	V	$-.012$	-0.6	140	0.101	-35.2	
$\gamma \mathrm{Tr}$ A	17.1	-68 36	2.89	+0.01	A0	IV	0.005	+0.2	113	0.067	-06	Europium star
δ Lup	20.1	-40 34	3.21 v	-0.23	B2	IV		-3.4	680	0.032	+02	β CMa var., 0.165 ${ }^{\text {d }}$
γ UMi	20.8	+7154	3.04	+0.06	A3	II-III	$-.005$	-1.5	270	0.026	-03.9	
1 Dra	24.5	+59 02	3.28	+1.18	K2	III	0.032	+0.8	102	0.012	-11.0	
$\gamma \operatorname{Lup} A B$	33.8	-41 06	2.80	-0.22	B2	Vn		-2.7	570	0.037	+06	$A 3.5^{\mathrm{m}}$ B 3.7 ${ }^{\mathrm{m}} 1^{\prime \prime}$
$\alpha \mathrm{CrB}$	33.8	+26 47	2.23 v	-0.02	A0	V	0.043	+0.4	76	0.154	+01.7	Ecl. R 0.11 ${ }^{\mathrm{m}}, 17.4^{\mathrm{d}}$ Alphecca
α Ser	43.3	+06 29	2.65	+1.17	K2	III	0.046	+1.0	71	0.139	+02.9	
β TrA	53.4	-6322	2.84	+0.28:	F0	IV	0.078	+2.3	42	0.448	-00.3	
π Sco	57.6	-26 04	2.92	-0.19	B1	V	0.005	-3.3	570	0.034	-03	
$\eta \operatorname{Lup} A B$	58.8	-38 21	3.40	-0.23	B2	V		-2.7	570	0.042	$+07$	$A 3.47^{\mathrm{m}}$ B $7.70^{\mathrm{m}} 15^{\prime \prime}$
δ Sco	59.2	-22 34	2.34	-0.13	B0	V		-4.0	590	0.032	-14	Dschubba

Star	R.A. 1980 Dec.		V	$\boldsymbol{B}-\boldsymbol{V}$		Type	π	$\mathbf{M}_{\boldsymbol{V}}$	D	μ	R		
	$\mathrm{h} \quad \mathrm{m}$	${ }^{\circ}$ '					/		1.y.	"			
$\beta \operatorname{Sco} A B$	1604.3	-19 45	2.65	-0.09	B0.5	V	0.004	-3.7	650	0.027	$\left.\begin{array}{r} \mathrm{km} / \mathrm{sec} \\ -01.0 \end{array} \right\rvert\,$	$A 2.78{ }^{\mathrm{m}}$ B $5.04^{\mathrm{m}} 1^{\prime \prime}$, $C 4.9$	
$\delta \mathrm{Oph}$	13.3	-03 37	2.72	+1.59	M1	III	0.029	-0.5	140	0.156	-01.0	A $2.78^{\text { }}$ B $5.04^{\mathrm{m}} 1^{\prime}, C 4$.	14
ε Oph	17.2	-04 39	3.22	+0.97	G9	III	0.036	+1.0	140	0.089	-10.9		
σ Sco A	20.0	-25 32	2.86 v	+0.14	B1	III		-4.4	570	0.030	+02.5	β CMa $R 2.82-2.90,0.25^{\text {d }}$	$8.49^{\text {m } 20}{ }^{\prime \prime}$
η Dra A	23.7	+6133	2.71	+0.92	G8	III	0.043	+0.9	76	0.062	-14.3	$B 8.7^{\mathrm{m}} 6^{\prime \prime}$	
${ }_{\alpha}{ }^{\text {S Sco }} \boldsymbol{A}$	28.2	-26 23	0.92 v	+1.84	M1	$\mathrm{Ib}+\mathrm{B}$	0.019	-5.1	520	0.029	-03.2	$A 0.86^{\mathrm{m}}-1.02^{\mathrm{m}}$ B $5.07^{\mathrm{m}} 3^{\prime \prime}$	Antares
β Her	29.3	+21 32	2.78	+0.92	G8	III	0.017	+0.3	103	0.105	-25.5		
τ Sco	34.6	-2810	2.85	-0.25	B0	V		-4.0	750	0.030	-00.7		
ζ Oph	36.1	-1031	2.57	+0.00	O9. 5	V	$-.007$	-4.3	520	0.022	-19		
ζ Her $\boldsymbol{A B}$	40.6	+3138	2.81	$+0.64$	G0	IV	0.110	+3.1	30	0.608	-69.9	$A 2.91{ }^{\text {m }}$ B $5.46^{\mathrm{m}} 1^{\prime \prime}$	
η Her	42.2	+3858	3.46	+0.92	G7	III-IV	0.053	+2.1	62	0.097	+08.3		
$\alpha \operatorname{TrA}$	46.5	-68 60	1.93	+1.43	K2	Ib	0.024	-0.1	82	0.044	-03.6		Atria
ε Sco	48.8	-34 16	2.28	+1.16	K2.5	III	0.049	+0.7	66	0.664	-02.5		
μ^{1} Sco	50.5	-3801	2.99v	-0.20	B1.5	V		-3.0	520	0.033	-25	Ecl. $R 2.99-3.09,1.4{ }^{\text {d }}$	
κ Oph	56.8	+09 25	3.18	$+1.15$	K2	III	0.026	-0.1	150	0.293	-55.6		
ζ Ara	56.9	-5557	3.12	+1.61	K4	III	0.036	+0.9	90	0.042	-06.0		
ζ Dra	1708.7	+6544	3.20	-0.12	B6	III	0.017	-3.2	620	0.026	-14.1		
η Oph $A B$	09.3	-15 42	2.43	$+0.06$	A2.5	V	0.047	+1.4	69	0.097	-00.9	$A 3.0^{\mathrm{m}}$ B 3.4 ${ }^{\mathrm{m}} 1^{\prime \prime}$	Sabik
η Sco	10.7	-4313	3.33	$+0.38$	F2	III	0.063	+2.3	52	0.293	-28.4		
α Her $A B$	13.8	+1424	3.10 v	+1.41	M5	II	$-.007$	-2.3	410	0.032	-33.1	$A 3.2{ }^{\mathrm{m}} \pm 0.3 B 5.4^{\mathrm{m}} 5^{\prime \prime}$	Ras-Algeth
δ Her	14.2	+2451	3.14	+0.09	A3	IV	0.034	+0.8	96	0.164	-41		
π Her	14.3	+3649	3.13	+1.43	K3	II	0.020	-2.4	410	0.029	-25.7		
θ Oph	20.8	-24 59	3.29v	-0.22	B2	IV		-3.4	710	0.025	-03.6	β CMa var., 0.14 ${ }^{\text {d }}$	
β Ara	23.6	-5531	2.90:	+1.45:	K1.5	Ib	0.026	-4.6	1030	0.035	-00.4		
γ Ara A	23.8	-56 22	3.32	-0.16:	B1	Ib		-3.3	680	0.017	-04	$B 10^{\mathrm{m}} 18^{\prime \prime}$	
v Sco	29.4	-37 16	2.71	-0.22	B2	IV		-3.4	540	0.039	$+07$		
β Dra A	29.9	+5220	2.77	$+0.96$	G2	II	0.009	-2.1	310	0.019	-20.0	B 11.49 ${ }^{\text {m }} 4^{\prime \prime}$	
α Ara	30.3	-49 52	2.95	-0.18:	B2.5	V		-2.4	390	0.083	-02		
λ Sco	32.3	-37 05	1.60v	-0.24	B1	V		-3.3	310	0.031	00	β CMa var., 0.21 ${ }^{\text {d }}$	Shaula
α Oph	34.0	+1235	2.09	+0.16	A5	III	0.056	+0.8	58	0.260	$+12.7$		Rasalhague
θ Sco	35.9	-42 59	1.86	+0.39	FO	$I b$	0.020	-4.6	650	0.012	+01.4		

Star	R.A. 1980 Dec.		V	$B-V$	Type	π	$\mathbf{M}_{\boldsymbol{V}}$	D	μ	R	
	h m					"		1.9.	"	km/sec	
κ Sco	1741.1	-39 01	2.39 v	-0.21	B1.5 III		-3.4	470	0.031	-10	β CMa var., 0.20 ${ }^{\text {d }}$
β Oph	42.5	+04 35	2.77	+1.16	K2 III	0.023	-0.1	124	0.160	-12.0	
μ Her A	45.7	$+2745$	3.42	+0.75	G5 IV	0.108	+3.6	30	0.811	-15.6	$B C$ 9.78 ${ }^{\text {m }} 33^{\prime \prime}$
ι^{1} Sco	46.2	-4006	3.02	+0.49	F2 Ia	0.013	-7.1	3400	0.004	-27.6	
G Sco	48.4	-3702	3.21	+1.18	K2 III	0.032	+0.7	102	0.064	+24.7	
γ Dra	56.1	+5129	2.21	+1.52	K5 III	0.017	-0.4	108	0.026	-27.6	Eltanin
v Oph	58.0	-09 47	3.32	+1.00	G9 III	0.015	+0.2	140	0.118	+12.4	
$\boldsymbol{\gamma} \mathrm{Sgr}$	1804.5	-3026	2.97	$+1.00$	K0 III	0.018	+0.1	124	0.200	+22.1	
$\eta \operatorname{Sgr} A$	16.3	-36 47	3.12	+1.55	M3.5 III	0.038	+1.1:	86:	0.218	+00.5	$B 10^{m} 4^{\prime \prime}$
$\delta \mathrm{Sgr}$	19.7	-29 50	2.71	+1.39	K2 III	0.039	+0.7	84	0.050	-20.0	
η Ser	20.2	-02 54	3.23	+0.94	K0 III-IV	0.054	+1.9	60	0.894	+08.9	
$\varepsilon \mathrm{Sgr}$	22.9	-34 24	1.81	-0.02	B9.5 III	0.015	-1.1	124	0.135	-11	Kaus Australis
$\lambda \mathrm{Sgr}$	26.7	-25 27	2.80	+1.05	K2 III	0.046	$+1.1$	71	0.194	-43.3	
$\alpha \mathrm{Lyr}$	36.2	+38 46	0.04	0.00	A0 V	0.123	+0.5	26.5	0.345	-13.9	Vega
$\phi \mathrm{Sgr}$	44.4	-2701	3.20	-0.11	B8 III		-3.1	590	0.052	$+21.5$	
$\beta \mathrm{Lyr} A$	49.4	+3321	3.38v	-0.05:	Bpe	-. 011	-4.6	1300	0.007	-17.8	Ecl. $R 3.38-4.36,12.9^{\text {d }}$, B $7.8^{\mathrm{m}} 46^{\prime \prime}$
$\sigma_{0} \mathrm{Sgr}$	54.0	-2619	2.12:	-0.21	B2 V		-2.7	300	0.059	-11	Nunki
$\xi^{2} \mathrm{Sgr}$	56.5	-2107	3.51	+1.18:	K1 III	0.006	+0.0	160	0.035	-19.9	
γ Lyr	58.2	$+3240$	3.25	-0.05	B9 III	0.011	-2.1	370	0.007	-21.5	
$\zeta \operatorname{Sgr} A B$	1901.3	-29 54	2.61	+0.08	A2 IV	0.020	+0.1	140	0.020	$+22$	$A 3.3^{\mathrm{m}}$ B $3.5^{\mathrm{m}}<1^{\prime \prime}$
ζ Aql A	04.5	+13 50	2.99	$+0.01$	A0 V:nn	0.036	$+0.8$	90	0.101	-26.3	B $12^{\text {m }} 5^{\prime \prime}$
λ Aql	05.2	-04 55	3.44	-0.10	B9: V:n	0.025	-0.1	160	0.092	-14	
τ Sgr ${ }^{\boldsymbol{S}}$ Sgr $A B C$	05.7	-27 42	3.30	+1.18	K1 III	0.038	+1.2	86	0.261	+45.4	
π Sgr $A B C$	08.6	-2103	2.89	+0.35	F2 II-III	0.016	-0.7	250	0.040	-09.8	$A 3.7^{\mathrm{m}}$ B $3.8^{\mathrm{m}} C 6.0^{\mathrm{m}}<1^{\prime \prime}$
δ δ δ	12.5	+6738	3.06	$+1.00$	G9 III	0.028	+0.2	124	0.130	+24.8	
δ ¢ Aql	24.5	+0304	3.38	+0.31	F0 IV	0.062	$+2.3$	53	0.267	-29.9	
β Cyg A δ Cyg $A B$	29.9	$+2755$	3.07	$+1.12$	K3 II: +B :	0.004	-2.4	410	0.009	-24.0	$B 5.11^{\mathrm{m}} 35^{\prime \prime} \quad$ Albireo
δ Cyg $A B$ γ Aql	44.3	+4505 +1033	2.87	-0.03	B9.5 III	0.021	-1.7	270	0.060	-21	$A 2.91{ }^{\text {m }}$ B $6.44^{\mathrm{m}} 2^{\prime \prime}$
γ Aq1 \sim	45.3 49.8	+1033 +0849	2.72	+1.52	K3 II	0.006	-2.4	340	0.012	-02.1	
α Aql	49.8	+08 49	0.77	+0.22	A7 IV-V	0.198	+2.2	16.5	0.658	-26.3	Altair

Star	R.A.	80 Dec.	V	$B-V$	Type	π	$\mathbf{M}_{\boldsymbol{V}}$	D	μ	\mathbf{R}	
	h m	- ,				"		1.y.	"	km/sec	
θ Aql	2010.3	-0052	3.24	-0.07	B9.5 III	0.008	-1.7	330	0.034	-27.3	
β Cap A	19.9	-1451	3.06	$+0.76$	comp.	0.005	$+0.1$	130	0.039	-18.9	Type gK0: + late B; B $5.97{ }^{\text {m }} 205^{\prime \prime}$
γ Cyg	21.5	$+4011$	2.22	+0.66	F8 Ib	$-.006$	-4.6	750	0.001	-07.5	
α Pav	24.1	-5648	1.95	-0.20	B2.5 V		-2.9	310	0.087	$+02.0$	Peacock
α Ind	36.2	-47 21	3.11	$+1.00$	K0 III	0.039	$+1.1$	84	0.082	-01.1	
α Cyg	40.7	+45 12	1.26	$+0.09$	A2 Ia	$-.013$	-7.1	1600	0.003	-04.6	Deneb
$\boldsymbol{\beta}$ Pav	43.2	-6617	3.45	$+0.16$	A7 III	0.026	-0.1	160	0.046	$+09.8$	
η Cep	44.9	+6145	3.41	$+0.92$	K0 IV	0.071	$+2.7$	46	0.825	-87.3	
ε Cyg	45.4	$+3353$	2.46	$+1.03$	K0 III	0.044	$+0.7$	74	0.481	-10.3	
$\zeta \mathrm{Cyg}$	$21 \quad 12.1$	$+3008$	3.19	$+1.00$	G8 II	0.021	-2.2	390	0.056	+17.4	
α Cep	18.2	+6231	2.44	$+0.24$	A7 IV-V	0.063	$+1.4$	52	0.156	-10	Alderamin
β Cep	28.4	+7028	3.15 v	$-0.22 \mathrm{v}$	B2 III	0.005	-4.2	980	0.014	-03.1	β CMa R 3.14-3.16,0.19 ${ }^{\text {d }}$
β Aqr	30.5	-0540	2.86	$+0.82$	G0 Ib	0.000	-4.6	1030	0.017	$+06.5$	
$\varepsilon \operatorname{Peg} A$	43.2	+09 48	2.38	+1.55	K 2 Ib	$-.005$	-4.6	780	0.025	+04.7	$B 11^{\mathrm{m}} 82^{\prime \prime} \quad$ Enif
δ Cap	45.9	-1613	2.92 v	+0.29	A6m	0.065	$+2.0$	50	0.392	-00.2	Var. R 2.88-2.95
γ Gru	52.7	-3727	3.00	-0.10	B8 III	0.008	-3.1	540	0.102	-02.1	
α Aqr	2204.7	-0025	2.93	$+0.96$	G2 Ib	0.003	-4.6	1080	0.016	$+07.5$	
α Gru	06.9	-47 04	1.76	-0.14	B7 IV	0.051	+0.3:	64:	0.194	$+11.8$	Al Na'ir
ζ Cep	10.1	+5806	3.36	$+1.59$	K1 Ib	0.019	-4.6	1240	0.015	-18.4	
α Tuc	17.1	-60 21	2.87	$+1.40$	K4 III	0.019	$+1.5$	62	0.079	$+42.2$	
$\delta \operatorname{Cep} A$	28.5	+5819	3.96v	+0.66v	F5-G2 Ib	0.005	-4.0	1300	0.012	-16.8	Cep. $R 3.51-4.42,5.4^{\text {d }}, B 6.19^{m} 41^{\prime \prime}$
$\zeta \mathrm{Peg}$	40.5	+1044	3.40	-0.08:	B8 V	$-.004$	-0.6	210	0.077	+07	
$\boldsymbol{\beta}$ Gru	41.5	-46 59	2.17 v	$+1.59$	M5 III	0.003	-2.5	280	0.134	+01.6	Var. R 2.11-2.23
$\eta \mathrm{Peg}$	42.1	$+3007$	2.95	$+0.85$	$\mathrm{G8} \mathrm{II}:+\mathrm{F}$?	$-.002$	-2.2	360	0.027	$+04.3$	
$\delta \mathrm{Aqr}$	53.6	-1556	3.28	$+0.08$	A3 V	0.039	$+1.2$	84	0.047	$+18.0$	
α PsA	56.5	-2944	1.15	$+0.10$	A3 V	0.144	$+2.0$	22.6	0.367	$+06.5$	Fomalhaut
$\boldsymbol{\beta}$ Peg	2302.8	$+2758$	2.5 v	$+1.67$	M2 II-III	0.015	-1.5	210	0.234	+08.7	Var. R 2.4-2.7 Scheat
$\alpha \mathrm{Peg}$	03.8	$+1505$	2.50	-0.03	B9.5 III	0.030	-0.1	109	0.071	-03.5	Markab
γ Cep	38.5	$+7730$	3.20	$+1.02$	K1 IV	0.064	$+2.2$	51	0.168	-42.4	

DOUBLE AND MULTIPLE STARS

By Charles E. Worley

Many stars can be separated into two or more components by use of a telescope. The larger the aperture of the telescope, the closer the stars which can be separated under good seeing conditions. With telescopes of moderate size and average optical quality, and for stars which are not unduly faint or of large magnitude difference, the minimum angular separation is given by 4.6/D, where D is the diameter of the telescope's objective in inches.

The following lists contain some interesting examples of double stars. The first list presents pairs whose orbital motions are very slow. Consequently, their angular separations remain relatively fixed and these pairs are suitable for testing the performance of small telescopes. In the second list are pairs of more general interest, including a number of binaries of short period for which the position angles and separations are changing rapidly.

In both lists the columns give, successively: the star designation in two forms; its right ascension and declination for 1980; the combined visual magnitude of the pair and the individual magnitudes; the apparent separation and position angle for 1981.0; and the period, if known

Many of the components are themselves very close visual or spectroscopic binaries. (Other double stars appear in the tables of Nearest Stars and Brightest Stars. For more information about observing these stars, see the articles by J. Meeus in Sky and Telescope, 41, 21 and 89 (1971) and by C. E. Worley in Sky and Telescope, 22, 73, 140 and 261 (1961); the latter articles have been reprinted by Sky Publishing Corp., 49-50-51 Bay State Road, Cambridge, Mass. 02138 under the title Visual Observing of Double Stars-Ed.)

	Star	A.D.S.	R.A.				$\underset{\text { comb. } \quad \mathbf{A}^{\text {Magnitudes }}}{ } \quad \mathbf{B}$				Sep. .	
λ	Cas	434	00	30.7	$+54$	26	4.9	5.5	5.8	183	0.6	640
α	Psc	1615	02	01.0	+02	40	4.0	4.3	5.3	280	1.7	720
33	Ori	4123	05	30.2	+03	16	5.7	6.0	7.3	27	1.8	100
O5	156	5447	06	46.3	+18	13	6.1	6.8	7.0	241	0.5	1100
Σ	1338	7307	09	19.7	+38	17	5.8	6.5	6.7	256	1.1	400
35	Com	8695	12	52.3	$+21$	21	5.1*	5.2	7.4	164	1.1	500
Σ	2054	10052	16	23.6	+61	44	5.6	6.0	7.2	355	1.1	
ε^{1}	Lyr \dagger	11635	18	43.7	$+39$	38	5.1	5.4	6.5	355	2.7	1200
ε^{2}	Lyr \dagger	11635	18	43.7	$+39$	38	4.4	5.1	5.3	83	2.3	600
π	Aql	12962	19	47.7	$+11$	45	5.6	6.0	6.8	110	1.4	
OE	500	16877	23	36.5	$+44$	20	5.9	6.4	7.1	355	0.5	
η	Cas	671	00	47.7	$+57$	44	3.5*	3.5	7.2	308	12.0	480
Σ	186	1538	01	54.8	$+01$	45	6.0	6.8	6.8	55	1.4	170
γ	And AB	1630	02	02.4	$+42$	16	2.1*	2.1	5.1	64	9.8	61
γ	And BC	1630	02	02.4	+42	16	5.1	5.5	6.3	108	0.6	61
OL	65	2799	03	49.2	$+25$	32	5.2	5.8	6.2	208	0.6	62
α	CMa	5423	06	44.3	-16	40	-1.4	-1.4	8.5	46	10.0	50
α	Gem	6175	07	33.3	$+31$	55	1.6	2.0	2.8	92	2.3	420
ζ	Cnc AB	6650	08	11.1	$+17$	43	5.0	5.6	5.9	273	0.8	60
ζ	Cnc AC	6650	08	11.1	$+17$	43	5.2	5.4	7.3	80	5.9	1150
$\sigma^{\mathbf{2}}$	UMa	7203	09	08.6	$+67$	13	4.8*	4.8	8.2	2	3.3	1100
γ	Leo	7724	10	18.9	+19	57	1.8	2.1	3.4	123	4.3	620
ξ	UMa	8119	11	17.1	$+31$	39	3.8	4.3	4.8	102	2.8	60
$\underset{\gamma}{\gamma}$	Vir	8630	12	40.7	-01	21	2.8	3.5	3.5	296	3.8	170
ζ	Boo	9343	14	40.1	$+13$	49	3.8	4.5	4.5	305	1.1	125
ξ	Boo	9413	14	50.4	+19	12	4.5	4.7	6.8	332 135	7.2	150
ζ	Her	10157	16	40.6	+31	38	2.8	2.9	5.5	135	1.3	35 280
τ	Oph	11005	18	01.9	-08	11	4.7	5.2	5.9	278	1.8	280
70	Oph	11046	18	04.5	+02	32	4.0	4.2	6.0	317	2.3	88 830
δ	Cyg	12880	19	44.4	+45 -05	04	2.9*	2.9 6.4	6.3	233 10	2.4 1.0	830 150
4	Aqr	14360	20	50.4	-05	53	6.0	6.4	7.2 6.4	138	1.0	150
,	Cyg	14787	21	13.9	+37 +28	57 39	3.7 4.5	3.8	6.4	138	0.8 1.8	50 500
μ	Cyg	15270	21	43.2	+28 -00	39 08	4.5 3.6	4.8 4.3	6.1 4.5	299 224	1.8 1.8	500 850
ζ	Aqr	15971	22	27.8	-00	08	3.6 5.8	4.3 6.5	4.5 6.7	224 311	1.8 1.6	850 350
Σ	3050	17149	23	58.5	$+33$	37	5.8	6.5	6.7	311	1.6	350

[^6]
VARIABLE STARS

By Janet Mattei

The systematic observation of variable stars is an area in which an amateur can make a valuable contribution to astronomy. For beginning observers, maps of the fields of four bright variable stars are given below. In each case, the magnitudes (with decimal point omitted) of several suitable comparison stars are given. Using two comparison stars, one brighter, one fainter than the variable, estimate the brightness of the variable in terms of these two stars. Record also the date and time of observation. When a number of observations have been made, a graph of magnitude versus date may be plotted. The shape of this "light curve" depends on the type of variable. Further information about variable star observing may be obtained from the American Association of Variable Star Observers, 187 Concord Ave., Cambridge, Mass. 02138.

In the tables the first column, the Harvard designation of the star, gives the 1900 position: the first four figures give the hours and minutes of R.A., the last two figures give the Dec. in degrees, italicised for southern declinations. The column headed Max. gives the mean maximum magnitude. The Period is in days. The Epoch gives the predicted date of the earliest maximum occurring this year; by adding the period to this epoch other dates of maximum may be found. The list of long-period variables has been prepared by the American Association of Variable Star Observers and includes the variables with maxima brighter than mag. 8.0, and north of Dec. -20°. These variables may reach maximum two or three weeks before or after the listed epoch and may remain at maximum for several weeks. The second table contains stars which are representative of other types of variable. The data are taken from the third edition and the Second Supplement of the third edition of "The General Catalogue of Variable Stars" by Kukarkin and Parenago and for the eclipsing binaries and RR Lyrae variables from Rocznik Astronomiczny Obserwatorium Krakowskiego 1980, International Supplement.

LONG-PERIOD VARIABLE STARS

Variable	$\begin{array}{\|c} \mathrm{Max}_{\mathrm{v}} \\ \mathrm{~m}_{\mathrm{v}} \end{array}$	$\underset{\mathrm{d}}{\mathrm{Per}}$	$\begin{gathered} \text { Epoch } \\ 1981 \end{gathered}$	Variable	$\underset{\mathrm{m}_{\mathrm{v}}}{\operatorname{Max} .}$	$\begin{gathered} \text { Per } \\ \text { d } \end{gathered}$	$\begin{gathered} \text { Epoch } \\ 1981 \end{gathered}$
001755 T Cas	7.8	445		142539 V Boo	7.9	258	June 26
001838 R And	7.0	409	June 30	143227 R Boo	7.2	223	May 15
021143 W And	7.4	397	Apr. 8	151731 S CrB	7.3	361	Jan. 1
021403 o Cet	3.4	332	Aug. 6	154639 V CrB	7.5	358	Sept. 2
022813 U Cet	7.5	235	Apr. 22	154615 R Ser	6.9	357	July 19
023133 R Tri	6.2	266	Mar. 16	160625 RU Her	8.0	484	Oct. 14
043065 T Cam	8.0	374	Nov. 21	162119 U Her	7.5	406	
045514 R Lep	6.8	432	Mar. 23	162112 V Oph	7.5	298	June 27
050953 R Aur	7.7	459	Nov. 9	163266 R Dra	7.6	245	June 24
054920 U Ori	6.3	372	Oct. 7	164715 S Her	7.6	307	May 27
061702 V Mon	7.0	335	Jan. 17	170215 R Oph	7.9	302	Jan. 6
065355 R Lyn	7.9	379	June 25	171723 RS Her	7.9	219	May 26
070122aR Gem	7.1	370	Aug. 7	180531 T Her	8.0	165	Feb. 1
070310 R CMi	8.0	338	Apr. 14	181136 W Lyr	7.9	196	Mar. 9
072708 S CMi	7.5	332	Nov. 3	183308 X Oph	6.8	334	May 24
081112 R Cnc	6.8	362	Dec. 19	190108 R Aql	6.1	300	Jan.
081617 V Cnc	7.9	272	Aug. 26	191017 T Sgr	8.0	392	Oct. 23
084803 S Hya	7.8	257	Aug. 8	191019 R Sgr	7.3	269	Mar. 27
085008 T Hya	7.8	288	Feb. 3	193449 R Cyg	7.5	426	
093934 R LMi	7.1	372	Apr. 16	194048 RT Cyg	7.3	190	June 21
094211 R Leo	5.8	313	June 25	194632χ Cyg	5.2	407	
103769 R UMa	7.5	302	Mar. 31	201647 U Cyg	7.2	465	
121418 R Crv	7.5	317	Mar. 14	204405 T Aqr	7.7	202	June 10
122001 SS Vir	6.8	355	Feb. 21	210868 T Cep	6.0	390	Dec. 24
123160 T UMa	7.7	257	Sept. 3	213753 RU Cyg	8.0	234	May 4
123307 R Vir	6.9	146	Mar. 29	230110 R Peg	7.8	378	Apr. 2
123961 S UMa	7.8	226	Feb. 14	230759 V Cas	7.9	228	Aug. 14
131546 V CVn	6.8	192	Apr. 17	231508 S Peg	8.0	319	Mar. 9
132706 S Vir	7.0	378	Mar. 13	233815 R Aqr	6.5	387	Mar. 27
134440 R CVn	7.7	328	Oct. 12	235350 R Cas	7.0	431	Nov. 4
142584 R Cam	7.9	270	June 15	235715 W Cet	7.6	351	Jan.

OTHER TYPES OF VARIABLE STARS

Variable		$\underset{\mathrm{m}_{\mathrm{v}}}{\mathrm{Max}}$	$\underset{\mathrm{m}_{\mathrm{v}}}{\operatorname{Min}}$	Type	Sp. Cl.	$\underset{\mathrm{d}}{\text { Period }}$	Epoch 1981 E.S.T.
005381	U Cep	6.7	9.8	Ecl.	B8+g	2.49307	Jan. 1.72*
025838	ρ Per	3.3	4.0	Semi R	M4	33-55, 1100	
030140	β Per	2.1	3.3	Ecl.	B8+G	2.86731	
035512	$\lambda \mathrm{Tau}$	3.5	4.0	Ecl.	B3	3.952952	Jan. 3.19*
060822	$\eta \mathrm{Gem}$	3.1	3.9	Semi R	M3	233.4	
061907	T Mon	5.6	6.6	$\delta \mathrm{Cep}$	F7-K1	27.0205	Jan. 16.82
065820	ζ Gem	3.6	4.2	$\delta \mathrm{Cep}$	F7-G3	10.15082	Jan. 3.34
154428	R Cr B	5.8	14.8	R Cr B	cFpep		-
171014	$\alpha \mathrm{Her}$	3.0	4.0	Semi R	M5	50-130, 6 yrs	-
184205	R Sct	5.0 :	7.0:	RVTau	G0e-K0p		
184633	β Lyr	3.4	4.3	Ecl.	B8	12.935306	Jan. 13.41*
192242	RRLyr	6.9	8.0	RR Lyr	A2-F1	0.566867	Jan. 1.17
194700	$\eta \mathrm{Aql}$	3.5	4.3	δ Cep	F6-G4	7.176641	Jan. 5.80
222557	δ Cep	3.5	4.4	δ Cep	F5-G2	5.366341	Jan. 3.22

*Minimum.

BRIEF DESCRIPTION OF VARIABLE TYPES

Variable stars are divided into four main classes: Pulsating and eruptive variables where variability is intrinsic due to physical changes in the star or stellar system; eclipsing binary and rotating stars where variability is extrinsic due to an eclipse of one star by another or the effect of stellar rotation. A brief and general description about the major types in each class is given below.

I. Pulsating Variables

Cepheids: Variables that pulsate with periods from 1 to 70 days. They have high luminosity and the amplitude of light variation ranges from 0.1 to 2 magnitudes. The prototypes of the group are located in open clusters and obey the well known periodluminosity relation. They are of F spectral class at maximum and G to K at minimum. The later the spectral class of a Cepheid the longer is its period. Typical representative: δ Cephei.
RR Lyrae Type: Pulsating, giant variables with periods ranging from 0.05 to 1.2 days with amplitude of light variation between 1 and 2 magnitudes. They are usually of A spectral class. Typical representative: RR Lyrae.
RV Tauri Type: Supergiant variables with characteristic light curve of alternating deep and shallow minima. The periods, defined as the interval between two deep minima, range from 30 to 150 days. The amplitude of light variation may be as much as 3 magnitudes. Many show long term cyclic variation of 500 to 9000 days. Generally the spectral classes range from G to K. Typical representative: R Scuti.
Long period-Mira Ceti variables: Giant variables that vary with amplitudes from 2.5 to 5 magnitudes or more. They have well defined periodicity, ranging from 80 to 1000 days. They show characteristic emission spectra of late spectral classes of M, C, and S. Typical representative: o Ceti (Mira).
Semiregular Variables: Giants and supergiants showing appreciable periodicity accompanied by intervals of irregularities of light variation. The periods range from 30 to 1000 days with amplitudes not more than 1 to 2 magnitudes in general. Typical representative: R Ursae Minoris.
Irregular Variables: Stars that at times show only a trace of periodicity or none at all. Typical representative: RX Leporis.

II. Eruptive Variables

Novae: Close binary systems consisting of a normal star and a white dwarf that increase 7 to 16 magnitudes in brightness in a matter of 1 to several hundreds of days. After the outburst, the star fades slowly until the initial brightness is reached in several years or decades. Near maximum brightness, the spectra is generally similar to A or F giants. Typical representative: CP Puppis (Nova 1942).
Supernovae: Brightness increases 20 or more magnitudes due to a gigantic stellar explosion. The general appearance of the light curve is similar to novae. Typical representative: CM Tauri (Supernova of A.D. 1054 and the central star of the Crab Nebula).
R Coronae Borealis Type: Highly luminous variables that have non-periodic drops in brightness from 1 to 9 magnitudes, due to the formation of "carbon soot" in the stars' atmosphere. The duration of minima varies from a few months to years. Members of this group have F to K and R spectral class. Typical representative: R Coronae Borealis.
U Geminorum Type: Dwarf novae that have long intervals of quiescence at minimum with sudden rises to maximum. Depending upon the star, the amplitude of eruptions range from 2 to 6 magnitudes, and the duration between outbursts ten to thousands of days. Most of these stars are spectroscopic binaries with periods of few hours. Typical representative: SS Cygni.
Z Camelopardalis Type: Variables similar to U Gem stars in their physical and spectroscopic properties. They show cyclic variations interrupted by intervals of constant brightness (stillstands) lasting for several cycles, approximately one third of the way from maximum to minimum. Typical representative: Z Camelopardalis.

III. Eclipsing Binaries

Binary system of stars with the orbital plane lying near the line of sight of the observer. The components periodically eclipse each other, causing decrease in light
in the apparent brightness of the system, as is seen and recorded by the observer. The period of the eclipses coincides with the period of the orbital motion of the components. Typical representative: β Persei (Algol).

IV. Rotating Variables

Rapidly rotating stars, usually close binary systems, which undergo small amplitude changes in light that may be due to dark or bright spots on their stellar surface. Eclipses may also be present in such systems. Typical representative: R Canum Venaticorum.

INTRODUCING SS CYGNI

Each year, in co-operation with the AAVSO, we introduce one or two new variables to our readers. Recent editions of this handbook, for instance, have featured the Orion variables, CY Aqr, Mira, Z UMa, R Sct and R CrB.

This year, we introduce SS Cygni. To many variable star observers, it needs no introduction, as it is one of the most famous variables in the sky. It is an eruptive variable of the U Geminorum type (see opposite). Every few weeks, on the average, it brightens from magnitude 12 to magnitude 8. At minimum, it can be observed with a small telescope. At maximum, it can be observed with binoculars.

Visual observations of SS Cyg have always been worthwhile, but are particularly important now that SS Cyg has been found (from satellite observations) to be an ultraviolet and X-ray emitter. The satellite users depend on visual observers to tell them when the star is bright and active, and therefore worthy of further observation by satellite. The AAVSO particularly needs observations in the first half of the year.

The recent light curve of SS Cyg is shown below, partly to illustrate the typical behaviour of the star, and partly to show off the AAVSO's new computer-plotted light curves. All future AAVSO data will be published in this format. Each dot represents one observation. The outbursts are numbered consecutively since the discovery in 1896, and they are typed according to shape.

For more information on the classification of the outbursts, please see the Variable Star Notes in the JRASC.

AAVSO FINDING CHART FOR SS CYGNI

The chart above was provided by the American Association of Variable Star Observers. SS Cygni is the circled dot. The numbers beside certain stars are the visual magnitudes with the decimal point removed. Charts for SS Cygni showing fainter stars are available from the AAVSO.

THE NEAREST STARS

By Alan H. Batten

The accompanying table lists all the stars known to be within a distance of just over 5 parsecs (or 17 light-years) from the Sun. The table is based on the list published by Prof. P. van de Kamp in the 1971 edition of Annual Reviews of Astronomy and Astrophysics, but has been further revised at his suggestion. There are five systems in this Table not listed by van de Kamp: two (L725-32 and B.D. $44^{\circ} 2051$) have been included for several years now, the other three (G51-15, G208-44 and 45, and G9-38A and B) are all objects for which parallaxes have recently been determined with the 155 cm astrometric reflector of the U.S. Naval Observatory in Flagstaff, Arizona. One disadvantage of updating the list in this way is that it loses some of the homogeneity of van de Kamp's original. As more refined values of the parallaxes become available, the order of some of the stars in the list is likely to be changed, and some now included may be excluded. In particular, the last system in the list, G9-38, is just beyond the limit of 17 light-years. It has been included because it is an interesting system and an example of some of the surprises that may still be in store for us as faint nearby stars are examined with the powerful astrometric reflector. Moreover, its right to inclusion is no more in doubt than those of some other systems, notably Stein 2051 and B.D. $44^{\circ} 2051$, above it in the list. Readers who have earlier issues of the handbook will notice that some stars are now designated by their numbers in familiar catalogues such as the B.D. instead of by older and little used designations. There should be no difficulty in identifying the stars under their new names.

Successive columns of the table give the name of each star, its position for 1980, its annual parallax π, its distance in light years, its spectral type, its proper motion in seconds of arc per year (that is its apparent motion across the sky-nearby stars usually have large proper motions), its total space velocity W in $\mathrm{km} / \mathrm{sec}$, when known, its apparent magnitude V, and its absolute visual magnitude M_{v}. Spectral types have not yet been determined for the newest stars in the list: all of those stars are very red and they will probably be found to be of type M. Luminosity classes have not been given because all the stars are dwarfs or fainter. An e after the spectral type indicates that emission lines are visible in the spectrum; the prefix wd indicates a white dwarf or analogous object. Apparent magnitudes given to two decimals are photoelectric V magnitudes. Those given to one decimal are the best available visual magnitudes. The magnitudes of stars known to be variable are bracketed. A major change from earlier versions of the table is the substitution of the stars' absolute visual magnitudes for their luminosities relative to the Sun. To convert the new quantities to the old, one would have to take into account the bolometric corrections -poorly determined for very red stars-and convert the magnitudes to intensity ratios. The brightest star in the list, Sirius A, is about 23 times the Sun's luminosity, and the faintest, Wolf 359 , is about 50,000 times less luminous than the Sun. Data like proper motion and space velocity are not given separately for the components of multiple systems, unless each component has a somewhat different motion. The space velocities and many of the magnitudes have been taken from Gliese's Catalogue of Nearby Stars, and differ somewhat from the figures published in earlier years.

Measuring the distances of stars is one of the most difficult and important jobs of an observational astronomer. As the earth travels around the sun each year, the positions of the nearer stars, against the background of the more distant ones, changes very slightly. This change is called annual parallax, and even for the nearest star to the sun it is less than the apparent size of a penny at about 4 km distance. Ultimately all our knowledge of distances in the universe depends on our being able to measure these tiny apparent displacements accurately, for a relatively small sample of nearby stars. A graphic way of conveying the immense distances of stars is to express them in light-years. One light-year, about ten million million km , is the distance light travels in one year. The more useful technical unit is a parsec-the distance at which a star would have an annual parallax of one second of arc. One parsec is equal to about 3.27 light years. The distance of a star in parsecs is simply the reciprocal of its annual parallax expressed (as in the table) in seconds of arc.

The list contains 68 stars. Of these, 34 are single (including the Sun, whose planets are not counted); 28 are found in 14 double systems (including the pair G208-44 and 45), and 6 are found in 2 triple systems. In addition, there is some evidence for
unseen companions, that might be intermediate in mass between stars and planets, associated with seven of these stars. Not all astronomers are agreed, however, on the strength of this evidence. Note how nearly all the stars in the list are very faint cool stars of low mass. Highly luminous stars are very rare, and no giants or very hot massive stars are to be found in the solar neighbourhood.

Name	1980				π	D	Sp.	μ	W	V	$M v$
	α		δ								
	h	m				1.y.			km/sec		
$\begin{aligned} & \text { Sun } \\ & \alpha \text { Cen } A \end{aligned}$			-60	46	0.760	4.3	G2	3.68	32	-26.72	$\begin{array}{r}+4.85 \\ \hline 4.39\end{array}$
							K4			1.33	5.73
C		28	-62	36			M5e	3.85	29	11.05	15.45
Barnard's*	17	56	+04	36	. 552	5.9	M5	10.61	140	9.54	13.25
Wolf 359	10	56	+07	10	. 431	7.6	M8e	4.71	54	13.53	16.70
BD + 36 ${ }^{\circ}$ 147 *	11	03	+36	07	. 402	8.1	M2e	4.78 1.33	102	7.50	10.52
Sirius A	6	44	-16	42	. 377	8.6	$\stackrel{\text { A1 }}{\text { wd }}$	1.33	19	-1.46	11.42
Luy.726-8A	1	37	-18	04	. 365	8.9	M5e	3.36	52	12.5	15.3
Lu							M5e		54	(13.0)	(15.8)
Ross 154	18	49	-23	50	345	9.4	M5e	0.72	11	10.6	13.3
Ross 248	23	40	+44	04	. 317	10.3	M6e	1.58	84	12.29	14.80
ε Eri	3	32	-09	32	305	10.7	K2e	0.98	23	3.73	6.15 14.58
Luy 789-6	22	38	-15	28	. 302	10.8	M7e	3.26	79	12.18	14.58
Ross 128	11	47	+00	58	. 301	10.8	M5	1.37	25	11.10	13.49
61 Cyg A	21	06	$+38$	38	. 292	11.2	K5e	5.22	105	5.22	7.55
ε Ind ${ }^{\text {b }}$	22	03	-56	52	291	11.2	K8e	4.69	86	4.68	7.00
Procyon A		39	+05	17	. 287	11.4	F5	1.25	21	0.37	2.66
$\Sigma 2398$ B							wdF			10.7 8.90	12.99
$\Sigma 2398$ A	18	42	+59	36	. 284	11.5	M4	2.28	39	8.90 9.69	11.17 11.96
$\underset{\mathrm{BD}+43^{\circ} 44 \mathrm{~A}}{\text { B }}$	0	18	+43	54	. 282	11.6	M1e	2.89	50	8.07	11.96 10.32
BD $+43^{44 \mathrm{~A}}$							M6e		53	11.04	13.29
CD-36 ${ }^{\circ} 15693$	23	05	-35	59	. 279	11.7	M2e	6.90	118	7.36	9.59
τ Ceti	1	43	-16	03	. 273	11.9	G8p	1.92	36	3.50	5.68
G51-15	8	29	+26	51	. 273	12.0		0.42		14.81	
BD $+5^{\circ} 1668^{*}$	7	27	+05	27 06	. 262	12.2	M5	3.73 1.31	71 52	9.82 11.6	11.94
Luy 725-32	21	116	-17 -38	06 58	. 262	12.5 12.6	M5e M0e	1.31 3.46	51 67	11.6 6.67	13.7 8.75
Kapteyn's	5	11	-44	59	. 256	12.7	M0	8.89	293	8.81	10.85
Krüger 60A	22	27	+57	36	. 254	12.8	M3	0.86	30	9.85	11.87
Ross 614A ${ }^{\text {B }}$							M4.5e			(11.3)	(13.3)
Ross 614A	6	28	-02	48	. 249	13.1	M7e	0.99	30	11.07 14.8	13.05 16.8
BD $-12^{\circ} 4523$	16	30	-12	36	. 249	13.1	M5	1.18	26	10.12	12.10
van Maanen's	0	48	+05	19	. 234	13.9	$w d \mathrm{G}$	2.95	59	12.37	14.22
Wolf 424A	12	33	+09	09	. 229	14.2	M6e	1.75	37	13.16	14.96
- ${ }^{\text {B }}$							M6e			13.4	15.2
$\mathrm{G} 158-27^{\circ}$ $\mathrm{CD}-37^{\circ} 15492$	0	06	-07	38	. 2225			2.06 6.08		13.73 8.63	
$\begin{aligned} & \mathrm{CD}-37^{\circ} 15492 \\ & \mathrm{BD}+50^{\circ} 1725 \end{aligned}$	0 10	10	-37 +49	27 33	. 2225	14.5 15.0	M4	6.08 1.45	130 40	8.63 6.59	10.39 8.27
CD-46 ${ }^{1} 11540$	17	28	-46	53	. 216	15.1	M4	1.13		9.36	11.03
CD-49 ${ }^{1} 13515$	21	32	-49	11	. 214	15.2	M1	0.81	20	8.67	10.32
CD-44 ${ }^{\circ} 1190{ }^{*}$	17	37	-44	17	213	15.3	M5	1.16		11.2	12.8
G208-44	19	53	+44	21	213	15.3		0.75		13.41	15.05
Luy 1159-16	1	59	+13	00	212	15.4	M8e	2.08		12.27	13.90
$\mathrm{BD}+15^{\circ} 2620$	13	44	+ 15	0.1	. 208	15.7	M4e	2.30	56	8.50	10.09
G208-45	19	53	+44	21	207	15.8	M5	0.63		13.99	15.57
$\mathrm{BD}+68^{\circ} 946$	17	37	+68	22	. 207	15.8	M4	1.33	36	9.15	10.73
Luy 145-141	11	44	-64	42	206	15.9		2.68		11.44	
$\mathrm{BD}-15^{\circ} 6290$	22	52	-14	22	. 206	15.9	M5	1.16 4.08	28 104	10.17 4.43	11.74 5.99
$\mathrm{o}^{2} \mathrm{Eri}$ A	4	14	-07	41	205	15.9	$\underset{w d A}{\text { Kle }}$	4.08	104	9.53	11.09
$\stackrel{B}{\text { C }}$							M4e			11.17	12.73
$\mathrm{BD}+20^{\circ} 2465^{*}$	10	19	+19	58	202	16.1	M4e	0.49	16	9.43	10.96
$\mathrm{BD}+44^{\circ} 2051 \mathrm{~A}$	11	05	+43	36	. 199	16.4	M2e	4.40	132	8.77	10.26
B							M8e			(14.5)	(16.0)
Altair	19	49	+08	49	. 196	16.6		0.66	31	0.76	2.22
70 Oph A	18	05	+02	31	. 195	16.7	K0e	1.13	28	4.22	5.67
${ }_{\text {AC }+79^{\circ} 3888}^{\text {B }}$	11	46		47	. 194	16.8	K5e	0.89	121	6.0 10.9	7.5
BD $+43^{\circ} 4305^{*}$	22	46	+44	14	. 193	16.9	M5e	0.83	20	10.2	11.6
Stein 2051A	4	30	+58	57	192	17.0	M4	2.37		11.09	12.51
B							wd			12.44	13.86
$\begin{array}{r} \text { G9-38A } \\ \mathbf{B} \end{array}$	8	57	+19	51	. 190	17.2		$\begin{aligned} & 0.89 \\ & 0.79 \end{aligned}$		14.06 14.92	15.45 16.31

*Suspected unseen companion.

GALACTIC NEBULAE

By René Racine

The following objects were selected from the brightest and largest of the various classes to illustrate the different types of interactions between stars and interstellar matter in our galaxy. Emission regions (HII) are excited by the strong ultraviolet flux of young, hot stars and are characterized by the lines of hydrogen in their spectra. Reflection nebulae (Ref) result from the diffusion of starlight by clouds of interstellar dust. At certain stages of their evolution stars become unstable and explode, shedding their outer layers into what becomes a planetary nebula (P1) or a supernova remnant (SN). Protostellar nebulae (PrS) are objects still poorly understood; they are somewhat similar to the reflection nebulae, but their associated stars, often variable, are very luminous infrared stars which may be in the earliest stages of stellar evolution. Also included in the selection are four extended complexes (Compl) of special interest for their rich population of dark and bright nebulosities of various types. In the table S is the optical surface brightness in magnitude per square second of arc of representative regions of the nebula, and m^{*} is the magnitude of the associated star.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{N} \& \multirow[b]{2}{*}{M} \& \multirow[b]{2}{*}{Con} \& \multicolumn{2}{|c|}{\(\alpha 1980\) \%} \& \multirow[b]{2}{*}{Type} \& \multirow[b]{2}{*}{Size} \& \multirow[t]{2}{*}{\[
\underset{\substack{\text { mag. } \\ \text { sq }}}{\mathbf{S}}
\]} \& \multirow[b]{2}{*}{\({ }^{\text {m }}\)} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& \text { Dist. } \\
\& \text { io. } \\
\& \text { I.y. }
\end{aligned}
\]} \& \multirow[b]{2}{*}{Remarks} \\
\hline \& \& \& m \& \& \& \& \& \& \& \\
\hline 650/1 \& \multirow[t]{3}{*}{76} \& Per \& 0140.9 \& +5128 \& P1 \& 1.5 \& 20 \& 17 \& 15 \& \\
\hline IC348
1435 \& \& Per \& 0343.2
0346.3 \& +3207
+2401 \& Ref
Ref \& 3
15
15 \& \& 8 \& 0.5
0.4 \& \begin{tabular}{l}
Nebulous cluster \\
Merope nebula
\end{tabular} \\
\hline 1535 \& \& \({ }_{\text {Eri }}\) \& \({ }_{04} 0343.3\) \& \({ }_{-1248}^{+24}\) \& \({ }_{\text {P1 }}\) \& 0.5 \& 17 \& 12 \& \& \\
\hline 1952 \& 1 \& Tau \& 0533.3 \& +2205 \& SN \& 5 \& 19 \& 16v \& 4 \& "Crab" + pulsar \\
\hline 1976 \& \multirow[t]{2}{*}{42} \& Ori \& 0534.3 \& -05 25 \& HII \& 30 \& 18 \& 4 \& 1.5 \& Orion nebula \\
\hline \({ }_{2}^{1999}\) \& \& Ori \& 05
05

05
39.5 \& -0645 \& $\xrightarrow{\text { PrS }}$ \& ${ }_{2}{ }^{\circ}$ \& \& 10v \& 1.5 \&

\hline ${ }_{2} \mathbf{O} \mathrm{Ori}$ \& \multirow[t]{2}{*}{78} \& Ori
Ori \& 0539.8
0545.8 \& -0157
+0002 \& Comp \& ${ }^{2}$ \& 20 \& \& 1.5 \& Incl. "Horsehead"

\hline IC443 \& \& Gem \& 0616.4 \& +2236 \& SN \& 40 \& \& \& 2 \&

\hline 2244 \& \& Mon \& 0631.3 \& +0453 \& HII \& 50 \& 21 \& \& 3 \& Rosette neb.

\hline 2247 \& \& Mon \& 0632.1 \& +1020 \& ${ }_{\text {PrS }}$ \& 2 \& 20 \& 9 \& 3 \&

\hline 2261 \& \& Mon \& 0638.0
0728.0 \& +0844
+2057 \& ${ }_{\text {P1 }}{ }_{\text {Pr }}$ \& $\stackrel{2}{0.3}$ \& \& 12 \& 4
10 \& Hubble's var. neb.

\hline 3587 \& 97 \& UMa \& 1113.6 \& +5508
+50 \& ${ }_{\mathrm{Pl}}$ \& 0.3 \& 21 \& 13 \& 12 \& Owl nebula

\hline ¢Oph \& \& Oph \& 1624.4 \& -23 24 \& Comp \& 4° \& \& \& 0.5 \& Bright + dark neb.

\hline ${ }^{\theta} \mathrm{Oph}$ \& \multirow{3}{*}{${ }_{8}^{20}$} \& Oph \& 1720.7 \& -24 59 \& Comp \& 15 \& \& \& \& Incl. S neb.

\hline 6514 \& \& $\stackrel{\text { Sgr }}{\text { Sgr }}$ \& 18
18
18
02.4 \& -23
-24
-23 \& ${ }_{\text {HII }}$ \& 40 \& 118 \& \& 4.5 \& Lagoon nebula

\hline 6543 \& \& Dra \& 1758.6 \& +6637 \& P1 \& 0.4 \& 15 \& 11 \& 3.5 \&

\hline 6611 \& \multirow[t]{3}{*}{$$
\begin{aligned}
& 16 \\
& 17 \\
& 57
\end{aligned}
$$} \& Ser \& 1817.8 \& -13 48 \& HII \& 15 \& 19 \& 10 \& 6 \&

\hline 6618 \& \& ${ }_{\text {Sgr }}^{\text {Lyr }}$ \& 1819.7
18
18.9 \& -1612
+3301 \& ${ }_{\text {Pl }}$ \& ${ }_{1.2}^{20}$ \& 18 \& 15 \& \& Horseshoe neb.

\hline 6826 \& \& \& 1944.4 \& +
+
+5028 \& ${ }_{P 1}$ \& 0.7 \& 16 \& 10 \& 3.5 \&

\hline 6853 \& \multirow[t]{9}{*}{27} \& Vul \& 1958.6 \& +22 40 \& P1 \& 7 \& 20 \& 13 \& 3.5 \& Dumb-bell neb.

\hline 6888 \& \& Cyg \& 2011.6 \& +3821 \& HII \& 15 \& \& \& \&

\hline 7 Cy \& \& Cyg \& 2021.5 \& + +4012 \& Comp \& ${ }^{6}{ }^{\circ}$ \& \& \& \& HII + dark ne

\hline 7000 \& \& Cyg \& 20
20
20.8
28.2 \& +3038
+4414 \& HiI \& 1150 \& \& \& 2.5 \& Cygnus loop

\hline 7009 \& \& Aqr \& 2103.0 \& -1128 \& P1 \& 0.5 \& 16 \& 12 \& 3 \& Saturn nebula

\hline \& \& Cep \& \& \& \& \& \& \& 1.3 \&

\hline 7027 \& \& Cyg \& 2106.4 \& +4209 \& ${ }_{\text {Pl }}^{\text {P1 }}$ \& ${ }_{0} 0.2$ \& 15 \& 13 \& \&

\hline 7129
7293 \& \& Crep \& 21
22
22
28.5 \& +6500
+2054 \& $\stackrel{\text { Ref }}{\text { Pl }}$ \& \& 22 \& 10
13
13 \& 2.5 \& ${ }_{\text {S }}^{\substack{\text { Small cluster } \\ \text { Helix nebula }}}$

\hline 7662 \& \& And \& 2325.0 \& +4225 \& P1 \& 0.3 \& 16 \& 12 \& 4 \&

\hline
\end{tabular}

Footnote to Messier Catalogue, opposite page: The identifications of M91 and M102 are controversial; some believe that these two objects are duplicate observations of of M58 and M101 respectively. Also, objects M104 to M110 are not always included in the standard version of the Messier Catalogue. Like many other objects in the catalogue, they were discovered by Mechain and reported to Messier for verification and inclusion in the catalogue.

THE MESSIER CATALOGUE

Compiled By Alan Dyer

The Messier Catalogue, with its modern additions, represents a listing of many of the brightest and best deep-sky wonders. The following table lists the Messier objects by season for the evening observer, grouping the objects within their respective constellations, with the constellations themselves listed roughly in order of increasing right ascension, i.e., constellations further to the east and which rise later in the night are further down the list.
The columns contain: Messier's number (M); the constellation; the object's New General Catalogue (NGC) number; the type of object ($\mathrm{OC}=$ open cluster, $\mathrm{GC}=$ globular cluster, $\mathrm{PN}=$ planetary nebula, $\mathrm{EN}=$ emission nebula, $\mathrm{RN}=$ reflection nebula, $\mathrm{G}=$ galaxy (with the type of galaxy also listed); the 1980 co-ordinates; the visual magnitude (unless marked with a " p " which indicates a photographic magnitude). The "Remarks" column contains comments on the object's appearance and observability. The final column, marked "Seen", is for the observer to use in checking off those objects which he or she has located. An asterisk in the "Type" column indicates that additional information about the object may be found elsewhere in the handbook, in the appropriate table. Most data are from the Skalnate Pleso Atlas of the Heavens catalogue; occasionally from other sources.

All these objects can be seen in a small telescope (60 mm refractor, for instance), with M74 and M83 generally considered to be the most difficult. The most southerly M-objects are M6 and M7 in Scorpius, with M54, M55, M69, and M70 in Sagittarius almost as far south. Notice how different classes of objects dominate the skies of the various seasons: open clusters dominate the winter sky; galaxies by the hundreds abound in the spring sky; the summer sky contains many globular clusters and nebulae; while the autumn sky is a mixture of clusters and galaxies. This effect is of course due to the presence (or absence) of the Milky Way in any particular season, and whether or not we are looking toward the centre of the Galaxy (as in summer) or away from the centre (as in winter).

M	Con	NGC	Type	R.A. (1980) Dec.	m_{v}	Remarks	Seen
The Winter Sky							
	Tau	1952	PN^{*}	h 5 533.3	8.4	Crab Neb, supernova remnant	
45	Tau	,	OC*	$346.3+2403$	1.4	Pleiades; RFT object	
36	Aur	1960	OC	$535.0+3405$	6.3	best at low magnification	
37	Aur	2099	OC^{*}	5 5 51.5 51.5 2	6.2	finest of 3 Aur. clusters	
38	Aur	1912	OC	$527.3+3548$	7.4	large, scattered group	
42	Ori	1976	EN*	$534.4-0524$	-	Orion Nebula	
43	Ori	1982	EN	$\begin{array}{lllll}5 & 34.6-0518 \\ 5 & 45.8 & \end{array}$	-	detached part of Orion Neb.	
78	Ori	2068	RN	$545.8+0002$	-	featureless reflection neb.	
79	Lep	1904	GC	$523.3-2432$	8.4	20 cm scope needed to resolve	
35	Gem	2168	OC*	$607.6+2421$	5.3	superb open cluster	
41	CMa	2287	OC*	$646.2-2043$	5.0	$4^{\circ} \mathrm{S}$. of Sirius; use low mag.	
50	Mon	2323	OC	$702.0-0819$	6.9	between Sirius and Procyon	
46	Pup	2437	OC*	$740.9-1446$	6.0	rich cl.; contains PN NGC 2438	
47	Pup	2422	OC	$735.6-1427$	4.5	coarse cl.; $1.5{ }^{\circ} \mathrm{W}$. of M46	
93	Pup	2447	OC	$743.6-2349$	6.0	smaller, brighter than M46	
48	Hya	2548	OC	$812.5-0543$	5.3	former "lost" Messier object	
The Spring Sky							
44	Cnc	2632	OC**	$838.8+2004$	3.7	Beehive Cl.; RFT object	
67	Cnc	2682	OC*	$850.0+1154$	6.1	"ancient" star cluster	
40	UMa	- 1		$1234.4+5820$	9.0	two stars; sep. 50' ${ }^{\prime \prime}$	
81	UMa	3031	G-Sb*	$954.2+6909$	7.9	very bright spiral	

M	Con	NGC	Type	R.A. (1980) Dec.	m_{v}	Remarks	Seen
				h m			
82	UMa	3034	G-Pec*	$954.4+6947$	8.8	the "exploding" galaxy	
97	UMa	3587	PN*	$1113.7+5508$	12.0	Owl Nebula	
101	UMa	5457	G-Sc*	$1402.5+5427$	9.6	large, faint face-on spiral	
108	UMa	3556	G-Sc	$1110.5+5547$	10.7	nearly edge-on; near M97	
109	UMa	3992	G-Sb	$1156.6+5329$	10.8	barred spiral; near γ UMa	
65	Leo	3623	G-Sb	$1117.8+1313$	9.3	bright elongated spiral	
66	Leo	3627	G-Sb	$1119.1+1307$	8.4	M65 in same field	
95	Leo	3351	G-SBb	$1042.8+1149$	10.4	bright barred spiral	
96	Leo	3368	G-Sbp	$1045.6+1156$	9.1	M95 in same field	
105	Leo	3379	G-E1	$1046.8+1242$	9.2	very near M95 and M96	
53	Com	5024	GC	$1312.0+1817$	7.6	15 cm scope needed to resolve	
64	Com	4826	G-Sb*	$1255.7+2148$	8.8	Black Eye Galaxy	
85	Com	4382	G-SO	$1224.3+1818$	9.3	bright elliptical shape	
88	Com	4501	G-Sb	$1230.9+1432$	10.2	bright multiple-arm spiral	
91	Com	4548	G-SBb	$1234.4+1436$	10.8	not the same as M58	
98	Com	4192	G-Sb	$1212.7+1501$	10.7	nearly edge-on spiral	
99	Com	4254	G-Sc	$1217.8+1432$	10.1	nearly face-on spiral	
100	Com	4321	G-Sc	$1221.9+1556$	10.6	face-on spiral; star-like nuc.	
49	Vir	4472	G-E4*	$1228.8+0807$	8.6	very bright elliptical	
58	Vir	4579	G-SB	$1236.7+1156$	9.2	bright barred spiral	
59	Vir	4621	G-E3	$1241.0+1147$	9.6	bright elliptical near M58	
60	Vir	4649	G-E1	$1242.6+1141$	8.9	bright elliptical near M59	
61	Vir	4303	G-Sc	$1220.8+0436$	10.1	face-on barred spiral	
84	Vir	4374	G-E1	$1224.1+1300$	9.3	bright elliptical	
86	Vir	4406	G-E3	$1225.1+1303$	9.7	M84 in same field	
87	Vir	4486	G-E1	$1229.7+1230$	9.2	nearly spherical galaxy	
89	Vir	4552	G-E0	$1234.6+1240$	9.5	resembles M87; smaller	
90	Vir	4569	G-Sb	$1235.8+1316$	10.0	bright spiral; near M89	
104	Vir	4594	G-Sb*	1238.8 -11 31	8.7	Sombrero Galaxy	
3	CVn	5272	GC*	$1341.3+2829$	6.4	contains many variables	
51	CVn	5194	G-Sc*	$1329.0+4718$	8.1	Whirlpool Galaxy	
63	CVn	5055	G-Sb*	$1314.8+4208$	9.5	Sunflower Galaxy	
94	CVn	4736	G-Sbp*	$1250.1+4114$	7.9	very bright and comet-like	
106	CV	4258	G-Sbp*	$1218.0+4725$	8.6	large, bright spiral	
68	Hya	4590	GC	$1238.3-2638$	8.2	15 cm scope needed to resolve	
83	Hya	5236	G-Sc*	$1335.9-2946$	10.1	very faint and diffuse	
102	Dra	5866	G-E6p	$1505.9+5550$	10.8	small edge-on galaxy	
5	Ser	5904	GC*	$1517.5+0211$	6.2	one of the finest globulars	
The	Summe						
13	Her	6205	GC*	$1641.0+3630$	5.7	spectacular globular cl.	
92	Her	6341	GC*	$1716.5+4310$	6.1	$9^{\circ} \mathrm{NE}$. of M13; bright	
9	Oph	6333	GC	$1718.1-1830$	7.3	smallest of Oph. globulars	
10	Oph	6254	GC*	$1656.0-0405$	6.7	rich cl.; M12 $3.4{ }^{\circ}$ away	
12	Oph	6218	GC*	$1646.1-0155$	6.6	loose globular	
14	Oph	6402	GC	$1736.5-0314$	7.7	20 cm scope needed to resolve	
19	Oph	6273	GC	$1701.3-2614$	6.6	oblate globular	
62	Oph	6266	GC	$1659.9-3005$	6.6	unsymmetrical; in rich field	
107	Oph	6171	GC	$1631.3-1302$	9.2	small, faint globular	
4	Sco	6121	GC*	$1622.4-2627$	6.4	bright globular near Antares	
6	Sco	6405	OC^{*}	$1738.9-3211$	5.3	best at low magnification	
7	Sco	6475	OC*	$1752.6-3448$	3.2	excellent in binoculars	
80	Sco	6093	GC	$1615.8-2256$	7.7	very compressed globular	
16	Ser	6611	EN*	$\begin{array}{llll}18 & 17.8 & -1348\end{array}$	-	Star-Queen Neb. w/ open cl.	
8	Sgr	6523	EN*	$\begin{array}{lllll}18 & 02.4 & -24 & 23\end{array}$	-	Lagoon Neb. w/cl. NGC 6530	
17	Sgr	6618	EN*	$\begin{array}{lllll}18 & 19.7 & -16 & 12\end{array}$	7.5	Swan or Omega Nebula	
18	$\mathrm{Sgr}^{\text {r }}$	6613	OC	$\begin{array}{lllll}18 & 18.8 & -17 & 09\end{array}$	7.5	sparse cluster; $1^{\circ} \mathrm{S}$. of M17	
20	Sgr	6514	EN*	$\begin{array}{lllll}18 & 01.2 & -23 & 02\end{array}$		Trifid Nebula	
21	Sgr	6531	OC	18 03.4-22 30	6.5	$0.7^{\circ} \mathrm{SW}$. of M20	
22	$\mathrm{Sgr}^{\text {S }}$	6656	GC*	$\begin{array}{llll}18 & 35.2 & -23 & 55 \\ 17 & 55\end{array}$	5.9	low altitude dims beauty	
23	Sgr	6494	OC*	$1755.7-1900$	6.9	bright, loose cluster	
24	Sgr			1817 -18 27	4.6	Milky Way patch; binoc. obj.	
25	Sgr	14725	OC*	$1830.5-1916$	6.5	bright but sparse cluster	
28	Sgr	6626	GC	$1823.2-2452$	7.3	compact globular near M22	

M	Con	NGC	Type	R.A. (1980) Dec.	m_{v}	Remarks	Seen
				h m			
54	Sgr	6715	GC	$\begin{array}{lllll}18 & 53.8 & -30 & 30\end{array}$	8.7 p	not easily resolved	
55	Sgr	6809	GC*	$1938.7-3100$	7.1p	bright, loose globular	
69	Sgr	6637	GC	$1830.1-3223$	8.9	small, poor globular	
70	Sgr	6681	GC	1842.0 -32 18	9.6	small globular; $2^{\circ} \mathrm{E}$. of M69	
75	Sgr	6864	GC	2004.9 -21 59	8.0	small, remote globular	
11	Sct	6705	OC*	$\begin{array}{llll}18 & 50.0 & -0618\end{array}$	6.3	superb open cluster	
26	Sct	6694	OC	$1844.1-0925$	9.3	bright, coarse cluster	
56	Lyr	6779	GC	$1915.8+3008$	8.2	within rich field	
57	Lyr	6720	PN*	$1852.9+3301$	9.3	Ring Nebula	
71	Sge	6838	GC	$1952.8+1844$	9.0	loose globular cl.	
27	Vul	6853	PN*	$1958.8+2240$	7.6	Dumbbell Nebula	
29	Cyg	6913	OC	$2023.3+3827$	7.1	small, poor open cl.	
39	Cyg	7092	OC	$2131.5+4821$	5.2	very sparse cluster	
The	Autumn						
72	${ }_{\text {Aqr }}^{\text {Aqr }}$	7089 6981	$\mathrm{GC}_{\mathrm{GC}}$	$\begin{array}{llll}21 & 32.4 & -00 & 54 \\ 20 & 52.3 & -12 & 39\end{array}$	6.3 9.8	near NGC 7009 (Saturn Neb.)	
73	Aqr	6994	OC	2057.8 -12 44	11.0	group of 4 stars only	
15	Peg	7078	GC*	$2129.1+1205$	6.0	rich, compact globular	
30	Cap	7099	GC	$2139.2-2315$	8.4	noticeable elliptical shape	
52	Cas	7654	OC	$2323.3+6129$	7.3	young, rich cluster	
103	Cas	581	OC	$0131.9+6035$	7.4	3 NGC clusters nearby	
31	And	224	G-Sb*	00 41.6+4109	4.8	Andromeda Gal.; large	
32	And	221	G-E2*	$0041.6+4045$	8.7	companion gal. to M31	
110	And	205	G-E6*	$0039.1+4135$	9.4	companion gal. to M31	
33	Tri	598	G-Sc*	$0132.8+3033$	6.7	large, diffuse spiral	
74	Psc	628	G-Sc	$0135.6+1541$	10.2	faint, elusive spiral	
77	Cet	1068	G-Sbp	$0241.6+0004$	8.9	Seyfert gal.; star-like nuc.	
34	Per	1039	OC	$0240.7+4243$	5.5	best at very low mag.	
76	Per	650	PN*	$0140.9+5128$	12.2	Little Dumbbell Neb.	

NUMERICAL LISTING OF MESSIER OBJECTS

M	Sky	Con	M	Sky	Con	M	Sky	Con	M	Sky	Con	M	Sky	Con
1	Wi	Tau	23	Su	Sgr	45	Wi	Tau	67	Sp	Cnc	89	Sp	Vir
2	Au	Aqr	24	Su	$\mathrm{Sgr}^{\text {Sgr}}$	46	Wi	Pup	68	Sp	Hya	90	Sp	Vir
3	Sp	CV	25	Su	Sgr	47	Wi	Pup	69	Su	Sgr	91	Sp	Com
4	Su	Sco	26	Su	Sct	48	Wi	Hya	70	$\mathrm{Su}^{\text {Su}}$	$\stackrel{\mathrm{Sgr}}{ }$	92	Su	Her
5	Sp	Ser	27	Su	Vul	49	Sp	Vir	71	Su	Sge	93	Wi	Pup
6	Su	Sco	28	Su	Sgr	50	Wi	Mon	72	Au	Aqr	94	Sp	CVn
7	Su	Sco	29	Su	Cyg	51	Sp	CVn	73	Au	Aqr	95	Sp	Leo
8	Su	Sgr	30	Au	Cap	52	${ }^{\text {Au }}$	Cas	74	${ }_{\text {Au }}$	${ }_{\text {Psc }}$	96	Sp	Leo
9	Su	Oph	31	Au	And	53	Sp	Com	75	Su	Sgr	97	Sp	UMa
10	Su	Oph	32	Au	And	54	Su	Sgr	76	Au	Per	98	Sp	Com
11	Su	Sct	33	Au	Tri	55	Su	Sgr	77	Au	Cet	99	Sp	Com
12	Su	Oph	34	Au	Per	56	Su	Lyr	78	Wi	Ori	100	Sp	Com
13	Su	Her	35	Wi	Gem	57	Su	Lyr	79	Wi	Lep	101	Sp	UMa
14	Su	Oph	36	Wi	Aur	58	Sp	Vir	80	Su	Sco	102	Sp	Dra
15	Au	Peg	37	Wi	Aur	59	Sp	Vir	81	Sp	UMa	103	$\mathrm{Au}^{\text {a }}$	Cas
16	Su	Ser	38	Wi	Aur	60	Sp	Vir	82	Sp	UMa	104	Sp	Vir
17	Su	Sgr	39	Su	Cyg	61	Sp	Vir	83	Sp	Hya	105	Sp	Leo
18	Su	Sgr	40	Sp	UMa	62	Su	Sco	84	Sp	Vir	106	Sp	CVn
19	Su	Oph	41	Wi	CMa	63	Sp	CV	85	Sp	Com	107	Su	Oph
20	Su	Sgr	42	Wi	Ori	64	Sp	Com	86	Sp	Vir	108	Sp	UMa
21	Su	Sgr	43	Wi	Ori	65	Sp	Leo	87	Sp	Vir	109	Sp	UMa
22	Su	Sgr	44	Sp	Cnc	66	Sp	Le	88	Sp	Com	110	Au	And

The abbreviations are: Wi, winter; Sp, spring; Su, summer; Au, autumn.

THE FINEST N.G.C. OBJECTS

Compiled By Alan Dyer

The New General Catalogue of deep-sky objects was originally published by J. L. E. Dreyer in 1888. Supplementary Index Catalogues were published in 1895 and 1908. Together, they contain descriptions and positions of 14,755 galaxies, clusters and nebulae. Many of these are well within the reach of amateur telescopes. Indeed, the brightness and size of many NGC objects rival those of the better known deep-sky targets of the Messier Catalogue (almost all of which are also in the NGC catalogue). However, most NGC objects are more challenging to locate and observe than the Messiers. The following is a listing of 110 of the finest NGC objects. Objects are grouped within their respective constellations, with the constellations listed roughly in order of right ascension, commencing with the autumn evening sky.
A telescope of at least 15 cm aperture will likely be required to locate all these objects. The Skalnate Pleso Atlas of the Heavens or the sets of index card finder charts called AstroCards will be indispensible in locating these and many other deep-sky objects. All 110 objects are plotted on the Skalnate Pleso Atlas, with the exception of NGC 3432 in Leo Minor and NGC 4388 in Virgo which are plotted but not labelled on the Atlas charts. Use of a nebular filter is also recommended for observing the planetary and emission nebula on the list.

Abbreviations used: $\mathrm{OC}=$ open cluster, $\mathrm{GC}=$ globular cluster, $\mathrm{PN}=$ planetary nebula, $\mathrm{EN}=$ emission nebula, $\mathrm{RN}=$ reflection nebula, $\mathrm{E} / \mathrm{RN}=$ combination emission and reflection nebula, $\mathrm{SNR}=$ supernova remnant, $\mathrm{G}=$ galaxy (the Hubble classification is also listed with each galaxy). Coordinates are for Epoch 1950. Magnitudes are visual; exceptions are marked with a " p " indicating a photographic magnitude. Sizes of each object are in minutes of arc, with the exception of planetary nebulae which are given in seconds of arc. The number of stars $\left(^{*}\right)$ and, where space permits, the Shapley classification is also given for star clusters in the Remarks column. Most data are from the Skalnate Pleso Atlas Catalogue, occasionally from other sources.

No.	NGC	Con	Type	R.A. (1950) Dec.				m_{v}	Size	Remarks
The Autumn Sky										
1	7009	Aqr	PN	21	01.4	-11	34	9.1	$44^{\prime \prime} \times 26^{\prime \prime}$	Saturn Nebula; bright oval planetary
2	7293	Aqr	PN	22	27.0	-21	06	6.5	$900^{\prime \prime} \times 720^{\prime \prime}$	Helix Nebula; very large and diffuse
3	7331	Peg	G-Sb	22	34.8	+34	10	9.7	10.0×2.3	large, very bright spiral galaxy
4	7789	Cas	OC	23	54.5	+56	26	9.6	30	200*; faint but very rich cluster
5	185	Cas	G-EO	00	36.1	+48	04	11.7	2.2×2.2	companion to M31; quite bright
6	281	Cas	EN	00	50.4	+56	19		23×27	large, faint nebulosity near γ Cas.
7	457	Cas	OC	01	15.9	+58	04	7.5	10	100*; Type e-intermediate rich
8	663	Cas	OC	01	42.6	+61	01	7.1	11	80*; NGC 654 and 659 nearby
9	7662	And	PN	23	23.5	+42	14	9.2	$32^{\prime \prime} \times 28^{\prime \prime}$	star-like at low mag.; annular, bluish
10	891	And	G-Sb	02	19.3	$+42$	07	10.9p	11.8×1.1	faint, classic edge-on with dust lane
11	253	Scl	G-Scp	00	45.1	-25	34	8.9	24.6×4.5	very large and bright but at low alt.
12	772	Ari	G-Sb	01	56.6	+18	46	10.9	5.0×3.0	diffuse spiral galaxy
13	936	Cet	G-SBa	02	25.1	-01	22	10.7	3.3×2.5	near M77; NGC 941 in same field
14 a	869	Per	OC	02	17.0	+56	54	4.4	36	Double Cluster; superb!
14 b	884	Per	OC	02	17.0	+56	54	4.7		Double Cluster; superb!
15	1023	Per	G-E7p	02	37.2	+38	52	10.5p	4.0×1.2	bright, lens-shaped galaxy; near M34
16	1491	Per	EN	03	59.5	+51		-	3×3	small, fairly bright emission nebula
17	1501	Cam	PN	04	02.6	$+60$	47	12.0	$56^{\prime \prime} \times 58^{\prime \prime}$	faint, distinctive oval; darker centre
18	1232	Eri	G-Sc	03	07.5	-20	46	10.7	7.0×5.5	fairly bright, large face-on spiral
19	1300	Eri	G-SBb	03	17.5	-19	35	11.3	5.7×3.5	large barred spiral near NGC 1232
20	1535	Eri	PN	04	12.1	-12	52	10.4	$20^{\prime \prime} \times 17^{\prime \prime}$	blue-grey disk

No.	NGC	Con	Type	R.A. (1950) Dec.				m_{v}	Size	Remarks
The Winter Sky										
21	1907	Aur	OC	h 05	$\mathrm{m}_{24.7}^{\text {m }}$	+35	17	9.9	5	40*; nice contrast with nearby M38
22	1931	Aur	EN	05	28.1	$+34$	13	-	3×3	haze surrounding 4 stars
23	1788	Ori	E/RN	05	04.5	-03	24	-	8×5	fairly bright emission/reflection neb.
24	$1973+$	Ori	E/RN	05	32.9	-04	48	12	40×25	near M42 and M43; often neglected
25	2022	Ori	PN	05	39.3	+09	03	12.4	$28^{\prime \prime} \times 27^{\prime \prime}$	small, faint but distinct; annular
26	2194	Ori	OC	06	11.0	+12	50	9.2	8	100*; Type e; faint but rich
27	2158	Gem	OC	06	04.3	+24	06	12.5	4	40*; same field as M35; nice contrast
28	2392	Gem	PN	07	26.2	$+21$	01	8.3	$47^{\prime \prime} \times 43^{\prime \prime}$	Clown-Face Nebula; very bright
29	2244	Mon	OC	06	29.7	+04	54	6.2	40	16*; in centre of Rosette Nebula
30	2261	Mon	E/RN	06	36.4	+08	46	var.	5×3	Hubble's Variable Nebula
31	2359	CMa	EN	07	15.4	-13	07	-	8×6	10 stars in bright circular nebulosity
32	2438	Pup	PN	07	39.6	-14	36	11.8	68'	within M46 open cluster
33	2440	Pup	PN	07	39.9	-18	05	10.3	$54^{\prime \prime} \times 20^{\prime \prime}$	irregular appearance
34	2539	Pup	OC	08	08.4	-12	41	8.2	21	150*; Type f-fairly rich
35	2403	Cam	G-Sc	07	32.0	$+65$	43	8.9	17×10	bright, very large; visible in binocs.
36	2655	Cam	G-S	08	49.4	$+78$	25	10.7	5.0×2.4	star-like nucleus
The Spring Sky										
37	2683	Lyn	G-Sb	08	49.6	$+33$	38	9.6	8.0×1.3	nearly edge-on spiral; very bright
38	2841	UMa	G-Sb	09	18.6	$+51$	12	9.3	6.4×2.4	classic elongated spiral; very bright
39	2985	UMa	G-Sb	09	46.0	$+72$	31	10.6	5.5×5.0	near M81 and M82
40	3077	UMa	G-E2p	09	59.4	$+68$	58	10.9	$\frac{2}{8} .3 \times 1.9$	small elliptical; companion to M81/82
41	3079	UMa	G-Sb	09	58.6	+55	57	11.2	8.0×1.0	edge-on spiral, NGC 2950 nearby
42	3184	UMa	G-Sc	10	15.2	+41	40	9.6	5.6×5.6	large, diffuse face-on spiral
43	3675	UMa	G-Sb	11	23.5	$+43$	52	10.6	4.0×1.7	elongated spiral; same field as 56 UMa
44	3877	UMa	G-Sb	11	43.5	+47	46	10.9	4.4×0.8	edge-on; same field as Chi UMa
45	3941	UMa	G-Sa	11	50.3	+37	16	9.8	1.8×1.2	small, bright elliptical shape
46	4026	UMa	G-E8	11	56.9	+51	12	10.7	3.6×0.7	lens-shaped edge-on; near γ UMa
47	4088	UMa	G-Sc	12	03.0	+50	49	10.9	4.5×1.4	nearly edge-on; 4085 in same field
48	4111	UMa	G-S0	12	04.5	$+43$	21	9.7	3.3×0.6	bright lens-shaped edge-on spiral
49	4157	UMa	G-Sb	12	08.6	+50	46	11.9	6.5×0.8	edge-on, a thin sliver; $4026+4088$ nearby
50	4605	UMa	G-Scp	12	37.8	$+61$	53	9.6	5.0×1.2	bright, distinct edge-on spiral
51	3115	Sex	G-E6	10	02.8	-07	28	9.3	4.0×1.2	"Spindle Galaxy"; bright, elongated
52	3242	Hya	PN	10	22.4	-18	23	9.1	$40^{\prime \prime} \times 35^{\prime \prime}$	"'Ghost of Jupiter'' planetary
53	3344	LMi	G-Sc	10	40.7	$+25$	11	10.4	7.6×6.2	diffuse face-on spiral
54	3432	LMi	G-Sc	10	49.7	$+36$	54	11.4	5.8×0.8	nearly edge-on; faint flat streak
55	2903	Leo	G-Sb	09	29.3	$+21$	44	9.1	11.0×4.6	very bright, large elongated spiral
56	3384	Leo	G-E7	10	45.7	$+12$	54	10.2	4.4×1.4	same field as M105 and NGC 3389
57	3521	Leo	G-Sc	11	03.2	$+00$	14	9.5	7.0×4.0	very bright, large spiral
58	3607	Leo	G-E1	11	14.3	+18	20	9.6	1.7×1.5	NGC 3605 and 3608 in same field
59	3628	Leo	G-Sb	11	17.7	$+13$	53	10.9	12.0×1.5	large edge-on; same field as M65/M66
60	4214	CVn	G-lrr	12	30.1	$+36$	36	10.3	6.6×5.8	large irregular galaxy
61	4244	CVn	G-S	12	15.0	+38	05	11.9	14.5×1.0	large, distinct edge-on spiral
62	4449	CVn	G-1rr	12	25.8	+44	22	9.2	4.1×3.4	bright rectangular shape
63	4490	CVn	G-Sc	12	28.3	+41	55	9.7	5.6×2.1	bright spiral; 4485 in same field
64	4631	CVn	G-Sc	12	39.8	$+32$	49	9.3	12.6×1.4	very large, bright edge-on; no dust lane
65	4656	CVn	G-Sc	12	41.6	+32	26	11.2	19.5×2.0	same field as 4631 ; fainter, smaller
66	5005	CVn	G-Sb	13	08.5	+37	19	9.8	4.4×1.7	bright elongated spiral; near α CVn
67	5033	CVn	G-Sb	13	11.2	$+36$	51	10.3	9.9×4.8	large, bright spiral near NGC 5005
68	4274	Com	G-Sb	12	17.4	$+29$	53	10.8	6.7×1.3	NGC 4278 in same field
69	4494	Com	G-E1	12	28.9	$+26$	03	9.6	1.3×1.2	small, bright elliptical
70	4414	Com	G-Sc	12	24.0	+31	30	9.7	3.2×1.5	bright spiral; star-like nucleus
71	4559	Com	G-Sc	12	33.5	+28	14	10.6	11.0×4.5	large spiral; coarse structure
72	4565	Com	G-Sb	12	33.9	+26	16	10.2	14.4×1.2	superb edge-on spiral with dust lane
73	4725	Com	G-Sb	12	48.1	$+25$	46	8.9	10.0×5.5	very bright, large spiral
74	4631	Crv	PN	12	21.9	-18	29	11.4	18'	12m8 central star

No.	NGC	Con	Type	R.A. (1950) Dec.				m_{v}	Size	Remarks
75	4216	Vir	G-Sb	12	13.4	$+13$	25	10.4	7.4×0.9	nearly edge-on; two others in field
76	4388	Vir	G-Sb	12	23.3	+12	56	11.7 p	5.0×0.9	edge-on; near M84 and M86
77	4438	Vir	G-S	12	25.3	+13	17	10.8	8.0×3.0	paired with NGC a4435
78	4473	Vir	G-E4	12	27.3	+13	42	10.1	1.6×0.9	NGC 4477 in same field
79	4517	Vir	G-Sc	12	29.0	$+00$	21	12.0	8.9×0.8	faint edge-on spiral
80	4526	Vir	G-E7	12	31.6	$+07$	58	10.9	3.3×1.0	between two $7^{\mathrm{m}} 0$ stars
81	4535	Vir	G-Sc	12	31.8	+08	28	10.4p	6.0×4.0	near M49
82	4697	Vir	G-E4	12	46.0	-05	32	9.6	2.2×1.4	small, bright elliptical
83	4699	Vir	G-Sa	12	46.5	-08	24	9.3	3.0×2.0	small, bright elliptical shape
84	4762	Vir	G-Sa	12	50.4	+11	31	11.0	3.7×0.4	flattest galaxy; 4754 in same field
85	5746	Vir	G-Sb	14	42.3	+02	10	10.1	6.3×0.8	fine edge-on spiral near 109 Virginis
86	5907	Dra	G-Sb	15	14.6	$+56$	31	11.3	11.1×0.7	fine edge-on spiral with dust lane
87	6503	Dra	G-Sb	16	49.9	$+70$	10	9.6	4.5×1.0	bright spiral
88	6543	Dra	PN	17	58.8	$+66$	38	8.7	22'	luminous blue-green disk
The	ummer	ky								
89	6207	Her	G-Sc	16	41.3	$+36$	56	11.3	2.0×1.1	same field as M13 cluster
90	6210	Her	PN	16	42.5	$+23$	53	9.2	$20^{\prime \prime} \times 13^{\prime \prime}$	very star-like blue planetary
91	6369	Oph	PN	17	26.3	-23	44	9.9	28'	greenish, annular, and circular
92	6572	Oph	PN	18	09.7	+06	50	8.9	$16^{\prime \prime} \times 13^{\prime \prime}$	tiny oval; bright blue
93	6633	Oph	OC	18	25.1	+06	32	4.9	20	wide-field cluster; IC4756 nearby
94	6712	Sct	GC	18	50.3	-08	47	8.9	2.1	small globular near M26
95	6819	Cyg	OC	19	39.6	$+40$	06	10.1	${ }^{\prime}$, 6	150*; faint but rich cluster
96	6826	Cyg	PN	19	43.4	$+50$	24	9.4	$27^{\prime \prime} \times 24^{\prime \prime}$	Blinking Planetary Nebula
97	6960	Cyg	SNR	20	43.6	$+30$	32	-	70×6	Veil Nebula (west component)
98	6992-5	Cyg	SNR	20	54.3	$+31$	30	-	78×8	Veil Nebula (east component)
99	7000	Cyg	EN	20	57.0	+44	08	-	120×100	North America Neb.; binoc. obj.
100	7027	Cyg	EN	21	05.1	+42	02	10.4	$18^{\prime \prime} \times 11^{\prime \prime}$	very star-like H II region
101	6445	Sgr	PN	17	47.8	-20	00	11.8	$38^{\prime \prime}{ }^{\prime \prime} \times 29^{\prime \prime}$ ',	small, bright and annular; near M23
102	6818	Sgr	PN	19	41.1	-14	17	9.9	$22^{\prime \prime} \times 15^{\prime \prime}$	''Little Gem'' ; annular; 6822 nearby
103	6802	Vul	OC	19	28.4	$+20$	10	11.0	3.5	60*; small, faint but rich
104	6940	Vul	OC	20	32.5	$+28$	08	8.2	20	100*; Type e; rich cluster
105	6939	Cep	OC	20	30.4	$+60$	28	10.0	575	80*; very rich; 6946 in same field
106	9646	Cep	G-Sc	20	33.9	+59	58	9.7p	9.0×7.5	faint, diffuse face-on spiral
107	7129	Cep	RN	21	42.0	$+65$	52	-	7×7	fairly bright; several stars involved
108	40	Cep	PN	00	10.2	+72	15	10.5	$60^{\prime \prime} \times 38^{\prime \prime}$	fairly large; 11 m 5 central star
109	7209	Lac	OC	22	03.2	$+46$	15	7.6	20	50*; Type d; within Milky Way
110	7243	Lac	OC	22	13.2	+49	38	7.4	20	40*; Type d; within Milky Way

RADIO SOURCES

By John Galt

Although several thousand radio sources have been catalogued most of them are only observable with the largest radio telescopes. This list contains the few strong sources which could be detected with amateur radio telescopes as well as representative examples of astronomical objects which emit radio waves.

Name	$\alpha(1980) \delta$		Remarks
	h m		
Tycho's s'nova	0024.6	+64 01	Remnant of supernova of 1572
Andromeda gal.	0041.5	+4109	Closest normal spiral galaxy
IC 1795, W3	0223.9	+6201	Multiple HII region, OH emission
Algol	0306.6	+4052	Star emits high freq. radio waves
NGC 1275, 3C 84	0318.5	+4126	Seyfert galaxy, radio variable
CP 0328	0331.3	+54 29	Pulsar, period $=0.7145 \mathrm{sec} ., \mathrm{H}$ abs'n.
Crab neb, M1*	0533.2	+2200	Remnant of supernova of 1054
NP 0532	0533.2	+2200	Radio, optical \& X-ray pulsar
V 371 Orionis	0532.7	+0154	Red dwarf, radio \& optical flare star
Orion neb, M42	0534.3	-05 24	HII region, OH emission, IR source
IC 443	0616.1	+22 36	Supernova remnant (date unknown)
Rosette neb	0630.9	+04 53	HII region
YV CMa	0722.2	-20 42	Optical var. IR source, $\mathrm{OH}, \mathrm{H}_{2} \mathrm{O}$ emission
3 C 273	1228.0	+0210	Nearest, strongest quasar
Virgo A, M87*	1229.8	+1230	EO galaxy with jet
Centaurus A	1324.2	-42 55	NGC 5128 peculiar galaxy
3C 295	1410.7	+ 5218	21st mag. galaxy, 4,500,000,000 light years
OQ 172	1444.3	+10 04	Quasar, very large redshift $\mathrm{Z}=3.53$
Scorpio X-1	1618.8	-15 35	X-ray, radio optical variable
3C 353	1719.5	-00 58	Double source, probably galaxy
Kepler's s'nova	1727.6	-21 16	Remnant of supernova of 1604
Galactic nucleus	1744.3	-28 56	ComplexregionOH, $\mathrm{NH}_{3} \mathrm{em} ., \mathrm{H}_{2} \mathrm{CO} a \mathrm{C}^{\prime} \mathrm{n}$.
Omega neb, M17	1819.3	-1610	HII region, double structure
CP 1919	1920.8	+2150	First pulsar discovered, $\mathrm{P}=1.337 \mathrm{sec}$.
Cygnus A*	1958.7	+40 41	Strong radio galaxy, double source
Cygnus X	2021.9	+40 19	Complex region
NML Cygnus	2045.8	+4002	Infrared source, OH emission
Cygnus loop	2051.4	+29 36	S'nova remnant (Network nebula)
N. America	2054.4	+4359	Radio shape resembles photographs
BL Lac	2201.9	+4211	Radio and optical variable
3C 446	2224.7	-05 04	Quasar, optical mag. \& spectrum var.
Cassiopeia A^{*}	2322.5	+ 5842	Strongest source, s'nova remnant
Sun*			Continuous emission \& bursts
Moon			Thermal source only
Jupiter*			Radio bursts controlled by Io

Sources marked * could be detected with amateur radio telescopes. (For more information about amateur radio astronomy, see Astronomy, 5, no. 12, 50 (1977), a series of articles in J. Roy. Ast. Soc. Canada, 72, L5, L22, L38 . . . (1978) and a series of articles in Sky and Telescope, 55, 385 and 475 and 56, 28 and 114 (1978)-Ed.)

STAR CLUSTERS

By Anthony Moffat and Theodor Schmidt-Kaler

The study of star clusters is crucial for the understanding of stellar structure and evolution. It is generally believed that the stars seen in a given cluster formed nearly simultaneously from the same parent cloud of gas and dust; thus, the stars differ from one another only in the quantity of matter each contains. Comparing one cluster with another, it is essentially only the age and the chemical composition of their stars that differ. But what makes one cluster appear different from another in the sky is mainly the degree of concentration and regularity, the spread in magnitude and colour of the member stars, all of which vary mainly with age, and the total number of stars. Extremely young clusters are often irregular in shape with clumps of newly formed stars, pervaded by lanes of obscuring dust and bright nebulosity, while the oldest clusters, if they were fortunate enough not to have already dissipated or been torn apart by external forces, tend to be extremely symmetric in shape, with only the slower-burning, low-mass stars left for us to appreciate.

The star clusters in the lists below were selected as the most conspicuous. Two types can be recognized: open and globular. Open clusters often appear as irregular aggregates of tens of thousands of stars, sometimes barely distinguishable from random fluctuations of the general field; they are concentrated toward the Galactic disk and generally contain stars of chemical abundance like the sun. They range in age from very young to very old.
Globular clusters on the other hand are highly symmetric, extremely old agglomerations of up to several million stars, distributed throughout the Galactic halo but concentrated toward the centre of the Galaxy. Compared to the sun, they tend to be much less abundant in elements heavier than hydrogen and helium.
The first table includes all well-defined Galactic open clusters with diameters greater than 40^{\prime} and/or integrated magnitudes brighter than 5.0, as well as the richest clusters and some of special interest. The apparent integrated photographic magnitude is from Collinder, the angular diameter is generally from Trumpler, and the photographic magnitude of the fifth-brightest star, m(5) is from Shapley, except where in italics which are new data. The distance is mainly from Becker and Fenkart (Astr. Astrophys. Suppl. 4, 241 (1971)). The earliest spectral type of cluster stars, Sp , is a measure of the age as follows: expressed in millions of years, $05=2$, $\mathrm{B} 0=8, \mathrm{~B} 5=70, \mathrm{~A} 0=400, \mathrm{~A} 5=1000, \mathrm{~F} 0=3000$ and $\mathrm{F} 5=10000$.

The second table includes all globular clusters with a total apparent photographic magnitude brighter than about 7.6. The data are taken from a compilation by Arp (Galactic Structure, ed. Blaauw and Schmidt, U. Chicago 1965), supplemented by H. S. Hogg's Bibliography (Publ. David Dunlap Obs. 2, No. 12, 1963). The apparent diameter given contains 90% of the stars, except values in italics which are from miscellaneous sources. The concentration class is such that I is the most compact, XII is least. The integrated spectral type varies mainly with the abundances, and $\mathrm{m}(25)$ refers to the mean blue magnitude of the 25 brightest stars excluding the 5 brightest, which are liable to fluctuate more. The number of variables known in the cluster is also given.

Open Clusters

	$\begin{aligned} & \text { R.A. } \\ & 1980 \end{aligned}$		$\begin{aligned} & \text { Dec. } \\ & 1980 \end{aligned}$		Int. m_{pg}	Diam.	m(5)	$\begin{aligned} & \text { Dist. } \\ & 1000 \\ & \text { l.y. } \end{aligned}$	Sp	Remarks
188	00	42.0	$+85$	14	9.3	14	14.6	5.0	F2	oldest known
752	01	56.6	+37	35	6.6	45	9.6	1.2	A5	
869	02	17.6	+57	04	4.3	30	9.5	7.0	B1	h Per
884	02	21.0	+57	02	4.4	30	9.5	8.1	B0	χ Per, M supergiants
Perseus	03	21	+48	32	2.3	240	5	0.6	B1	moving cl. $; \alpha$ Per
Pleiades	03	45.9	$+24$	04	1.6	120	4.2	0.41	B6	M45, best known
Hyades	04	19	+15	35	0.8	400	1.5	0.13	A2	moving cl.**, in Taurus
1912	05	27.3	+35	49	7.0	18	9.7	4.6	B5	M38
1976/80	05	34.4	-05	24	2.5	50	5.5	1.3	O5	Trapezium, very young
2099	05	51.1	+32	32	6.2	24	9.7	4.2	B8	M37

[^7]| $\begin{aligned} & \text { NGC } \\ & \text { or } \\ & \text { other } \end{aligned}$ | | $\begin{aligned} & \text { R.A. } \\ & 1980 \\ & \mathrm{~m} \end{aligned}$ | $\begin{gathered} \text { Dec. } \\ 1980 \end{gathered}$ | | $\begin{aligned} & \text { Int. } \\ & \mathrm{m}_{\mathrm{pg}} \end{aligned}$ | Diam. | $\mathrm{m}(5)$ | $\begin{aligned} & \text { Dist. } \\ & 1000 \\ & \text { l.y. } \end{aligned}$ | Sp | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2168 | 06 | 07.6 | +24 | 21 | 5.6 | 29 | 9.0 | 2.8 | B5 | M35 |
| 2232 | 06 | 25.5 | -04 | 44 | 4.1 | 20 | 7 | 1.6 | B1 | |
| 2244 | 06 | 31.3 | +04 | 53 | 5.2 | 27 | 8.0 | 5.3 | 05 | Rosette, very young |
| 2264 | 06 | 39.9 | +09 | 54 | ${ }_{5}^{4.1}$ | 30 | 8.0 | 2.4 | O8 | S Mon |
| 2287 | 06 | 46.2 | -20 | 43 | 5.0 | 32 | 8.8 | 2.2 | B4 | M41 |
| 2362 | 07 | 18.0 | -24 | 54 | 3.8 | 7 | 9.4 | 5.4 | O9 | $\tau \mathrm{CMa}$ |
| 2422 | 07 | 34.7 | -14 | 27 | 4.3 | 30 | 9.8 | 1.6 | B3 | |
| 2437 | 07 | 40.9 | -14 | 46 | 6.6 | 27 | 10.8 | 5.4 | B8 | M46 |
| 2451 | 07 | 44.7 | -37 | 55 | 3.7 | 37 | 6 | 1.0 | B5 | |
| 2516 | 07 | 58.0 | -60 | 51 | 3.3 | 50 | 10.1 | 1.2 | B8 | |
| 2546 | 08 | 11.8 | -37 | 35 | 5.0 | 45 | 7 | 2.7 | B0 | |
| 2632 | 08 | 39.0 | +20 | 04 | 3.9 | 90 | 7.5 | 0.52 | A0 | Praesepe, M44 |
| IC2391 | 08 | 39.7 | -52 | 59 | 2.6 | 45 | 3.5 | 0.5 | B4 | |
| IC2395 | 08 | 40.4 | -48 | 07 | 4.6 | 20 | 10.1 | 2.9 | B2 | |
| 2682 | 08 | 49.3 | +11 | 54 | 7.4 | 18 | 10.8 | 2.7 | F2 | M67, very old |
| 3114 | 10 | 02.0 | -60 | 01 | 4.5 | 37 | 7 | 2.8 | B5 | |
| IC2602 | 10 | 42.6 | -64 | 17 | 1.6 | 65 | 6 | 0.5 | B1 | θ Car |
| Tr 16 | 10 | 44.4 | -59 | 36 | 6.7 | 10 | 10 | 9.6 | O3 | η Car and Nebula |
| 3532 | 11 | 05.5 | -58 | 33 | 3.4 | 55 | 8.1 | 1.4 | B8 | |
| 3766 | 11 | 35.2 | -61 | 30 | 4.4 | 12 | 8.1 | 5.8 | B1 | |
| Coma | 12 | 24.1 | +26 | 13 | 2.9 | 300 | 5.5 | 0.3 | A1 | Very sparse cl. |
| 4755 | 12 | 52.4 | -60 | 13 | 5.2 | 12 | 7 | 6.8 | B3 | ${ }^{\text {c Cru, "jewel box" }}$ |
| 6067 | 16 | 11.7 | -54 | 10 | 6.5 | 16 | 10.9 | 4.7 | B3 | G, K supergiants |
| 6231 | 16 | 52.6 | -41 | 46 | 8.5 | 16 | 7.5 | 5.8 | 09 | Osupergiants, WR stars |
| Tr 24 | 16 | 55.6 | -40 | 38 | 8.5 | 60 | 7.3 | 5.2 | 05 | |
| 6405 | 17 | 38.8 | -32 | 12 | 4.6 | 26 | 8.3 | 1.5 | B4 | M6 |
| IC4665 | 17 | 45.7 | +05 | 44 | 5.4 | 50 | 7 | 1.1 | B8 | |
| 6475 | 17 | 52.6 | -34 | 48 | 3.3 | 50 | 7.4 | 0.8 | B5 | M7 |
| 6494 | 17 | 55.7 | -19 | 01 | 5.9 | 27 | 10.2 | 1.4 | B8 | M23 |
| 6523 | 18 | 01.9 | -24 | 23 | 5.2 | 45 | 7 | 5.1 | 05 | M8, Lagoon Neb. |
| 6611 | 18 | 17.8 | -13 | 48 | 6.6 | 8 | 10.6 | 5.5 | 07 | M16, nebula |
| IC4725 | 18 | 30.5 | -19 | 16 | 6.2 | 35 | 9.3 | 2.0 | B3 | M25, Cepheid U Sgr |
| IC4756 | 18 | 38.3 | +05 | 26 | 5.4 | 50. | 8.5 | 1.4 | A3 | |
| 6705 | 18 | 50.0 | -06 | 18 | 6.8 | ${ }_{60}^{12.5}$ | 12 | 5.6 | B8 | M11, very rich cl. |
| Mel 227 | 20 | 08.2 | -79 | 23 | 5.2 | 60 | 9 | 0.8 | B9 | |
| IC1396 | 21 | 38.3 | +57 | 25 | 5.1 | 60 | 8.5 | 2.3 | O6 | Tr 37 |
| 7790 | 23 | 57.4 | +61 | 06 | 7.1 | 4.5 | 11.7 | 10.3 | B1 | $\begin{aligned} & \text { Cepheids CEa, CEb } \\ & \text { and CF Cas } \end{aligned}$ |

Globular Clusters

NGC	$\begin{gathered} \mathbf{M} \\ \text { or } \\ \text { other } \end{gathered}$		A. m m	$\begin{aligned} & \text { Dec. } \\ & 1980 \end{aligned}$		$\begin{aligned} & \text { Int. } \\ & \mathrm{m}_{\mathrm{pg}} \end{aligned}$	Diam.	Conc.	$\begin{aligned} & \text { Int. } \\ & \text { Sp. T. } \end{aligned}$	m(25)	No. Var.	$\begin{gathered} \text { Dist. } \\ 1000 \\ \text { l.y. } \end{gathered}$
104	47 Tuc	00	23.1	-72	11	4.35	44	III	G3	13.54	11	16
1851*		05	13.3	-40	02	7.72	11.5		F7		3	46
2808		09	11.5	-64	42	7.4	18.8	I	F8	15.09	4	30
5139	ω Cen	13	25.6	-47	12	4.5	65.4	VIII	F7	13.01	165	17
5272	3	13	41.3	+28	29	6.86	9.3	VI	F7	14.35	189	35
5904	5	15	17.5	+02	10	6.69	10.7	V	F6	14.07	97	26
6121	4	16	22.4	-26	28	7.05	22.6	IX	G0	13.21	43	14
6205	13	16	41.0	+36	30	6.43	12.9	V	F6	13.85	10	21
6218	12	16	46.1	-01	55	7.58	21.5	IX	F8	14.07	1	24
6254	10	16	56.0	-04	05	7.26	16.2	VII	G1	14.17	3	20
6341*	92	17	16.5	+43	10	6.94	12.3	IV	F1	13.96	16	26
6397		17	39.2	-53	40	6.9	19	IX	F5	12.71	3	9
6541		18	06.5	-43	45	7.5	23.2	III	F6	13.45	1	13
6656	22	18	35.1	-23	56	6.15	26.2	VII	F7	13.73	24	10
6723		18	58.3	-36	39	7.37	11.7	VII	G4	14.32	19	24
6752		19	09.1	-60	01	6.8	41.9	VI	F6	13.36	1	17
6809	55	19	38.8	-30	59	6.72	21.1	XI	F5	13.68	6	20
7078*	15	21	29.1	+12	05	6.96	9.4	IV	F2	14.44	103	34
7089	2	21	32.4	-00	55	6.94	6.8	II	F4	14.77	22	40

*Compact X-ray sources were discovered in these clusters in 1975.

EXTERNAL GALAXIES

By S. van den Bergh

Among the hundreds of thousands of systems far beyond our own Galaxy relatively few are readily seen in small telescopes. The first list contains the brightest galaxies. The first four columns give the catalogue numbers and position. In the column Type, E indicates elliptical, I, irregular, and $S a, S b, S c$, spiral galaxies in which the arms are more open going from a to c. Roman numerals I, II, III, IV, and V refer to supergiant, bright giant, giant, subgiant and dwarf galaxies respectively; p means "peculiar". The remaining columns give the apparent photographic magnitude, the angular dimensions and the distance in millions of light-years.

The second list contains the nearest galaxies and includes the photographic distance modulus ($m-M)_{p g}$, and the absolute photographic magnitude, $M_{p g}$.

The Brightest Galaxies

NGC or name	M	$\alpha 1980$ \%		Type	$m_{p g}$	Dimensions	Distance millions of $1 . \mathrm{y}$.
		h m	- ,				
55		0014.0	-39 20	Sc or Ir	7.9	30×5	7.5
205		0039.2	+4135	E6p	8.89	12×6	2.1
221	32	0041.6	+4046	E2	9.06	3.4×2.9	2.1
224	31	0041.6	+4110	Sb I-II	4.33	163×42	2.1
247		0046.1	-20 51	S IV	9.47	21×8.4	7.5
253		0046.6	-25 24	Scp	7.0:	22×4.6	7.5
SMC		0052.0	-72 56	Ir IV or IV-V	2.86	216×216	0.2
300		0054.0	-3748	Sc III-IV	8.66	22×16.5	7.5
598	33	0132.8	+30 33	Sc II-III	6.19	61×42	2.4
Fornax		0238.7	-34 36	dE	9.1:	50×35	0.4
LMC		0523.7	-69 46	Ir or Sc III-IV	0.86	432×432	0.2
2403		0734.9	+65 39	Sc III	8.80	22×12	6.5
2903		0931.0	+2136	Sb I-II	9.48	16×6.8	19.0
3031	81	0953.9	+69 09	Sb I-II	7.85	25×12	6.5
3034	82	0954.4	+69 47	Scp:	9.20	10×1.5	6.5
4258		1218.0	+4725	Sbp	8.90	19×7	14.0
4472	49	1228.8	+08 06	E4	9.33	9.8×6.6	37.0
4594	104	1238.8	-1131	Sb	9.18	7.9×4.7	37.0
4736	94	1250.0	+4113	Sbp II:	8.91	13×12	14.0
4826	64	1255.8	+2148	?	9.27	10×3.8	12.0:
4945		1304.1	-49 22	Sb III	8.0	20×4	-
5055	63	1314.8	+42 08	Sb II	9.26	8.0×3.0	14.0
5128		1324.2	-4254	E0p	7.87	23×20	
5194	51	1329.0	+4718	Sc I	8.88	11×6.5	14.0
5236	83	1336.0	-29 46	Sc I-II	7.0:	13×12	8.0:
5457	101	1402.4	+5426	Sc I	8.20	23×21	14.0
6822		1943.8	-14 49	Ir IV-V	9.21	20×10	1.7

The Nearest Galaxies

Name	NGC	$\alpha 1980$ \%		$m_{p g}$	$(m-M)_{p g}$	$M_{p g}$	Type	Dist. thous. of 1.y.
		h m						
M31	224	0041.6	+4110	4.33	24.65	-20.3	Sb I-II	2,100
Galaxy						?	Sb or Sc	
$\xrightarrow[\text { M33 }]{\text { LM }}$	598	$\begin{array}{lll}01 & 32.8 \\ 05 & 23.7\end{array}$	+3033 -6946	6.19	24.70	-18.5	Sc II-III	2,400
LMC		0523.7	-69 46	0.86	18.65	-17.8	Ir or SBc	160
SMC		0052.0	-72 56	2.86	19.05	-16.2	Ir IV or	190
NGC	205	0039.2	+4135	8.89	24.65	-15.8	E6p	2,100
M32	221	0041.6	+40 46	9.06	24.65	-15.6	E2	2,100
NGC	6822	1943.8	-14 49	9.21	24.55	-15.3	Ir IV-V	1,700
NGC	185	0037.8	+48 14	10.29	24.65	-14.4	E0	2,100
IC1613		0104.0	+0201	10.00	24.40	-14.4	Ir V	2,400
NGC	147	0032.0	+4814	10.57	24.65	-14.1	dE4	2,100
Fornax		0238.7	-34 36	9.1:	20.6:	-12:	dE	430
And I		0044.4	+3756	13.5:	24.65	-11:	dE	2,100
And II		0115.3	+3320	13.5:	24.65	-11:	dE	2,100
And III		0034.3	+3624	13.5:	24.65	-11:	dE	2,100
Leo I		1007.4	+1224	11.27	21.8:	-10:	dE	750 :
Sculptor		0058.9	-33 49	10.5	19.70	-9.2:	dE	280:
Leo II		1112.4	+2216	12.85	21.8:	-9:	dE	750 :
Draco		1719.8	+5756	-	19.50	?	dE	260
Ursa Minor		1508.5	+6711	-	19.40	?	dE	250
Carina		0647.2	-50 59	-	21.8:	?	dE	550
LGS3		0102.8	+2147	?	?	?		2,100:

VARIABLE GALAXIES

Some peculiargalaxies (Seyfert galaxies, BL Lacertae objects and quasars) have bright, star-like nuclei which vary in brightness by up to several magnitudes on a time scale of months to years. These variations can be studied by amateurs and students, especially using photographic techniques. The following table lists the brightest variable galaxies. For more information, see Sky and Telescope 55, 372 (1978), which gives finding charts for four of these objects. A chart for 3C273, the brightest quasar, is at right. North is at the top.

Name	Type	R.A.				1950
		Dec.	Mag.			
		h	m	\circ	\prime	
NGC 1275	Seyfert?	3	16.5	+41	20	$11-13$
3C 120	Seyfert	4	30.5	+05	15	$14-16$
OJ 287	BL Lac	8	52.0	+20	18	$12-16$
NGC 4151	Seyfert	12	08.0	+39	41	$10-12$
3C 273	Quasar	12	26.6	+02	20	$12-13$
3C 345	Quasar	16	41.3	+39	54	$14-17$
Mkn. 509	Seyfert	20	41.5	-10	54	$12-13$
BL Lac	BL Lac	22	00.7	+42	02	$14-17$
NGC 7469	Seyfert	23	00.7	+08	36	$12-13$

The above map represents the evening sky on the dates and times shown. For earlier (or later) dates, add (or subtract) two hours per month. For instance, the map represents the early morning sky in late October at 4 a.m. The map is drawn for latitude $45^{\circ} \mathrm{N}$. but is useful for latitudes several degrees north or south of this.

The centre of the map is the zenith, the point directly overhead; the circumference of the map is the horizon. To identify the stars, hold the map in front of you so that the part of the horizon which you are facing (north, for instance) is downward.

The north celestial pole is near the star Polaris. The celestial equator is also marked. The sun, moon and planets are always found near the ecliptic.

The above map represents the evening sky on the dates and times shown. For earlier (or later) dates, add (or subtract) two hours per month. For instance, the map represents the early morning sky in late December at 4 a.m. The map is drawn for latitude $45^{\circ} \mathrm{N}$, but is useful for latitudes several degrees north or south of this.

The centre of the map is the zenith, the point directly overhead; the circumference of the map is the horizon. To identify the stars, hold the map in front of you so that the part of the horizon which you are facing (north, for instance) is downward.

The north celestial pole is near the star Polaris. The celestial equator is also marked. The sun, moon and planets are always found near the ecliptic.

The above map represents the evening sky on the dates and times shown. For earlier (or later) dates, add (or subtract) two hours per month. For instance, the map represents the early morning sky in late February at 4 a.m. The map is drawn for latitude $45^{\circ} \mathrm{N}$, but is useful for latitudes several degrees north or south of this.

The centre of the map is the zenith, the point directly overhead; the circumference of the map is the horizon. To identify the stars, hold the map in front of you so that the part of the horizon which you are facing (north, for instance) is downward.
The north celestial pole is near the star Polaris. The celestial equator is also marked. The sun, moon and planets are always found near the ecliptic.

The above map represents the evening sky on the dates and times shown. For earlier (or later) dates, add (or subtract) two hours per month. For instance, the map represents the early morning sky in late April at 4 a.m. The map is drawn for latitude $45^{\circ} \mathrm{N}$, but is useful for latitudes several degrees north or south of this.

The centre of the map is the zenith, the point directly overhead; the circumference of the map is the horizon. To identify the stars, hold the map in front of you so that the part of the horizon which you are facing (north, for instance) is downward.

The north celestial pole is near the star Polaris. The celestial equator is also marked. The sun, moon and planets are always found near the ecliptic.

The above map represents the evening sky on the dates and times shown. For earlier (or later) dates, add (or subtract) two hours per month. For instance, the map represents the early morning sky in late June at 4 a.m. The map is drawn for latitude $45^{\circ} \mathrm{N}$, but is useful for latitudes several degrees north or south of this.

The centre of the map is the zenith, the point directly overhead; the circumference of the map is the horizon. To identify the stars, hold the map in front of you so that the part of the horizon which you are facing (north, for instance) is downward.

The north celestial pole is near the star Polaris. The celestial equator is also marked. The sun, moon and planets are always found near the ecliptic.

The above map represents the evening sky on the dates and times shown. For earlier (or later) dates, add (or subtract) two hours per month. For instance, the map represents the early morning sky in late August at 4 a.m. The map is drawn for latitude $45^{\circ} \mathrm{N}$, but is useful for latitudes several degrees north or south of this.

The centre of the map is the zenith, the point directly overhead; the circumference of the map is the horizon. To identify the stars, hold the map in front of you so that the part of the horizon which you are facing (north, for instance) is downward.

The north celestial pole is near the star Polaris. The celestial equator is also marked. The sun, moon and planets are always found near the ecliptic.

VISITING HOURS AT SOME CANADIAN OBSERVATORIES

Compiled By Marie Fidler

Burke-Gaffney Observatory, Saint Mary's University, Halifax, Nova Scotia B3H 3C3.
October-April: Saturday evenings, 7:00 p.m.
May-September: Saturday evenings, 9:00 p.m.
David Dunlap Observatory, Richmond Hill, Ontario L4C 4Y6.
Tuesday mornings throughout the year, 10:00 a.m.
Saturday evenings, April through October, by reservation. Telephone (416) 884-2112.

Dominion Astrophysical Observatory, Victoria, B.C. V8X 3X3.
May-August: Daily, 9:15 a.m.-4:15 p.m.
September-April: Monday to Friday, 9:15 a.m.-4:15 p.m.
Public observing, Saturday evenings, April-October inclusive.
Dominion Radio Astrophysical Observatory, Penticton, B.C. V2A 6K3.
Sunday, July and August only, 2:00-5:00 p.m.
Hume Cronyn Observatory, The University of Western Ontario, London, Ontario N6A 5B9.

An active program for individual visitors and groups is maintained throughout the year.
For information, phone (519) 679-3186.
National Museum of Science and Technology, 1867 St. Laurent Blvd., Ottawa, Ontario K1A 0M8.

Evening tours, by appointment only. Telephone (613) 998-9520.
September-June: Group tours: Mon., Tues., Wed., Thurs. Public visits, Fri. July-August: Public visits: Tues., Wed., Thurs.
Observatoire astronomique du mont Mégantic, Notre-Dame-des-Bois, P.Q. J0B 2E0. May-September: Daily 2:00 p.m.-sunset.
Public observing, Saturday evening, May-August inclusive, by reservation. Telephone (514) 343-6718.

PLANETARIUMS

Calgary Centennial Planetarium, Mewata Park, P.O. Box 2100, Calgary, Alberta T2P 2M5.

For program information, telephone (403) 264-4060 or 264-2030.
Dow Planetarium, 1000 St. Jacques Street W., Montreal, P.Q. H3C 1 G7.
For general information telephone (514) 872-4210 (24 hours recorded service).
The Halifax Planetarium, The Education Section of Nova Scotia Museum, Summer Street, Halifax, N.S. B3H 3A6.

Free public shows take place on most Tuesdays at 8:00 p.m. and group shows can be arranged. For information, telephone (902) 429-4610.
The Lockhart Planetarium, 394 University College, 500 Dysart Road, The University of Manitoba, Winnipeg, Manitoba R3T 2N2.

For times of public shows and for group reservations, telephone (204) 474-9785.
H.R. MacMillan Planetarium, 1100 Chestnut Street, Vancouver, B.C. V6J 3J9.

Public shows daily except Monday, 2:30 and 8:00.
Additional shows 1:00 and 4:00 weekends, holidays and summer.
For show information telephone (604) 736-3656.
Manitoba Planetarium, 190 Rupert Avenue at Main Street, Winnipeg, Manitoba R3B 0N2.

Shows are presented Tuesday through Sunday and on holiday and summer Mondays.
For current show times and information, call the recorded message at (204) 943-3142.

To talk to staff members, call during office hours at 956-2830.
The Copernicus Solar Telescope projects a 52 -inch diameter image of the sun every clear day.

McLaughlin Planetarium, 100 Queen's Park, Toronto, Ontario M5S 2C6 (telephone (416) 978-8550).

Tues.-Sun., 3:00 and 7:45 p.m.
Weekends and holidays, 12:30, 1:45, 3:00 and 7:45 p.m. (Theatre closed Mondays, except holidays.)
McMaster University Planetarium, University Information Centre, GH 120, Hamilton, Ontario L8S 4L8.

Group reservations only (maximum 45). Telephone (416) 525-9140, ext. 4721.
Ontario Science Centre, 770 Don Mills Road, Don Mills, Ontario M3C 1T3. Open daily except Christmas Day from 10:00 a.m. to 6:00 p.m. Telephone (416) 429-4100.

Provincial Museum of Alberta, Mobile Planetarium, 12845-102 Avenue, Edmonton, Alberta T5N 0M6.

This planetarium travels throughout Alberta with public shows given Monday through Wednesday evenings. For locations and times telephone (403) 427-1730.

Queen Elizabeth Planetarium, Edmonton, Alberta T5J 0K1. Winter: Tues.-Fri., 8:00 p.m. Sat., Sun. and holidays 3:00 and 8:00 p.m. Summer: Daily, 3:00, 8:00 and 9:00 p.m.

INDEX

Anniversaries and Festivals, 4
Asteroids, 95
Clusters, 132
Comets, 98
Constellations, 103
Coordinates and Terminology, 5
Craters: Impact, 100
Eclipses, 55
Galaxies: Brightest, 134; Nearest, 135; Variable, 135
Julian Day Calendar, 144
Jupiter: General, 83, Belts and Zones,
84; Ephemeris for Physical Observations, 83; Phenomena of Satellites, 92
Mars, General, 81; Ephemeris for Physical Observations, 82; Map, 82
Mercury, 78
Messier's Catalogue, 125
Meteors, Fireballs, Meteorites, 99
Miscellaneous Astronomical Data, 8
Moon: Observation, 28; see also
"Occultations"; Map, 77
Moonrise and Moonset, 22
Nebulae, 124
Neptune, 88
NGC Objects, 128
Occultations: Lunar Grazing, 70;
Lunar Total, 58; Planetary, 56, 91

Planets: General, 78; Elements, 6; Heliocentric Longitudes, 55
Pluto, 89
Precession, 102
Radio Sources, 131
Satellites, 7
Saturn: General, 85; Satellites, 94
Sky and Astronomical Phenomena Month by Month, 28
Solar System: Elements, 6; List of Satellites, 7
Star Maps, 136
Stars: Brightest, 105; Clusters, 132; Double and Multiple, 116; Finding List and Names, 104; Nearest, 122; Variable, 117
Sun: Eclipses, 55; Ephemeris, 9; Physical Observations, 54; Sunspots and Solar Activity, 56
Sunrise and Sunset, 15
Symbols and Abbreviations, 5
Time: General, 10; Conversion to Standard, 14; Correction to Sundial, 9; Sidereal Time Diagram, 12; Time
Signals, 11; Time Zones, 10, 11, 13
Twilight: Diagram, 12; Tables, 21
Uranus, 86
Venus, 79
Visiting Hours at Observatories and Planetaria, 142

JULIAN DAY CALENDAR, 1981
The Julian date is commonly used by astronomers to refer to the time of astronomical events, because it avoids some of the annoying complexities of the civil calendar. The Julian day corresponding to a given date is the number of days which have elapsed since Jan. 1, 4713 B.C.

This system was introduced in 1582 by Josephus Justus Scaliger under the name of the Julian period. The Julian period lasts 7980 years, and is the least common multiple of three cycles: the solar cycle of 28 Julian years, the lunar (or Metonic) cycle of 19 Julian years, and the Roman indiction cycle of 15 years. On Jan. 1, 4713 B.C., all three cycles began together. For more information, see "The Julian Period", by C. H. Cleminshaw in the Griffith Observer, April 1975.

The Julian day commences at noon, so that J.D. $2444606=$ Jan. 1.5 U.T. $1981=$ $12^{\text {h }}$ U.T. Jan. 1, 1981.

JULIAN DATES 1981: $2444000+$

Day	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
1	605.5	636.5	664.5	695.5	725.5	756.5	786.5	817.5	848.5	878.5	909.5	939.5
2	606.5	637.5	665.5	696.5	726.5	757.5	787.5	818.5	849.5	879.5	910.5	940.5
3	607.5	638.5	666.5	697.5	727.5	758.5	788.5	819.5	850.5	880.5	911.5	941.5
4	608.5	639.5	667.5	698.5	728.5	759.5	789.5	820.5	851.5	881.5	912.5	942.5
5	609.5	640.5	668.5	699.5	729.5	760.5	790.5	821.5	852.5	882.5	913.5	943.5
6	610.5	641.5	669.5	700.5	730.5	761.5	791.5	822.5	853.5	883.5	914.5	944.5
7	611.5	642.5	670.5	701.5	731.5	762.5	792.5	823.5	854.5	884.5	915.5	945.5
8	612.5	643.5	671.5	702.5	732.5	763.5	793.5	824.5	855.5	885.5	916.5	946.5
9	613.5	644.5	672.5	703.5	733.5	764.5	794.5	825.5	856.5	886.5	917.5	947.5
10	614.5	645.5	673.5	704.5	734.5	765.5	795.5	826.5	857.5	887.5	918.5	948.5
11	615.5	646.5	674.5	705.5	735.5	766.5	796.5	827.5	858.5	888.5	919.5	949.5
12	616.5	647.5	675.5	706.5	736.5	767.5	797.5	828.5	859.5	889.5	920.5	950.5
13	617.5	648.5	676.5	707.5	737.5	768.5	798.5	829.5	860.5	890.5	921.5	951.5
14	618.5	649.5	677.5	708.5	738.5	769.5	799.5	830.5	861.5	891.5	922.5	952.5
15	619.5	650.5	678.5	709.5	739.5	770.5	800.5	831.5	862.5	892.5	923.5	953.5
16	620.5	651.5	679.5	710.5	740.5	771.5	801.5	832.5	863.5	893.5	924.5	954.5
17	621.5	652.5	680.5	711.5	741.5	772.5	802.5	833.5	864.5	894.5	925.5	955.5
18	622.5	653.5	681.5	712.5	742.5	773.5	803.5	834.5	865.5	895.5	926.5	956.5
19	623.5	654.5	682.5	713.5	743.5	774.5	804.5	835.5	866.5	896.5	927.5	957.5
20	624.5	655.5	683.5	714.5	744.5	775.5	805.5	836.5	867.5	897.5	928.5	958.5
21	625.5	656.5	684.5	715.5	745.5	776.5	806.5	837.5	868.5	898.5	929.5	959.5
22	626.5	657.5	685.5	716.5	746.5	777.5	807.5	838.5	869.5	899.5	930.5	960.5
23	627.5	658.5	686.5	717.5	747.5	778.5	808.5	839.5	870.5	900.5	931.5	961.5
24	628.5	659.5	687.5	718.5	748.5	779.5	809.5	840.5	871.5	901.5	932.5 933	962.5
25	629.5	660.5	688.5	719.5	749.5	780.5	810.5	841.5	872.5	902.5	933.5	963.5
26	630.5	661	689.5	720.5	750.5	781.5	811.5	842.5	873.5	903.5	934.5	964.5
27	631.5	662.5	690.5	721.5	751.5	782.5	812.5	843.5	874.5	904.5	935.5	965.5
28	632.5	663.5	691.5	722.5	752.5	783.5	813.5	844.5	875.5	905.5	936.5	966.5
29	633.5		692.5	723.5	753.5	784.5	814.5	845.5	876.5	906.5	927.5	967.5
30	634.5		693.5	724.5	754.5	785.5	815.5	846.5	877.5	907.5	938.5	968.5
31	635.5		694.5		755.5		816.5	847.5		908.5		969.5

PHASES OF THE MOON 1982, U.T.

Lunation	New Moon				First Quarter				Full Moon				Last Quarter			
		d	h	m		d	h	m		d	h	m		d	h	m
730					Jan.	3	04	45	Jan.	9	19	53	Jan.	16	23	58
731	Jan.	25	04	56	Feb.	1	14	28	Feb.	8	07	57	Feb.	15	20	21
732	Feb.	23	21	13	Mar.	2	22	15	Mar.	9	20	45	Mar.	17	17	15
733	Mar.	25	10	17	Apr.	1	05	08	Apr.	8	10	18	Apr.	16	12	42
734	Apr.	23	20	29	Apr.	30	12	07	May	8	00	45	May	16	05	11
735	May	23	04	40	May	29	20	07	June	6	15	59	June	14	18	06
736	June	21	11	52	June	28	05	56	July	6	07	32	July	14	03	47
737	July	20	18	57	July	27	18	22	Aug.	4	22	34	Aug.	12	11	08
738	Aug.	19	02	45	Aug.	26	09	49	Sept.	3	12	28	Sept.	10	17	19
739	Sept.	17	12	09	Sept.	25	04	07	Oct.	3	01	08	Oct.	9	23	26
740	Oct.	17	00	04	Oct.	25	00	08	Nov.	1	12	57	Nov.	8	06	38
741	Nov.	15	15	10	Nov.	23	20	05	Dec.	1	00	21	Dec.	7	15	53
742	Dec.	15	09	18	Dec.	23	14	17	Dec.	30	11	33				

To change these times to other zone times, see pp. 10, 11, 13.

January	February	March	April
S M T W T F S	S M T W T F S	S M T W T F S	S M TW T F S
123	$\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$	$1 \begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$	1234
$\begin{array}{llllllll}4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$	$8 \quad 91011121314$	$8 \quad 91011121314$	$\begin{array}{llllllllll}5 & 6 & 7 & 8 & 9 & 10 & 11\end{array}$
111121314151617	15161718192021	15161718192021	12131415161718
18192021222324	22232425262728	22232425262728	19202122232425
25262728293031		293031	2627282930
May	June	July	August
$\begin{array}{llllll} \mathrm{S} & \mathrm{M} & \mathrm{~T} & \mathrm{~T} & \mathrm{~F} & \mathrm{~S} \\ 1 & 2 \end{array}$	$\begin{array}{rrrrrr} \text { S M } & \text { T W } & \mathrm{T} & \mathrm{~F} & \mathrm{~S} \\ 1 & 2 & 3 & 4 & 5 & 6 \end{array}$	$\begin{array}{rrrrrr} \mathrm{S} & \mathrm{M} & \mathrm{~T} & \mathrm{~W} & \mathrm{~T} & \mathrm{~F} \\ & \mathrm{~S} \\ & 1 & 2 & 3 & 4 \end{array}$	S M T W T F S
$\begin{array}{lllllllll}3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$	$\begin{array}{lllllllll}7 & 8 & 9 & 10 & 11 & 1213\end{array}$	$\begin{array}{lllllllll}5 & 6 & 7 & 8 & 9 & 10 & 11\end{array}$	$\begin{array}{llllllll}2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$
10111213141516	14151617181920	12131415161718	9101112131415
17181920212223	21222324252627	19202122232425	16171819202122
24252627282930	282930	262728293031	23242526272829
31			3031
September	October	November	December
S M T W T F S	S M T W T F S	S M T W T F S	S M TW T F S
$\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}$	123	$\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$	$\begin{array}{lllll}1 & 2 & 3 & 4\end{array}$
$\begin{array}{llllllllll}6 & 7 & 8 & 9 & 10 & 11 & 12\end{array}$	$\begin{array}{llllllll}4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$	$8 \quad 91011121314$	$\begin{array}{llllllllll}6 & 7 & 8 & 9 & 10 & 11 & 12\end{array}$
13141516171819	111121314151617	15161718192021	13141516171819
20212223242526	18192021222324	22232425262728	20212223242526
27282930	25262728293031	2930	2728293031

CALENDAR

January	February	March	April
S M TW T F S	S M TW T F S	S M TW T F S	S M TW T F S
	$\begin{array}{lllllll}1 & 2 & 3 & 5 & 6\end{array}$	$\begin{array}{lllllll}1 & 2 & 3 & 5 & 6\end{array}$	23
$\begin{array}{lllllllll}3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$	788910111213	789910111213	$\begin{array}{lllllll}4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$
10111213141516	14151617181920	14151617181920	11121314151617
17181920212223	21222324252627	21222324252627	18192021222324
24252627282930	28	28293031	252627282930
31			
May	June	July	August
S M TW T F S	S M T W T F S	S M TW T F S	S M TW T F S
1	12345	123	123457
$\begin{array}{lllllllll}2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$	67889101112	$\begin{array}{llllllll}4 & 5 & 6 & 7 & 8 & 910\end{array}$	891011121314
9101112131415	13141516171819	11121314151617	15161718192021
16171819202122	20212223242526	18192021222324	22232425262728
23242526272829	27282930	25262728293031	293031

September	October	November	December
S M T W T F S	SMTW T F S	SM TW T F S	S M T W T F S
1234	12	123456	1234
$\begin{array}{llllllll}5 & 6 & 7 & 8 & 10 & 11\end{array}$	$\begin{array}{lllllllll}3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$	78910111213	$\begin{array}{lllllll}5 & 6 & 7 & 8 & 910 & 11\end{array}$
12131415161718	10111213141516	14151617181920	12131415161718
19202122232425	17181920212223	21222324252627	19202122232425
2627282930	24252627282930 31	282930	262728293031

[^0]: The table gives the equatorial diameter and mass of the objects, as recommended by the I.A.U. in 1976, the mean density, the gravity and escape velocity at the pole, the rotation period, the inclination of equator to orbit, and the albedo. Evidence in 1977 suggests that the equatorial diameter of Uranus may be $55,800 \mathrm{~km}$ and that its oblateness may be $1 / 120$. There is also some evidence that the rotation periods of Uranus and Neptune are 1.0 and 0.9 day, respectively; these values are about twice those given in the table.

[^1]: The above table gives the local mean time of the beginning of morning twilight, and of the ending of evening twilight, for various latitudes. To obtain the corresponding standard time, the method used is the same as for correcting the sunrise and sunset tables, as described on page 14. The entry - in the above table indicates that at such dates and latitudes, twilight lasts all night. This table, taken from the American Ephemeris, is computed for astronomical twilight, i.e. for the time at which the sun is 108° from the zenith (or 18° below the horizon).

[^2]: 'Visible in N. Africa, Europe, N. Asia, Arctic.

[^3]: ${ }^{1}$ Visible in N.E. Asia, Arctic, N. of N. America.

[^4]: ${ }^{1}$ Visible in Central and N. Africa, S. Asia, Indonesia, N.W. Australia.

[^5]: *The penumbral magnitude is the fraction of the lunar diameter obscured by the penumbra of the shadow of the earth at greatest phase, measured along the common diameter.

[^6]: *There is a marked colour difference between the components
 +The separation of the two pairs of ε Lyr is $208^{\prime \prime}$.

[^7]: \dagger IC $=$ Index Catalogue; $\mathrm{Tr}=$ Trumpler; Mel $=$ Melotte.
 ** basic for distance determination.

