4asenta
 the OBSERVER'S HANDBOOK 1972

sixty-fourth year of publication
the ROYAL ASTRONOMICAL SOCIETY of CANADA

THE ROYAL ASTRONOMICAL SOCIETY OF CANADA Incorporated 1890 - Royal Charter 1903

Federally Incorporated 1968

The National Office of the Society is located at 252 College Street, Toronto 130, Ontario; the business office, reading room and astronomical library are housed here.

Membership is open to anyone interested in astronomy and applicants may affiliate with one of the eighteen Centres across Canada established in St. John's, Halifax, Quebec, Montreal, Ottawa, Kingston, Hamilton, Niagara Falls, London, Windsor, Winnipeg, Saskatoon, Edmonton, Calgary, Vancouver, Victoria and Toronto, or join the National Society direct.

Publications of the Society are free to members, and include the Journal (6 issues per year) and the Observer's Handbook (published annually in November). Annual fees of $\$ 10.00$ ($\$ 5.00$ for full-time students) are payable October 1 and include the publications for the following calendar year.

VISITING HOURS AT SOME CANADIAN OBSERVATORIES

David Dunlap Observatory, Richmond Hill, Ontario.
Wednesday mornings, 10:00-11:00 a.m.
Saturday evenings, April through October (by reservation).
Dominion Astrophysical Observatory, Victoria, B.C.
Summer: Daily 9:30-4:30 (Guide, Monday to Friday).
Winter: Monday to Friday, 9:30-4:30 (Saturday evenings April through November).
Dominion Observatory, Ottawa, Ontario.
Monday to Friday, daytime, rotunda only.
Saturday evenings, April through October.
Dominion Radio Astrophysical Observatory, Penticton, B.C.
Sunday, July and August only (2:00-5:00 p.m.).

Planetariums

The Calgary Centennial Planetarium, Mewata Park, Calgary 2, Alberta.
Winter: Wed.-Fri., 7:15 and 8:45 p.m.; Sat. and Sun. 3:00, 7:15, 8:45 p.m. Summer: Daily (except Tues.) 2:00, 3:00, 4:00, 7:15 and 8:45 p.m.
Dow Planetarium, 1000 St. Jacques St. W., Montreal, P.Q.
In English: Tues. through Fri. 12:15 p.m.; Sat. 1:00 and 3:30 p.m.; Sun. 2:15 p.m. Evenings (except Monday) 8:15 p.m.
In French: Tues. through Sat. 2:15 p.m., also Sat. 4:30 p.m.; Sun. 1:00, 3:30 and $4: 30$ p.m. Evenings (except Monday) 9:30 p.m.
H. R. MacMillan Planetarium, 1100 Chestnut St., Vancouver 9, B.C.

Sept.-June: Tues.-Thurs., 4:00 and 8:00 p.m., Fri., 4:00, 7:30, 9:00 p.m. Sat. and holidays, $1: 00,2: 30,4: 00,7: 30,9: 00$ p.m. Sun., 1:00, 2:30, 4:00, 7:30 p.m.
July-August: Tues.-Sat., 1:00, 2:30, 4:00, 7:30, 9:00 p.m.; Sun., 1:00, 2:30, $4: 00,7: 30$ p.m. (including Christmas and Easter weeks). Closed on Mondays except holidays.
Manitoba Museum of Man \& Nature Planetarium, 190 Rupert Ave., Winnipeg 2, Man.
Sept.-June: Sun. and holidays, 1:00, 2:30, 4:00 p.m.; Tue.-Fri., 3:15, 8:30 p.m. Sat., 1:00, 2:30, 4:00, 7:30, 9:00 p.m.

July-August: Sat., Sun. and holidays same as above; Tue.-Fri., 11:00 a.m., 3:00, 7:30, 9:00 p.m. (Closed Mon. except holidays.) Christmas show, 3:15, 7:30, 9:00 p.m.
McLaughlin Planetarium, 100 Queen's Park, Toronto 5, Ontario.
Tue.-Fri., 3:30, 8:00 p.m.; Sat. 2:00, 3:30, 7:30, 9:00 p.m., Sun. 2:00, 3:30, 5:00, 7:30 p.m. (During July and August no Saturday show at 11:00 a.m., additional weekday show at $2: 00$ p.m.)
McMaster University, School of Adult Education, GH-136, Hamilton, Ont.
Group reservations only.
Queen Elizabeth Planetarium, Edmonton, Alberta.
Winter: Tue.-Fri., 8:00 p.m., Sat. 3:00 p.m., Sun. 3:00 p.m.
Summer: Mon.-Sat., 3:00, 8:00 p.m., Sun. and holidays, 2:00, 4:00, 8:00 p.m.
The University of Manitoba Planetarium, 394 University College, 500 Dysart Rd.,
Winnipeg 19, Man.
Wed. and Friday 12:40 and 8:00 p.m.
the observer's handbook for 1972 is the sixty-fourth edition. In response to suggestions from readers, several changes and improvements have been made and a number of errors and omissions in the 1971 edition have been rectified.

My thanks go to all those who assisted in the preparation of this edition: to those whose names appear in the various sections and to my assistant editors Marie Fidler and Peter Tattersall. Special thanks go to Margaret W. Mayall, Director of the A.A.V.S.O. for the predictions of Algol and the variable stars, to Gordon E. Taylor, British Nautical Almanac Office, for the prediction of planetary appulses and occultations, and to Maude Towne and Isabel Williamson for the tables of moonrise and moonset. I also thank the Department of Energy, Mines and Resources, the Astrophysics Branch, National Research Council of Canada, and the David Dunlap Observatory for their assistance and support. Finally, my deep indebtedness to the British Nautical Almanac Office nd to the American Ephemeris is gratefully acknowledged.

John R. Percy

ANNIVERSARIES AND FESTIVALS, 1972

New Year's Day. Sat.	Jan.	Vi	ay 22
Epiphany.Thur.	Jan.	Trinity Sunday.	May 28
Septuagesima Sunday.	Jan. 30	Corpus Christi Thur.	June
Accession of Queen		St. John Baptist	
Elizabeth (1952).... . . S	Feb.	(Mid-summer Day). . . .Sat.	June
Quinquagesima		Dominion Day.......... Sat.	July
(Shrove Sunday)	Feb. 13	Birthday of Queen Mother	
Ash Wednesday	Feb. 16	Elizabeth (1900). Fri.	Aus.
St. David. Wed.	Mar. 1	Labour Day. Mon.	Sep
St. Patrick. Fri.	Mar. 17	Jewish New Yer	
Palm Sunday	Mar. 26	(Rosh Hashanah). Sat.	Sept.
First day of Passover. . .Thur.	Mar. 30	Yom Kippur. Mon.	Sept. 18
Good Friday	Mar. 31	St. Michael	
Easter Sunday	Apr. 2	(Michaelmas Day). . . . Fri.	Sept. 29
Birthday of Queen		Thanksgiving. Mon.	Oct.
Elizabeth (1926)..... . .Fri.	Apr. 21	All Saints' Day. Wed.	Nov.
St. George Sun.	Apr. 23	Remembrance Day. Sat.	Nov. 11
Rogation Sunday	May 7	St. Andrew. Thur.	Nov. 30
Ascension Day........ . Thur.	May 11	First Sunday in Adven	Dec.
Pentecost (Whit Sunday)	May 21	Cbristmas Day	Dec. 2

JULIAN DAY CALENDAR, 1972
Jan. 1......... 2441318 May 1........ 2441439 Sept. 1....... 2441562
Feb. 1......... 2441349 June 1........ 2441470 Oct. 1........ 2441592
Mar. 1......... 2441378 July 1........ 2441500 Nov. 1........ 2441623
Apr. 1......... 2441409 Aug. 1........ 2441531 Dec. 1........ 2441653
The Julian Day commences at noon. Thus J.D. 2441318 = Jan. 1.5 U.T. $=$ Jan. 1, 12 hours U.T.

SYMBOLS AND ABBREVIATIONS

SUN, MOON AND PLANETS

\odot The Sun	(1)	The Moon generally	24 Jupiter
(174) New Moon	¢	Mercury	b Saturn
(2) Full Moon	\bigcirc	Venus	¢ Uranus
iil First Quarter	\oplus	Earth	Ψ Neptune
(6) Last Quarter	0^{7}	Mars	P Pluto

ASPECTS AND ABBREVIATIONS

 σ Conjunction, or having the same Longitude or Right Ascension. δ° Opposition, or differing 180° in Longitude or Right Ascension. \square Quadrature, or differing 90° in Longitude or Right Ascension. δ Ascending Node; ϑ Descending Node. α or R.A., Right Ascension; δ or Dec., Declination. h, m, s, Hours, Minutes, Seconds of Time. - ' ' , Degrees, Minutes, Seconds of Arc.
SIGNS OF THE ZODIAC

\bigcirc ¢ Aries......... 0°		
[f Gemini. 600°		
6 Cancer......... 90°		
	A, α	Alpha
	B, β	Beta
	Γ, γ	Gamma
	Δ, δ	Delta
	E, ε	Epsilon
	\mathbf{Z}, ζ	Zeta
	H, η	Eta
$\Theta, \theta, \vartheta \text { Theta }$		

Ω	Le	120°	A	Sagittarius. . . . 240°
I2	Virgo.	. 150°	厄	Capricornus . . $270{ }^{\circ}$
\bumpeq	Libra.	. 180°	${ }_{\sim}^{1}$	Aquarius. . . . 300°
m	Scorpi	. 210°	-	Pisces 330°

THE GREEK ALPHABET

I, 1 Iota	P, ρ Rho
K, к Kappa	Σ, σ Sigma
Λ, λ Lambda	T, τ Tau
$\mathrm{M}, \mu \mathrm{Mu}$	Υ, v Upsilon
$\mathrm{N}, v \mathrm{Nu}$	$\boldsymbol{\Phi}, \phi$ Phi
$\Xi, \xi \mathrm{Xi}$	X, χ Chi
O, o Omicron	Ψ, ψ Psi
$\Pi, \pi \mathrm{Pi}$	$\boldsymbol{\Omega}, \boldsymbol{\omega}$ Omega

THE CONFIGURATIONS OF JUPITER'S SATELLITES

In the Configurations of Jupiter's Satellites (pages 33, 35, etc.), O represents the disk of the planet, d signifies that the satellite is on the disk, * signifies that the satellite is behind the disk or in the shadow. Configurations are for an inverting telescope.

CALCULATIONS FOR ALGOL

The calculations for the minima of Algol are based on the epoch J.D. 2437965.6985 and period 2.8673285 days as published in Sky and Telescope, 1963.

CELESTIAL DISTANCES

Celestial distances given herein are based on the standard value of $8.794^{\prime \prime}$ for the sun's parallax, and the astronomical unit of 92.957 million miles.

THE CONSTELLATIONS

Latin Names with Pronunciations and Abbreviations

Andromeda, ăn-drŏm'è̀-dà.	And Andr
Antlia, ănt'liila	Ant Antl
Apus, ${ }^{\text {a }}$ 'pŭs	Aps Apus
Aquarius, ${ }^{\text {a }}$-kwâr 1 '1-ŭs	Aqr Aqar
Aquila, ăk'wĭ-là.	Aql Aqil
Ara, à'rà.	Ara Arae
Aries, à'rǐ-èz	Ari Arie
Auriga, ô-ri'g $\dot{\text { a }}$	Aur Auri
Boötes, bô-ō'tēz.	Boo Boot
Caelum, sé'lŭm	Cae Cael
Camelopardalis, kà-mēl'ō-pär'dà-ľ̌s .	. Cam Caml
Cancer, kăn'sẽr.	Cnc Canc
Canes Venatici, kā'nēz vè-năt' 1 ĩ-sì .	. CVn CVen
Canis Major, kā'nı̌s mā'jẽr.	CMa CMaj
Canis Minor, kā'ň̌s' mínẽr.	CMi CMin
Capricornus, kăp'rǐ-kôr'nŭs	Cap Capr
Carina, kà -rî'nà.	Car Cari
Cassiopeia, kăs 1 Ioò-pē'y	. Cas Cas
Centaurus, sěn-tô'rús	. Cen Cent
Cepheus, sē'fūs.	Cep Ceph
Cetus, sē'tǔs.	Cet Ceti
Chamaeleon, kä-mē'le -	. Cha Cham
Circinus, sûr'sǐ-nŭs	Cir Circ
Columba, kō-lŭm'bà.	Col Colm
Coma Berenices, kō'mà běr'è-nì'sēz.	Com Coma
Corona, Australis, kổ-rō'nà ôs-trā'lǐs	CrA CorA
Corona Borealis,	
kà-rō'ná bō'rề-ā lils	CrB CorB
Corvus, kôr'vŭs	Crv Corv
Crater, krā'tẽr	Crt Crat
Crux, krŭks.	Cru Cruc
Cygnus, sig'nŭs	Cyg Cygn
Delphinus, dĕl-fí'nŭs	Del Dlph
Dorado, dồrä'dō	Dor Dora
Draco, drā'kō.	Dra Drac
Equuleus, è-kwō'lıe-ŭs	Equ Equa
Eridanus, è-rid' \dot{d}-nŭs	Eri Erid
Fornax, fôr'năks	For Forn
Gemini, jĕm'î-nì.	Gem Gemi
Grus, grŭs.	Gru Grus
Hercules, hûr'kư'lēz	Her Herc
Horologium, hơr'ô-lõ'î-ŭm	
Hydra, hi'drà.	Hya Hyda
Hydrus, hi'drŭs	Hyi Hydi

Indus, inn'dŭs	Ind	Indi
Lacerta, là-sûr'ta .	Lac	Lacr
Leo, lē'ō.	Leo	Leon
Leo Minor, lē'ō mi'nẽr.	LMi	LMin
Lepus, le'pŭs	Lep	Leps
Libra, lí'brà	Lib	Libr
Lupus, lū'pŭs	Lup	Lupi
Lynx, lingks .	Lyn	Lync
Lyra, lī'rá.	Lyr	Lyra
Mensa, měn'sà	Men	Mens
Microscopium, mí'krô-skō' pĭ-ŭm.		Micr
Monoceros, m-ốnǒs'ẽ	Mo	Mono
Musca, muss'kà.	Mus	Musc
Norma, nôr'mà	Nor	Norm
Octans, ŏk'tănz	Oct	Octn
Ophiuchus, off 1 'ūkŭs	Oph	Ophi
Orion, ô-rí'ŏn	Ori	Orio
Pavo, Pā'vō.	Pav	Pavo
Pegasus, pēg' ${ }^{\text {a }}$-sŭs	Peg	Pegs
Perseus, pûr'sūs	Per	Pers
Phoenix, fē'niks	Phe	Phoe
Pictor, pǐk'tẽr	Pic	Pict
Pisces, pis'ēz	Psc	Pisc
Piscis Austrinus, pǐs'ìs ôs-tri'nǔs	PsA	PscA
Puppis, pŭp'is.	Pup	Pupp
Pyxis, pik's'sis.	Pyx	Pyxi
Reticulum,		
rêt-ťk'ù-lŭmm.	Ret	Reti
Sagitta, sà-jĭt' ${ }^{\text {a }}$	Sge	Sgte
Sagittarius, săj'ĩ-tā'rí-	.Sgr	Sgtr
Scorpius, skôr'pĭ-ŭs.	Sco	Scor
Sculptor, skŭlp'tẽr	Scl	Scul
Scutum, skū'tŭm .	Sct	Scut
Serpens, sûr'pĕnz	Ser	Serp
Sextans, sěks'tănz	Sex	Sext
Taurus, tô'rǔs.	Tau	Taur
Telescopium, tēl'ê-skō'pĭ-ŭm.	Tel	Tele
Triangulum, trī-ăng'gû̀-lŭm.	Tri	Tria
Triangulum Australe		
trī-ăng'gù-lŭm ôs-trā’	Tra	TrAu
Tucana, tû-kā'nà	Tuc	Tucn
Ursa Major, ûr'sả mā'jēr.		UMaj
Ursa Minor,		
ûr'sà mi'ñ̃r	UMi	UMin
Vela, vē'la.	Vel	Velr
Virgo, vûr'gō	Vir	Virg
Volans, vō'lănz	Vol	Voln
Vulpecula, vŭl-pěk'ù-là	Vul	Vulp

ā fāte; à chāotic; ă tăp; ă finăl; à ásk; \dot{a} ide $\dot{a} ;$ â câre; ä älms; au aught; ē bē; è crēaté; ě ĕnd; ě angĕl; ẽ makẽr; i tīme; î bitt; $\grave{\imath}$ anĭmal; ō nōte; ô anatômy; ŏ hǒt; ŏ ŏccur; ô ôrb; $\overline{\mathrm{OO}} \mathrm{mōn} ; \overline{\mathrm{OO}}$ bOOk; ou out; ū tūbe; \mathfrak{u} ûnite; ŭ sŭn; \check{u} sŭbmit; û hûrl.

MISCELLANEOUS ASTRONOMICAL DATA

Units of Length

Units of Time
Sidereal day $\quad=23 \mathrm{~h} 56 \mathrm{~m} 04.09 \mathrm{~s}$ of mean solar time
Mean solar day $\quad=24 h 03 \mathrm{~m} 56.56 \mathrm{~s}$ of mean sidereal time
Synodic month $\quad=29 d 12 h 44 m 03 s \quad$ Sidereal month $=27 d 07 h 43 m 12 s$
Tropical year (ordinary) $=365 d 05 h 48 m 46 s$
Sidereal year $\quad=365 d 06 \mathrm{~h} 09 \mathrm{~m} 10 \mathrm{~s}$
Eclipse year $\quad=346 d 14 h 52 m 52 s$

The Earth

Equatorial radius, $a=6378.160 \mathrm{~km}$. $=3963.20 \mathrm{mi}$.: flattening, $c=(a-b) / a=1 / 298.25$
Polar radius, $\quad b=6356.77 \mathrm{~km} .=3949.91 \mathrm{mi}$.
1° of latitude $\quad=111.137-0.562 \cos 2 \phi \mathrm{~km} .=69.057-0.349 \cos 2 \phi \mathrm{mi}$. (at lat. ϕ)
1° of longitude $\quad=111.418 \cos \phi-0.094 \cos 3 \phi \mathrm{~km} .=69.232 \cos \phi-0.0584 \cos 3 \phi \mathrm{mi}$.
Mass of earth $\quad=5.98 \times 10^{24} \mathrm{kgm} .=13.2 \times 10^{24} \mathrm{lb}$.
Velocity of escape from $\oplus=11.2 \mathrm{~km}$. $/ \mathrm{sec} .=6.94 \mathrm{mi} . / \mathrm{sec}$.

Earth's Orbital Motion

Solar parallax $=8^{\prime \prime} .794$ (adopted)
Constant of aberration $=20^{\prime \prime} .496$ (adopted)
Annual general precession $=50^{\prime \prime} .26$; obliquity of ecliptic $=23^{\circ} 26^{\prime} 35^{\prime \prime}$ (1970)
Orbital velocity $=29.8 \mathrm{~km} . / \mathrm{sec} .=18.5 \mathrm{mi} . / \mathrm{sec}$.
Parabolic velocity at $\oplus=42.3 \mathrm{~km} . / \mathrm{sec} .=26.2 \mathrm{mi} . / \mathrm{sec}$.

Solar Motion

Solar apex, R.A. $18 h 04 m$, Dec. $+30^{\circ}$; solar velocity $=19.4 \mathrm{~km} . / \mathrm{sec} .=12.1 \mathrm{mi} . / \mathrm{sec}$.

The Galactic System

North pole of galactic plane R.A. 12 h 49 m , Dec. $+27 .{ }^{\circ} 4$ (1950)
Centre of galaxy R.A. $17 h 42.4 m$, Dec. $-28^{\circ} 55^{\prime}$ (1950) (zero pt. for new gal. coord.)
Distance to centre $\boldsymbol{\sim} \mathbf{1 0 , 0 0 0}$ parsecs; diameter $\sim \mathbf{3 0 , 0 0 0}$ parsecs
Rotational velocity (at sun) $\sim 262 \mathrm{~km}$. $/ \mathrm{sec}$.
Rotational period (at sun) $\sim 2.2 \times 10^{8}$ years
Mass $\sim 2 \times 10^{11}$ solar masses

External Galaxies

Red Shift $\sim+100 \mathrm{~km} . / \mathrm{sec} . /$ megaparsec ~ 19 miles $/ \mathrm{sec}$./million l.y.

Radiation Constants

Velocity of light, $c=2.997925 \times 10^{10} \mathrm{~cm} . / \mathrm{sec} .=186.282 .1 \mathrm{mi} . / \mathrm{sec}$.
Frequency, $v=c / \lambda ; v$ in Hertz (cycles per sec.), c in $\mathrm{cm} . / \mathrm{sec} ., \lambda$ in cm .
Solar constant $=1.93$ gram calories/square cm ./minute
Light ratio for one magnitude $=2.512 \ldots ; \log$ ratio $=$ exactly 0.4
Stefan's constant $=5.6694 \times 10^{-5}$ c.g.s. units
Miscellant: Js
Constant of gravitation, $G=6.670 \times 10^{-8}$ c.g.s. units
Mass of the electron, $m=9.1083 \times 10^{-28} \mathrm{gm}$.: mass of the proton $=1.6724 \times 10^{-24} \mathrm{gm}$.
Planck's constant, $h=6.625 \times 10^{-27}$ erg. sec.
Absolute temperature $=T^{\circ} \mathrm{K}=T^{\circ} \mathrm{C}+273^{\circ}=5 / 9\left(T^{\circ} \mathrm{F}+459^{\circ}\right)$
1 radian $=57^{\circ} .2958 \quad \pi=3.141,592,653,6$
$=3437.75 \quad$ No. of square degrees in the sky $=41,253$
$=206,265^{\prime \prime} \quad 1 \mathrm{gram}=0.03527 \mathrm{oz}$.

SUN-EPHEMERIS AND CORRECTION TO SUN-DIAL

Date	Apparent R.A. 0h E.T.	Apparent Dec. 0 h E.T.	Corr. to Sun-dial 12h E.T.	Date	Apparent R.A. Oh E.T.	Apparent Dec. 0h E.T.	Corr. to Sun-dial 12 h E.T.
	h m	-			h m s	-	
Jan. 1	184203	-23 05.5	+ 316	July 2	64424	+2303.1	3 + +49
	185517	-22 50.2	+ 440		65647	+2248.2	+ 431
7	190828	-22 30.7	+ 601	8	70306	+22 29.6	+500
10	192135	-22 07.2	+ 717	11	72122	+2207.6	+526
13	193437	-21 39.9	+ 828	14	73335	+2142.1	+ 548
16	194734	-2108.7	+ 935	17	74542	+21 13.4	+ 605
19	200024	-20 33.9	+1034	20	75745	+20 41.4	+618
22	$20 \cdot 1308$	-19 55.6	+1128	23	80943	+20 06.2	+ 625
25	202545	-19 13.9	+1214	26	82135	+1928.1	+627
28	203815	-18 29.1	+1253	29	83322	+1847.1	+ 623
31	205038	-1741.3	+1324		84504	+18 03.2	
Feb. 3	210253	-16 50.7	+1349		85640	+17 16.7	+ 600 +600
	211501	-15 57.4	+1406	7	90811	+1627.7	+ 541
9	212701	-15 01.6	+1415	10	91937	+15 36.3	+ 516
12	213855	-14 03.5	+1418	13	93058	+1442.6	+ 446
15	215042	-1303.3,	+1415	16	94214	+1346.8	+ 411
18	220222	-1201.2	+1404	19	95324	+1249.1	+ 332
21	221356	-10 57.4	+1347	22	100431	+1149.6	+ 248
24	222524	- 952.1	+1324	25	101533	+1048.4	+159
27	223646	- 845.5	+1256	28	102631 10	+ 945.6	+108
Mar. 1	224803	- 737.6	+1222	31	103727	+ 841.4	+ 013
	225915	- 628.8	+1144	Sept. 3	104819	+ 736.0	- 045
7	231024	- 519.2	+1103		105909	+ 629.4	- 144
10	232129	- 408.9	+1017	9	110958	+ 521.9	- 246
13	233231	- 258.2	+ 929	12	112045	+ 413.6	- 349
16	2343.31	- 147.1	+839	15	113131	+ 304.6	- 452
19	235428	- 035.9	+ 747	18	114217	+ 155.1	- 556
22	00525	+ 035.2	+ 653	21	115302	+ 045.3	- 700
25	$\begin{array}{ll}0 & 1620 \\ 0\end{array}$	+ 146.1	+559 +50	24	$\begin{array}{ll}12 & 0348 \\ 12 & 14\end{array}$	- 024.8	-804
28	02715	+ 256.6	+ 504	27	121436	- 134.9	-905
31	03810	+ 406.6	+ 409	30	122526	- 244.9	-10 05
Apr. 3	04905	+ 516.0	+ 315	Oct. 3	123618	- 354.7	-1102
	10002	+ 624.5	+ 223		124713	- 504.2	-1156
9	11102	+ 732.0	+133	9	125811	- 613.0	-1247
12	12203	+ 838.5	+ 045	12	$\begin{array}{ll}13 & 0914\end{array}$	- 721.1	-13 33
15	13307	$\begin{array}{r}\text { 1 } \\ +943.6 \\ \hline 1047.2\end{array}$	+001	15	$\begin{array}{llll}13 & 20 & 21 \\ 13 & 31\end{array}$	- 828.3	-14 15
18	14415	+1047.2	- 041	18	133133	- 934.4	-14 52
21	15526	+1149.3	- 119	21	134250	-10 39.2	-15 23
24	20640	+1249.5	-154	24	135413	-1142.7	-1549
27	21759	+1347.9	-224	27	140543	-12 44.5	-16 08
30	22922	+ 1444.2	- 250	30	141719	-13 44.6	-1620
May 3	24050	+1538.4	- 311	Nov. 2	142903	-14 42.7	-16 25
	25223	+1630.2	- 326		144054	-15 38.7	-16 22
9	30401	+17 19.6	- 337	8	145252	-16 32.3	-16 13
12	31545	+1806.4	- 342	11	150458	-17 23.4	-15 55
15	32734	+1850.4	- 342	14	151711	-18 11.9	-15 30
18	33928	+1931.6	- 337	17	152932	-18 57.4	-14 58
21	35126	+20 09.8	- 327	20	154200	-19 40.0	-1418
24	40330	+2044.8	- 313	23	155436	-20 19.3	-13 31
27	41537	+21 16.7	-254	26	160718	-20 55.2	-1237
30	42749	+2145.2	-231	29	162008	-21 27.7	-1136
	44005	+2210.4	-205		163304	-21 56.4	-10 29
	45225	+ 2232.1	- 134		164605	-22 21.4	-916
8	50447	+2250.2	- 101	8	165912	-22 42.5	- 759
11	51712	+ 2304.8	-025	11	171222	-22 59.5	- 637
14	52939	+2315.6	+ 013	14	172537	-23 12.	- 512
17	54208	+23 22.8	+ 052	17	173853	-23 21.3	- 345
20	55436	+2326.3	+ 131	20	175211	-23 25.9	- 216
23	60705	+2326.0	+ 209	23	180530	-23 26.3	- 046
26	$\begin{array}{llll}619 & 33 \\ 6 & 31 & 59\end{array}$	+2322.1	+247 $+\quad 324$	26	181849 18	-2322.4 -2314.3	+043 $+\quad 211$
29	63159	+2314.4	+ 324	29	183208	-2314.3	+ 211

PRINCIPAL ELEMENTS OF THE SOLAR SYSTEM

MEAN ORBITAL ELEMENTS (for epoch 1960 Jan. 1.5 E.T.)

Planet	Mean Distance from Sun (a)		Period of Revolution		Eccen-tricity (e)	In-clination (i)	Long. of Node ($\delta)$	Long. of Perihelion (π)	Mean Long. at Epoch (L)
	A. U.	millions of miles	Sidereal (P)	Synodic					
				days					
Mercury	0.387	36.0	88.0d.	116	. 206	7.0	47.9	76.8	222.6
Venus	0.723	67.2	224.7	584	. 007	3.4	76.3	131.0	174.3
Earth	1.000	92.9	365.26		. 017	0.0	0.0	102.3	100.2
Mars	1.524	141.5	687.0	780	. 093	1.8	49.2	335.3	258.8
Jupiter	5.203	483.4	11.86 y .	399	. 048	1.3	100.0	13.7	259.8
Saturn	9.539	886.	29.46	378	. 056	2.5	113.3	92.3	280.7
Uranus	19.18	1782.	84.01	370	. 047	0.8	73.8	170.0	141.3
Neptune	30.06	2792.	164.8	367	. 009	1.8	131.3	44.3	216.9
Pluto	39.44	3664.	247.7	367	. 250	17.2	109.9	224.2	181.6

PHYSICAL ELEMENTS

Object	Equatorial Diameter miles	Ob- late- ness	Mass $\oplus=1$	Mean Den- sity water $=1$	Surface Gravity $\oplus=1$	Rotation Period	Inclination of Equator to Orbit。	Albedo
\odot Sun	864,000	0	332,958	1.41	27.9	$25^{\text {d }}-35^{\text {d }} \dagger$		
(1) Moon	2,160	0	0.0123	3.36	0.16	$27^{\text {d }} 07^{\text {b }} 43^{\text {m }}$	6.7	0.067
\% Mercury	3,025	0	0.055	5.46	0.38	$58^{\text {d }} 16^{\text {h }}$	≤ 28	0.056
\bigcirc ¢ Venus	7,526	0	0.815	5.23	0.90	$243{ }^{\text {d }}$ (retro.)	≤ 10	0.76
\oplus Earth	7,927	1/298	1.000	5.52	1.00	$23^{\text {b }} 56^{\text {m }} 04^{\text {s }}$	23.4	0.36
\bigcirc^{7} Mars	4,218	1/192	0.107	3.93	0.38	243723	24.0	0.16
24 Jupiter	88,700	1/16	318.0	1.33	2.64	95030	3.1	0.73
b Saturn	75,100	1/10	95.2	0.69	1.13	1014	26.7	0.76
$\widehat{\text { ¢ Uranus }}$	29,200	1/16	14.6	1.56	1.07	1049	97.9	0.93
Ψ Neptune	31,650	1/50	17.3	1.54	1.08	16	28.8	0.62
P Pluto	3,500?	?	0.11	5 ?	0.6?	$6^{\text {d }} 9^{\mathrm{h}} 17^{\mathrm{m}}$?	0.14 ?

\dagger Depending on latitude. For the physical observations of the sun, p. 56, the sidereal period of rotation is $25.38 \mathrm{~m} . \mathrm{s} . \mathrm{d}$.

SATELLITES OF THE SOLAR SYSTEM

Name	Mag.$* \quad \dagger$	Diam. miles \dagger	Mean Distance from Planet		Revolution Period Orbit Incl. d h m $\circ \ddagger$		Discovery
			miles				

Satellite of the Earth									
Moon	-12.7	\| 2160	238,900 \|		27	07	43	ar.§	
Satellites of Mars									
Phobos	11.6	12	5,800	25	0	07	39	1.0	Hall, 1877
Deimos	12.8	(<10)	14,600	62	1	06	18	1.3	Hall, 1877

Satellites of Jupiter

V	13.0	(100)	112,000	59	0	11	57	0.4	Barnard, 1892
Io	4.8	2020	262,000	138	1	18	28	0	Galileo, 1610
Europa	5.2	1790	417,000	220	3	13	14	0	Galileo, 1610
Ganymede	4.5	3120	665,000	351	7	03	43	0	Galileo, 1610
Callisto	5.5	2770	1,171,000	618	16	16	32	0	Galileo, 1610
VI	13.7	(50)	7,133,000	3765	250	14		27.6	Perrine, 1904
VII	16	(20)	7,295,000	3850	259	16		24.8	Perrine, 1905
X	18.6	(<10)	7,369,000	3888	263	13		29.0	Nicholson, 1938
XII	18.8	(<10)	13,200,000	6958	631	02		147	Nicholson, 1951
XI	18.1	(<10)	14,000,000	7404	692	12		164	Nicholson, 1938
VIII	18.8	(<10)	14,600,000	7715	738	22		145	Melotte, 1908
IX	18.3	(<10)	14,700,000	7779	758			153	Nicholson, 1914

Satellites of Saturn

Janus	(14)	< 300	100,000		0	17	59		A. Dollfus, 1966
Mimas	12.1	300:	116,000	30	0	22	37	1.5	W. Herschel, 1789
Enceladus	11.8	400:	148,000	38	1	08	53	0.0	W. Herschel, 1789
Tethys	10.3	600	183,000	48	1	21	18	1.1	G. Cassini, 1684
Dione	10.4	600:	235,000	61	2	17	41	0.0	G. Cassini, 1684
Rhea	9.8	810	327,000	85	4	12	25	0.4	G. Cassini, 1672
Titan	8.4	2980	759,000	197	15	22	41	0.3	Huygens, 1655
Hyperion	14.2	(100)	920,000	239	21	06	38	0.4	G. Bond, 1848
Iapetus	11.0	(500)	2,213,000	575	79	07	56	14.7	G. Cassini, 1671
Phoebe	(14)	(100)	8,053,000	2096	550	11		150	W. Pickering, 1898

Satellites of Uranus									
Miranda	16.5	(200)	77,000	9	1	09	56	0	Kuiper, 1948
Ariel	14.4	(500)	119,000	14	2	12	29	0	Lassell, 1851
Umbriel	15.3	(300)	166,000	20	4	03	38	0	Lassell, 1851
Titania	14.0	(600)	272,000	33	8	16	56	0	W. Herschel, 1787
Oberon	14.2	(500)	365,000	44	13	11	07	0	W. Herschel, 1787

Satellites of Neptune

Triton	13.6	2300	220,000	17	5	21	03	160.0	Lassell, 1846
Nereid	18.7	(200)	$3,461,000$	264	359	10		27.4	Kuiper, 1949

[^0]Any recurring event may be used to measure time. The various times commonly used are defined by the daily passages of the sun or stars caused by the rotation of the earth on its axis. The more uniform revolution of the earth about the sun, causing the return of the seasons, defines ephemeris time. The atomic second has been defined; atomic time has been maintained in various labs, and an internationally acceptable atomic time scale is under discussion.

A sundial indicates apparent solar time, but this is far from uniform because of the earth's elliptical orbit and the inclination of the ecliptic. If the real sun is replaced by a fictitious mean sun moving uniformly in the equator, we have mean (solar) time. Apparent time - mean time $=$ equation of time. This is the same as correction to sundial on page 7 , with reversed sign.

If instead of the sun we use stars, we have sidereal time. The sidereal time is zero when the vernal equinox or first point of Aries is on the meridian. As the earth makes one more rotation with respect to the stars than it does with respect to the sun during a year, sidereal time gains on mean time $3^{m} 56^{\text {s }}$ per day or 2 hours per month. Right Ascension (R.A.) is measured east from the vernal equinox, so that the R.A. of a body on the meridian is equal to the sidereal time.

Sidereal time is equal to mean solar time plus 12 hours plus the R.A. of the fictitious mean sun, so that by observation of one kind of time we can calculate the other. Local Sidereal time may be found approximately from Standard or zone time (0 h at midnight) by applying the corrections for longitude (p. 12) and sundial (p. 7) to obtain apparent solar time, then adding 12 h and R.A. sun (p. 7). (Note that it is necessary to obtain R.A. of the sun and correction to sundial at the standard time involved.)

Local mean time varies continuously with longitude. The local mean time of Greenwich, now known as Universal Time (UT) is used as a common basis for timekeeping. Navigation and surveying tables are generally prepared in terms of UT. When great precision is required. UT1 and UT2 are used differing from UT by polar variation and by the combined effects of polar variation and annual fluctuation respectively.

To avoid the inconveniences to travellers of a changing local time, standard time is used. The earth is divided into 24 zones, each ideally 15 degrees wide, the zero zone being centered on the Greenwich meridian. All clocks within the same zone will read the same time.

In Canada and the United States there are 9 standard time zones as follows: Newfoundland (N), $3^{\mathrm{h}} 30^{\mathrm{m}}$ slower than Greenwich; 60 th meridian or Atlantic (A), 4 hours; 75th meridian or Eastern (E), 5 hours; 90th meridian or Central (C), 6 hours; 105th meridian or Mountain (M), 7 hours; 120th meridian or Pacific (P), 8 hours; 135th meridian or Yukon (Y), 9 hours; 150th meridian or Alaska-Hawaii, 10 hours; and 165th meridian or Bering, 11 hours slower than Greenwich.

The mean solar second, defined as $1 / 86400$ of the mean solar day, has been abandoned as the unit of time because random changes in the earth's rotation make it variable. The unit of time has been redefined twice within the past two decades. In 1956 it was defined in terms of Ephemeris Time (ET) as $1 / 31,556,925.9747$ of the tropical year 1900 January 0 at 12 hrs . ET. In 1967 it was redefined as 9,192,631,770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the cesium 133 atom. Ephemeris Time is required in
celestial mechanics, while the cesium resonator makes the unit readily available. The difference, $\Delta \mathrm{T}$, between UT and ET is measured as a small error in the observed longitude of the moon, in the sense $\Delta T=E T-$ UT. The moon's position is tabulated in ET, but observed in UT. $\Delta \mathrm{T}$ was zero near the beginning of the century, but in 1971 will be about 41 seconds.

RADIO TIME SIGNALS

National time services distribute co-ordinated time called UTC, which approximates UT2. It is derived from the cesium atomic standard by offsetting the output frequency. The offset is reviewed annually, and a change, if necessary, is applied at the beginning of the year. A divergence between UTC and UT2 amounting to 0.1 s is corrected by a step adjustment at the beginning of the next month. By agreement these changes are co-ordinated through the Bureau International de l'Heure, so that most time services are synchronized to the millisecond.

A growing body of public opinion favours the use of stepped atomic time, SAT, in place of UTC. The scientific advantage would be the use of the official cesium second in everyday timekeeping. An adjustment of 1.0 second would be made when necessary to maintain UT approximately. The change, which would pass unnoticed by the general public, will not be introduced before 1972.

Radio time signals readily available in Canada include:
CHU Ottawa, Canada 3330, 7335, 14670 kHz
WWV Fort Collins, Colorado $2.5,5,10,20,25 \mathrm{MHz}$
WWVH Maui, Hawaii $\quad 2.5,5,10,15 \mathrm{MHz}$

TIMES OF RISING AND SETTING OF THE SUN AND MOON

The times of sunrise and sunset for places in latitudes ranging from 30° to 54 are given on pages 13 to 18 , and of twilight on page 19. The times of moonrise and moonset for the 5 h meridian are given on pages 20 to 25 . The times are given in Local Mean Time, and in the table below are given corrections to change from Local Mean Time to Standard Time for the cities and towns named.

The tabulated values are computed for the sea horizon for the rising and setting of the upper limb of the sun and moon, and are corrected for refraction. Because variations from the sea horizon usually exist on land, the tabulated times can rarely be observed.

The Standard Times for Any Station

To derive the Standard Time of rising and setting phenomena for the places named, from the list below find the approximate latitude of the place and the correction in minutes which follows the name. Then find in the monthly table the Local Mean Time of the phenomenon for the proper latitude on the desired day. Finally apply the correction to get the Standard Time. The correction is the number of minutes of time that the place is west (plus) or east (minus) of the standard meridian. The corrections for places not listed may be obtained by converting the longitude found from an atlas into time ($360^{\circ}=24 \mathrm{~h}$).

CANADIAN CITIES AND TOWNS						AMERICAN CITIES		
	Lat.	Corr.		Lat.	Corr.		Lat.	Corr.
Athabasca	55°	+33M	Peterborough	44	$+13 \mathrm{E}$	Atlanta	34°	+37E
Baker Lake	64	$+24 \mathrm{C}$	Port Harrison	59	$+13 \mathrm{E}$	Baltimore	39	$+06 \mathrm{E}$
Brandon	50	+40C	Prince Albert	53	$+63 \mathrm{C}$	Birmingham	33	-13C
Brantford	43	$+21 \mathrm{E}$	Prince Rupert	54	$+41 \mathrm{P}$	Boston	42	-16E
Calgary	51	+36M	Quebec	47	$-15 \mathrm{E}$	Buffalo	43	$+15 \mathrm{E}$
Charlottetown	46	$+12 \mathrm{~A}$	Regina	50	$+58 \mathrm{C}$	Chicago	42	-10C
Churchill	59	$+17 \mathrm{C}$	St. Catharines	43	$+17 \mathrm{E}$	Cincinnati	39	$+38 \mathrm{E}$
Cornwall	45	- 1E	St. Hyacinthe	46	$-08 \mathrm{E}$	Cleveland	42	$+26 \mathrm{E}$
Edmonton	54	+34M	Saint John, N.B.	45	$+24 \mathrm{~A}$	Dallas	33	$+27 \mathrm{C}$
Fredericton	46	+27A	St. John's, Nfld.	48	+01N	Denver	40	00M
Gander	49	+ 8N	Sarnia	43	$+29 \mathrm{E}$	Detroit	42	+32E
Glace Bay	46	00A	Saskatoon	52	+67C	Fairbanks	65	-10AL
Goose Bay	53	+ 2A	Sault Ste. Marie	47	$+37 \mathrm{E}$	Flagstaff	35	$+27 \mathrm{M}$
Granby	45	-09E	Shawinigan	47	-09E	Indianapolis	40	-15C
Guelph	44	$+21 \mathrm{E}$	Sherbrooke	45	$-12 \mathrm{E}$	Juneau	58	+58P
Halifax	45	$+14 \mathrm{~A}$	Stratford	43	$+24 \mathrm{E}$	Kansas City	39	+18C
Hamilton	43	$+20 \mathrm{E}$	Sudbury	47	$+24 \mathrm{E}$	Los Angeles	34	-07P
Hull	45	$+03 \mathrm{E}$	Sydney	46	+01A	Louisville	38	-17C
Kapuskasing	49	$+30 \mathrm{E}$	The Pas	54	$+45 \mathrm{C}$	Memphis	35	00C
Kingston	44	$+06 \mathrm{E}$	Timmins	48	$+26 \mathrm{E}$	Miami	26	+21E
Kitchener	43	$+22 \mathrm{E}$	Toronto	44	$+18 \mathrm{E}$	Milwaukee	43	-09C
London	43	$+25 \mathrm{E}$	Three Rivers	46	$-10 \mathrm{E}$	Minneapolis	45	+13C
Medicine Hat	50	+23M	Thunder Bay	48	$+57 \mathrm{E}$	New Orleans	30	00C
Moncton	46	+19A	Trail	49	-09P	New York	41	-04E
Montreal	46	-06E	Truro	45	$+13 \mathrm{~A}$	Omaha	41	+24C
Moosonee	51	$+23 \mathrm{E}$	Vancouver	49	+12P	Philadelphia	40	+01E
Moose Jaw	50	+62C	Victoria	48	+13P	Phoenix	33	+28M
Niagara Falls	43	$+16 \mathrm{E}$	Whitehorse	61	00 Y	Pittsburgh	40	$+20 \mathrm{E}$
North Bay	46	+18E	Windsor	42	$+32 \mathrm{E}$	St. Louis	39	+01C
Ottawa	45	$+03 \mathrm{E}$	Winnipeg	50	$+29 \mathrm{C}$	San Francisco	38	+101
Owen Sound Penticton	$\begin{aligned} & 45 \\ & 49^{\circ} \end{aligned}$	$\begin{aligned} & +24 \mathrm{E} \\ & -02 \mathrm{P} \end{aligned}$	Yellowknife	62	+38M	Seattle Washington	$\begin{aligned} & 48 \\ & 39 \end{aligned}$	$\begin{aligned} & +09 \mathrm{P} \\ & +08 \mathrm{E} \end{aligned}$

Example-Find the time of sunrise at Owen Sound, on February 12.
In the above list Owen Sound is under " 45° ", and the correction is +24 min . On page 13 the time of sunrise on February 12 for latitude 45° is 7.06 ; add 24 min . and we get 7.30 (Eastern Standard Time).

DARD TIME ZONES
197!

MAP OF STANDARD TIME ZONES

E
E
E
gけのNポ
上のnのnの

 い6に6に

をのペーがい
工 $\sim \infty \infty \infty$
nホNO
$\infty \infty \infty \infty$
－Nへ入 M かも6もに
 か6も6゚

べったのm
ㅇNNN
がロ日が
$\infty \infty \infty$ N
いた寸゚
NRNRN
ヘペホのn
MNAN

ぶがぶか
ががずな
に6660
OOGNT
かけホホの
RNAN
からmNへ
NHNNN
Nーがた
NANAN
m๒のNึก NNNNN

NむONO
NNNNR
－NMNへ －NNN Note\％
NNNNN

ㄱNNN
NNNNE
かんmのに
NNNO

NのホMm
N上NN上
8innin tiviow
No

NNNNN
NOMOG寸

NNNNN

клеп．дqән
 Nへがな寸 N上N上N bmotim

MON寸
○ 060

ボッダか
NㅡNNN

NNNNE
NのMぃべ ० 060

NNNNN
데ำต
NNNNN
－oNmm
rnNo

जीN๗M
NFNNN
¢®わN
NTOVO

NNNNE

○ 060
$\cdots \infty \rightarrow m$ mo
NNNNN

L		Latitude $\mathbf{3 0}^{\circ}$ Sunrise Sunset		Latitude 3° Sunrise Sunset		Latitude 40° Sunrise Sunset		Latitude $\mathbf{4 4}^{\circ}$ Sunrise Sunset		Latitude $\mathbf{4 6}^{\circ}$ Sunrise Sunset		Latitude $\mathbf{4 8}^{\circ}$ Sunrise Sunset		Latitude $\mathbf{5 0}^{\circ}$ Sunrise Sunset		Latitude $\mathbf{5 4}^{\circ}$ Sunrise Sunset	
$\stackrel{\text { ex }}{\stackrel{\rightharpoonup}{E}}$		h m	h m	h m	h m	h m	h m	h m	h m	h m		h m	h m	h m		hm	h m
	$\int 1$	626	1759	630	1756	633	1752	637	1748	639	1746	641	1744	643	1743	648	1737
	3	624	1800	627	1757	630	1754	634	1751	636	1749	637	1747	639	1746	643	1741
	5	622	1802	624	1759	627	1756	630	1753	632	1752	633	1750	635	1749	639	1745
	7	619	1803	622	1801	624	1758	626	1756	628	1755	629	1753	631	1752	634	1748
	9	617	1804	619	1803	621	1801	623	1758	624	1757	626	1756	627	1755	629	1752
	11	615	1806	616	1804	618	18.03	620	1801	620	1800	622	1759	622	1758	624	1756
	13	612	1807	613	1806	615	1805	616	1803	616	1803	618	1802	618	1801	619	1800
	15	610	1808	610	1808	612	1807	613	1806	613	1806	614	1805	614	1805	615	1804
	17	608	1810	608	1809	608	1809	609	1808	609	1808	609	1808	609	1808	609	1807
	19	605	1811	605	1811	605	1811	605	1811 ¢	605	1811	605	1811	605	1811	605	1811
要	21	603	1812	602	1813	602	1813	601	1814	601	1814	601	1814	600	1814	600	1815
	23	600	1814	559	1814	559	1815	558	1816	557	1816	557	1817	556	1817	555	1819
	25	558	1815	557	1816	556	1817	554	1819	554	1819	553	1820	552	1821	550	1823
	27	556	1816	554	1818	552	1819	550	1821	550	1822	548	1823	547	1824	545	1827
	29	553	1817	551	1819	549	1821	546	1824	546	1824	544	1826	543	1827	540	1830
	31	551	1819	548	1821	546	1823	543	1826	542	1827	540	1829	539	1830	535	1834
	2	549	1820	546	1823	542	1825	540	1829	538	1830	536	1832	535	1833	531	1838
	4	546 544	1821	543	1824	539	1827	${ }_{5} 536$	1831	534	1833	532	1835	530	1837	526	1842
		544	1822	540	1826	536	1829	533	1833	531	1835	529	1838	526	1840	522	1845
	8		1823	537	1827	533	1831	529	1836	527	1838	525	1840	522	1843	517	1849
	10	539	1824	535	1829	530	1833	525	1838	523	1841	521	1843	518	1846	512	
	12	537 534	1826	${ }^{5} 32$	1830	527	1835	522	1840	520	1843	517	1846	514	1849	507	1857
	14	534 532	1827	${ }^{5} 29$	1832 18	524	1837 18		1843	516	1846	513	1849	509	1852	502	1900
	16	532 5	1828	${ }_{5} 527$	1833	521	1839	515	1845		1848	509	1852	505	1855	457	1904
	18	530	1829	524	1835	51.8	1841	512	1848	508	1851	505	1855	501	1858	453	1907
	20	528	1830	522	1837	515	1843	508	1850	505							
	22	526	1832	520	1838	512	1846	505	1852	501	1856	457	1900	453	1905		
	24	524 5	1833	517 5	1840	509	1848	502	1855	458	1859	454	1903	449	1908	439	1915 1919
	28	5122 5 518	1834 18 18	515 512	1841	507 504	1850	459 456	1857 19	455 452	1901	450	1906	445	1911	435	1922
	30	518	1836	510	1845	502	1854	453 4	19 19 02	452 448	19 19 19 07	447 443		442 438	$\begin{array}{ll}19 & 14 \\ 19\end{array}$	431	1926

$$
\begin{aligned}
& \text { E } \\
& \text { 工 } \\
& \text { E }
\end{aligned}
$$

MnO m $^{\infty}$ －ののののの

n
2
+

かっmo寸mmmm

 이유NㅇNㅇ

ज寸可 nलmmm
nim 운 のコののター

운웅
ョ mininN コナナナナナ

ナナナナナ
घ nioño

上 ํㅡํㄱํํ

MN®N
E

サナナナナ

NホNON

MNNNN
サナナサナ
－
かのの日の

जलmmo

ーナナナナナナ
ナナナナナ

Elo

のたのかの
サーかの
ののののの
0∞
m m m
EのNぃNO

ナナナナナ

E $+\infty$

Noわ O
ののののの
Nーかのが
E ${ }^{\circ} 0$

上のいいいい
ナナナナナ

E ∞ の
寸！Nか
かNmいた
$\infty \infty \infty \infty$

MN
いいいいい

reminta
जलぁmゃ心
누№n
సホNo NQNOR
 nलmmm
$8 \mathrm{ONO} 0^{\infty}$ NONNO いかのNぁ mmmmm

NかわN
のたののたか
 NANTN

Sのかのか
NO
寸®NE
サナナナナ寸mmmm mゅナナナ

が，がか
ののののด
$N=000$
$8^{\infty} 0^{\infty} 0^{\infty} 0^{\infty}$
OQ 0 －-4
ナナ 寸 寸

ののののの

NonNEN
NoobN
NN，∞
サナナナナナ

NホMNか
๗onのon

लNNぁぁ
ナナナナナ

OOFNm
のののかの

サナナサナ
nonの
$\infty \infty \infty \infty$

OR $\infty \infty \infty$
サナサ寸ナ

ounf

	gnむmNo	かㄴNa NNNN－	븡ㅇㅇㅇ	$\stackrel{\infty}{\infty}$	○No	0
	ㄷNㅇNㅇNㅇ	유슛유	유NㅇNㅇN	욱윽응	ㅇangon	윽9윽잉
	はNボNの のmmmm	ボすが，	niñoo	Nin Nin		け゚すべす
	－mmmmm	mmmmm	ハmナナナ	ナナナ寸ナ	ナナナナナ	ササナナいい
	NN二ㅇㅇ	00008	かnNor かんいいよ	サーかnm	N内ণNM	gnonn in
	ـ ㅇNㅇNㅇ กNNNत	ㅇNㅇㅇㅇ NヘNN	aのoの인	の9のタの	오9외	$\text { ののด } \infty \infty \infty$
		minoN	অNON:	かomoの NMmलm	$\underset{寸}{\text { ホ }}$	2N
	चलmmmナ	ナナナ寸ナ	ナナナナナ	ナナナ寸ナ	ナナナナナ	ナ
	E	$\begin{gathered} \text { no } \\ \end{gathered}$	운	かnNaio mmmNN	NoぃNo	ふonngn
	－	の9の9の	agona	$\text { 9a90 } 9$	99909	$\text { のペ } \infty \rightarrow \infty$
	g $\square^{6} 608$	FmnNa	NণNণN M	サNaNけ	$\begin{gathered} \infty \\ +\quad n i n \\ \hline \end{gathered}$	－すŞNの
	コナナナ寸ナ	ナナナナナ	ナナナナ寸	ナナナナナ	ナナナ寸ナ	いいいいいい
	gn心出n		サーGom	লiNNN®	겅ㅇ	$\text { ginng } \underset{y}{+}+$
	co9a99	99909	ํํのด	ํのดのด		$\underset{\sim}{\infty} \infty \underset{=-\infty}{\infty}$
	g NMn	ANNNN	NMホNMN	FMை아	now	$\mathfrak{c} \infty$
	コナナナナナ	ナナナナナ	ナナナナナ	ナナナナナ	ナナナのい	いいいいいい
		$\underset{\forall}{\sim} \underset{\sim}{\sim}$	$\cdots \pm N O \infty$ mmmmN	NNニைn	Noso	nnonq
	に9999	のヵの9の	ののののの	ํの9の9	909の日	$\infty \infty \infty \infty \infty$
	ম ㅇNNNN	Nond NतMmm	৩oc of		monns	ONㅓำ－
	をナナ寸ナ	ナナナナナ	ナナナナナ	ナナナナナ	ナいいいい	いいいいいい
	घNNNWO	어NNN	মNNGN	$n \cdots=\infty$	oosinnn	
	ののののの	욍ํㅇ	ㅇํの9	åの99	$9 \Omega \infty \infty \infty$	$\stackrel{\infty}{\infty} \underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\infty}$
	Enonmin	ヲNツぃ	かonnn	no	○o웡ホ	o o ㅅN NN
	さナナナナナ	ナナナナナ	ナナナナナ	サナツいい	いいいいい	いいいいいい
	$\infty \times \infty$	on土mN	$=9850$	オNORin	ホN゚がか	NO
	9a9a9	ํanํ	ํaํa	$\text { ㅇํの } \infty \infty$	$\infty \times \infty$	$\infty \infty \infty$
	g ơㄲNぶ	nonn	హodns	か읍ホ	는에 N	ヘヘペNNN
	さサナナナ寸	サナナナい	nnmmu	nonmm	nonmen	のnのmmo
		すツNたす	$8 \text { 8inn }$	$\dot{\sim}$		○ホNONい mmmmNN
	aのののの	99990	$\bigcirc \infty \infty$		$\infty \infty \infty$	$\infty \infty \infty$
	』 Nơすかっ		Nのざ寺	$\stackrel{\infty}{\sim}$	さn6No NNNNN	○ーNmみも लmलmmm
	ゴいいいい	いいいいい	のいいいい	いいいいい	いいいいか	いいいいいい
	の以No	の以Nの	NNN	¢Nサしゃ。	N＋600	¢Nさ¢

	Latitude 30°	Latitude 35°	Latitude $40{ }^{\circ}$	Latitude 44°	Latitude 46°	Latitude 48°	Latitude 50°	
L	Sunrise Sunset	Latitude 54 Sunrise Sunset						

Nボいㄴ をす犬んゥか $\infty \infty \underset{\sim}{\infty} \underset{\sim}{\infty}$
かNN上N

슸ำ
サボボか
MNNNN
Nomのは
NTNNN NNTOO
Nめのmに
NNMNM

○ーした
mゅONNN
NNNN
8888 국
10 060
ตッलNへ
NENEN
Nono
のレー৩っ
 nmobNa
上 $\infty \rightarrow \infty$
NNMgけ
O6Nなm
g nomホN
ㅇm№N

いいいいい
がホが心
GFMmのñ
그Nㅓㅇ

n－ন～～～

৩৮したしっ
のッいがす。
○心n연
NANEN Nob゚ーツ
m๒のNヘ Nウホぺ寸 ৩しったし
৩ーもー৩ー
Nたホー
オ8べが心
NANNE
NNOピーセ

৩ーળった
৩৮したいっ
नलmN্N
No№ng
om8innn
NANNE
NNNN

かOㅇㅇ
タNNN
NNNONM
ーナーにも ৩৩したい৩

いかONす
80ㅇN士
느NN N
いいいした
৩৩ったー
七七七七七
寸নiom
ตペN๓ก
NNNNN

のいいた。
VmFの
サNANM
NNNNN
ベッツッツm
जNNNN
No心而

かの운
いいいいい
がんべか
いいいいい
৩৮ったいし

	घ ন্N꽁	そ「がn	북 そM	NOT	$\infty \infty \infty \text { の }$ のmmmm	＋
	\&	oぃのゆに	のッツのに	のいのにの	のnのnの	のッいいい
	£	Noomn NNNmm	O寸ナ゙ホ	nowno	억ホn6	－
	ENNRNN	NTNNT	NNTNT	－ 0 －	$\infty \infty \infty \infty$	$\infty \infty \infty \infty$
		으NNㅡㄴ	oৃ寸గN	ㅇㅇㅇnn	かかかった。	-
	-	66606	に60 0	ロ6ぃのn	のnのnの	6ぃ 0 0 0
	シーボがった。	∞	亡Nomb NNMMm	$\infty \underset{M}{\infty} \underset{y}{+}$	がNボ	on o o いいがの
	－	ARNNT	NHNTN	CNEN	－NTNT	NNRNN
	g ONMウ~~		$n m=08$	かㅅㅇㅇㅇㅇ	ㅇㅇㅇㅇㅇ	ONmm
	\&	60606	웁웁	$\mathfrak{6} 06$	60606	60606
	g 女onnio	Noon=む	ㅇNnN		ヲヨタ゚ণ	
	\＆	NHNNT	CNTNT	NTMNT	CNTNT	NTNNT
	$\text { g } \ddagger \text { Non }$	Nonำ mNNNN	No№n	かんのゅむ	$\pm \pm n \backsim N$	섯NN
	\&	O6060	60606	60606	60606	6o6に6
	$\text { E } \underset{寸}{ }$	6oㅇ	Onnco	ヘヘNกำ	mサーNの のmmmm	马ヲNホ
	\＆	OONNR	NAENT	NTEN	NTNNT	NANEN
	が寸	nलmলo	かっn $\begin{gathered}\text { か }\end{gathered}$ NNNNN	NNNָন	NNMNホ	nNNㅇ NNNNm
	ㅇow	06666	웆웁	ㅇo6	66606	66660
	$\text { A } \infty \underset{\sim}{*} \underset{寸}{ }$	いががす		$\cdots \infty$	 NNNmm	Nmないい のmmmm
	\＆	OヒOON	－NAN	NANTN	NNNN	NANAN
	I ㄴNNN		のかNした мmmmm	しんいいい クツッmm	かしたへか мलmmm	융악
		066に6	60 No	○ーも6に	60606	$\text { 웁 } 06$
	G	!	がNON		のザNの	М®ู入入
	さ ৩৩৩した	৩৩৩৩っ	OOVNN	NNNNN	HRNTN	NTENT
	gnosion	ninむmN	ㅂㅇㄱ국	$\stackrel{\infty}{+} \stackrel{\infty}{+} \stackrel{\infty}{+}$	goinnn	N寸んいか いいいいい
	－NNTNO	06660	ㅇove	066に6	06006	ㅇo6운
	N寸மoo NNNNM	जलnल心		○Nばが	noso	68850
	\＆ー৩৩৩	○ーणーナ	－666し	○ーしたし	ONNNN	nhan
	Nㅓㄱㅇㅇㅇ	পnすMN	Nō88	88880	অNOMJ	fo
	ANNNNE	－NNNT	N上NN上	N上N上N	N上N上N	N上N上N
	$\text { En } \rightarrow \infty$	লণণণ Nণ		ল゙ヲN寸	$\dot{+}+\frac{+}{+}$	NMホno
	\＆	－ 0	৩৩したし	－6णした	○ைしたし	৩しーした
	± 600		NતホNNㅆㅇ	ナ 0∞		N弋Nペ

TWILIGHT-BEGINNING OF MORNING AND ENDING OF EVENING

L		Latitude 35°		Latitude 40°		Latitude 45°		Latitude 50°		Latitude 54°	
		Morn.	Eve.								
		h m	$h \mathrm{~m}$	h m	h m	h m	h m	h m		h m	h m
	31	536	1829	543	1821	551	1813	600	1806	606	1759
	10	539	1836	545	1829	553	1822	559	1815	605	1810
	20	538	1844	544	1839	549	1833	555	1828	559	1823
Feb.	30	535	1853	539	1849	542	1845	546	1841	550	1839
	9	528	1902	531	1900	532	1858	534	1856	535	1856
Mar.	19	519	1911	519	1910	520	1910	519	1912	517	1914
	29	508	1919	506	1921	504	1924	500	1929	455	1933
	10	455	1928	451	1932	446	1937	439	1945	431	1953
	20	440	1937	434	1943	426	1951	415	2003	404	2015
	30	425	1946	417	1955	405	2006	350	2023	334	2039
Apr.	9	409	1956	358	2007	343	2023	324	2043	302	2106
	19	354	2006	340	2021	320	2040	255	2107	226	2137
May.	29	339	2017	322	2036	258	2059	225	2134	144	2216
	9	325	2029	305	2051	237	2119	154	2204	044	2320
	19	314	2040	249	2105	216	2140	118	2239		
June	29	306	2051	238	2118	158	2159	032	2330		
	8	300	2059	230	2129	145	2215				
	18	259	2103	228	2134	140	2222				
July	28	$\begin{array}{ll}3 & 01 \\ 3 & 07\end{array}$	2105 2102	230 238	2136 2131	14	2223 2214				
Aug.	18	316	2055	249	2121	211	2159	058	2310		
	28	326	2045	303	2108	230	2140	138	2230		
	7	338	2032	317	2052	250	2119	210	2158	13	2251
	17	3 3	2018	331	2035	309	2056	238	2127		2203
	27	359	2002	345	2016	327	2033	302	2057	235	2124
Sept.	6	408	1947	357	1958	343	2011	324	2029	304	2048
	16	418 4	$\begin{array}{ll}19 & 31 \\ 19 & 15\end{array}$	4 4 4 20	1939	358 4 4	1949	344 4	20 19 19 38	$\begin{array}{ll}3 & 29 \\ 3 & 51\end{array}$	2018 19
Oct.	26	426 4	$\begin{array}{ll}19 & 15 \\ 19 & 01\end{array}$	420 430	1921	413 426	1928 19 08	402 419	1938	$\begin{array}{ll}3 & 51 \\ 4 & 11\end{array}$	1949
	${ }_{16}^{6}$	434 442	19 18 18 48	430 440	1904 1849	426 438	19 18 18 52	419 435	1915	411 4	19 18 18
Nov.	26	449	1837	450	1836	451	1835	450	1836	448	1837
	5	458	1828	500	1825	503	1823	505	1820	505	1819
	15	506	1822	510	1818	514	1813	518	1809	522	1806
Dec.	25	514	1819	520	1813	525	1807	532	1801	536	1756
	5	522	1818	529	1812	536	1805	543	1757	549	1751
	15	529	1821	537	1814	544	1806	552	1757	559	1751
	25	535	1825	542	1818	550	1810	557	1802	604	1755
Jan.	4	538	1832	545	1825	553	1818	600	1810	607	1804

The above table gives the local mean time of the beginning of morning twilight, and of the ending of evening twilight, for various latitudes. To obtain the corresponding standard time, the method used is the same as for correcting the sunrise and sunset tables, as described on page 12. The entry - in the above table indicates that at such dates and latitudes, twilight lasts all night. This table, taken from the American Ephemeris, is computed for astronomical twilight, i.e. for the time at which the sun is 108° from the zenith (or 18° below the horizon).

MOONRISE AND MOONSET, 1972; LOCAL MEAN TIME

DATE	Latitude $\mathbf{3 0}^{\circ}$ Moon		Latitude 35° Moon		Latitude 40° Moon		Latitude 45° Moon		Latitude 50°Moon		Latitude 54°	
	Rise	Set	Rise	Set	Rise	Set	Rise	Set	Ris	Set	Rise	Set
n.	h m	h m		h m								
	1811	0738	1759	0752	1745	0806	1728	0824	1707	0846	1646	0909
2	1915	0822	1906	0832	1855	0845	1842	0859	1826	0916	1810	0934
3	2016	0859	2010	0907	2002	0916	1953	0926	1942	0939	1932	0951
4	2114	0931	2110	0936	2106	0942	2102	0948	2056	0956	2050	1003
5	2209	1001	2209	1002	2208	1005	2206	1008	2205	1011	2204	10
6	2303	1029	2305	1027	2308	1026	2310	1026	2314	1025	2317	1023
7	2356	1056		1052		1048		1044		1038		1033
8		1124	0002	1118	0007	1111	0014	1102	0022	1052	0030	1044
9	0050	1154	0058	1145	0107	1136	0117	1124	0130	1109	0142	1056
10	0146	1228	0156	1216	0208	1204	0222	1149	0240	1130	0257	
11	0242	1307	0255	1254	0310	1238	03	1220	0349	1157	0411	1134
12	0340	1351	0354	1336	0411	1319	0431	1259	0456	1232	0523	1206
13	0436	1443	0452	1427	0510	1409	0532	1347	0559	1320	0628	1250
14	0531	1540	0546	1525	0604	1508	0626	1446	0652	1420	0721	1351
15	0621	1642	0635	1629	0652	1613	0711	1554	0735	1531	0800	1506
	0707	1747	0718	1735	0732	1723	0748	1708	0808	1649	0828	1630
17	0747	1852	0756	1844	0806	1835	0819	1824	0834	1810	0848	1757
18	0823	1956	0829	1952	0837	1946	0845	1940	0855	1932	0904	1925
19	0858	2100	0900	2059	0903	2058	0908	2056	0912	2054	0917	2051
20	0930	2205	0930	2207	0929	2209	0929	2212	0929	2215	0928	2218
21	1003	2310	0959	2315	0956	2321	0951	2328	0946	2337	0940	2346
22	1039		1031		1023		1015		1004		0953	
23	1117	0016	1107	0025	1056	0034	1043	0046	1027	0101	1011	01
24	1201	0123	1149	0135	1134	0148	1117	0205	1055	0224	034	
25	1252	0231	1236	0245	1220	0301	1200	0321	1134	0346	1108	04
26	1349	0336	1333	0352	1315	0409	1253	04	1226	0458	1157	0526
27	1450	0436	1436	0452	1418	0510	1357	0531	1330	0558	1303	0625
28	1555	0530	1541	0544	1526	0600	1507	0619	1444	0643	1421	0707
29	1659	0616	1648	0628	1635	0641	1621	0656	1602	0716	1544	0735
30 (3)	1801	0655	1753	0704	1744	0714	1733	0726	1720	0741	1707	0755
31	1900	0729	1856	0735	1849	0742	1843	0750	1835	0800	1827	0810
1	1956	0800	1955	0803	1953	0807	1950	0811	1947	0816	1944	0821
2	2051	0828	2053	0828	2054	0829	2055	0830	2056	0831	2058	0831
3	2145	0856	2150	0853	2154	0851	2159	0848	2205	0844	2211	0841
4	2239	0924	2246	0918	2254	0913	2303	0906	23	0858	2324	0850
5	2334	0953	2344	0945	2355	0936		0927		0914		090
		1025				1003			0022	0933	0038	0917
7 (1)	0030	1101	$\ddot{00} 4 \dot{2}$	1049	00036	1034	0112	1018	0131	0957	0152	0935
8	0127	1143	0140	1128	0157	1112	0216	1053	0240	1028	0305	1002
9	0223	1231	0239	1215	0256	1158	0317	1136	0344	1109	0413	1040
10	0318	1325	0334	1309	0352	1252	0414	1230	0441	1202	0510	1134
		1424	0425	1410	0442	1353	0503	1334	0528	1308	0555	1241
12	0457	1528	0511	1515	0526	1502	0543	1445	0605	1424	0628	1402
13	0540	1634	0551	1624	0603	1613	0617	1600	0635	1544	0652	1529
14	0619	1740	0627	1733	0635	17. 26	0645	1718	0657	1708	0709	1658
15.6]	0655	1846	0659	1843	0705	1839	0710	1836	0717	1832	0724	1828
16	0729	1952	0730	1953	0732	1953	0733	1954	0735	1956	0736	
17	0803	2059	0801	2103	0759	2108	0756	2113	0752	2120	0749	2127
18	0839	2206	0833	2214	0826	2223	0819	2233	0810	2246	0801	2258
19	0917	2315	0908	2326	0858	2338	0846	2353	0832		0818	
20	1000		0948		0935		0919		0859	0012	0840	0
217	1048	0023	1035	0036	1018	0052	0959	0111	0935	0134	0910	0158
22	1143	0129	1128	0144	1110	0202	1049	0224	1022	0250	0954	0317
23	1243	0231	1227	0246	1210	0304	1149	0326	1121	0353	1053	0421
24	1345	0325	1332	0340	1315	0356	1256	0417	1232	0442	1207	0508 05 18
25	1449	0413	1437	0425	1423	0440	1407	0457	1347	0518	1327	05
26	1551	0453	1541	0504	1531	0515	1519	0529	1504	0545	1449	0601
27	1650	0529	1644	0536	1636	0544	1628	0555	1618	0606	1608	0617
28	1747	0600	1743	0605	1740	0610	1736	0616	1731	0622	1726	0629
29	1842	0629	1842	0631	1842	0633	1841	06	1840	06	18	06

Ate	Latitude 30° Moon		Latitude 35°Moon		Latitude 40°Moon		Latitude Moon 5° Moon		Latitude 50° Moon		Latitude 54° Moon	
	Rise	Set										
ar.	h m	m			h m		h m					
1	1936	0657	1939	0656	1942	0655	1945	0653	1949	0651	1954	0650
2	2030	0725	2036	0721	2042	0717	2049	0711	2058	0705	2107	0659
3	2124	0754	2133	0747	2143	0740	2154	0731	2207	0721	2220	0711
4	2220	0825	2231	0815	2244	0805	2258	0753	2316	0738	2334	0723
5	2316	0900	2329	0847	2344	0835		0819		0759		0740
6				0925			0002	0851	0024	0827	0047	0803
7	0012	1022	0027	1008	0043	0951	0104	0930	0130	0903	0156	0836
8 (6)	0107	1113	0122	1057	0140	1040	0201	1018	0229	0951	0258	0922
	0159	1209	0214	1154	0232	1137	0253	1116	0320	1049	0347	1022
10	0247	1309	0301	1256	0318	1240	0337	1222	0400	1159	0425	1135
		1413				1349	0413	1335	0432	1316	0452	
12	0412	1518	0421	1510	0431	1501	0444	1450	0458	1437	0512	
13	0449	1624	0455	1620	0502	1614	0510	1608	0519	1601	0528	1554
14	0524	1731	0527	1730	0530	1729	0534	1727	0538	1725	0542	1724
15 (4)	0559	1838	0558	1841	0558	1844	0557	1847	0556	1851	0555	
16	0635	19	0630	1954	0625	2001	0620	2009	0614	2019		2029
17	0713	2059	0705	2108	0657	2119	0647	2132	0635	2148		04
18	0756	2210	0745	2222	0733	2237	0718	2254	0701	2315	0643	2337
19	0844	2320	0831	2334	0815	2350	0757		0735		0712	
20	0938		0923		0906		0845	00	0819	0036	0752	0103
21	1037	0024	1022	0039	1004	0057	0943	0118	0916	0146		
22		0122	1126	0136	1109	0154	1049	0214	1023	0240	0957	0306
23	1243	0211	1230	0225	1216	0240	1159	0257	1138	0319		0342
24	1344	0254	1334	0304	1323	0317	1310	0332	1253	0349	12	0407
25	1443	03	1437	0338	1428	03	1419	0359	1407	0412	135	0424
26		04	15	04	15			0421	1520	0429		
27	1635	0432	1634	0434	1633	0438	1631	0441	1629	0445		
28	1729	0500	1731	0500	1733	0500	1735	0459	1738	0459	1740	0459
29	1823	0528	1828	0524	1833	0522	1839	0518	1846	0513	1853	0508
30	1917	0556	1925	0551	1933	0544	1942	0536	1954	0528	2006	0520
31	2012	0627	2022	0618	2034	0609	2047	0558	2103	0545	2119	0532
Apr.												
1	21	0659	2120	0649	2135	0637	2151	0623	2212	0605	2233	0548
2	2203	0737		0724	2234	0710	2254	0652	2318	0630	2343	0609
3	2258	0819	2313	0805	2331	0748	2352	0728		0703		06
4	2351	0907		0852		0834		0813	0018	0746	0047	0718
5		1000	00	0945	0024	0927	0045	0906	0112	0839	0140	0812
						1027		1008		0944		0919
7	0125	1157	0137	1146	0151	1132	0209		0230	1055		
8	0205	1259	0215	1251	0227	1240	0241	1227	0258	1212		
	0242	1403	0250	1357	0258	1350	0308	1342	0320	1332	0331	1322
10	0318	1508	0322	1505	0327	1502	0333	1458		1454		
11		1614	0353		0355	1616			0358	1618	0359	
12	0427	1723	0425	1727	0422	1732	0419	1737	0416	1745	0412	
13	0504	1834	0459	1842	0452	1851	0445	1901	0436	1914	0427	1926
14	0546	1946	0537	1958	0526	2010	0514	2026	0500	2045	0446	
15		2100		2113		2129	0550	2148		221		
16		2209	0712	2225	0656	2242		2303		2329		23
17	0825	2312	0810	2327	0753		0732		0705		0638	
18	0930		0915		0858		0838	0005	0811	0031	0745	0059
19	1034	0006	1021	0020	1006	00	0948	0054	0926	0117	0903	0141
20 \$	11	0052	1127	0104	1115		1101	0132	1043	0151	1025	
21		0131		0140	1221	0150	1211		1158	0216		35
22	1336	0204	1331	0211	1325	0218	1319	0226	1311	0236	$\begin{array}{ll}13 & 03 \\ 14\end{array}$	0245
23	1431	0235	1429	0238	1427	0243	1424	0247	1421	0252	1417	0257
24	1525	0304	1526	0304	1527	0305	1528	0306	1529	0306	1530	0307
25	1618	0331	1622	0329	1626	0327	1631	0324	1637	0320	1642	0317
2		0359	1719	0354	1726	0349	1734	0342	1744	0335	1754	0328
27	1806	0429	1816	0421	1826	0413	1838	0403	1853	0352	1907	0340
28	1902	0501	1913	0451	1927	0440	1942	0427	2001	0411	2021	0355
29	1958	0537	2011	0525	2026	0511	2045	0455	2108	0435	2132	
30	2053	0618	2107	0604	2124	0548	2145	0529	22	0506	22	0441

DAT	Latitude 30° Moon		Latitude 35°Moon		Latitude 40° Moon		Latitude 45° Moon		Latitude 50°Moon		Latitude 54° Moon	
	Ri	Set	Rise	Set								
May	h m	m	h m		h m			m				
1	2146	0704	2201	0649	2218	0631	2240	0611	2306	0545		0518
2	2236	0755	2250	0740	2307	0723	2328	0701		0635		0607
3	2321	0850	2334	0836	2350	0820		0800		0735	00	0709
4		0949		0936		0922		0904		0843		08
5	0002	1049	0013	1039	0026	1027	0041	1014	0059	0957	0117	
	0039	1150	0048	1143	0058				0122			
	01.14	1252	0120	1248	0126	1243	0134		0142	1231		
8	0148	1356	0150	1354	0153	1353	0157	1352	0200	1351	0204	1349
9	0221	1501	0220	1503	0220	1506	0219		0218	1514	0217	
10	0257	1609	0252	1614	0247	1621	0242	1629	0236	1639	02	
	0335	1720	0327	1729								
12		1833	0409	1846	0356		0342		0325	1938	0308	
13	0510	1946	0456	2000	0441	2017	0423	2036	0401	2102	0339	2128
14	0607	2054	0553	2109	0536	2127	0515	2148	0450	2213	0423	
15	0711	2154	0656	2208	0639	2224		2245	0552	2309	0525	34
16			0804				0730	2328		2348		
17	0925	2328	0913	23	0900	23	0844		0824			09
18	1029				1010		0958	0002	0943	00 18	0929	
19	1128	000	1123		1116		1108	0029	1059	0040	1049	51
20	1225	0036	1222		1219		1216	0051	1211	0057	06	
21			13	01		01			1320	0113	20	
22		0134	1417	0132	1420	0131	1423	0129	1428	0127		
23	1507	0202	1513	0157	1519	0153	1526	0148	1535	0142	1544	
24	1601	0230	1610	0224	1619	0216	1630	. 0208	1643	0158	1656	0148
25		0302	1707	02	1720		1733	0230	17.51	0216	1809	0202
					1820	0313		0257	1859	0239	1922	
27	1847	0417	1902	0404	1919	0348	1938	0330	2004	0307	2030	
28	1942	0501	1957	0447	2014	0430	2035	0410	2102	0344	2130	0318
29	2033	0551	2048	0536	2105	0518	2125	0457	2151	0431	2218	0404
30	2120	0646	2134	0631	2149	0615	2207	0554	2231	0529		0502
31	2202	0743	2213	0731	2227	0715	2242	0658	2301	0635	2321	0612
June												
1		08		0832		0820	2311	0805	2326	0747	234	
2	2315	0944	2321	0935	2329	0926	2337	0915	2347	0902		
3	2348	1044	2351	1038	2355	1033		1026		1018		
						1140	0000	1138	0005	1134	0010	
5	0020	1247	00	1248	0020	1250	0022	1252				
					0047						0035	
7	0129	1459	0122	1507	0116	1516	0108	1526	0059	1539	0050	
8		1609	0200	1620	0149	1633	0137	1648	${ }_{0} 0122$	1706	0108	1725
9	0255	1721	0242	1734	0229	1750	0213	1809	0153	1832		1857
10	0349	1831			0318			1924		1950	02	20
				1951			0357	2028		2054	0303	
12	0556	2032	0542	2046	0525	2101	0505	2119	0440	2141	0414	2204
13		2120	0653	2131	0637	2143	0620	2158	0559	2216	0537	2234
14	0811	2200	0802	2209	0750	2217	0737	2228	0720	2241	0704	2254
15	0915	2235					0851	2253	0839	2302	0828	
16	1015	2306	1011	2308	1006							
17		23	1110	2334	1110	2334	1108	2334		2333	1104	2332
18	1206		1208		1211	2357	1212	2353	1215		12	
19	1300	0003	1305	0000	1311		1316		1324		1331	2355
20				0027			1420	0012	1432	00	14	
22	1545	01 02 02 15	1557	${ }^{01} 26$	1612	0114 01	1716	0129	1754	0108	1820	00 46
24	1736	0257	1750	0243	1808	0226	1828	0207	1854	0142	1922	0116
25	1828	034	1843	0331	1900	0313	1922	0252	1947	0226	2015	0158
							2006	0347	2030	0321	2055	0254
27	2001	0537	2013	0523	2027	0507	2044	0449	2105	0426	2125	0401
28	2041	0637	2051	0625	2102	0612	2116	0556	2132	0537	2148	0517
29	2117	0738	2124	0728	2132	0718	2142	0706	2153	0652	2204	0637
30	21	0839	21	0832	2159	0825	22.05	08.17	2212	080	2218	0758

Date	Latitude 30° Moon		Latitude 35° Moon		LatitudeMoon 0°		Latitude 4°Moon		Latitude 50° Moon		Latitude 54° Moon	
	Rise	Set										
Ju												
	2223	0939	2224	0936	2225		2226	0929	2229	0924		
2	2255	1040	2252	1041	2251	1040	2248	1041	2246	1041	2243	1042
3	2328	1142	2323	1146	2318	1150	2311	1155	2303	1201	2256	1206
		1247	2357	1254	2348	1301	2337	1310	2324			
5	0005	1354		1404		1416		1429	2351	1446	2334	1502
6	0047	1504	0036	1516	0024	1530	0009	1548		1610		
7	0136	1613	0123	1627	0108	1643	0049	1704	0026	1729	0004	1755
8	0233	1719	0218	1734	0201	1751	0141	1811	0115	1838	0048	1905
9	0336	1818		1832	0304	1848	0243	1908	0217	1932	0150	1957
10 (4)	0443	1909	0430	1922	0414	1935	0355	1951	0332	2012	0307	20
11	05	19	05	20	0527	2014	0511	20	0452	2042	0433	2057
12	0657	2031	0649	2037	0639	2045	0627	2054	0613	2104	0600	
13	0800	2104	0754	2108	0748	2112	0741	2116	0732	2122	0724	2128
14	0859	2134	0857	2135	0854	2136	0851	2137	0847	2138	0843	
15	0955	2203	0956	2201	0957	2159	0958	2156	0959	2153	1000	2150
16	10	22	10	22	1059	2222	1103	2216	1108	2208	14	2202
17	1145	2303		2255	1159	2247	1207	2237				
18	1240	2335		2325	1300	2314	1311	2301	1326	2245	1341	
19	1336		1347	2359	1401	2345	1415	2329	1435	2309	1454	
20	1432	00	1445		1500		1519		1541	2340	1605	
21	15	0052	1541	0038	1558	0023	1619	00	1644			23
22	1621	0138	1636	0123	1653	0106	1714	00	1740	0019	1808	
23	1711	0230	1726	0215	1742	0158	1802	0136	1827	0110	1853	0043
24	1757	0326	1810	0313	1825	0256	1843	0237	1905	0211	1927	0146
25	1839	0426	1849	0413	1902	0400	1917	0343	1934	0321	1952	
26	1917	0528	1925	0518	1934	0506	1945	0453	1958	0436		
27	1952	0630			2003	0614	2010	0605	2018	0553	2026	42
28	2025	0732	2027	0728	2029	0723	2032	0718	2036	0711		
29	2057	0833	2056	0833	2055	0832	2054	0831	2053	0829	2052	0829
30	2130	0936	2127	0939	2122	0942	2117	0945	2110	0949	2104	0953
31	2206	1040	2159	1046	2151	1052	2142	1100	2131	1110	2120	
	2246	1146	2236	1155	2225	1205				1355		
2	2332	1253	2319	1306	23 23 23	1319 14 1	2247	1335 14 51	22 23 23	1355 1514	22 22 22	1415
3 4		14 15 15		1415 15 15	2353	1431 1539		1451 1600	23	1514	2242	15 1654
5	0123			1622	00	1639	00	1659	00	1725		
6	02	1701	0213	1714	0157	1729			0112	1809		
7	0334	1747	0321	1758	0307	1810	0251	1824	0229	1841	0208	
8	0440	1826	0430	1835	0419	1843	0406	1854	0350	1906	0334	1919
9	0544	1902	0537	1906	0529	1912	0520	1919	0509	1927	0458	
10	06	1933		1936	0637	1938	0631	1940	0625			
11		2003		2002				2000	0739	1959		
12	0839	2032	0841	2029	0844	2025	0847	2020	0851	2014	0854	2009
13	0934	2102	0940	2056	0946	2048	0953	2041	1001	2031	1008	2021
14	1030	2134	1038	2125	1047	2115	1057	2103	1110	2049	1122	2035
15	1125	2209	1136	2157	1148	2145	1201	2129	1219	2111	1236	
	1221	2247		2235			1305	2201	1327	2139	1349	
17	1316	2331	1330	2317	1347	2300	1406	2239	1432	2215	1457	
18	1411		1425		1443	2347	1504	2326	1530	2300	1557	2232
19	1502	0020	1517	0005	1534		1554		1620	2357	1647	2330
20	1549	0114	1604	0059	1619	004	1638	0022	1702		1725	
21	1633	0213	1645	0159	1658	0144	1715	0125	1735	0103		
22	1713	0313	1722	0302	1733	0249	1746	0234	1801	0216		0157
23	1749	0415	1756	0407	1804	0357	1812	0346	1822	0332	1832	0320
24 ()	1824	0518	1827	0513	1832	0507	1836	0500	1842	0452	1847	04
25	1857	0621	1857	0619	1858	0617	1859	06	1859	0612	1900	
26	1931 20	0726		0726 08 85	1925							0734 09
27	2007	0831	20.01	0835	1954	0840	1946	08 10	1937 2000	0854 10 18	1928	10 10 1 1
28	2046	0937	2037	0945	$\begin{array}{ll}20 & 27 \\ 21\end{array}$	0954 11 09	2015 20	1123	2029	1142	1210	1200
30	2132	1045	21 22 21 19		2151	11209 12	2132	1240	2108	1.304	2044	1327
31 (1)	2318	1300	2303	1314	2246	1331	2225	1352	2159	14	2132	1445

DATE	Latitude 30° Moon		Latitude 3°Moon		Latitude 40° Moon		Latitude 45° Moon		Latitude 50° Moon		$\begin{aligned} & \text { Latitude } 54^{\circ} \\ & \text { Moon } \end{aligned}$	
	Rise	Set										
Sept.	m	h m	m	h								
1		1402		1416	2348	1433	2327	1454	2302	1519	2236	1546
2		1456	0005	1510		1525		1544		1607	2352	1631
3	0124	1544	0111	1555	0056	1608	0037	1624		1643		1702
4	0228	1625	0218	1633		1643	0151	1656		1711		1725
5	0332	1701	0324	1706	0315	1714	0304	1722	0251	1732	0238	
	04	17	04	17	05	1740	0415	17	0407	1749	5	1755
8	06	1818		1804	063	18		18 184	0633	1805	0635	1817
9	0724	1902	0728	1857	0732	1851	073	1845	0744	1837	0750	1829
10	0819	1933	08	1925	083	1917	08	1907	0853	1854	0904	1842
	0915	200		19	09	19		1932	1002	1915	1018	18
12	1011	2044	1022	2032		2018	1051	2001		1940		1920
13	1106	2125	1120	2111		2056	1154	2037	1217	2013	1241	1948
14	1200	2212	1215	2157	1232	2140	1252	2119	1317	2053	1345	2027
15]	1252	2303	1307	2248	1324	2231	1345	2211	1411	2145	1438	2118
16	13	2358	13	2345		23	14	23	1456	2246		
17	14		14		14		15		1531	2354	1553	
18	1507	0058	1517	0045	1529	003	1543	0015	1600		1617	
19	1544	0158	1552	0149	1601	0137	1611	0125	1624	0109	1636	0053
20		0300		0254		0246	1637	0237	1644	0226	1652	
21	16	0403	16	0400	1658	0356	1700	0351	1703	0346	1706	
22 (2)	1728	0508		0507		0507	1723	0507	1721	0506	1719	0506
23	1804	0613	1759	0617		0620	1748	0624	1741	0630	1734	0634
24	1843	0721	1835	0728	1825	0735	1816	0744	1803	0754	1751	0805
25	1926	0831		0840	1903	0852		0905	1831	0921	1814	
		10	20	11	19	10	19	10	19	10	46	
28				11								
29 d	2318	1253	2304	1306	2248	1322	2230	1341	2207	1406	2143	1430
30		1342		1354	2357	1408	2342	1424	2323	1444	2303	1505
1	0022	1425	0011	1434		1446		1458		1514		1530
2		1501	0116	1508	0106	1517	0055	1526	0040	1537	0026	
3	0225	1534	0220	1539	0213	1543	0205	1549	0155	1556	0146	1602
4	0324	1605	0321	1606	0317	1608	0314	1610	0309	1612	0305	1614
5		1634		1633	0420	1632	0421	1629		1627		
	0515	1703		1700		1655		1649	0530	1643		1638
		1735		1727		1720	0631		0639	1700	0648	1650
8	0706	1807		1758	0724	1747	0735	1735	0748	1720	0802	1706
9	0802	1843	0813	1832	0825	1818	0839	1803	0857	1744	0915	1725
10	0857	1923		1910		18	0943	1836	1004	1813	1026	
11		2007		1953	1022	1936	1042	1917	1107	1851		1826
12	1044	2056	1059	2041		2024		2004	1202	1938	1229	1911
13	1134	2149	1148	2135	1205	2118	1225	2059	1249	2034	1316	2009
14	1219	2245	1232	2233	1248	2218	1305	2201	1328	2139	1351	2116
15 \$	1301	2344	1312	2333	1325	2321	1340	2306	1359	2249	1418	22
16									$\begin{array}{ll}14 & 24 \\ 14 & 45\end{array}$			2350
18	1448	0144	1451	0140		0133	1436 14	0127	14	00 01 019	1455	
19	1521	0246	1522	0245	1522	0243	1522	0241	1523	0238	1523	0235
20	1557	03		0353		035		03		0358	1537	
		0458		0503		0508		0515	1603	0522	1554	0530
22	1717	0608	1707	0616		0625	1644	0636	1629	0650	1614	0703
23	1805	0720	1753	0731	1739	0744	1723	0759	1703	0818	1643	0837
24	1901	0833	1847	0846	1830	0901	1811	0920	1747	0943	1723	
25	2003	0941		0955	1931	1012	1910	1032	1845	1058	1818	1124
	2108	1044	2054	1057	2038	1114	2019		1955	1158	1930	1223
27	2214	1138	2202	1150	2149	1205	2132	1222	2111	1243	2051	1304
28	2319	1223	2310	1234	2258	1245	2246	1259	2230	1316	2214	1333
29		1302		1310		1319	2357	1329	2346	1341	23	1353
30	0020	1337	0014	1342	0007	1347		1354		1402		1409
31	0119	140	0116	1410	0111	141	010	14	0100	14	0055	14

DATE	Latitude ${ }^{30}$ Moon		Latitude 35° Moon		Latitude 40° Moon		Latitude 45° Moon		Latitude 50° Moon		Latitude 54° Moon	
	Ris	Se	Rise	Set	Rise	Set	Rise	Set	Rise	Set	Rise	
No										h m		
1	0215	1437	0215	1436	0214	1436	0213	1435	0212	1434	0210	1434
2	0310	1506	0313	1503	0315	1459	0318	1455	0321	1450	0324	1446
3	0405	1536	0410	1530	0416	1523	0422	1516	0429	1507	0437	
4	0500	1608	0508	1600	0517	1550	0526	1539	0538	1526	0550	1513
5 (4)	0555	1643	0605	1632	0617	1620	0630	1605	0646	1548	0703	1531
6	0651	1722	0703	1709	0717	16	0733	1637	0754	1616	0814	
7	0746	1805	0759	1751	0815	1734	0834	1715	0858	1651	0922	1626
8	0839	1852	0854	1838	0910	1821	0931	1801	0956	1735	1022	1709
9	0929	1943	0944	1929	1000	1913	1020	1853	1045	1829	1112	1802
10	1016	2038	1029	2025	1044	2011	1103	1952	1126	1930	1150	1907
11	1058	2135	1110	2124	1123	2111	1139	2056	1200	2037	1219	2018
12	1136	2233	1146	2224	1157	2213	1210	2202	1226	2147	1241	2133
13	1211	2331	1218	2325	1227	2318	1236	2310	1248	2300	1259	2250
14	1245		1249		1254		1300		1307		1314	
15	1317	0031	1318	0027	1320	0024	1323	0020	1325	0015	1327	0010
16	1350	0132	1348	0132	1347	0132	1345	0131	1343	0131	1341	0131
17	1425	0235	1420	0238	1415	0242	1410	0246	1403	0251	1356	0256
18	1504	0342	1457	0348	1448	0356	1438	0404	1426	0415	1414	0425
19	1550	0452	1539	0502	1526	0512	1513	0525	1455	0542	1437	0558
20 (1642	0605	1629	0617	1613	0631	1556	0648	1534	0710	1512	0731
21	1742	0717	1728	0732	1711	0748	1651	0807	1626	0831	1601	0857
22	1848	0825	1834	0840	1818	0857	1757	0916	1733	0941	1707	1007
23	1957	0925	1945	0939	1929	0954	1912	1012	1850	1035	1828	1058
24	2106	1016	2055	1028	2043	1040	2029	1055	2012	1114	1954	1132
25	2210	1059	2203	1108	2154	1118	2144	1129	2132	1143	2119	
26	2312	1136	2307	1142	2302	1149	2255	1156	2248	1206	2241	1214
27		1209		1212		1215		1219		1224	2359	
28	0010	1239	0008	1240	0006	1240	0004	1240	0002	1240		1241
29	0106	1309	0107	1307	0109	1304	0110	1300	0112	1256	0114	1253
30	0201	1338	0205	1334	0210	1327	0214	1321	0221	1313	0227	1305
Dec.												
2	0255 0350	1410	$\begin{array}{ll}03 & 02 \\ 04 & 00\end{array}$	14 14 14	03 0410	1354 1422	0318 04	1343 14	0329 0437	1331 13 52	0340	$\begin{array}{ll}1319 \\ 13 & 36\end{array}$
3	0445	1521	0457	1509	0510	1455	0526	1438	0545	1418	0604	1359
4	0540	1602	0554	1549	0609	1533	0627	1515	0650	1451	0713	1428
5 (4)	0634	1648	0649	1634	0705	1617	0725	1557	0749	1532	0815	1507
6	0726	1739	0740	1725	0757	1708	0817	1649	0842	1623	0908	1557
7	0813	1834	0827	1820	0844	1804	0902	1746	0926	1723	0950	1658
8	0857	1930	0909	1918	0923	1904	0941	1849	1001	1828	1022	1808
9	0936	2027	0946	2018	0958	2006	1013	1954	1029	1938	1046	1922
10	1012	2124	1019	2118	1029	2109	1039	2100	1052	2049	1104	2038
11	1045	2222	1050	2218	1056	2213	1104	2208	1112	2201	1120	2155
12	1117	2321	1119	2320	1122	2318	1126	2317	1130	23	1134	2313
13	1149		1148		1147		1148		1147		1146	
14	1221	0021	1218	0023	1214	0025 01	1210	0027	1205	0030 0149	1200	
15	1257	0124	1250	0128	1243	0134	1235		1225	0149	1216	
16	1337	0229	1328	0238	1317	0247	1305	0258	1250	0311	1235	
17	1424	0339	1413	0349	1359	0402	1343	0418	1323	0436		0455
18	1520	04.50	1506	0503	1450	0518	1431	0537	1407	0559	1343	0623
19	1622	0600	1608	0614	1551	0631	1532	0651	1506	0716	1440	0742
20 (3)	1732	07	1718	0719	1702	0735	1643	075	1619	0818	1555	
21	1842	0801	1830	0814	1817	0828	1801	0845	1742	0906	1722	0927
22	1951	0850	1942	0859	1932	0911	1920	0925	1905	0941	1850	0957
23	2057	0931	2051	0938	2044	0946	2036	0955	2026	1007	2017	1018
24	2158	1007	2155	1011	2152	1016	2148	1021	2144	1028	2139	1034
25	2257	1039	2257	1041	2257	1042	2257	1043	2258	1046	2258	1048
26	2353	1109	2356	1108		1106		1104		1102		1100
27		1139		1136	0000	1130	0004	1125	0009	1119	0013	1112
28	0048	1211	0055	1204	0102	1156	0109	1147	0118	1136	0127	1125
29	0144	1243	0152	1234	0202	1223	0213	1212	0227	1157	0240	1142
30	0239	1320	0250	1308	0302	1255	0317	1240	0335	1221	0353	1202
31	0334	1400	0347	1347	0401	1332	0419	1313	04	1251	0503	1228

THE SUN AND PLANETS FOR 1972

THE SUN

The diagram represents the sun-spot activity for the current 20th cycle, as far as the final numbers are available. The present cycle began at the minimum in October 1964. For comparison, cycle 19 which began April 1954 (solid curve), and the mean of cycles 8 to 19 (dashed curve), are placed with their minima on October 1964. Sun-spot activity declined by nearly half during early 1971, and by late 1972 , will be approaching a minimum.

Mercury is exceptional in many ways. It is the planet nearest the sun and travels fastest in its orbit, its speed varying from 23 mi . per sec. at aphelion to 35 mi . per sec. at perihelion. The amount of heat and light from the sun received by it per square mile is, on the average, 6.7 times the amount received by the earth. By a radar technique in 1965, the period of rotation on its axis was found to be 59 days.

Mercury's orbit is well within that of the earth, and the planet, as seen from the earth, appears to move quickly from one side of the sun to the other several times in the year. Its quick motion earned for it the name it bears. Its greatest elongation (i.e., its maximum angular distance from the sun) varies between 18° and 28°, and on such occasions it is visible to the naked eye for about two weeks.

When the elongation of Mercury is east of the sun it is an evening star, setting soon after the sun. When the elongation is west, it is a morning star and rises shortly before the sun. Its brightness when it is treated as a star is considerable but it is always viewed in the twilight sky and one must look sharply to see it.

The most suitable times to observe Mercury are at an eastern elongation in the spring and at a western elongation in the autumn. The dates of greatest elongation this year, together with the planet's separation from the sun and its stellar magnitude, are given in the following table:

MAXIMUM ELONGATIONS OF MERCURY DURING 1972

Elong. East-Evening Sky			Elong. West-Morning Sky		
Date	Elong.	Mag.	Date	Elong.	Mag.
			Jan. 1	23°	-0.1
Mar. 14	18°	-0.1	Apr. 28	27°	+0.7
July 10	26°	+0.7	Aug. 25	18°	-0.1
Nov. 5	23°	0.0	Dec. 14	21°	-0.2

The most favourable elongations are: in the evening, March 14; in the morning, August 25 . Neither of these elongations is exceptionally favourable. The apparent diameter of the planet ranges from $4.7^{\prime \prime}$, at superior conjunction, through about $7.5^{\prime \prime}$ at elongation, to $11^{\prime \prime}$ at inferior conjunction.

VENUS

Venus is the next planet in order from the sun. In size and mass it is almost a twin of the earth. Venus being within the earth's orbit, its apparent motion is similar to Mercury's but much slower and more stately. The orbit of Venus is almost circular with radius of 67 million miles, and its orbital speed is 22 miles per sec.

Venus will dominate the twilight sky during much of 1972. From January 1 until early June, Venus is an evening star, high in the western sky. Inferior conjunction occurs on June 17, and Venus is a morning star for the rest of the year. Greatest elongation occurs on April $7\left(46^{\circ} \mathrm{E}\right)$ and August $26\left(46^{\circ} \mathrm{W}\right)$; greatest brilliancy occurs on May 11 and July 24. At these times, Venus is a magnitude -4.2 crescent, $40^{\prime \prime}$ in diameter.
Its brilliance is due to its nearness and to dense clouds enshrouding the planet. Visits by Mariner II and V, and by the Russian Venera IV spacecraft, revealed a surface temperature close to $1000^{\circ} \mathrm{F}$, a surface pressure of perhaps 100 times that of the earth, and little or no magnetic field. The atmosphere consists mainly of carbon dioxide, and of course the clouds, whose nature is still uncertain.

The orbit of Mars is outside that of the earth and consequently its planetary phenomena are quite different from those of the two inferior planets discussed above.

Its mean distance from the sun is 141 million miles and the eccentricity of its orbit is 0.093 , and a simple computation shows that its distance from the sun ranges between 128 and 154 million miles. Its distance from the earth varies from 35 to 235 million miles and its brightness changes accordingly. When Mars is nearest it is conspicuous in its fiery red, but when farthest away it is no brighter than Polaris. Unlike Venus, its atmosphere is very thin, and features on the solid surface are distinctly visible. Utilizing them its rotation period of 24 h .37 m .22 .6689 s . has been accurately determined. Perhaps the most surprising result of the space programme so far is the revelation by Mariner IV that the surface of Mars contains craters much like those on the Moon. This discovery was confirmed in 1969 by Mariners VI and VII, which revealed also large areas free of craters, and other areas with unusual chaotic structure.

The sidereal, or true mechanical, period of revolution of Mars is 687 days; and the synodic period (for example, the interval from one opposition to the next one) is 780 days. This is the average value; it may vary from 764 to 810 days. At the opposition on August 10, 1971, the planet was closer to the earth- $34,931,000 \mathrm{mi}$.-than it will be for many years. Such favourable oppositions occur at intervals of 15 to 17 years.

Mars is inconspicuous in 1972. Its magnitude at brightest is only +0.5 . This magnitude occurs in January, when Mars is an evening star in Pisces. Thereafter the elongation decreases until September 7, when it is in conjunction. By year's end, it is a morning star in Scorpius.

JUPITER

Jupiter is the giant of the family of the sun. Its mean diameter is 87,000 miles and its mass is $2 \frac{1}{2}$ times that of all the rest of the planets combined! Its mean distance is 483 million miles and the revolution period is 11.9 years. This planet is known to possess 12 satellites, the last discovered in 1951 (see p. 9). Bands of clouds may be observed on Jupiter, interrupted by irregular spots which may be short-lived or persist for weeks. The atmosphere contains ammonia and methane at a temperature of about $-200^{\circ} \mathrm{F}$. Intense radiation belts (like terrestrial Van Allen belts) have been disclosed by observations at radio wave-lengths. A correlation of radio bursts with the orbital position of the satellite Io has now been found.

Jupiter is a fine object for the telescope. Many details of the cloud belts as well as the flattening of the planet, due to its short rotation period, are visible, and the phenomena of its satellites provide a continual interest.

On January 1, 1972, Jupiter is a morning star in Ophiuchus, very close to the sun. In mid-January, it moves into Sagittarius, where it remains for the rest of the year. Retrograde motion occurs between April 25 and August 25. Opposition occurs on June 24, at which time the planet reaches greatest brightness (magnitude -2.2) and apparent diameter $\left(47^{\prime}\right)$. By December, Jupiter is still visible as an evening star, very low in the west.

SATURN

Saturn was the outermost planet known until modern times. In size it is a good second to Jupiter. In addition to its family of ten satellites, this planet has a unique system of rings, and it is one of the finest of celestial objects in a good telescope. The plane of the rings makes an angle of 27° with the plane of the planet's orbit, and twice during the planet's revolution period of $29 \frac{1}{2}$ years the rings appear to open out widest; then they slowly close in until, midway between the maxima, the rings are presented edgewise to the sun or the earth, at which times they are invisible. The rings were edgewise in 1950, and were again in 1966; the northern face of the rings was at maximum in 1958 and the southern will be in 1973. (The tenth satellite was discovered in 1966.)

1972 will be an excellent year to view Saturn. By late 1972, the rings are open to nearly the maximum extent, the southern face being visible. At opposition on Decem-
ber 9, the major and minor axes of the ring system are $47^{\prime \prime}$ and $21^{\prime \prime}$, and the planet attains a brightness of magnitude -0.3 , its brightest in some years. Early in the year, Saturn passes between the Hyades and the Pleiades; it is a conspicuous evening star at this time.

URANUS

Uranus was discovered in 1781 by Sir William Herschel by means of a $6 \frac{1}{4}$-in. mirror-telescope made by himself. The object did not look just like a star and he observed it again four days later. It had moved amongst the stars, and he assumed it to be a comet. He could not believe that it was a new planet. However, computation later showed that it was a planet nearly twice as far from the sun as Saturn. Its period of revolution is 84 years and it rotates on its axis in about 11 hours. Its five satellites are visible only in a large telescope.

Uranus, in 1972, is in Virgo. At opposition on April 5, its magnitude is +5.7 ; at this time it should be faintly visible to the naked eye under a clear dark sky. Its apparent diameter reaches $4.0^{\prime \prime}$, easily resolvable with a small telescope under good seeing conditions. Conjunction occurs on October 11.

NEPTUNE

Neptune was discovered in 1846 after its existence in the sky had been predicted from indejpendent calculations by Leverrier in France and Adams in England. It caused a sensation at the time. Its distance from the sun is 2791 million miles and its period of revolution is 165 years. A satellite was discovered in 1846 soon after the planet. A second satellite was discovered by G. P. Kuiper at the McDonald Observatory on May 1, 1949. Its magnitude is about 19.5, its period about a year, and diameter about 200 miles. It is named Nereid.

In 1972, Neptune is in Scorpius. Retrograde motion occurs between March 7 and August 14; opposition occurs on May 24, at which time the planet has a magnitude of +7.7 and an apparent diameter of $2.5^{\prime \prime}$. Conjunction occurs on November 26. Neptune passes close to v Sco three times in 1972 (see map).

Pluto, the most distant known planet, was discovered at the Lowell Observatory in 1930 as a result of an extended search started two decades earlier by Percival Lowell. The faint star-like image was first detected by Clyde Tombaugh by comparing photographs taken on different dates. Further observations confirmed that the object was a distant planet. Its mean distance from the sun is 3671 million miles and its revolution period is 248 years. It appears as a 14th mag. star in the constellation Coma. At opposition on March 21 its position is: R.A. $12^{\mathrm{h}} 29^{\mathrm{m}}$, Dec. $+15^{\circ} 11^{\prime}$, and it is $2,818,000,000$ miles from earth.

Journal for the History of Astronomy

Edited by M. A. Hoskin (Cambridge)

Every four months the journal, unique to the field, brings readers a variety of articles devoted to the history of astronomy, astrophysics and cosmology from earliest civilizations to the 20th-Century. Relevant branches of navigation, timekeeping, geography, mathematics and physics are also discussed. Subscription information, including a special back-volume offer, is available from:

Neale Watson Academic Publications, Juc.

234 East 19th Street • New York 10003

THE SKY MONTH BY MONTH
 By John F. Heard

THE SKY FOR JANUARY 1972

Positions of the sun and planets are given for 0 h Greenwich Ephemeris Time.
The times of transit at the 75th meridian are given in local mean time, 0 h at midnight; to change to Standard Time, see p. 10. Estimates of altitude are for an observer in latitude $45^{\circ} \mathrm{N}$.

The Sun-During January the sun's R.A. increases from 18 h 42 m to 20 h 55 m and its Decl. changes from $23^{\circ} 06^{\prime}$ S. to $17^{\circ} 25^{\prime}$ S. The equation of time changes from -3 m 22 s to -13 m 26 s . These values of the equation of time are for noon E.S.T. on the first and last days of the month in this and in the following months. The earth is in perihelion or nearest the sun, on the 3 rd at a distance of $91,397,000 \mathrm{mi}$. On the 16th there is an annular eclipse of the sun, not visible in North America. For changes in the length of the day, see p. 13.

The Moon-For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page. Times of moonrise and moonset are given on p. 20. On the night of the 29th-30th there is a total eclipse of the moon, visible in North America.

Mercury on the 1st is in R.A. 17 h 05 m , Decl. $20^{\circ} 51^{\prime} \mathrm{S}$., and on the 15 th is in R.A. 18 h 19 m , Decl. $23^{\circ} 22^{\prime} \mathrm{S}$. Greatest western elongation is on the 1st. At that time Mercury stands about 16° above the south-eastern horizon at sunrise and will be an observable object just before sunrise for about two weeks following.

Venus on the 1st is in R.A. 20 h 55 m , Decl. $19^{\circ} 15^{\prime} \mathrm{S}$.; and on the 15 th it is in R.A. 22 h 03 m , Decl. $13^{\circ} 42^{\prime}$ S., mag. -3.5 , and transits at 14 h 29 m . It is low in the south-west at sunset and sets about three hours later.

Mars on the 15 th is in R.A. 0 h 46 m , Decl. $5^{\circ} 04^{\prime}$ N., mag. +0.8 , and transits at 17 h 10 m . In Pisces, it is near the meridian at sunset and sets before midnight. It is declining in brilliancy.

Jupiter on the 15 th is in R.A. 17 h 40 m , Decl. $22^{\circ} 59^{\prime}$ S., mag. -1.4 , and transits at 10 h 04 m . Moving from Ophiuchus into Sagittarius, it rises about two hours before the'sun in the south-east. For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 70.

Saturn on the 15 th is in R.A. 3 h 52 m , Decl. $18^{\circ} 10^{\prime}$ N., mag. +0.1 , and transits at 20 h 14 m . In Taurus, it is well up in the east at sunset and sets about three hours before dawn. Retrograding during most of the month, it is stationary in R.A. on the 31st and resumes direct, or eastward, motion among the stars.

Uranus on the 15 th is in R.A. 13 h 08 m , Decl. $6^{\circ} 34^{\prime}$ S., and transits at 5 h 33 m .
Neptune on the 15 th is in R.A. 16 h 11 m , Decl. $19^{\circ} 28^{\prime}$ S., and transits at 8 h 35 m .
Pluto-For information in regard to this planet, see p. 31.

ASTRONOMICAL PHENOMENA MONTH BY MONTH

Explanation of time on p. 10, of colongitude on p. 58.
${ }^{l}$ Jan. 3, $+5.56^{\circ}$; Jan. 16, -4.98°; Jan. 30, $+4.81^{\circ}$.
${ }^{b}$ Jan. 10, $+6.84^{\circ}$; Jan. 24, -6.75°.

THE SKY FOR FEBRUARY 1972

Positions of the sun and planets are given for 0 h Greenwich Ephemeris Time.
The times of transit at the 75th meridian are given in local mean time, 0 h at midnight; to change to Standard Time, see p. 10. Estimates of altitude are for an observer in latitude $45^{\circ} \mathrm{N}$.

The Sun-During February the sun's R.A. increases from 20 h 55 m to 22 h 48 m and its Decl. changes from $17^{\circ} 25^{\prime} \mathrm{S}$. to $7^{\circ} 38^{\prime} \mathrm{S}$. The equation of time changes from -13 m 35 s to -12 m 36 s . It is at a maximum of -14 m 18 s on the 11 th . For changes in the length of the day, see p. 13.

The Moon-For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page. Times of moonrise and moonset are given on p. 20.

Mercury on the 1st is in R.A. 20 h 10 m , Decl. $21^{\circ} 50^{\prime} \mathrm{S}$., and on the 15 th is in R.A. 21 h 46 m , Decl. $15^{\circ} 35^{\prime} \mathrm{S}$. It is too close to the sun for observation, superior conjunction being on the 17th.

Venus on the 1st is in R.A. 23 h 20 m , Decl. $5^{\circ} 29^{\prime}$ S.; and on the 15 th it is in R.A. 0 h 21 m , Decl. $1^{\circ} 50^{\prime}$ N., mag. - 3.6, and transits at 14 h 44 m . It is an evening star in the south-west at sunset and sets about three hours later.

Mars on the 15 th is in R.A. 2 h 02 m , Decl. $13^{\circ} 04^{\prime}$ N., mag. +1.2 , and transits at 16 h 24 m . Moving into Aries, it is past the meridian at sunset and sets before midnight.

Jupiter on the 15 th is in R.A. 18 h 06 m , Decl. $23^{\circ} 05^{\prime}$ S., mag. -1.5 , and transits at 8 h 28 m . In Sagittarius, it rises about three hours before the sun and is to be seen low in the south-east. For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 70.

Saturn on the 15 th is in R.A. 3 h 52 m , Decl. $18^{\circ} 17^{\prime}$ N., mag. +0.3 , and transits at 18 h 12 m . In Taurus, it is approaching the meridian at sunset and sets about two hours after midnight.

Uranus on the 15th is in R.A. 13 h 08 m , Decl. $6^{\circ}{ }^{2} 8^{\prime}$ S., and transits at 3 h 30 m .
Neptune on the 15 th is in R.A. 16 h 14 m , Decl. $19^{\circ} 33^{\prime}$ S., and transits at 6 h 36 m .
Pluto-For information in regard to this planet, see p. 31.

Explanation of time on p. 10, of colongitude on p. 58.
${ }^{l}$ Feb. 12, -6.01°; Feb. 25, $+5.37^{\circ} . \quad{ }^{b}$ Feb. 6, $+6.83^{\circ}$; Feb. 20, -6.72°.

THE SKY FOR MARCH 1972

Positions of the sun and planets are given for 0 h Greenwich Ephemeris Time.
The times of transit at the 75th meridian are given in local mean time, 0 h at midnight; to change to Standard Time, see p. 10. Estimates of altitude are for an observer in latitude $45^{\circ} \mathrm{N}$.

The Sun-During March the sun's R.A. increases from 22 h 48 m to 0 h 42 m and its Decl. changes from $7^{\circ} 38^{\prime} \mathrm{S}$. to $4^{\circ} 30^{\prime} \mathrm{N}$. The equation of time changes from -12 m 20 s to -4 m 5 s . For changes in the length of the day, see p. 14 .

The Moon-For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page. Times of moonrise and moonset are given on p. 21.

Mercury on the 1st is in R.A. 23 h 30 m , Decl. $4^{\circ} 00^{\prime} \mathrm{S}$., and on the 15 th is in R.A. 0 h 43 m , Decl. $7^{\circ} 06^{\prime} \mathrm{N}$. On the 14th it is at greatest eastern elongation, and on that date it stands about 17° above the western horizon at sunset. For about a week preceding and following the 14th the planet should be easily observed low in the west just after sunset, but by the 31st it is in inferior conjunction.

Venus on the 1st is in R.A. 1 h 24 m , Decl. $9^{\circ} 32^{\prime}$ N.; and on the 15 th it is in R.A. 2 h 23 m , Decl. $16^{\circ} 01^{\prime}$ N., mag. -3.8, and transits at 14 h 53 m . It is an evening star visible in the west for nearly four hours after sunset.

Mars on the 15 th is in R.A. 3 h 17 m , Decl. $19^{\circ} 09^{\prime}$ N., mag. +1.5 , and transits at 15 h 45 m . Moving into Taurus, it is well past the meridian at sunset and sets before midnight.

Jupiter on the 15th is in R.A. 18 h 25 m , Decl. $22^{\circ} 59^{\prime}$ S., mag. -1.7 , and transits at 6 h 53 m . In Sagittarius, it rises about two hours after midnight and is near the meridian in the south at dawn. For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 70.

Saturn on the 15 th is in R.A. 3 h 58 m , Decl. $18^{\circ} 44^{\prime}$ N., mag. +0.4 , and transits at 16 h 24 m . In Taurus, it is past the meridian at sunset and sets about midnight.

Uranus on the 15th is in R.A. 13 h 05 m , Decl. $6^{\circ} 07^{\prime}$ S., and transits at 1 h 33 m .
Neptune on the 15 th is in R.A. 16 h 15 m , Decl. $19^{\circ} 33^{\prime}$ S., and transits at 4 h 42 m .
Pluto-For information in regard to this planet, see p. 31.

| | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1972 | | | | | | |

Explanation of time on p. 10, of colongitude on p. 58.
${ }^{l}$ Mar. 11, -7.17°; Mar. 23, $+6.61^{\circ} . \quad{ }^{b}$ Mar. $5,+6.72^{\circ}$; Mar. 18, -6.59°.

THE SKY FOR APRIL 1972

Positions of the sun and planets are given for 0 h Greenwich Ephemeris Time.
The times of transit at the 75th meridian are given in local mean time, 0 h at midnight; to change to Standard Time, see p. 10. Estimates of altitude are for an observer in latitude $45^{\circ} \mathrm{N}$.

The Sun-During April the sun's R.A. increases from 0 h 42 m to 2 h 33 m and its Decl. changes from $4^{\circ} 30^{\prime} \mathrm{N}$. to $15^{\circ} 03^{\prime} \mathrm{N}$. The equation of time changes from -3 m 47 s to +2 m 51 s , being zero on the 15 th. For changes in the length of the day, see p. 14.

The Moon-For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page. Times of moonrise and moonset are given on p. 21.

Mercury on the 1st is in R.A. 0 h 34 m , Decl. $6^{\circ} 42^{\prime}$ N., and on the 15 th is in R.A. 0 h 15 m , Decl. $0^{\circ} 48^{\prime} \mathrm{N}$. On the 28th it is in greatest western elongation, but this is a poor elongation, Mercury being less than 10° above the eastern horizon at sunrise.

Venus on the 1st is in R.A. 3 h 36 m , Decl. $22^{\circ} 18^{\prime} \mathrm{N}$.; and on the 15 th it is in R.A. 4 h 34 m , Decl. $25^{\circ} 44^{\prime}$ N., mag. -4.0 , and transits at 15 h 01 m . It dominates the western sky for about four hours after sunset. On the night of the 16th-17th an occultation of Venus by the moon will be visible in some parts of the world.

Mars on the 15 th is in.R.A. 4 h 42 m , Decl. $23^{\circ} 20^{\prime}$ N., mag. +1.7 , and transits at 15 h 08 m . In Taurus, it is well down in the west at sunset and sets within four hours.

Jupiter on the 15 th is in R.A. 18 h 35 m , Decl. $22^{\circ} 53^{\prime}$ S., mag. -1.9 , and transits at 5 h 01 m . In Sagittarius, it rises about midnight and is past the meridian, low in the southern sky at dawn. On the 24th it is stationary in R.A. and commences retrograde, or westward, motion among the stars. For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 70.

Saturn on the 15 th is in R.A. 4 h 10 m , Decl. $19^{\circ} 24^{\prime}$ N., mag. +0.4 , and transits at 14 h 34 m . In Taurus it is well down in the west at sunset and sets about three hours later.

Uranus on the 15th is in R.A. 13 h 00 m , Decl. $5^{\circ} 37^{\prime}$ S., and transits at 23 h 22 m . Opposition is on the 5th.

Neptune on the 15 th is in R.A. 16 h 13 m , Decl. $19^{\circ} 27^{\prime}$ S., and transits at 2 h 39 m .
Pluto-For information in regard to this planet, see p. 31.

Explanation of time on p. 10, of colongitude on p. 58.
${ }^{1}$ Apr. 8, -7.83°; Apr. 20, $+7.39^{\circ}$.
${ }^{b}$ Apr. $1,+6.59^{\circ}$; Apr. 14, -6.48 ${ }^{\circ}$; Apr. 28, $+6.57^{\circ}$.

Positions of the sun and planets are given for 0 h Greenwich Ephemeris Time.
The times of transit at the 75th meridian are given in local mean time, 0 h at midnight; to change to Standard Time, see p. 10. Estimates of altitude are for an observer in latitude $45^{\circ} \mathrm{N}$.

The Sun-During May the sun's R.A. increases from 2 h 33 m to 4 h 36 m and its Decl. changes from $15^{\circ} 03^{\prime} \mathrm{N}$. to $22^{\circ} 02^{\prime} \mathrm{N}$. The equation of time changes from +2 m 59 s to a maximum of +3 m 43 s on the 14th, and then to +2 m 21 s at the end of the month. For changes in the length of the day, see p. 15.

The Moon-For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page. Times of moonrise and moonset are given on p. 22.

Mercury on the 1st is in R.A. 0 h 56 m , Decl. $2^{\circ} 50^{\prime}$ N., and on the 15th is in R.A. 2 h 07 m , Decl. $10^{\circ} 14^{\prime} \mathrm{N}$. It is too close to the sun for observation.

Venus on the 1st is in R.A. 5 h 33 m , Decl. $27^{\circ} 30^{\prime} \mathrm{N}$.; and on the 15 th it is in R.A. 6 h 09 m , Decl. $27^{\circ} 22^{\prime}$ N., mag. -4.2 , and transits at 14 h 36 m . It dominates the western sky for about three hours after sunset. Greatest brilliancy is on the 11th.

Mars on the 15th is in R.A. 6 h 07 m , Decl. $24^{\circ} 37^{\prime}$ N., mag. +1.9 , and transits at 14 h 35 m . Moving into Gemini, it is low in the west at sunset and sets within three hours. On the 15th the planet is occulted by the moon. This occultation is not visible in North America.

Jupiter on the 15 th is in R.A. 18 h 33 m , Decl. $22^{\circ} 57^{\prime}$ S., mag. -2.1 , and transits at 3 h 01 m . In Sagittarius, it rises in the late evening and is well past the meridian by dawn. For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 70.

Saturn on the 15 th is in R.A. 4 h 25 m , Decl. $20^{\circ} 05^{\prime}$ N., and transits at 12 h 52 m . In Taurus, it is too low in the west at sunset for easy observation even at the beginning of the month. On the 31st it is in conjunction.

Uranus on the 15 th is in R.A. 12 h 56 m , Decl. $5^{\circ} 12^{\prime}$ S., and transits at 21 h 20 m .
Neptune on the 15 th is in R.A. 16 h 10 m , Decl. $19^{\circ} 19^{\prime}$ S., and transits at 0 h 38 m . Opposition is on the 24th.

Pluto-For information in regard to this planet, see p. 31.

1972			$\begin{aligned} & \text { MAY } \\ & \text { E.S.T. } \end{aligned}$	$\begin{gathered} \text { Min. } \\ \text { Mif } \\ \text { Algol } \end{gathered}$	Config. of Jupiter's 1 h E.S.T.	$\begin{aligned} & \text { Sun's } \\ & \text { Selen. } \\ & \text { Colong. } \\ & \text { Oh U.T. } \end{aligned}$
d	h	m		h m		-
Mon. 1					41203	120.29
Tues. 2					40132	132.48
Wed. 3	07		Jupiter $2^{\circ} \mathrm{N}$. of Moon	500	3104d	144.66
Thur. 4	22		η Aquarid meteors		32014	156.85
Fri. 5					3024*	169.05
Sat. 6	07	26	(d) Last Quarter	150	1024*	181.25
Sun. 7					20134	193.46
Mon. 8				2240	21034	205.68
Tues. 9					01324	217.90
Wed. 10					13024	230.13
Thur. 11	06		Venus greatest brilliancy	1930	32 O 41	242.37
	14		Mercury $8^{\circ} \mathrm{S}$. of Moon			
Fri. 12			Mercury greatest hel. lat. S.		34102	$254.61{ }^{\text {b }}$
	12		Moon at perigee (222,100 mi.)			
	23	08	- New Moon			
Sat. 13					4302d	266.85
Sun. 14	01		Saturn $5^{\circ} \mathrm{S}$. of Moon	1620	42 O 13	279.10
Mon. 15	15		Venus $2^{\circ} \mathrm{N}$. of Moon		42103	291.34
	15		Mars $1^{\circ} \mathrm{S}$. of Moon			
Tues. 16					40123	303.58
Wed. 17	01		Venus $3^{\circ} \mathrm{N}$. of Mars	1310	41302	315.81
Thur. 18					43201	328.04
Fri. 19	20	16	1ibi First Quarter		3410*	$340.2{ }^{2}$
Sat. 20				1000	3042d	352.49
Sun. 21					20134	4.70
Mon. 22					21034	16.91
Tues. 23	19		Uranus $6^{\circ} \mathrm{N}$. of Moon	650	01234	29.11
Wed. 24	19		Neptune at opposition		10324	41.31
Thur. 25	10		Moon at apogee ($252,350 \mathrm{mi}$.)		32014	53.50
	10		Juno stationary			
Fri. 26	19		Venus stationary	330	3104*	65.70
Sat. 27	19		Neptune $6^{\circ} \mathrm{N}$. of Moon		30142	77.89
	23	28	(3) Full Moon			
Sun. 28	04		Antares $0.8^{\circ} \mathrm{S}$. of Moon. Occ'n.		2403*	90.07
Mon. 29				020	42103	102.26
Tues. 30	10		Jupiter $2^{\circ} \mathrm{N}$. of Moon		40213	114.45
Wed. 31	03		Mercury at ascending node Saturn in conjunction	2110	41032	126.65

Explanation of time on p. 10, of colongitude on p. 58.
${ }^{l}$ May $7,-7.76^{\circ}$; May $18,19,+7.36^{\circ} . \quad{ }^{b}$ May 12, -6.50°; May $25,+6.66^{\circ}$.

THE SKY FOR JUNE 1972

Positions of the sun and planets are given for 0 h Greenwich Ephemeris Time.
The times of transit at the 75th meridian are given in local mean time, 0 h at midnight; to change to Standard Time, see p. 10. Estimates of altitude are for an observer in latitude $45^{\circ} \mathrm{N}$.

The Sun-During June the sun's R.A. increases from 4 h 36 m to 6 h 40 m and its Decl. changes from $22^{\circ} 02^{\prime} \mathrm{N}$. to $23^{\circ} 07^{\prime} \mathrm{N}$. The equation of time changes from +2 m 12 s to -3 m 38 s , being zero on the 12th. For changes in the length of the day, see p. 15.

The Moon-For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page. Times of moonrise and moonset are given on p. 22.

Mercury on the 1 st is in R.A. 4 h 16 m , Decl. $21^{\circ} 20^{\prime}$ N., and on the 15 th is in R.A. 6 h 26 m , Decl. $25^{\circ} 10^{\prime} \mathrm{N}$. It is too close to the sun for observation, superior conjunction being on the 4th.

Venus on the 1st is in R.A. 6 h 19 m , Decl. $25^{\circ} 29^{\prime}$ N.; and on the 15 th it is in R.A. 5 h 52 m , Decl. $22^{\circ} 33^{\prime}$ N., mag. -2.8 , and transits at 12 h 14 m . Early in the month it is still to be seen low in the west for an hour after sunset, but by the 17th it has reached inferior conjunction, and later in the month it is visible in the east as a morning star just before sunrise.

Mars on the 15 th is in R.A. 7 h 33 m , Decl. $22^{\circ} 56^{\prime}$ N., mag. +2.0 , and transits at 13 h 59 m . Moving through Gemini into Cancer, it is very low in the west at sunset, so that with its present faintness it is difficult to observe. On the 13th Mars is occulted by the moon. This occultation is not visible in North America.

Jupiter on the 15 th is in R.A. 18 h 20 m , Decl. $23^{\circ} 09^{\prime}$ S., mag. -2.2 , and transits at 0 h 46 m . In Sagittarius it rises about at sunset and is visible quite low in the southern sky until dawn. Opposition is on the 24th. For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 70.

Saturn on the 15 th is in R.A. 4 h 42 m , Decl. $20^{\circ} 42^{\prime}$ N., and transits at 11 h 06 m. A morning star now, it will be the end of the month before it can be observed, very low in the east just before sunrise.

Uranus on the 15 th is in R.A. 12 h 53 m , Decl. $5^{\circ} 00^{\prime}$ S., and transits at 19 h 16 m .
Neptune on the 15 th is in R.A. 16 h 07 m , Decl. $19^{\circ} 10^{\prime} \mathrm{S}$., and transits at 22 h 29 m.

Pluto-For information in regard to this planet, see p. 31.

1972			JUNE E.S.T.	$\underset{\substack{\text { Min. } \\ \text { of } \\ \text { Algol }}}{ }$	Config. of Jupiter's 23h E.S.T	Sun's Colong. 0h U.T.
d	h	m		h m		-
Thur. 1					43120	138.84
Fri. 2					43012	151.04
Sat. 3				1800	41023	$163.25^{\text {l }}$
Sun. 4	16		Mercury in superior conjunction		2403d	175.46^{1}
	16	22	© Last Quarter			
Mon. 5			Mercury at perihelion		01243	187.67
Tues. 6				1450	10324	199.90
Wed. 7					23014	212.13
Thur. 8					32104	$224.37^{\text {b }}$
Fri. 9	19		Moon at perigee ($223,950 \mathrm{mi}$)	1140	30124	236.61
Sat. 10					1024*	248.86
Sun. 11			Venus at descending node		20134	261.11
	06	30	(1a) New Moon			
Mon. 12				830	O243*	273.36
Tues. 13	08		Mars $0.7^{\circ} \mathrm{N}$. of Moon		41032	285.62
Wed. 14					432 O 1	297.87
Thur. 15			Mercury greatest hel. lat. N.	520	43210	310.11
Fri. 16	01		Pluto stationary		43012	$322.35^{\text {l }}$
Sat. 17	10		Venus in inferior conjunction		41302	334.59
Sun. 18	10	41	[ibi First Quarter	210	42 O 13	346.82
	17		Mars $6^{\circ} \mathrm{S}$. of Pollux			
Mon. 19					4103*	359.04
Tues. 20	01		Uranus $6^{\circ} \mathrm{N}$. of Moon	2250	41023	11.26
Wed. 21	02	06	Solstice. Summer begins		23041	$23.48^{\text {b }}$
	20		Uranus stationary			
	22		Moon at apogee ($251,800 \mathrm{mi}$)			
Thur. 22					32104	35.68
Fri. 23				1940	30124	47.89
Sat. 24	01		Neptune $6^{\circ} \mathrm{N}$. of Moon		13024	60.09
	11		Antares $0.8^{\circ} \mathrm{S}$. of Moon			
	12		Mercury $5^{\circ} \mathrm{S}$. of Pollux			
	16		Jupiter at opposition			
Sun. 25					20134	72.29
Mon. 26	10		Jupiter $2^{\circ} \mathrm{N}$. of Moon	1630	12034	84.48
	13	46	(2) Full Moon			
Tues. 27					O234d	96.67
Wed. 28	11		Mercury $0.3^{\circ} \mathrm{N}$. of Mars		32 O 4	108.87
Thur. 29				1320	32104	121.06
Fri. 30					34012	133.26

Explanation of time on p. 10, of colongitude on p. 58.
${ }^{l}$ June 3, 4, -6.86°; June 16, $+6.77^{\circ}$. ${ }^{\text {b }}$ June 8, -6.66°; June 21, $+6.79^{\circ}$.

Positions of the sun and planets are given for 0 h Greenwich Ephemeris Time.
The times of transit at the 75th meridian are given in local mean time, 0 h at midnight; to change to Standard Time, see p. 10. Estimates of altitude are for an observer in latitude $45^{\circ} \mathrm{N}$.

The Sun-During July the sun's R.A. increases from 6 h 40 m to 8 h 45 m and its Decl. changes from $23^{\circ} 07^{\prime} \mathrm{N}$. to $18^{\circ} 03^{\prime} \mathrm{N}$. The equation of time changes from -3 m 50 s to a maximum of -6 m 27 s on the 25 th and then to -6 m 17 s at the end of the month. On the 5th the earth is in aphelion, or farthest from the sun, at a distance of $94,514,000 \mathrm{mi}$. There is a total eclipse of the sun on the 10 th , visible in North America. For changes in the length of the day, see p. 16.

The Moon-For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page. Times of moonrise and moonset are given on p. 23. On the night of the 25th-26th there is a partial eclipse of the moon, visible in North America.

Mercury on the 1 st is in R.A. 8 h 24 m , Decl. $20^{\circ} 37^{\prime}$ N., and on the 15 th is in R.A. 9 h 22 m , Decl. $14^{\circ} 06^{\prime} \mathrm{N}$. On the 10 th it is in greatest eastern elongation, standing about 15° above the western horizon at sunset. For about a week at this time it will be easily observed.

Venus on the 1 st is in R.A. 5 h 16 m , Decl. $18^{\circ} 59^{\prime} \mathrm{N}$.; and on the 15 th it is in R.A. 5 h 13 m , Decl. $17^{\circ} 53^{\prime} \mathrm{N} .$, mag. -4.1 , and transits at 9 h 40 m . It rises to the north of east about two hours before the sun and reaches greatest brilliancy for the second time this year on the 24th.

Mars on the 15 th is in R.A. 8 h 52 m , Decl. $18^{\circ} 47^{\prime}$ N., and transits at 13 h 20 m . It is too close to the sun for easy observation.

Jupiter on the 15 th is in R.A. 18 h 04 m , Decl. $23^{\circ} 18^{\prime}$ S., mag. -2.2 , and transits at 22 h 27 m . In Sagittarias, it is visible low in the south-east just after sunset and is prominent in the southern sky until nearly dawn. For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 70.

Saturn on the 15 th is in R.A. 4 h 58 m , Decl. $21^{\circ} 08^{\prime}$ N., mag. +0.3 , and transits at 9 h 24 m . In Taurus, it rises two or three hours before the sun.

Uranus on the 15 th is in R.A. 12 h 54 m , Decl. $5^{\circ} 06^{\prime}$ S., and transits at 17 h 19 m .
Neptune on the 15 th is in R.A. 16 h 04 m , Decl. $19^{\circ} 04^{\prime}$ S., and transits at 20 h 28 m .

Pluto-For information in regard to this planet, see p. 31.

1972			$\begin{aligned} & \text { JULY } \\ & \text { E.S.T. } \end{aligned}$	$\begin{gathered} \text { Min. } \\ \text { Mif } \\ \text { Algol } \end{gathered}$	Config. of Jupiter's 22h E.S.T	Sun's Colong. 0h U.T.
d	h	m		h m		-
Sat. 1					41302	145.46
Sun. 2				1010	42013	157.67
Mon. 3	22	25	(1) Last Quarter		41203	169.88
Tues. 4					40123	182.10
Wed. 5			Earth at aphelion	700	40*dd	194.33
Thur. 6					43210	206.56
Fri. 7	18		Moon at perigee ($226,950 \mathrm{mi}$)		34012	218.80
Sat. 8			Mercury at descending node	350	31042	231.05
	07		Saturn $5^{\circ} \mathrm{S}$. of Moon			
	13		Venus 8° S. of Moon			
	21		Venus stationary			
Sun. 9					20134	243.30
Mon. 10	14	39	(17. New Moon. Eclipse of \odot, p. 57		12034	255.55
	18		Mercury greatest elong. E. (26 ${ }^{\circ}$)			
Tues. 11			Mars greatest hel. lat. N .	040	01234	267.80
Wed. 12	02		Mars $2^{\circ} \mathrm{N}$. of Moon		10324	280.06
	16		Mercury $1^{\circ} \mathrm{N}$. of Moon			
Thur. 13				2120	3204d	292.31
Fri. 14					30214	304.56
Sat. 15			Venus at aphelion		31042	316.80
Sun. 16				1810	24031	329.04
Mon. 17	09		Uranus $6^{\circ} \mathrm{N}$. of Moon		412 O 3	341.28
Tues. 18	02	46	iili First Quarter		40123	$353.51{ }^{\text {b }}$
Wed. 19			Mercury at aphelion	1500	41023	5.73
	15		Moon at apogee ($251,300 \mathrm{mi}$.)			
Thur. 20					42301	17.95
Fri. 21	07		Neptune $6^{\circ} \mathrm{N}$. of Moon		430**	30.16
	18		Antares $0.7^{\circ} \mathrm{S}$. of Moon. Occ'n.			
Sat. 22				1150	43102	42.36
Sun. 23	11		Jupiter $2^{\circ} \mathrm{N}$. of Moon		4201*	54.56
	21		Mercury stationary			
Mon. 24	04		Venus greatest brilliancy		21403	66.76
Tues. 25				840	01243	78.95
Wed. 26	02	24	(2) Full Moon. Eclipse of © , p. 57		10234	91.15
Thur. 27					23014	$103.3{ }^{\text {l }}$
Fri. 28			δ Aquarid meteors	530	3204*	115.53
Sat. 29	10		Mercury $6^{\circ} \mathrm{S}$. of Mars		31024	127.72
Sun. 30					2014*	139.92
Mon. 31				220	21034	152.12

Explanation of time on p. 10, of colongitude on p. 58.
${ }^{\circ}$ July $1,-5.64^{\circ}$; July $14,+5.84^{\circ}$; July $27,-4.99^{\circ}$.
${ }^{b}$ July $5,-6.76^{\circ}$; July $18,+6.84^{\circ}$.

THE SKY FOR AUGUST 1972

Positions of the sun and planets are given for 0 h Greenwich Ephemeris Time.
The times of transit at the 75th meridian are given in local mean time, 0 h at midnight; to change to Standard Time, see p. 10. Estimates of altitude are for an observer in latitude $45^{\circ} \mathrm{N}$.

The Sun-During August the sun's R.A. increases from 8 h 45 m to 10 h 41 m and its Decl. changes from $18^{\circ} 03^{\prime} \mathrm{N}$. to $8^{\circ} 20^{\prime} \mathrm{N}$. The equation of time changes from -6 m 13 s to -0 m 09 s . For changes in the length of the day, see p. 16.

The Moon-For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page. Times of moonrise and moonset are given on p. 23.

Mercury on the 1st is in R.A. 9 h 25 m , Decl. $10^{\circ} 17^{\prime} \mathrm{N}$., and on the 15 th is in R.A. 8 h 50 m , Decl. $14^{\circ} 05^{\prime} \mathrm{N}$. Inferior conjunction is on the 7th, but by the 25 th it is in greatest western elongation, standing about 18° above the eastern horizon at sunrise. For a week or more at this time it may be seen as a morning star low in the east just before sunrise.

Venus on the 1st is in R.A. 5 h 45 m , Decl. $18^{\circ} 35^{\prime}$ N.; and on the 15 th it is in R.A. 6 h 30 m , Decl. $19^{\circ} 20^{\prime}$ N., mag. -4.1 , and transits at 8 h 56 m . A morning star, it rises about three hours before the sun and dominates the eastern sky until dawn.

Mars on the 15th is in R.A. 10 h 10 m , Decl. $12^{\circ} 32^{\prime}$ N., and transits at 12 h 35 m . It is too close to the sun for observation.

Jupiter on the 15 th is in R.A. 17 h 54 m , Decl. $23^{\circ} 22^{\prime}$ S., mag. $\mathbf{- 2 . 1 \text { , and transits }}$ at 20 h 16 m . In Sagittarius, it is approaching the meridian just after sunset and dominates the southern sky until about midnight when it sets. On the 25th it is stationary in R.A. and resumes direct, or eastward, motion among the stars. For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 71.

Saturn on the 15 th is in R.A. 5 h 11 m , Decl. $21^{\circ} 24^{\prime}$ N., mag. +0.4 , and transits at 7 h 35 m . In Taurus, it rises about at midnight and is approaching the meridian at dawn.

Uranus on the 15th is in R.A. 12 h 58 m , Decl. $5^{\circ} 30^{\prime}$ S., and transits at 15 h 21 m .
Neptune on the 15 th is in R.A. 16 h 03 m , Decl. $19^{\circ} 03^{\prime} \mathrm{S}$., and transits at 18 h 25 m .

Pluto-For information in regard to this planet, see p. 31.

1972			AUGUST E.S.T.	$\begin{gathered} \text { Min. } \\ \text { of } \\ \text { Algol } \end{gathered}$	Config. of Jupiter's 21 hat.S.T.	Sun's Selen. 0h U.T.
d	h	m		h m		-
Tues. 1					O2413	$164.33^{\text {b }}$
Wed. 2	03	02	(18) Last Quarter	2300	14023	176.54
Thur. 3	10		Moon at perigee (229,500 mi.)		423 O 1	188.76
Fri. 4	19		Saturn $5^{\circ} \mathrm{S}$. of Moon		43210	200.99
Sat. 5	15		Venus $7^{\circ} \mathrm{S}$. of Moon	1950	4302d	213.22
Sun. 6					4301d	225.46
Mon. 7			Venus greatest hel. lat. S.		42103	237.70
	15		Mercury in inferior conjunction			
Tues. 8			Mercury greatest hel. lat. S.	1640	40213	249.95
Wed. 9	00	26	(1al New Moon		41023	262.19
Thur. 10					23 O 41	$274.44^{\text {l }}$
Fri. 11	23		Perseid meteors	1330	32104	286.69
Sat. 12					30124	298.93
Sun. 13	19		Uranus $6^{\circ} \mathrm{N}$. of Moon		3024*	311.17
Mon. 14	07		Neptune stationary	1020	21034	323.41
Tues. 15					O134*	$335.64{ }^{\text {b }}$
Wed. 16	10		Moon at apogee ($251,200 \mathrm{mi}$.)		10234	347.87
	20	09	[ili First Quarter			
Thur. 17			Mars at aphelion	710	23014	0.09
	02		Mercury stationary			
	15		Neptune $6^{\circ} \mathrm{N}$. of Moon			
Fri. 18	02		Antares $0.8^{\circ} \mathrm{S}$. of Moon		32104	12.30
Sat. 19	17		Jupiter $2^{\circ} \mathrm{N}$. of Moon		34012	24.50
Sun. 20				400	43102	36.70
Mon. 21					42103	48.90
Tues. 22					4013*	61.09
Wed. 23				040	41023	73.27^{1}
Thur. 24	13	22	(2) Full Moon		42 O 31	85.46
Fri. 25	03		Jupiter stationary	2130	43210	97.64
	10		Mercury greatest elong. W. (180)			
Sat. 26	21		Venus greatest elong. W. (46 ${ }^{\circ}$		34012	109.82
Sun. 27					3102*	122.00
Mon. 28	15		Moon at perigee ($228,550 \mathrm{mi}$.)	1820	2034d	134.18
Tues. 29					20134	$146.37^{\text {b }}$
Wed. 30					10234	158.56
Thur. 31	07	48	(1) Last Quarter	1510	20314	170.76

Explanation of time on p. 10, of colongitude on p. 58.
${ }^{t}$ Aug. $10,+5.10^{\circ}$; Aug. 23, -5.41°.
${ }^{b}$ Aug. $1,-6.74^{\circ}$; Aug. $15,+6.78^{\circ}$; Aug. 29, -6.61°.

Positions of the sun and planets are given for 0 h Greenwich Ephemeris Time.
The times of transit at the 75th meridian are given in local mean time, 0 h at midnight; to change to Standard Time, see p. 10. Estimates of altitude are for an observer in latitude $45^{\circ} \mathrm{N}$.

The Sun-During September the sun's R.A. increases from 10 h 41 m to 12 h 29 m and its Decl. changes from $8^{\circ} 20^{\prime} \mathrm{N}$. to $3^{\circ} 08^{\prime} \mathrm{S}$. The equation of time changes from +0 m 10 s to +10 m 10 s . For changes in the length of the day, see p. 17 .

The Moon-For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page. Times of moonrise and moonset are given on p. 24.

Mercury on the 1st is in R.A. 9 h 40 m , Decl. $14^{\circ} 55^{\prime} \mathrm{N}$. and on the 15 th is in R.A. 11 h 18 m , Decl. $6^{\circ} 23^{\prime} \mathrm{N}$. It is too close to the sun for observation, superior conjunction being on the 19th.

Venus on the 1st is in R.A. 7 h 37 m , Decl. $18^{\circ} 59^{\prime} \mathrm{N}$.; and on the 15 th it is in R.A. 8 h 38 m , Decl. $17^{\circ} 07^{\prime}$ N., mag. -3.8 , and transits at 9 h 02 m . It dominates the eastern sky for nearly four hours before sunrise.

Mars on the 15 th is in R.A. 11 h 24 m , Decl. $5^{\circ} 00^{\prime} \mathrm{N}$. and transits at 11 h 47 m . It is too close to the sun for observation, conjunction being on the 7th.

Jupiter on the 15th is in R.A. 17 h 56 m , Decl. $23^{\circ} 27^{\prime}$ S., mag. -1.9, and transits at 18 h 17 m . In Sagittarius, it is about on the meridian, low in the south at sunset, and sets before midnight. For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 71.

Saturn on the 15 th is in R.A. 5 h 18 m , Decl. $21^{\circ} 30^{\prime}$ N., mag. +0.3 , and transits at 5 h 40 m . In Taurus, it rises before midnight and is past the meridian at dawn.

Uranus on the 15th is in R.A. 13 h 04 m , Decl. $6^{\circ} 08^{\prime}$ S., and transits at 13 h 25 m .
Neptune on the 15 th is in R.A. 16 h 04 m , Decl. $19^{\circ} 08^{\prime}$ S., and transits at 16 h 25 m .

Pluto-For information in regard to this planet, see p. 31.

1972			SEPTEMBER E.S.T.	$\underset{\substack{\text { Min. } \\ \text { of } \\ \text { Algol }}}{ }$	$\begin{aligned} & \text { Config. of of } \\ & \text { Jupiter's } \\ & \text { 20h St.s. } \end{aligned}$	Sun's Selen. Colong. Oh UT.
d	h	m		h m		-
Fri.			Mercury at perihelion		32104	182.97
	04		Saturn $5^{\circ} \mathrm{S}$. of Moon			
Sat. 2	08		Venus $9^{\circ} \mathrm{S}$. of Pollux		30214	195.18
	16		Pallas in conjunction			
Sun. 3	18		Venus $2^{\circ} \mathrm{S}$. of Moon	1200	31024	207.40
Mon. 4	18		Mercury $1.1^{\circ} \mathrm{N}$. of Regulus		24013	219.63
Tues. 5					4203*	231.86
Wed. 6				850	41023	$244.0{ }^{\text {l }}$
Thur. 7	06		Mars in conjunction		4013d	256.33
	12	28	(10) New Moon			
Fri. 8					42310	268.56
Sat. 9				540	43021	280.80
Sun. 10	06		Uranus $6^{\circ} \mathrm{N}$. of Moon		43102	293.03
Mon. 11			Mercury greatest hel. lat. \mathbf{N}.		4201*	$305.26^{\text {b }}$
Tues. 12				220	24103	317.49
Wed. 13	05		Moon at apogee ($251,600 \mathrm{mi}$.)		O423d	329.71
	23		Neptune $6^{\circ} \mathrm{N}$. of Moon			
Thur. 14			Jupiter at descending node	2310	01234	341.92
	10		Antares $1.0^{\circ} \mathrm{S}$. of Moon			
Fri. 15	14	13	iid First Quarter		23104	354.13
Sat. 16	03		Jupiter $2^{\circ} \mathrm{N}$. of Moon		30214	6.34
Sun. 17				2000	31024	18.53
Mon. 18					23014	30.72
Tues. 19	15		Mercury in superior conjunction		21034	42.90
Wed. 20				1650	01423	$55.08{ }^{1}$
Thur. 21					4023*	67.25
Fri. 22	17	33	Equinox. Autumn begins		42130	79.42
	23	07	(2) Full Moon. Harvest Moon			
Sat. 23				1340	4301*	91.58
Sun. 24	16		Pluto in conjunction		43102	103.75
Mon. 25	02		Moon at perigee (225,350 mi.)		43201	$115.91{ }^{\text {b }}$
Tues. 26				1030	42103	128.08
Wed. 27					40123	140.25
Thur. 28	11		Saturn $4^{\circ} \mathbf{S}$. of Moon		4023*	152.43
Fri. 29	14	16	(d) Last Quarter	720	2140d	164.61
Sat. 30					32014	176.80

Explanation of time on p. 10, of colongitude on p. 58.
${ }^{i}$ Sept. 6, $+5.08^{\circ}$; Sept. 20, $-6.39^{\circ} . \quad{ }^{\text {b }}$ Sept. 11, $+6.66^{\circ}$; Sept. 25, -6.52°.

THE SKY FOR OCTOBER 1972

Positions of the sun and planets are given for 0 h Greenwich Ephemeris Time.
The times of transit at the 75th meridian are given in local mean time, 0 h at midnight; to change to Standard Time, see p. 10. Estimates of altitude are for an observer in latitude $45^{\circ} \mathrm{N}$.

The Sun-During October the sun's R.A. increases from 12 h 29 m to 14 h 25 m and its Decl. changes from $3^{\circ} 08^{\prime}$ S. to $14^{\circ} 24^{\prime}$ S. The equation of time changes from +10 m 28 s to +16 m 23 s . For changes in the length of the day, see p. 17.

The Moon-For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page. Times of moonrise and moonset are given on p. 24.

Mercury on the 1st is in R.A. 13 h 01 m , Decl. $6^{\circ} 03^{\prime}$ S., and on the 15 th is in R.A. 14 h 22 m , Decl. $15^{\circ} 24^{\prime} \mathrm{S}$. It is too close to the sun for observation.

Venus on the 1st is in R.A. 9 h 49 m , Decl. $13^{\circ} 05^{\prime} \mathrm{N}$.; and on the 15 th it is in R.A. 10 h 52 m , Decl. $8^{\circ} 07^{\prime}$ N., mag. -3.6 , and transits at 9 h 17 m . It dominates the eastern sky for more than three hours before sunrise.

Mars on the 15 th is in R.A. 12 h 35 m , Decl. $2^{\circ} 48^{\prime}$ S., and transits at 10 h 59 m . It is too close to the sun for easy observation.

Jupiter on the 15 th is in R.A. 18 h 10 m , Decl. $23^{\circ} 29^{\prime}$ S., mag. -1.7 , and transits at 16 h 32 m . In Sagittarius, it is past the meridian at sunset and is to be seen low in the south-west for about three hours. For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 71.

Saturn on the 15 th is in R.A. 5 h 19 m , Decl. $21^{\circ} 27^{\prime}$ N., mag. +0.1 , and transits at 3 h 43 m . In Taurus, it rises about three hours after sunset. On the 2 nd it is stationary in R.A. and begins to retrograde, or move westward among the stars.

Uranus on the 15th is in R.A. 13 h 11 m , Decl. $6^{\circ} 51^{\prime}$ S., and transits at 11 h 34 m . Conjunction is on the 11th.

Neptune on the 15 th is in R.A. 16 h 07 m , Decl. $19^{\circ} 17^{\prime} \mathrm{S}$., and transits at 14 h 30 m .

Pluto-For information in regard to this planet, see p. 31.

1972			$\begin{aligned} & \text { OCTOBER } \\ & \text { E.S.T. } \end{aligned}$	$\begin{gathered} \text { Min. } \\ \text { Mifgol } \\ \text { Algo } \end{gathered}$	$\begin{aligned} & \text { Config. of } \\ & \text { Jupiter's } \\ & \text { Sat. } \end{aligned}$ 19h E.S.T	$\begin{aligned} & \text { Sun's } \\ & \text { Selen. } \\ & \text { Colong. } \\ & \text { Oh U.T. } \end{aligned}$
	h	m		h m		-
Sun. 1					31024	188.99
Mon. 2			Venus at ascending node	400	32014	$201.19^{\text {l }}$
	13		Saturn stationary			
Tues. 3	13		Venus $3^{\circ} \mathrm{N}$. of Moon		21034	213.40
Wed. 4			Mercury at descending node		01234	225.61
	14		Mercury $2^{\circ} \mathrm{N}$. of Spica			
	18		Venus $0.3^{\circ} \mathrm{S}$. of Regulus			
Thur. 5				050	10234	237.83
Fri. 6					2034d	250.05
Sat. 7	03	08	(13) New Moon	2140	3204*	262.27
Sun. 8	11		Mercury $5^{\circ} \mathrm{N}$. of Moon		34102	$274.49^{\text {b }}$
Mon. 9					4301d	286.70
Tues. 10	22		Moon at apogee ($252,200 \mathrm{mi}$.)	1830	4210*	298.92
Wed. 11	08		Neptune $5^{\circ} \mathrm{N}$. of Moon		40213	311.13
	17		Ceres in conjunction			
	18		Uranus in conjunction			
Thur. 12	14		Vesta stationary		41023	323.34
Fri. 13	16		Jupiter $2^{\circ} \mathrm{N}$. of Moon	1520	42013	335.54
Sat. 14					4320*	347.74
Sun. 15			Mercury at aphelion		34102	359.93
	07	55	ili First Quarter			
Mon. 16				1210	30421	12.11
Tues. 17					21034	24.29
Wed. 18					O134*	$36.46{ }^{1}$
Thur. 19				900	10234	48.62
Fri. 20					20134	60.78
Sat. 21	01		Orionid meteors		23104	72.93
Sun. 22	08	25	(3) Full Moon. Hunter's Moon	550	31024	$85.08{ }^{\text {b }}$
Mon. 23	07		Moon at perigee ($222,600 \mathrm{mi}$.)		30214	97.22
Tues. 24					21304	109.37
Wed. 25	18		Saturn 4° S. of Moon	230	4013*	121.52
Thur. 26					41023	133.67
Fri. 27				2320	42 O 3	145.83
Sat. 28	23	41	(d) Last Quarter		42310	157.99
Sun. 29					43012	170.16
Mon. 30				2010	4302*	$182.34^{\text {l }}$
Tues. 31	07		Mars $0.2^{\circ} \mathrm{N}$. of Uranus		42130	194.52

Explanation of time on p. 10, of colongitude on p. 58.
${ }^{\circ}$ Oct. 2, $+6.15^{\circ}$; Oct. 18, -7.39°; Oct. 30, $+7.30^{\circ}$.
${ }^{b}$ Oct. $8,+6.56^{\circ}$; Oct. 22, -6.51°.

THE SKY FOR NOVEMBER 1972

Positions of the sun and planets are given for 0 h Greenwich Ephemeris Time.
The times of transit at the 75th meridian are given in local mean time, 0 h at midnight; to change to Standard Time, see p. 10. Estimates of altitude are for an observer in latitude $45^{\circ} \mathrm{N}$.

The Sun-During November the sun's R.A. increases from 14 h 25 m to 16 h 29 m and its Decl. changes from $14^{\circ} 24^{\prime} \mathrm{S}$. to $21^{\circ} 47^{\prime} \mathrm{S}$. The equation of time changes from +16 m 24 s to a maximum of +16 m 25 s on the 2 nd , and then to +11 m 10 s at the end of the month. For changes in the length of the day, see p. 18.

The Moon-For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page. Times of moonrise and moonset are given on p. 25.

Mercury on the 1st is in R.A. 15 h 55 m , Decl. $23^{\circ} 03^{\prime} \mathrm{S}$., and on the 15 th is in R.A. 16 h 42 m , Decl. $24^{\circ} 28^{\prime} \mathrm{S}$. On the 5th it is in greatest eastern elongation, but this is an unfavourable elongation, Mercury being less than 10° above the southwestern horizon at sunset. On the 7th Mercury is occulted by the moon; this occultation is not visible in the Northern Hemisphere.

Venus on the 1st is in R.A. 12 h 07 m , Decl. $0^{\circ} 53^{\prime} \mathrm{N}$.; and on the 15 th it is in R.A. 13 h 10 m , Decl. $5^{\circ} 29^{\prime}$ S., mag. -3.5 , and transits at 9 h 34 m . It rises near the east point about two hours before the sun.

Mars on the 15th is in R.A. 13 h 50 m , Decl. $10^{\circ} 38^{\prime}$ S., and transits at 10 h 13 m. A morning star in Virgo, it rises about two hours before the sun. Early in the month it passes a few degrees north of Spica.

Jupiter on the 15 th is in R.A. 18 h 33 m , Decl. $23^{\circ} 20^{\prime}$ S., mag. -1.5 , and transits at 14 h 54 m . In Sagittarius it is low in the south-west at sunset and sets about two hours later. On the 10th Jupiter is occulted by the moon; this occultation is visible only in Antarctica. For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 71.

Saturn on the 15 th is in R.A. 5 h 13 m , Decl. $21^{\circ} 19^{\prime}$ N., mag. -0.1 , and transits at 1 h 35 m . In Taurus, it rises about two hours after sunset.

Uranus on the 15th is in R.A. 13 h 18 m , Decl. $7^{\circ} 33^{\prime}$ S., and transits at 9 h 39 m .
Neptune on the 15 th is in R.A. 16 h 11 m , Decl. $19^{\circ} 30^{\prime} \mathrm{S}$., and transits at 12 h 32 m . Conjunction is on the 26th.

Pluto-For information in regard to this planet, see p. 31.

1972			$\begin{aligned} & \text { NOVEMBER } \\ & \text { E.S.T. } \end{aligned}$	$\begin{gathered} \text { Min. } \\ \text { of } \\ \text { Algol } \end{gathered}$	Config. of Jupiter's 18 h E.S.T	Sun's Colong. 0h U.T.
d	h	m		h m		-
Wed. 1					42013	206.71
Thur. 2	18		Venus $7^{\circ} \mathrm{N}$. of Moon	1700	10423	218.90
Fri. 3	22		Mercury $4^{\circ} \mathrm{S}$. of Neptune		O134d	231.10
Sat. 4			Mercury greatest hel. lat. S.		21304	243.30
	02		Uranus $6^{\circ} \mathrm{N}$. of Moon			
	02		Mars $3^{\circ} \mathrm{N}$. of Spica			
	06		Mars $6^{\circ} \mathrm{N}$. of Moon			
			Taurid meteors			
Sun. 5			Venus at perihelion	1350	30124	255.50
	05		Mercury greatest elong. E. (23 ${ }^{\circ}$)			
	20	21	(1ali New Moon			
Mon. 6	18		Juno in conjunction		31024	267.70
Tues. 7	$\begin{aligned} & 08 \\ & 16 \\ & 23 \end{aligned}$		Moon at apogee ($252,600 \mathrm{mi}$.)		23104	279.91
			Neptune $5^{\circ} \mathrm{N}$. of Moon			
			Mercury $0.5^{\circ} \mathrm{N}$. of Moon			
Wed. 8	07		Mercury $1.8^{\circ} \mathrm{N}$. of Antares	1040		292.11
Thur. 9						304.31
Fri. 10	08		Jupiter $0.9{ }^{\circ} \mathrm{N}$. of Moon			316.50
Sat. 11				730		328.69
Sun. 12						340.88
Mon. 13						353.06
Tues. 14	00	01	1ibi First Quarter	420		5.23
Wed. 15	19		Mercury stationary			17.39
Thur. 16	1219		Venus $1.3^{\circ} \mathrm{N}$. of Uranus			29.55
			Leonid meteors			
Fri. 17 Sat. 18 Sun. 19 Mon. 20	18		Venus $4^{\circ} \mathrm{N}$. of Spica	110		41.70
						53.85 ${ }^{\text {b }}$
				2150		65.98
	18	07	(3) Full Moon			78.12
	19		Moon at perigee (221,500 mi.)			
Tues. 21						90.25
Wed. 22	02		Saturn 4° S. of Moon	1840		102.38
Thur. 23			Mercury at ascending node			114.52
Fri. 24						126.65
Sat. 25	23		Mercury in inferior conjunction	1530		138.79
Sun. 26			Venus greatest hel. lat. N .			150.94
	22		Neptune in conjunction			
Mon. 27	12	45	© Last Quarter			$163.09^{\text {l }}$
Tues. 28			Mercury at perihelion	1220		175.26
Wed. 29						187.42
Thur. 30	15		Vesta at opposition			199.59

Explanation of time on p. 10, of colongitude on p. 58.
${ }^{l}$ Nov. $15,-7.84^{\circ}$; Nov. 27, $+7.77^{\circ} .{ }^{b}$ Nov. $4,+6.60^{\circ}$; Nov. 18, -6.60°.

THE SKY FOR DECEMBER 1972

Positions of the sun and planets are given for 0 h Greenwich Ephemeris Time.
The times of transit at the 75th meridian are given in local mean time, 0 h at midnight; to change to Standard Time, see p. 10. Estimates of altitude are for an observer in latitude $45^{\circ} \mathrm{N}$.

The Sun-During December the sun's R.A. increases from 16 h 29 m to 18 h 45 m and its Decl. changes from $21^{\circ} 47^{\prime} \mathrm{S}$. to $23^{\circ} 02^{\prime} \mathrm{S}$. The equation of time changes from +10 m 48 s to -3 m 14 s , being zero on the 24th. For changes in the length of the day, see p. 18.

The Moon-For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page. Times of moonrise and moonset are given on p. 25.

Mercury on the 1st is in R.A. 15 h 46 m , Decl. $17^{\circ} 39^{\prime}$ S., and on the 15 th is in R.A. 16 h 01 m , Decl. $18^{\circ} 26^{\prime} \mathrm{S}$. On the 14th it is in greatest western elongation, standing about 15° above the south-eastern horizon at sunrise. Thus for about a week at mid-month it will be easily observed low in the south-east just before sunrise.

Venus on the 1st is in R.A. 14 h 25 m , Decl. $12^{\circ} 28^{\prime}$ S.; and on the 15 th it is in R.A. 15 h 33 m , Decl. $17^{\circ} 38^{\prime} \mathrm{S}$. , mag. -3.4 , and transits at 9 h 59 m . It rises in the south-east about two hours before the sun.

Mars on the 15th is in R.A. 15 h 08 m , Decl. $17^{\circ} 10^{\prime}$ S., and transits at 9 h 33 m . Moving into Libra, it rises about three hours before the sun, but is not prominent.

Jupiter on the 15 th is in R.A. 19 h 01 m , Decl. $22^{\circ} 52^{\prime}$ S., mag. -1.4 , and transits at 13 h 23 m . In Sagittarius, it is very close to the south-western horizon at sunset, and at month's end it will be difficult to observe. On the 8th Jupiter is occulted by the moon. This occultation is not visible in the Northern Hemisphere. For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 71 .

Saturn on the 15 th is in R.A. 5 h 03 m , Decl. $21^{\circ} 08^{\prime}$ N., mag. -0.2 , and transits at 23 h 23 m . In Taurus, it rises about at sunset (being in opposition on the 8th) and is visible all night.

Uranus on the 15 th is in R.A. 13 h 23 m , Decl. $8^{\circ} 05^{\prime}$ S., and transits at 7 h 46 m .
Neptune on the 15 th is in R.A. 16 h 16 m , Decl. $19^{\circ} 42^{\prime}$ S., and transits at 10 h 39 m .

Pluto-For information in regard to this planet, see p. 31.

Explanation of time on p. 10, of colongitude on p. 58.
${ }^{l}$ Dec. $13,-7.42^{\circ}$; Dec. 25, $+7.32^{\circ}$.
${ }^{b}$ Dec. $1,+6.73^{\circ}$; Dec. $16,-6.73^{\circ}$; Dec. $28,+6.83^{\circ}$.

SUN-EPHEMERIS FOR PHYSICAL OBSERVATIONS, 1972
For Oh U.T.

Date	P	B_{0}	L_{0}	Date		P	B_{0}	L_{0}
		-				-	-	
Jan. 1	+ 2.45	-2.98	352.05	July	4	- 1.28	+3.25	70.37
6	+ 0.02	-3.55	286.20		9	+ 0.99	+3.78	4.19
11	- 2.39	-4.10	220.36		14	+ 3.23	+4.28	298.03
16	- 4.77	-4.61	154.52		19	+ 5.44	+4.75	231.87
21	- 7.08	-5.09	88.69		24	+ 7.59	+5.19	165.71
26	- 9.31	-5.53	22.85		29	+ 9.67	$+5.60$	99.57
31	-11.45	-5.92	317.02	Aug.	3	+11.67	+5.96	33.44
Feb. 5	-13.48	-6.27	251.19		8	+13.58	+6.28	327.33
10	-15.38	-6.57	185.36		13	+15.38	+6.57	261.23
15	-17.16	-6.81	119.52		18	+17.07	+6.80	195.14
20	-18.79	-7.00	53.68		23	+18.64	+6.99	129.06
25	-20.28	-7.14	347.83		28	+20.08	+7.13	62.99
Mar. 1	-21.62	-7.22	281.97	Sept.	2	+21.39	+7.21	356.94
	-22.80	-7.25	216.10		7	+22.56	+7.25	290.91
11	-23.81	-7.22	150.22		12	+23.58	+7.23	224.89
16	-24.66	-7.14	84.32		17	+24.45	+7.16	158.88
21	-25.34	-7.00	18.41		22	+25.17	+7.04	92.87
26	-25.85	-6.81	312.47		27	+25.72	+6.87	26.88
31	-26.18	-6.57	246.52	Oct.	2	+.26.10	+6.65	320.90
Apr. 5	-26.33	-6.28	180.55		7	+26.30	+6.37	254.93
10	-26.30	-5.94	114.56		12	+26.33	+6.05	188.97
15	-26.09	-5.57	48.55		17	+26.17	+5.68	123.02
20	-25.69	-5.15	342.52		22	+25.81	+5.27	57.07
25	-25.11	-4.70	276.47		27	+25.27	+4.82	351.13
30	-24.34	-4.22	210.40	Nov.	1	+24.53	+4.33	285.19
May 5	-23.40	-3.70	144.31		6	+23.59	+3.80	219.27
10	-22.28	-3.17	78.20		11	+22.46	+3.25	153.35
15	-20.98	-2.61	12.08		16	+21.13	+2.67	87.43
20	-19.52	-2.03	305.94		21	+19.62	+2.07	21.52
25	-17.91	-1.44	239.79		26	+17.93	+1.45	315.62
30	-16.16	-0.84	173.63	Dec.	1	+16.08	+0.82	249.72
June 4	-14.28	-0.24	107.46		6	+14.08	+0.18	183.84
June 4	-12.29	+0.36	41.28		11	+11.93	-0.46	117.96
14	-10.20	+0.96	335.11		16	+ 9.70	-1.10	52.08
19	-8.03	+1.56	268.92		21	+ 7.38	-1.73	346.21
24	- 5.81	+2.14	202.74		26	+ 4.99	-2.35	280.34
29	- 3.56	+2.71	136.55		31	+ 2.57	-2.95	214.49

P-The position angle of the axis of rotation, measured eastward from the north point of the disk.
B_{0}-The heliographic latitude of the centre of the disk.
L_{0}-The heliographic longitude of the centre of the disk, from Carrington's solar meridian.

Carrington's Rotation Numbers-Greenwich Date of Commencement of Synodic Rotations, 1972

No.	Commences		No.	Commences	No.		Commences	
1584	Jan.	27.74	1589	June	12.12	1594	Oct.	26.33
1585	Feb.	24.08	1590	July	9.32	1595	Nov. 22.63	
1586	Mar.	22.40	1591	Aug.	5.53	1596	Dec.	19.95
1587	Apr.	18.68	1592	Sept.	1.77			
1588	May	15.91	1593	Sept.	29.04			

In 1972 there will be four eclipses, two of the sun and two of the moon.

1. An annular eclipse of the sun on January 16, visible in Antarctica and the southern tip of South America, but not at all in North America.
2. A total eclipse of the moon on the night of January 29-30, visible in North America.

3. A total eclipse of the sun on July 10, totality visible in a narrow band across northern Canada over the middle of Hudson Bay and across Quebec and northern Nova Scotia. Elsewhere in Canada and in the U.S.A. the eclipse will be partial. Further information about this eclipse is contained in the accompanying diagram.
4. A partial eclipse of the moon on the night of July 25-26, visible in North America.

$$
\begin{aligned}
& \text { Moon enters penumbra July 25, 23.38 E.S.T. } \\
& \text { Moon enters umbra . July 26, } 0.55 \text { E.S.T. } \\
& \text { Middle of eclipse. } \\
& \text { 2.16 E.S.T. } \\
& \text { Moon leaves umbra } \\
& \text { 3.36 E.S.T. } \\
& \text { Moon leaves penumbra } \\
& \text { 4.54 E.S.T. } \\
& \text { Magnitude of the eclipse } 0.548 \text {. }
\end{aligned}
$$

THE OBSERVATION OF THE MOON

During 1972 the ascending node of the moon's orbit moves from Capricornus into Sagittarius (δ from 306 to 287°). See p. 59 for occultations of stars.

The sun's selenographic colongitude is essentially a convenient way of indicating the position of the sunrise terminator as it moves across the face of the moon. It provides an accurate method of recording the exact conditions of illumination (angle of illumination), and makes it possible to observe the moon under exactly the same lighting conditions at a later date.

The sun's selenographic colongitude is numerically equal to the selenographic longitude of the sunrise terminator reckoned eastward from the mean centre of the disk. Its value increases at the rate of nearly 12.2° per day or about $\frac{1}{2}^{\circ}$ per hour; it is approximately $270^{\circ}, 0^{\circ}, 90^{\circ}$ and 180° at New Moon, First Quarter, Full Moon and Last Quarter respectively. (See the tabulated values for 0 h U.T. starting on p. 33.)

Sunrise will occur at a given point east of the central meridian of the moon when the sun's selenographic colongitude is equal to the eastern selenographic longitude of the point; at a point west of the central meridian when the sun's selenographic colongitude is equal to 360° minus the western selenographic longitude of the point. The longitude of the sunset terminator differs by 180° from that of the sunrise terminator.
The sun's selenographic latitude varies between $+1 \frac{1}{2}^{\circ}$ and $-1 \frac{1}{2}^{\circ}$ during the year.
By the moon's libration is meant the shifting, or rather apparent shifting, of the visible disk. Sometimes the observer sees features farther around the eastern or the western limb (libration in longitude), or the northern or southern limb (libration in latitude). The quantities called the earth's selenographic longitude and latitude are a convenient way of indicating the two librations. When the libration in longitude, that is the selenographic longitude of the earth, is positive, the mean central point of the disk of the moon is displaced eastward on the celestial sphere, exposing to view a region on the west limb. When the libration in latitude, or the selenographic latitude of the earth, is positive, the mean central point of the disk of the moon is displaced towards the south, and a region on the north limb is exposed to view.

In the Astronomical Phenomena Month by Month the dates of the greatest positive and negative values of the libration in longitude are indicated by ${ }^{i}$ in the column headed "Sun's Selenographic Colongitude," and their values are given in the footnotes. Similarly the extreme values of the libration in latitude are indicated by ${ }^{b}$.

Two areas suspected of showing changes are Alphonsus and Aristarchus.

OCCULTATIONS BY THE MOON

The moon often passes between the earth and a star; the phenomenon is called an occultation. During an occultation a star suddenly disappears as the east limb of the moon crosses the line between the star and observer. This is referred to as immersion (I). The reappearance from behind the west limb of the moon is called emersion (E). Because the moon moves through an angle about equal to its own diameter every hour, the longest time for an occultation is about an hour. The time can be shorter if the occultation is not central. Occultations are equivalent to total solar eclipses, except that they are total eclipses of stars other than the sun.
The elongation of the moon is its angular distance from the sun, in degrees, counted eastward around the sky. Thus, elongations of $0^{\circ}, 90^{\circ}, 180^{\circ}$ and 270° correspond to new, first quarter, full and last quarter moon. When elongation is less than 180°, a star will disappear at the dark limb and reappear at the bright limb. If the elongation is greater than 180° the reverse is true.

As in the case of eclipses, the times of immersion and emersion and the duration of the occultation are different for different places on the earth's surface. The tables given below, are adapted from data supplied by the British Nautical Almanac Office and give the times of immersion or emersion or both for occultations visible from six stations distributed across Canada. Stars of magnitude 7.5 or brighter are included as well as daytime occultations of very bright stars and planets. Since an occultation at the bright limb of the moon is difficult to observe the predictions are limited to phenomena occurring at the dark limb.

The terms a and b are for determining corrections to the times of the phenomena for stations within 300 miles of the standard stations. Thus if λ_{0}, ϕ_{0}, be the longitude and latitude of the standard station and λ, ϕ, the longitude and latitude of the neighbouring station then for the neighbouring station we have: Standard Time of phenomenon $=$ Standard Time of phenomenon at the standard station $+a\left(\lambda-\lambda_{0}\right)$ $+b\left(\phi-\phi_{0}\right)$ where $\lambda-\lambda_{0}$ and $\phi-\phi_{0}$ are expressed in degrees. This formula must be evaluated with due regard for the algebraic signs of the terms. The quantity P is the position angle of the point of contact on the moon's disk reckoned from the north point towards the east.

Since observing occultations is rather easy, provided the weather is good and the equipment is available, timing occultations should be part of any amateur's observing program. The method of timing is as follows: Using as large a telescope as is available, with a medium power eyepiece, the observer starts a stopwatch at the time of immersion or emersion. The watch is stopped again on a time signal from a WWV or CHU station. The elapsed time is read from the stopwatch and is then subtracted from the standard time signal to obtain the time of occultation. All times should be recorded to 0.1 second and all timing errors should be held to within 0.5 second if possible. The position angle P of the point of contact on the moon's disk reckoned from the north point towards the east may also be estimated.

The following information should be included: (1) Description of the star (catalogue number), (2) Date, (3) Derived time of the occultation, (4) Longitude and latitude to nearest second of arc, height above sea level to the nearest 100 feet, (5) Seeing conditions, (6) Stellar magnitude, (7) Immersion or emersion, (8) At dark or light limb; Presence or absence of earthshine, (9) Method used, (10) Estimate of accuracy, (11) Anomalous appearance: gradual disappearance, pausing on the limb. All occultation data should be sent to the world clearing house for occultation data: H.M. Nautical Almanac Office, Royal Greenwich Observatory, Herstmonceux Castle, Hailsham, Sussex, England.

The co-ordinates of the standard stations are: Halifax, $\lambda_{0} 63^{\circ} 36.0^{\prime}, \phi_{0}+44^{\circ} 38.0^{\prime}$; Montreal, $\lambda_{0} 73^{\circ} 34.5^{\prime}, \phi_{0}+45^{\circ} 30.3^{\prime}$; Toronto, $\lambda_{0} 79^{\circ} 24.0^{\prime}, \phi_{0}+43^{\circ} 39.8^{\prime}$; Winnipeg, $\lambda_{0} 97^{\circ} 06.0^{\prime}, \phi_{0}+49^{\circ} 55.0^{\prime}$; Edmonton, $\lambda_{0} 113^{\circ} 04.5^{\prime}, \phi_{0}+53^{\circ} 32.0^{\prime}$; Vancouver, $\lambda_{0} 123^{\circ} 06.0^{\prime}, \phi_{0}+49^{\circ} 30.0^{\prime}$.

LUNAR OCCULTATIONS VISIBLE AT HALIFAX AND MONTREAL, 1972

Date	Star	$\begin{aligned} & \text { Z.C. } \\ & \text { No. } \end{aligned}$	Mag.	$\begin{gathered} \text { I } \\ \text { or } \\ \text { E } \end{gathered}$	Elong. of Moon	Halifax				Montreal			
						A.S.T.	a	b	P	E.S.T.	a	b	P
Jan. $\begin{array}{r}11 \\ 19 \\ 21 \\ 23 \\ 23 / 4\end{array}$					\bigcirc	h m	m	m	。	h mm	m	m	${ }^{\circ}$
	$-23^{\circ} 12133$	2174	6.4	E	301	Sun				5 25.4 19	-1.9	$+1.5$	257
	255 B. Aqr	3366	6.6	I	45	Low				1930.3	+0.1	+2.4	2 69
	136 B. Psc	89 370	6.5	I	72 98	21 20	-0.7	-0.9 -2.5	76	$\begin{array}{lll}19 & 56.2 \\ 19 & 37 & 3\end{array}$	-1.0	-0.5	69
	26 Ari $+19^{\circ} 389$	370 387	6.1 6.9	I	98 100	2056.6 024.4	-1.6 -0.4	-2.5 -0.3	116	$\begin{array}{ll}19 & 37 \\ 23 & 19.3\end{array}$	-1.9 -0.6	-1.5 -0.4	106
	$+19^{\circ} 389$	387	6.9	I	100	024.4	-0.4	-0.3	53	2319.3	-0.6	-0.4	58
$\begin{array}{r}26 \\ 26 \\ 27 / 8 \\ 28 \\ \text { Feb. } \\ \hline\end{array}$	$+25^{\circ} 731$	717	7.5	I	128	Low				230.0	-0.1	-0.9	74
	+26 ${ }^{\circ} 884$	849	6.5	I	139	2323.0	-2.1	+1.3	49	$\begin{array}{ll}22 & 03.6 \\ 23 & 55.6\end{array}$	-2.0 -2.2	+1.4 +0.9	54 57
	ε Gem	1030	3.2	I	152	120.1			36 0	2355.6 0 42.4	-2.2	+1.9 +0.9 -3.5	57 338
	$\varepsilon{ }^{\varepsilon} \mathrm{Gem}$	1030	3.2	$\underset{\mathrm{E}}{\mathrm{E}}$	152	$\begin{array}{ll}1 & 41.5 \\ 5 & 13.8\end{array}$			0	$\begin{array}{ll}0 & 42.4 \\ 4 & 07.7\end{array}$	-0.1 -0.7	-3.5 -2.0	338
	21 q Vir	1800	5.4	E	237	513.8			4	407.7	-0.7	-2.0	345
Mar. $\begin{array}{r}17 \\ \\ \text { Ma } \\ \\ 21 \\ 24 \\ \hline\end{array}$	45 Psc	51	7.2	I	41	Low				2001.2	-0.3	+0.5	31
	161 B. Ari	470	7.0	I	81	2025.4	-1.3	0.0	60	1911.6	-1.5	$+0.4$	58
	χ Tau	647	5.5	I	96	2345.2	-0.6	-0.6	63	2238.1	-0.7	-0.8	73
	58 Gem	1118	6.0	I	134	2352.8	-0.9	-2.0	124	2241.9	-0.9	-2.3	136
	370 B. Vir	1852	6.0	E	215	2309.1	-1.0	$+0.8$	288	2201.1	-0.8	+1.2	278
181922	$-11^{\circ} 3398$	1858	6.5	E	216	118.1	-1.4	-0.4	304	004.0	-1.4	+0.4	290
	95 G. Oph	2470	6.1	E	272	511.6			205	No occ.			
	134 B. Ari	438	6.7	I	51	$\begin{array}{ll}21 & 39.3\end{array}$	0.0	-1.0	78	$\begin{array}{ll}20 & 37.4 \\ 19\end{array}$	-0.2	-1.2	85 133
	$+24^{\circ} 599$	587	6.4	I	64	2013.6	-0.4	-2.7	127	$\begin{array}{ll}19 & 05.6 \\ 18 & 29.1\end{array}$	-0.7 -2.1	-3.2 +1.4	133 67
	ω Gem	1070	5.2	I	103	1950.3	-2.4	+1.3	61	1829.1	-2.1	+1.4	67
Apr. $\begin{array}{r}24 / 5 \\ 5 \\ 16 \\ 17 \\ 17 \\ 17\end{array}$	$0^{2} \mathrm{Cnc}$	1337	5.6	I	129	037.9	-0.3	-2.2	141	2332.7	-0.3	-2.6	154
	$4 \mathrm{G} . \mathrm{Sgr}$	2558	6.2	E	253	438.5			322	321.1	-1.4	-0.3	320 158
	+24. 674	703	6.3	I	46	2050.5	+0.5	-2.6	142	1954.3	+0.9	-4.2	158
	$+25^{\circ} 941$ $+25^{\circ} 978$	867	6.9	I	59	2058.8			175 94	No occ. 21			
	$+25^{\circ} 978$	877	6.6	I	60	2206.9	0.0	-1.3	94	2105.0	-0.1	-1.6	104
1819212630	87 B. Gem	1050	5.8	I	74	2331.1	$+0.7$	-2.2	153	2236.6	$+0.9$	-2.9	167
	$+21^{\circ} 1679$	1174	7.5	I	86	2140.5	-0.6	-1.8	114	2031.9	-0.7	-2.0	126
	15 B . Leo	1399	6.9	I	109	2113.9	-0.8	-2.3	147	20 0 0	-0.6	-2.8	63
	21 q Vir	1800	5.4	I	156	2101.1			50	040.6			
	α Sco	2366	1.2	E	210	2237.2	-1.1	+1.5	265	Low			
May $\begin{array}{r}17 \\ \\ 19 \\ 30 \\ 30 / 1\end{array}$	116 B. Sco	2373	6.2	E	210	2348.1	-1.6	+1.1	268	Low			
	$20^{\prime} \mathrm{d}^{1} \mathrm{Cnc}$	1259	5.9	I	67	No occ.				2118.4			45
	$+8^{\circ} 2316$	1478	7.2	I	92	2319.7	-0.3	-1.8	114	2214.1	-0.5	-1.9	121
	127 G. Sgr	2767	6.4	$\underset{\text { E }}{\text { E }}$	214	2351.8	-1.7	+2.1 +1	223	${ }_{23}$ Low			
	172 B. Sgr	2771	5.7	E	214	111.3	-1.8	+1.4	228	2355.4	-1.7	+1.8	228
June 16	32 Sex	1546	7.2	I	72	2130.1	-0.6	-1.7	104	${ }_{22} \mathrm{Sun}_{45}$			
23/4	48 B. Sco	2298	5.1	I	151	$\begin{array}{rl}0 & 04.2 \\ 17 & 59.4\end{array}$	-1.7	-1.1	102	22 1645.0 49	-1.9	-0.7 +1.1	100
July 21	α Sco	2366	1.2	I	129	1759.4	-1.4	$+1.2$	90	1649.4	-0.8	+1.1 +0.7	101
21	α Sco	2366	1.2	E	129	1918.7	-1.5	$+0.2$	297	18 185.2	-1.3		188 21
Aug. 19	$-26^{\circ} 12724$	2605	7.1	I	121	2129.3	-1.2	+0.7	34	$20 \quad 17.7$			21
Sept. $\begin{array}{r}20 \\ \\ \\ \\ 20 / 1 \\ 19\end{array}$	$162 \mathrm{B}$.	2761	6.6	I	133	2107.7	-2.1	-0.1	96	1948.1	-1.9	+0.5	90
	\& Ari	440	4.6	E	249	2220.7	-0.6	0.0 +1.8	317	No occ.			
	36 Tau	598	5.7	E	263	007.0 19	+0.2	+1.8	237	$23 \quad 10.3$	+0.2	+1.5	249
	2 A Sco	2268	4.8	I	68 79	$\begin{array}{ll}19 & 11.3 \\ 18 & 58.0\end{array}$	-1.6 -1.9	-1.5	107 108	Sun			
	$-26^{\circ} 11533$	2409	6.8	1	79	1858.0		-1.1	108				
1818181921	26 B. Cap	2977	6.9	I	125	No occ.				2048.7			122
	$-19^{\circ} 5830$	2993	6.6	I	126	Low				$\begin{array}{lll}23 & 51.7 \\ 23 & 52\end{array}$	-0.8	-0.7	68
	- Cap	2994	6.1	I	126	${ }_{23}$ Low				$\begin{array}{ll}23 & 52.5 \\ 22 & 48.1\end{array}$	-0.8 -0.9	-0.7 +0.6	68 40
	-14 5997	3120 3269	7.0 4.3	I	138 152	2357.4	-1.0	-0.1	57	2248.1 206.6	-0.9 -0.7	+0.6	47
	θ Aqr	3269	4.3	I	152	Low				206.6	-0.7	-0.9	77
Oct. $\begin{array}{r}26 / 7 \\ 2\end{array}$	$\mu \mathrm{Ari}$	399	5.7	E	218	2248.9	-0.7	$+1.5$	257	2144.0	-0.5	+1.3	271
	104 B. Tau	556	5.5	E	233	020.1	-0.3	+2.4	220	2318.6	-0.3	$+2.0$	236
	$+23^{\circ} 563$	564	6.1	E	233	112.7	-1.2	$+1.3$	258	002.5	-1.1	+1.1	274
	85 Gem	1193	5.4	E	286	126.2	+0.2	$+1.8$	253	Low			
	217 B. Gem	1205	6.3	E	287	353.1	-1.0	+0.5	293	244.6	-0.8	$+0.4$	301
2	$0^{1} \mathrm{Cnc}$	1336	5.2	E	300	Sun				420.9	-1.0	-0.5	319
16	94 B. Cap	3064	6.0	I	106	Low				$\begin{array}{ll}22 & 07.3 \\ 21 & 09.5\end{array}$	-1.3	-1.3	90 117
17 18	λ Cap ${ }^{186 \mathrm{~B} . \mathrm{Aqr}}$	3188 3308	5.4 6.2	I	117 129	No occ. 1823.6		+0.6	111	2109.5 Sun			117
18		3308 3311	6.2 7.0	I	129 129	1823.6	-1.9	+0.6	111	18 Sun 05.8			130
20	$+1^{\circ} 4744$	3482	5.6	I	146	Low				214.1	-0.4	$+0.2$	41
24	62 Tau	652	6.4	E	214	2203.5	-0.2	$+2.1$	231	2103.8	-0.1	+1.7	246
25	+24 ${ }^{\circ} 674$	703	6.3	E	217	518.2			338	408.3			330
25	118 Tau	822	5.9	E	228	2152.4	-0.6	$+0.4$	305	2046.1	-0.8	-0.4	326
27	$+23^{\circ} 1491$	1036	6.5	E	244	404.2	-2.0	+1.9	239	247.7	-1.6	+2.2	240
28	79 Gem	1171	6.3	E	257	332.2	-1.8	$+4.0$	228	220.8	-1.2	+3.4	233
30	ξ Leo	1409	5.1	E	282	347.8	-1.4	+3.7	238	240.1 4	-0.8	+3.4	240
31	155 B . Leo	1519	6.5	E	295	Sun				454.3	-1.5	+1.5	266

LUNAR OCCULTATIONS VISIBLE AT TORONTO AND WINNIPEG, 1972

Date		Star	$\begin{aligned} & \text { Z.C. } \\ & \text { No. } \end{aligned}$	Mag.	$\underset{\mathbf{E}}{\mathbf{I}} \underset{\underset{\text { or }}{ }}{ }$	Elong. of Moon	Toronto				Winnipeg				
		E.S.T.					a	b	P	C.S.T.	a	b	P		
Apr.							\bigcirc		m	m	${ }^{\circ} 1$	h m	m	m	-
	17	$+25^{\circ} 978$	877	6.6	I	60	$\begin{array}{ll}21 & 07.2\end{array}$	-0.1	-1.8	115	Sun				
	19	+21 ${ }^{\circ} 1679$	1174	7.5	I	86	2031.7	-0.7	-2.4	139	${ }_{\text {Sun }}$				
	21	52 Cnc	1324	7.2	I	100	Low				121.7	0.0	-1.4	82	
	21	15 B. Leo	1399	6.9	I	109	2009.1			183	${ }_{22}$ Sun				
	25/6	21 q Vir	1800	5.4	I	156	028.3	-2.4	-0.7	75	2245.9	-2.0	-0.1	94	
May	16	$+21^{\circ} 1630$	1143	6.8	I	56	Low				2226.3	$+0.3$	-1.7	126	
	17	$20 \mathrm{~d}^{1} \mathrm{Cnc}$	1259	5.9	I	67	$21 \quad 10.8$	-1.2	-0.7	64	Sun				
	19	$+8^{\circ} 2316$	1478	7.2	I	92	2214.6	-0.6	-2.0	129	Sun				
	28	α Sco	2366	1.2	I	183	Low				324.6	-1.1	-1.2	83	
	31	189 B. Sgr	2790	6.2	E	216	258.7			181	149.2	-1.5	+1.3	212	
June	4	186 B. Aqr	3308	6.2	E	263	256.4	-1.3	+1.4	265	147.6	-0.7	$+1.5$	282	
	18	RW Vir	1745	7.0	I	96	Low				2234.1			57	
	23	$48 \mathrm{B}$. Sco	2298	5.1	I	151	2234.4	-2.0	-0.4	103	2103.01	-1.4	+0.4	108	
	29	ט Cap	3017	5.3	E	209	Sun ${ }^{\text {a }}$				$\begin{array}{ll}2 & 32.2\end{array}$	-1.6	+0.3	255	
July	1	ρ Aqr	3278	5.4	E	234	338.7	-1.1	$+1.5$	212	224.8	-1.3	+1.3	244	
	7	$\mu \mathrm{Ari}$	399	5.7	E	299	306.0	$+0.4$	$+2.4$	202	222.7	+0.2	+1.7	231	
	7	23 Tau	545	4.2	I	313	345.5	+0.6	$+2.5$	22	No occ.				
	21	α Sco	2366	1.2	E	129	1756.3	-1.2	$+1.0$	278	Low				
	29	$\lambda \mathrm{Psc}$	3494	4.6	E	228	No occ.				23.05 .0	0.0	$+2.6$	181	
Aug.	3	66 Ari	501	6.1	E	282	338.9			183	256.8	-0.2	+2.0	231	
	18	93 G. Oph	2468	6.9	I	111	2202.0	-1.9	-1.6	115	2023.6	-1.8	-0.4	97	
	19	$-26^{\circ} 12724$	2605	7.1	I	121	2005.4			22	${ }_{20}$ Sun				
	20	$172 \mathrm{~B} . \mathrm{Sgr}$	2771	5.7	I	134	No occ.				2052.8	-2.0	-0.2	125	
	30	36 Tau	598	5.7	E	263	2309.2	+0.3	+1.4	252	Low				
Sept.	18	26 B. Cap	2977	6.9	I	125	2033.7	-2.7	-0.6	114	Sun				
	18	$-19^{\circ} 5830$	2993	6.6	I	126	2347.9	-0.9	-0.5	64	2235.4	-0.5	+0.7	24	
	18	- Cap	2994	6.1	I	126	2348.7	-0.9	-0.5	64	2236.3	-0.5	+0.7	24	
	19	$-14^{\circ} 5997$	3120	7.0	I	138	2241.4	-0.9	$+0.9$	34	No occ.				
	21	θ Aqr	3269	4.3	I	152	203.6	-0.9	-0.8	76	048.0	-0.7	$+0.5$	37	
	25	$\mu \mathrm{Ari}$	399	5.7	E	218	2138.9	-0.4	+1.2	275	2038.7	-0.4	+0.7	308	
	26	ε Ari	440	4.6	E	222	Sun				458.4	-1.3	-0.4	258	
	26	104 B. Tau	556	5.5	E	233	2313.6	-0.2	$+1.8$	239	2219.9	-0.1	+1.4	270	
	26	$+23^{\circ} 563$	564	6.1	E	233	2354.7	-1.0	+1.0	277	2238.0			331	
	28	98 k Tau	743	5.6	E	248	No occ.				048.1	-0.3	$+2.1$	237	
	30	44 Gem	1078	5.9	E	275	No occ.				216.3	0.0	+3.2	225	
Oct.	1	217 B. Gem	1205	6.3	E	287	239.7	-0.6	$+0.5$	299	129.4	-0.7	-1.1	341	
	2	$0^{1} \mathrm{Cnc}$	1336	5.2	E	300	416.3	-0.8	-0.2	313	258.8	-0.8	-2.3	351	
	13	67 B. Sgr	2652	6.4	I	71	1953.4	-1.3	-1.0	82	1827.7	-1.3	-0.1	53	
	16	94 B. Cap	3064	6.0	I	106	2201.4	-1.5	-1.0	86	2037.5	-1.1	+0.4	46	
	17	λ Cap	3188	5.4	I	117	2055.6	-2.8	-1.2	108	1921.9	-1.4	+0.9	68	
	17	129 G. Cap	3205	6.8	I	119	No occ.				2344.9	-1.8	-3.1	117	
	18	96 B. Aqr	3208	6.5	I	119	Low				002.5	-0.8	-1.0	78	
	20	$+1^{\circ} 4744$	3482	5.6	I	146	211.2	-0.5	+0.2	45	$1 \begin{array}{ll}1 & 09.3\end{array}$	-0.2	+2.3	4	
	24	62 Tau	652	6.4	E	214	2100.5	0.0	+1.6	249	2009.5	+0.1	+1.2	278	
	25	$+24^{\circ} 674$	703	6.3	E	217	408.2	-1.4	-3.0	315	No occ.				
	27	$+23^{\circ} 1491$	1036	6.5	E	244	234.2	-1.4	$+2.8$	233	127.2	-0.9	$+1.4$	265	
	28	79 Gem	1171	6.3	E	257	208.2	-0.7	+4.2	224	113.4	-0.5	+1.7	262	
	30	ξ Leo	1409	5.1	E	282	229.3	-0.4	+4.6	228	141.8	-0.1	+1.7	265	
	31	155 B. Leo	1519	6.5	E	295	441.8	-1.5	+2.5	252	$\begin{array}{ll}3 & 37.8 \\ 6\end{array}$	-0.6	+1.7	269	
Nov.	1	$69 \mathrm{p}^{5}$ Leo	1623	5.4	E	308	Sun				618.3	-0.6	-1.1	336	
	12	-17 ${ }^{\circ} 6039$	3011	7.0	1	74	2051.5	$+0.4$	+1.8	8	No occ.				
	14	θ Aqr	3269	4.3	I	98	No occ.				1926.2	-2.3	-0.8	106	
	16	+30 4909	3524	6.9	I	124	2138.5	+0.1	+3.6	357	No occ.				
	22	5 Gem	936	5.9	E	210	2235.8	-1.0	+0.8	282	2122.5	-0.9	-0.3	324	
	22	8 Gem	954	6.1	E	211	No occ.				2325.2	-0.5	+3.2	221	
	23	δ Gem	1110	3.5	I	224	2347.0	-0.7	$+2.7$	56	No occ.				
	24	$\delta \mathrm{Gem}$	1110	3.5	E	224	037.3	-1.5	-1.4	324	No occ.				
	24	149 B. Gem	1125	6.4	E	226	420.4	-1.0	-2.7	329	245.2	-1.1	-2.7	336	
	24	63 Gem	1129	5.3	E	226	451.9	-0.8	-2.6	327	318.8	-1.1	-2.3	329	
	25	$25 \mathrm{~d}^{2} \mathrm{Cnc}$	1262	6.2	E	239	451.1	-2.9	+1.6	242	320.4	-1.9	+2.2	243	
Dec.	10	$-15^{\circ} 5908$	3100	6.4	I	55	No occ.				1739.5	-2.3	-1.6	110	
	11	-9 ${ }^{\circ} 5908$	3233	7.2	I	68	Low				2100.9	-1.1	-2.5	108	
	13	$+1^{\circ} 4744$	3482	5.6	I	92	1938.5	-2.1	-0.7	91	$\begin{array}{ll}18 & 12.6\end{array}$	-1.2	+1.2	49	
	14	45 Psc	51	7.2	I	104	1847.2	-2.3	-0.1	- 96	$\begin{array}{ll}17 & 25.6 \\ 18\end{array}$	-1.0	+1.6	55	
	16	$+17^{\circ} 339$	336	7.4	I	132	1921.5	-1.4	+1.3	68	1818.7	-0.3	+2.4	30	
	17	66 Ari	501	6.1	1	148	2347.8	-1.5	-0.5	83	2222.9	-1.3	+1.1	57	
	23	54 Cnc	1323	6.3	E	218	034.8	-0.9	-3.1	349	No occ.				
	26	87 e Leo	1670	5.1	E	258	${ }_{2}{ }_{56} 8$				${ }_{\text {Low }} 56.3$	-2.2	+0.1	263	
	28	$-11^{\circ} 3398$	1858	6.5	E	280	256.8	+0.2	-1.9	352	Low				

LUNAR OCCULTATIONS VISIBLE AT EDMONTON AND VANCOUVER, 1972

Date	Star	$\begin{aligned} & \text { Z.C. } \\ & \text { No. } \end{aligned}$	Mag.	$\begin{gathered} \mathbf{I} \\ \text { or } \\ \text { E } \end{gathered}$	Elong. of Moon	Edmonton				Vancouver			
						M.S.T.	a	b	P	P.S.T.	a	b	P
$\begin{array}{ll}\text { Oct. } & 16 \\ & 17 \\ & 17 \\ & 17 \\ & 18\end{array}$					-	h m	m	m	${ }^{\circ}$	h m	m	m	
	94 B. Cap	3064	6.0	I	106	1925.7	-0.7	$+1.2$	20	1812.3	-0.8	+1.8	13
	λ Cap	3188	5.4	I	117	1807.3	-1.0	$+1.5$	52	Sun			
	129 G. Cap	3205	6.8	I	119	$22 \quad 15.9$	-1.3	-0.6	80	$\begin{array}{lll}21 & 03.1\end{array}$	-1.5	0.0	75
	96 B. Aqr	3208	6.5	I	119	2247.5	-0.8	-0.1	50	2138.0	-1.0	+0.4	46
	209 B. Aqr	3328	7.0	I	131	2119.0	-1.7	0.0	91	2000.8	-1.6	$+0.7$	83
18/9	231 B. Aqr	3344	6.8	1	133	057.7	-1.0	-2.1	103	2353.5	-1.6	-2.2	107
26/7	$+23^{\circ} 1491$	1036	6.5	E	244	020.7	-0.5	+1.1	286	2312.0	-0.3	+1.1	284
27/8	79 Gem	1171	6.3	E	257	$\begin{array}{ll}0 & 13.6\end{array}$	-0.2	$+1.2$	283	2307.9	0.0	$+1.1$	280
28	85 Gem	1193	5.4	E	259	518.2	-1.0	-2.1	332	412.3	-1.3	-0.9	311
29	54 Cnc	1323	6.3	E	272	606.8	-1.2	-0.8	306	454.5	-1.5	$+0.2$	285
Nov.	$69 \mathrm{p}^{5}$ Leo	1623	5.4	E	308	507.8	-0.4	-0.6	335	405.0	-0.4	$+0.1$	315
	$-17^{\circ} 6059$	3022	6.9	I	75	1934.4	-1.4	-1.1	92	1821.5	-1.7	-0.4	86
	75 B. Aqr	3155	6.8	I	87	2103.3	-0.7	-0.2	50	1955.2	-0.9	$+0.2$	47
	$\theta \mathrm{Aqr}$	3269	4.3	I	98	1758.5	-1.4	$+0.9$	76	1640.4	-1.3	$+1.4$	70
	8 Gem	954	6.1	E	211	2226.9	-0.4	+1.9	249	2116.8	-0.1	$+1.9$	247
Dec. $\begin{array}{r}24 \\ \\ \\ 2 \\ 25 \\ \\ \\ 1\end{array}$	149 B. Gem	1125	6.4	E	226	115.2			355	013.5	-1.2	-1.5	332
	63 Gem	1129	5.3	E	226	152.9	-1.1	-2.3	338	046.7	-1.2	-0.8	319
	$25 \mathrm{~d}^{2} \mathrm{Cnc}$	1262	6.2	E	239	203.9	-1.2	$+2.1$	250	0 11.9	-0.8	$+4.0$	229
	π Cap	2981	5.2	I	45	Low				1759.2	-1.1	-0.9	
	$-9^{\circ} 5908$	3233	7.2	I	68	1937.7	-1.1	-0.8	76	1827.8	-1.4	-0.3	73
12	6 G. Psc	3370	6.2	1	82	Low				2222.2	-0.6	-2.1	100
13	$+1^{\circ} 4744$	3482	5.6	I	92	1704.7	-0.5	$+1.9$	21	${ }_{22}$ Sun			
13	19 Psc	3501	5.3	I	94	$\begin{array}{lll}23 & 13.7\end{array}$	-0.4	-0.5	53	2210.2	-0.7	-0.5	62
15	136 B. Psc	89 501	6.5	I	108 148	$\begin{array}{rr}1 & 17.5 \\ 21 & 12.1\end{array}$	+0.1 +0.7	-3.5 +2.5	127 31	No occ. 19			
17	66 Ari	501	6.1	I	148	2112.1	-0.7	$+2.5$	31	1955.2	-0.6	+2.6	33
18	104 B. Tau	556	5.5	I	152	Low				444.5	-0.1	-0.6	57
21	209 B. Gem	1186	6.1	E	205	2157.1	0.0	$+4.6$	217	No occ.			
22	$10 \mathrm{H} . \mathrm{Cnc}$	1217	6.1	E	207	407.9			7	319.5	-0.7	-2.4	331
26	87 e Leo	1670	5.1	E	258	422.3			240	No occ.			

astro murals

24" $\times 36^{\prime \prime}$ photo-quality prints of plates from world's great observatories. Heavy matte paper.

TWO NEW COLOR PRINTS

C-5. Spiral Nebula in Canes Venatici. M-51. 40" Ritchey-Chrétien reflector. U.S. Naval Observatory photograph.

C-6. Eta Carinae Nebula. Photo taken with ADH Baker-Schmidt telescope at the Boyden Observatory, Bloemfontein, South Africa.

the following ARE AVAILABLE

Black and White: 1. Third-quarter moon; 2. Orion nebula; 3. Triangulum spiral; 4. Great Andromeda galaxy; 5. Saturn and rings; 6. Southern section of the moon; 7. Solar prominences; 8. Edge-on spiral in Andromeda; 9. Canes Venatici spiral; 10. Full moon; 11. Solar corona and Venus; 12. Trifid nebula; 13. Horsehead nebula near Zeta Orionis. Color: C-3, Dumbbell nebula in Vulpecula; C-4, Lagoon nebula in Sagittarius; C-5, Canes Venaṭici spiral; C-6, Eta Carinae nebula.
Black and white AstroMurals - \$ 7.50 ea.
Color AstroMurals - \$ 18.00 ea.
All postpaid.
astro-murals
box 7563-0
Set of 13 black and white AstroMurals - $\$ 80.00$
Set of 17 AstroMurals (13 b\&w, 4 color) - \$140.00
Phone 703-280-5216
Washington, D.C. 20044

MAP OF THE MOON

South appears at the top.

STAR ATLASES
 Books on astronomy

The complete line of Tasco telescopes and eye pieces.
Free price list on request.
Sunmount Co., Box 145, Willowdale, Ont.

PLANETARY APPULSES AND OCCULTATIONS

According to Mr. Gordon E. Taylor, H.M. Nautical Almanac Office, Jupiter will occult the $8^{\mathrm{m}} 9$ star SAO 186658 on June 19, 1972. Disappearance occurs about $3^{\mathrm{h}} 23^{\mathrm{m}}$ U.T. in position angle 262°, and reappearance occurs at about $5^{\mathrm{h}} 47^{\mathrm{m}}$ U.T. in position angle 92°. These phenomena are visible throughout most of the Americas.

No planetary appulses involving bright stars are predicted in 1972.

MARS-LONGITUDE OF THE CENTRAL MERIDIAN

During the early part of 1972, Mars is visible in the evening sky. The following table lists the longitude of the central meridian of the geometric disk of Mars for each date at 0 hours U.T. (19 hours E.S.T. on the preceding date). To obtain the longitude of the central meridian for other times, add 14.6° for each hour elapsed since 0 hours U.T.

A map of the surface of Mars appeared in the 1971 edition of the obSERVER's handBook; single copies of this map may be obtained without charge by writing to the Editor.

Date	Jan.	Feb.	Mar.	Apr.	Date	Jan.	Feb.	Mar.	Apr.
1	123.68	178.74	254.57	312.38	17	326.22	21.78	98.42	156.92
2	113.84	168.92	244.80	302.66	18	316.38	11.98	88.67	147.21
3	104.00	159.10	235.03	292.94	19	306.54	2.19	78.93	137.50
4	94.16	149.28	225.26	283.22	20	296.70	352.40	69.18	127.80
5	84.32	139.46	215.49	273.49	21	286.87	342.60	59.44	118.09
6	74.47	129.65	205.73	263.77	22	277.03	332.81	49.70	108.38
7	64.63	119.83	195.96	254.06	23	267.20	323.03	39.96	98.68
8	54.79	110.02	186.20	244.34	24	257.36	313.24	30.23	88.98
9	44.95	100.21	176.44	234.62	25	247.53	303.46	20.49	79.27
10	35.10	90.40	166.68	224.91	26	237.70	293.68	10.76	69.57
11	25.26	80.59	156.93	215.19	27	227.87	283.90	1.03	59.87
12	15.42	70.78	147.17	205.48	28	218.04	274.12	351.30	50.16
13	5.58	60.98	137.42	195.76	29	208.21	264.35	341.57	40.46
14	355.74	51.18	127.66	186.05	30	198.39		331.84	30.76
15	345.90	41.38	117.91	176.34	31	188.56		322.11	
16	336.06	31.58	108.16	166.63					

ASTEROIDS-EPHEMERIDES AT OPPOSITION, 1972

The asteroids are many small objects revolving around the sun, mainly between the orbits of Mars and Jupiter. The largest, Ceres, is only 480 miles in diameter. Vesta, though half the diameter of Ceres, is brighter. The next brightest asteroids, Juno and Pallas, are 120 and 300 miles in diameter, respectively. Unlike the planets, the asteroids move in orbits which are appreciably elongated. Thus the distance of an asteroid from the earth (and consequently its magnitude) varies at different oppositions.

Three of the four brightest asteroids-Ceres, Vesta and Juno-come to opposition in 1972. Ephemerides near opposition are given for Ceres and Vesta, together with maps. Since Juno is scarcely brighter than magnitude 10.0 at opposition, no ephemeris or map is given. Its position at opposition is: R.A. 12 h 53.0 m , Dec. $+2^{\circ} 2.6^{\prime}$, on April 1.

Vesta (No. 4)
Opposition Nov. 30 in Taurus; Mag. 6.5

Date	R.A.	Dec.
	h m	- ,
Oct. 26	501.0	+1531
Nov. 5	455.5	1521
15	447.3	1513
25	437.2	1507
30	431.6	1506
Dec. 5	426.3	1506
15	415.9	1510
25	407.2	1522

Ceres (No. 1)
Opposition Feb. 5 in Leo; Mag. 6.4

Date	R.A.	Dec.
	h m	- ,
Jan. 0	953.7	+24 40
10	951.3	+25 57
20	946.0	+2721
30	938.4	+28 44
Feb. 4	933.9	+29 22
9	929.3	+29 56
19	920.0	+3050
29	911.8	+3121
Mar. 10	905.8	+3128

JUPITER－LONGITUDE OF CENTRAL MERIDIAN
The table lists the longitude of the central meridian of the illuminated disk of Jupiter at $\mathbf{0}^{\mathrm{h}}$ U．T．daily during the period when the planet is favourably placed．Longitude increases hourly by 36.58° in System I（which applies to regions between the middle of the North Equatorial Belt and the middle of the South Equatorial Belt）and by 36.26° in System II（which applies to the rest of the planet）．Detailed ancillary tables may be found on pages 274 and 275 of The Planet Jupiter by B．M．Peek（Faber and Faber，1958）．

	خ	$1 \infty \infty \infty$ －लinimin サMかNN					nぃぃnぃ
	ث゙	$\begin{array}{r} \infty 00-N \\ \text { - NiNiN } \\ =\mathrm{m}=\mathrm{N} \end{array}$	Nのすいい ヘiNNN ＋のサलか －mーN	ORN NNNNNN			$\begin{array}{ll} \text { niolo } & N \\ \text { ninलm } \\ \text { nin } \end{array}$
	苂		$\begin{aligned} & \infty 0-m 寸 \\ & \infty \\ & \cdots \\ & \cdots \end{aligned}$	bNaO－ ヘioioio NMめNm		$\begin{aligned} & \infty 9-N m \\ & 08 \cdots \\ & m=N \end{aligned}$	$\begin{aligned} & +n 6 N \\ & \cdots \cdots N N \end{aligned}$
	$\stackrel{00}{30}$	$\begin{aligned} & \text { OM6, } \\ & \text { - } \\ & \text { N } \end{aligned}$	＊6ant ヘivimi さलかल			$\begin{aligned} & \text { anmin } \\ & \text { nobob } \\ & \text { nNN NN } \end{aligned}$	$\begin{array}{ccc} \text { anmin } \\ \text { oñ } \\ \text { nin } \end{array}$
	\cdots	$+\infty$ NOO －o்ㅇN NNNNた	さNール Ninimi NッNmさ	Nいのmし ホホかni ำNNT	$\begin{aligned} & \text { ombon } \\ & \dot{0} 00 \text { n } \\ & \text { nलN } \end{aligned}$	bamba 「ペかo 	$\begin{array}{ll} \text { NMm } \\ \text { Nigidio } \\ \text { NiN } \end{array}$
	昌	$+\infty$ NoO －mionio HMFN		$+\infty$ NOO ふへべけがす		$\begin{aligned} & \text { nomn } \\ & 000^{\circ} \\ & 0 \times N+ \end{aligned}$	以のलNm $\infty \infty \dot{0} 0$ aかnco
	㐫		$\begin{aligned} & +\infty-n 9 \\ & \infty \infty \\ & \infty \\ & \infty \\ & N \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { NiNM } \\ & \text { NiN } \end{aligned}$	－uncolo ヘヘivin n్లo		$\begin{array}{ll} 0+\infty N 0 \\ \dot{0} \dot{0} \hat{N} & 0 \\ N \end{array}$
	家	Nいがm －N	6のNいか $\infty \infty$ Nなのずn	$\begin{aligned} & \text { HNOm } \\ & \text { NOONN末 } \\ & \text { NiN } \end{aligned}$	し0m6a NNiNi MनN N		$\begin{aligned} & \text { ambom } \\ & \text { 土nnio } \\ & \text { NलぁN } \end{aligned}$
	$\sum^{\text {H }}$		$\begin{aligned} & \infty \text { Onn } \\ & 0 \times N \sim \\ & \end{aligned}$				
	－	の○Nmぃ －ナninin त no		＋nNのO oióin N			$\begin{aligned} & \text { oNサi } \\ & \text { aigigi } \end{aligned}$
	\％	nNonN －∞ 0irioi $\mathrm{N}^{n} \mathrm{~N}$	anNのに －＊～ioir लNळ్N	NonNm nio ∞ mのnまo चलッल		$\begin{aligned} & \infty+\cdots N+ \\ & \text { NiNN } \\ & \Rightarrow m=N \end{aligned}$	ONmOた ○へがo さツのヅ
	－	$\begin{aligned} & \text { - isincin } \\ & \text { in } \end{aligned}$				$\begin{aligned} & \sim \infty n N \infty \\ & \text { NNNNN } \\ & \cdots N N N \end{aligned}$	nNanN a
	灾		＋NO心い ○甘NはiN ©NNNM				$\begin{aligned} & \text { non } \\ & \text { FinqN } \\ & \text { min Nin } \end{aligned}$
	$\stackrel{00}{2}$	$\begin{aligned} & \text { acinn } \\ & \text { - moinn } \\ & \text { tionnn } \end{aligned}$	$\begin{aligned} & \pm m N O \\ & \text { nionn } \end{aligned}$		$\begin{aligned} & \text { NFono } \\ & \text { Noinco } \\ & \text { nnmon } \end{aligned}$		
	$\frac{2}{3}$		$\begin{aligned} & \text { agoga } \\ & \text { MiNo } \\ & \text { minno } \end{aligned}$	ののの 0∞ － กN Nom			
	号	$\begin{aligned} & \text { anooo } \\ & \text { NNNo } \\ & \text { NNo } \\ & \text { NNm } \end{aligned}$		Nmmm， －लNN	ササいいい 0்～்○ Nलのロ		
	¢	かっいいい －Niñin HलN	$\begin{aligned} & \text { nninn } \\ & \text { Nnलুig } \end{aligned}$	いいいいい へッツッが ＋oonn －MनN	いいいした $\underset{N}{N}$		
	這			$\begin{aligned} & \forall \pm m m N \\ & \infty \dot{N} \dot{N} \dot{N} \dot{N} \end{aligned}$			
	家	- ninioso	nलNOの寸NONN ○NNN				$\begin{aligned} & \text { miont } \\ & \text { minnn } \\ & \text { nnnm n } \end{aligned}$
	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	－aじN －oióホNo のッ以ージー जmーmー	onnm-	のヘいNO －$\underset{\sim}{\circ}$ 	$\begin{aligned} & \infty 6+m= \\ & \text { nin inin } \\ & \text { N } \end{aligned}$		
		ーNMサに	VNman	シNツサい	는엥	ヘNべへ	

JUPITER-PHENOMENA OF THE BRIGHTEST SATELLITES 1972

Times and dates given are E.S.T. The phenomena are given for latitude $45^{\circ} \mathrm{N}$., for Jupiter at least one hour above the horizon, and the sun at least one hour below the horizon.
The symbols are as follows: E-eclipse, O -occultation, T -transit, S -shadow, D-disappearance, R-reappearance, I-ingress, e-egress. Satellites move from east to west across the face of the planet, and from west to east behind it. Before opposition, shadows fall to the west, and after opposition to the east. Thus eclipse phenomena occur on the west side until June 24, and on the east thereafter.

$\begin{aligned} & \mathrm{d} \\ & 12 \end{aligned}$	h m	Sat.	Phen.	d	h m	Sat.	Phen.	d	h m		Phen.	d	h m	Sat.	hen.
	2133	I	ED	13	328	III	Te	17	2213	III	SI	22	019	IV	Se
	2237	II	OR		518	III	Se	18	120	III	Se		1814	III	SI
13	004	I	OR		2025	I	TI	19	233	I	OD		1820	I	Se
	2100	I	Se		2052	I	SI		2350	I	TI		2124	III	Se
	2116	I	Te		2239	I	Te	20	057	I	SI	23	1838	II	OD
18	${ }^{1} 12$	III	ED		2308	I	Se		205	I	Te	24	006	II	ER
	322	II	SI	14	2020	I	ER		312	I	Se	25	1814	II	Se
	341	II	TI		2150	II	ER		2101	I	OD	27	2215	I	TI
	352	III	OR	16	2226	IV	SI	21	019	II	TI		2332	I	SI
	459	I	ED		2303	IV	Se		022	I	ER	28	1923	I	OD
	603	II	Se	19	344	I	TI		232	II	SI		2255	I	ER
19	211	I	SI		419	I	SI		300	II	Te	29	18 18 18 58	I	SI
	219	I	TI	20	057	I	OD		1926	I	SI		1858	I	Te
	426	I	Se		145	II	TI		2032	I	Te		2008	III	Te
	434	I	Te		255	II	SI		2141	I	Se		2015	I	Se
	2151	II	ED		346	I	ER	22	1851	I	ER		2044	IV	S
		I	ED		350	III	TI		1907	II	OD		2214	III	SI
20	053	II	OR		426	II	Te	23	017	II	ER		2226	IV	OR
	147	I	OR		2210	I	TI	24	2130	III	TI	30	2117	II	OD
	2040	I	SI		2247	I	SI	25	032	III	Te				
	2045	I	TI	21	025	I	Te		213	III	SI				
	2255	I	Se		103	I	Se	27	142	I	TI				
	2300	I	Te		2021	II	OD		2033	IV	ED		OCT	OBER	
25	409	III	OD		2214	I	ER		2238	IV	ER	d			Phen.
	554	II	TI	22	028	II	ER		2251	I	OD	2	1805	II	SI
	556	II	SI	23	2312	III	ER	28	1915	III	ER		1817	II	Te
26	403	I	TI	27	242	I	OD		2009	,	TI		2051	II	Se
	405	1	SI		402	II	TI		2121	I	SI	5	012	I	TI
	618	I	Te		2357	I	TI		2223	I	Te		2119	I	OD
	621	I	Se	28	043	I	SI		2336	I	Se	6	1841	I	TI
27	021	II	OD		211	I	Te	29	2046	I	ER		1956	1	SI
	118	I	OD		258	I	Se		2137	II	OD		2055	I	Te
	316	II	ER		2109	II	OD	30	255	II	ER		2108	III	TI
	334	I	ER		2241	II	OD	31	1842	II	Te		2211	I	Se
	2229	I	TI	29	009	I	ER		2108	II	Se	7	1920	I	ER
	2234	I	SI		306	II	ER						2358	II	OD
28	044	I	Te		2038	I	Te					8	1834	IV	Se
	049	I	Se		2126	I	Se		SEPTE	MBE		9	1813	II	TI
	2051	III	Te	30	1953	II	Te	d	h m	Sat.	Phen.		2041	II	SI
		III	Se		2049	III	OD	1		III	TI		2057	II	Te
	2142	II	Te		2130	II	Se	4	043	I	OD		2327	II	Se
	2155	II	Se		2350	III	OR		2004	III	ED	10	1919	III	ER
	2203	I	ER	31	005	III	ED		2202	1	TI	11	1838	II	ER
	JULY				312	III	ER		2315	III	ER	12	2317	I	OD
									2317	I	SI	13	2039	I	${ }_{\text {TI }}$
d	${ }^{\text {h m m }}$	Sat.	Phen.					5	016 131	I	$\stackrel{\mathrm{Te}}{\mathrm{Se}}$		2152	I	$\stackrel{\mathrm{SI}}{\mathrm{Te}}$
	547 600	I	TI		$\mathrm{h}_{\text {AUG }}$	Sat.	Phen.		1931 1911	1	OD	14	2253	I	OD
4	237	II	OD	4	144	I	Tİ		2241	I	ER		2115	I	ER
	302	I	OD		238	I	SI	6	009	II	OD	15	1722	I	Te
	529	I	ER		359	I	Te		1844	I	Te		1835	V	Se
	554	II	ER		2256	I	OD		2000	I	Se	16	1730	IV	OR
5	014	I	TI	5		II		7					2054	II	TI
	029	I	SI		204	I	ER		2100	II	SI		2318	II	SI
	229	I	Te		2011	I	TI		2112	II	Te	17	1824	III	OR
	244	I	Se		2107	I	SI		2344	II	Se		2005	III	ED
	2109	III	TI		2226	I	Te	9	1851	II	ER		2320	III	ER
	2115	II	TI		2321	I	Se	11	1852	III	OD	18	2115	II	R
	2128	I	OD	6	1932	II	TI			III	OR	20	2237	I	TI
	2147	II	SI		2032	I	ER		2356	I	TI	21	1945	I	OD
	2215	III	SI		2122	II	SI	12	004	III	ED		2310	I	ER
	2356 2357	II	Te		2213	II	Te		112	I	SI	22	1707	I	TI
	2357	I	ER	7	005	II	Se		2104	I	OD		1816	I	SI
6	008	III	Te		018	III	OD	13	036	I	ER		1921	I	$\mathrm{Te}_{\text {S }}$
	029	II	Se		321	III	OR		1824	I	TI		2030	I	Se
	117	III	Se		405	III	ED		1941	I	SI	24	1928	III	OD
	2055	1	Te	10	2119	III	Se		2038	I	Te		2239	III	OR
	2113	I	Se	11	237	IV	ED		2156	I	Se	25	1846	II	OD
11	446	I	OD	12	044	I	OD	14	1905	II	ER	27	1800	III	Se
	453	II	OD		2200	I	TI		2103	II	TI	28	1729	III	Se
12	158	I	TI		2302	I	SI		2336	II	SI		2144	I	OD
	224	1	SI	13	015	I	Te		2345	II	Te	29	1906	I	TI
	413	I	Te		117	I	Se	16	2129	II	ER		2011	I	SI
	439	,	Se		1911	1	OD	18	2248	III	OD		2120	I	Te
	2312	I	OD		2154	II	TI	19	2259	I	OD		2225	I	Se
	2329	II	TI		2227	I	ER	20	2019	I	TI	30	1934	I	ER
13	021	II	SI		2357	II	SI		2137	I	SI		1654		
	029	III	TI	14	036	II	Te		2233	I	Te				
	151	I	ER		240	II	Se		2351	I	Se		upiter	being	near
	210	II	Te		1945	II	Se	21	2100	I	ER		sun,	pheno	mena
	215	III	SI	15	2140	II	ER		2204	IV	SI		not	given	after
	303	II	Se	17	2051	III	Te		2337	II	TI		t. 31.		

JUPITER'S BELTS AND ZONES

Viewed through a telescope of 6 -inch aperture or greater, Jupiter exhibits a variety of changing detail and colour in its cloudy atmosphere. Some features are of long duration, others are short-lived. The standard nomenclature of the belts and zones is given in the figure.

METEORS, FIREBALLS AND METEORITES

by Peter M. Millman

Meteoroids are small solid particles moving in orbits about the sun. On entering the earth's atmosphere at velocities ranging from 15 to 75 kilometres per second they become luminous and appear as meteors or fireballs and in rare cases, if large enough to avoid complete vaporization, they may fall to the earth as meteorites.

Meteors are visible on any night of the year. At certain times of the year the earth encounters large numbers of meteors all moving together along the same orbit. Such a group is known as a meteor shower and the accompanying list gives the more important showers visible in 1972.

An observer located away from city lights and with perfect sky conditions will see an overall average of 7 sporadic meteors per hour apart from the shower meteors. These have been included in the hourly rates listed in the table. Slight haze or nearby lighting will greatly reduce the number of meteors seen. More meteors appear in the early morning hours than in the evening, and more during the last half of the year than during the first half.

The radiant is the position among the stars from which the meteors of a given shower seem to radiate. The appearance of any very bright fireball should be reported immediately to the nearest astronomical group or other organization concerned with the collection of such information. Where no local organization exists, reports should be sent to Meteor Centre, National Research Council, Ottawa, Ontario, K1A 0R8. Free fireball report forms and instructions for their use, printed in either French or English, may be secured at the above address. If sounds are heard accompanying a bright fireball there is a possibility that a meteorite may have fallen. Astronomers must rely on observations made by the general public to track down such an object.

Meteor Showers for 1972

Shower	Shower Maximum			Radiant					Velocity	Normal Duration to $1 / 4$ strength of Max.
	Date	E.S.T.	Moon	Position at Max. R.A. Dec.		$\begin{gathered} \text { Daily } \\ \text { Motion } \\ \text { R.A. Dec. } \end{gathered}$				
		h			$\mathrm{m}_{58}{ }^{\circ}$	m	-		km/sec	days
Quadrantids	Jan. 3	21	F.M.		$28+50$			40	41	1.1
Lyrids	Apr. 21	21	F.Q.	18	$16+34$	+4.4	0.0	15	48	2
η Aquarids	May 4	22	L.Q.		$24 \quad 00$	$+3.6$	$+0.4$	20	64	3
δ Aquarids	July 28		F.M.		36-17	+3.4	+0.17	20	40	
Perseids	Aug. 11	23	N.M.		$04+58$	+5.4	+0.12	50	60	4.6
Orionids	Oct. 21	01	F.M.		$20+15$	+4.9	+0.13	25	66	2
Taurids	Nov. 4		N.M.		$32+14$	+2.7	$+0.13$	15	28	
Leonids	Nov. 16	19	F.Q.	10	08 +22	+2.8	-0.42	15	72	
Geminids	Dec. 13	16	F.Q.		$32+32$	+4.2	-0.07	50	35	2.6
Ursids	Dec. 22	09	F.M.		$28+76$	+	-	15	34	2

SATURN AND ITS SATELLITES

by Terence Dickinson

Saturn, with its system of rings, is a unique sight through a telescope. There are three rings. The outer ring A has an outer diameter 169,000 miles. It is separated from the middle ring B by Cassini's gap, which has an outer diameter 149,000 miles, and an inner diameter 145,000 miles. The inner ring C, also known as the dusky or crape ring, has an outer diameter 112,000 miles and an inner diameter 93,000 miles. Evidence for a fourth, innermost ring has been found; this ring is very faint.

Saturn exhibits a system of belts and zones with names and appearances similar to those of Jupiter (see diagram pg. 71).

Titan, the largest and brightest of Saturn's moons is seen easily in a 2-inch or larger telescope. At elongation Titan appears about 5 ring-diameters from Saturn. The satellite orbits Saturn in about 16 days and at magnitude 8.4* dominates the field around the ringed planet.

Rhea is considerably fainter than Titan at magnitude 9.8 and a good quality 3 -inch telescope may be required to detect it. At elongation Rhea is about 2 ring-diameters from the centre of Saturn.

Iapetus is unique among the satellites of the solar system in that it is five times brighter at western elongation (mag. 10.1) than at eastern elongation (mag. 11.9). When brightest, Iapetus is located about 12 ring-diameters west of its parent planet.

Of the remaining moons only Dione and Tethys are seen in "amateur"-sized telescopes.

ELONGATIONS OF SATURN'S SATELLITES, E.S.T.

JANUARY				d19	$\begin{gathered} \mathrm{h} \\ 15.0 \end{gathered}$	Sat. Elong.		$\begin{aligned} & \mathrm{d} \\ & 8 \end{aligned}$	$\begin{gathered} \mathrm{h} \\ 21.8 \end{gathered}$	Sat. Elong.$\underline{\mathbf{R}} \mathbf{~ E}$		$\begin{gathered} \mathrm{d} \\ 29 \end{gathered}$	$\begin{gathered} h \\ 05.9 \\ 16.8 \end{gathered}$	Sat. Elong.$\mathrm{R} \mathrm{~h} \quad \mathrm{E}$	
d	h	Sat.	Elong.			Ti	W								
0	07.2	Rh	E	21	15.4	Rh	E	10	21.6	Ti	W	29		Ti	W
4	19.6	Rh	E	26	04.0	$\mathbf{R h}$	E	13	10.4	Rh	E				
7	20.2	Ti	E	27	16.5	Ti	E	17	22.9	$\mathbf{R h}$	E		NOV	MB	
9	07.9	$\mathbf{R} \mathbf{h}$	E	30	16.5	$\mathbf{R h}$	E	19	01.1	Ti	E	d	h		Elong.
13	20.3	Rh	E	APRIL				22	11.4	$\mathbf{R h}$	E	2	18.2	Rh	E
15	18.1	Ti	W					26	21.6	$\mathbf{T i}$	W	6	19.2	Ti	E
18	08.7	Rh	E	d	h	Sat.	Elong.	26	23.9	$\mathbf{R h}$	E	7	06.5	Rh	E
19	22.7	Ia	W	4	05.1	Rh	E	31	12.4	$\mathbf{R h}$	E	11	18.8	Rh	E
22	21.1	Rh	E	4	15.3	Ti	W	31	12.4		E	14	14.4	Ti	W
23	18.3	Ti	E	8	17.7	Rh	E	SEPTEMBER				16	07.1	Rh	E
27	09.5	$\mathbf{R h}$	E	9	03.4	Ia	W	d	SEP	Sat.	Elong.	20	19.4	Rh	E
31	16.5	Ti	W	12	17.2	Ti	E	4	01.0	Ti	E	22	16.5	Ti	E
31	21.9	Rh	E	13	06.3	Rh	E	5	00.9	$\mathbf{R h}$	E	25	07.8	$\mathbf{R h}$	E
				17	18.9	$\mathbf{R h}$	E	9	13.4	$\mathbf{R h}$	E	29	20.0	$\mathbf{R h}$	E
	FEBRUARY			20	15.9	Ti	W	11	21.1	Ti	W	30	11.7	Ti	W
d	h	Sat.	Elong.	22	07.5	$\mathbf{R h}$	E	14	01.9	Rh	E		DEC	MB	
5	10.4	Rh	E					18	09.7	Ia	W	d	,		Elong.
8	17.1	Ti	E	JUT				18	14.3	$\mathbf{R h}$	E		08.3		E
9	22.8	Rh	E			LY		20	00.4	Ti	E	6	01.7	Ia	W
14	11.3	Rh	E	d	h	Sat.	Elong.	23	02.8	$\mathbf{R h}$	E	8	13.6	Ti	E
16	15.5	Ti	W	8	05.8	$\mathbf{R} \mathbf{h}$	E	27	15.2	$\mathbf{R h}$	E	8	20.6	$\mathbf{R h}$	E
18	23.8	$\mathbf{R h}$	E	9	20.5	Ti	W	27	20.2	Ti	W	13	08.9	$\mathbf{R h}$	E
23	12.3	Rh	E	12	18.4	$\mathbf{R} \mathbf{h}$	E	OCTOBER				16	09.0	Ti	W
24	16.4	Ti	E	17	07.0	$\mathbf{R h}$	E		OCT	OBE		17	21.2	Rh	E
27	22.0	Ia	E	18	00.0	Ti	E	d	h	Sat.	Elong,	22	09.5	$\mathbf{R h}$	E
28	00.8	Rh	E	21	19.6	$\mathbf{R} \mathbf{h}$	E	2	03.6	$\mathbf{R h}$	E	24	10.7	Ti	E
	MARCH			25	21.2	Ti	W	5	23.2	Ti	E	26	21.8	$\mathbf{R} \mathbf{h}$	E
				26	08.1	$\mathbf{R h}$	E	6	16.0	$\mathbf{R h}$	E	31	10.2	Rh	E
d	h	Sat.	Elong.	30	20.7	$\mathbf{R h}$	E	11	04.4	$\mathbf{R h}$	E	32	06.3	Ti	W
3	13.3	Rh	E	AUGUST				13	18.7	Ti	W		06.3		
3	15.0	Ti	W					15	16.8	$\mathbf{R h}$	E	Saturn being near			
8	01.8	$\mathbf{R h}$	E	d	h	Sat.	Elong.	20	05.1	$\mathbf{R h}$	E		sun,	ngat	ons of
11	16.2	Ti	E	3	00.7	Ti	E	21	21.4	Ti	E		satell	es a	e not
12	14.3	$\mathbf{R h}$	E	4	09.3	Rh	E	24	17.5	Rh	E		n betw	een	pril 22
17	02.9	$\mathbf{R h}$	E	8	19.5	Ia	E	27	14.5	Ia	E		July		

TABLE OF PRECESSION FOR 50 YEARS
If Declination is positive, use inner R.A. scale; if declination is negative, use outer R.A. scale, and reverse the sign of the precession in declination

FINDING LIST OF NAMED STARS

Name	Con.	R.A.	Name	Con.	R.A.
Acamar, ā'kád-mär	θ Eri	02	Gienah, jē'na	γ Crv	12
Achernar, ā'kẽr-när	α Eri	01	Hadar, hăd'är	$\boldsymbol{\beta}$ Cen	14
Acrux, ā'krǔks	α Cru	12	Hamal, hăm'ăl	α Ari	02
Adhara, $\dot{\text { a }}$-dā'ráa	$\varepsilon \mathrm{CMa}$	06	Kaus Australis,		
Al Na'ir, ăl-nâr'	α Gru	22	kôs ôs-trā'lĭs	$\varepsilon \mathrm{Sgr}$	18
Albireo, ăl-bǐr'ē-ō	β Cyg	19	Kochab, kō'kăb	β UMi	14
Alcyone, ăl-si'ō-nē	η Tau	03	Markab, mär'kăb	α Peg	23
Aldebaran, ăl-děb ${ }^{\prime} \dot{a}-\mathrm{raj}$ n	α Tau	04	Megrez, mē'grĕz	δ UMa	12
Alderamin, ăl-děr' ${ }^{\text {a }}$-mĭn	α Cep	21	Menkar, měn'kär	α Cet	03
Algenib, ăl-jė'nĭb	$\gamma \mathrm{Peg}$	00	Menkent, měn'kěnt	θ Cen	14
Algol, ăl'gŏl	β Per	03	Merak, mē'răk	β UMa	10
Alioth, ăl'ǐŏth	ε UMa	12	Miaplacidus,		
Alkaid, ăl-kād'	η UMa	13	mi'à-plăs ${ }^{\text {IT}}$-d u s	β Car	09
Almach, ăl'măk	γ And	02	Mira, mi'rà	o Cet	02
Alnilam, ăl-nílăm	ε Ori	05	Mirach, mi'răk	β And	01
Alphard, ăl'färd	$\alpha \mathrm{Hya}$	09	Mirfak, mir'făk	α Per	03
Alphecca, ăl-fěk' \dot{a}	$\alpha \mathrm{CrB}$	15	Mizar, mi'zär	ζ UMa	13
Alpheratz, ăl-fē'răts	$\boldsymbol{\alpha}$. And	00	Nunki, nŭn'kē	σ Sgr	18
Altair, ăl-târ ${ }^{\prime}$	α Aql	19	Peacock ${ }^{\text {che }}$ '	${ }_{\gamma} \mathrm{Pav}^{\text {Pava }}$	20
Ankaa	α Phe	00	Phecda, fĕk'd \dot{a}	γ UMa	11
Antares, ăn-tā'rēs	α Sco	16	Polaris	$\alpha \mathrm{UMi}$	01
Arcturus, ärk-tū'rŭs	α Boo	14	Pollux, pǒl' ${ }^{\text {ǔks }}$	β Gem	07
Atria, $\overline{\mathrm{a}}^{\prime}$ 'trĭ- \dot{a}	$\alpha \mathrm{Tr} A$	16	Procyon, prō'sǐ-ŏn	$\alpha \mathrm{CMi}$	07
Avior, ă-vǐ-ôr ${ }^{\prime}$	ε Car	08	Ras-Algethi, rás'ăl-jē'the	α Her	17
Bellatrix, bě-lā'tríks	γ Ori	05	Rasalhague, rȧs'äl-hā'gwē	α Oph	17
Betelgeuse, bět'ěl-jừz	α Ori	05	Regulus, rĕg'titlŭs	α Leo	10
Canopus, k ${ }^{\text {a }}$-nō' p üs	$\alpha \mathrm{Car}$	06	Rigel, ri'jĕl	β Ori	05
Capella, kà-pěl'áa	α Aur	05	Rigil Kentaurus		
Caph, kăf	β Cas	00	ri'jil kĕn-tô'rŭs	α Cen	14
Castor, kȧs'tẽr	α Gem	07	Sabik, sā'bík	η Oph	17
Deneb, děn'ĕb	α Cyg	20	Scheat, shē'ăt	β Peg	23
Denebola, dĕ-něb'ó-là	β Leo	11	Schedar, shěd'àr	α Cas	00
Diphda, dif'd ${ }^{\text {a }}$	β Cet	00	Shaula, shô'la	λ Sco	17
Dubhe, dŭb'ē	α UMa	11		$\alpha \mathrm{CMa}$	06
Elnath, ěl'năth	β Tau	05	Spica, spi'k ${ }^{\mathbf{a}}$	α Vir	13
Eltanin, ěl-tā'nĭn	γ Dra	17	Suhail, sŭ-hāl ${ }^{\prime}$	$\lambda \mathrm{Vel}$	09
Enif, ěn'ıf	\& Peg	21	Vega, vē'g \dot{a}	$\alpha \mathrm{Lyr}$	18
Fomalhaut, fō'măl-ôt	α PsA	22	Zubenelgenubi,		
Gacrux, gă'krŭks	γ Cru	12	zōō-ben' ${ }^{\text {cell-jë-nū'bē }}$	$\alpha \mathrm{Lib}$	14

Pronunciations are generally as given by G. A. Davis, Popular Astronomy, 52, 8 (1944). Key to pronunciation on p. 5.

THE BRIGHTEST STARS

by Donald A. MacRae

The 286 stars brighter than apparent magnitude 3.55.
Star. If the star is a visual double the letter A indicates that the data are for the brighter component. The brightness and separation of the second component B are given in the last column. Sometimes the double is too close to be conveniently resolved and the data refer to the combined light, $A B$; in interpreting such data the magnitudes of the two components must be considered.

Visual Magnitude (V). These magnitudes are based on photoelectric observations, with a few exceptions, which have been adjusted to match the yellow coloursensitivity of the eye. The photometric system is that of Johnson and Morgan in Ap. J., vol. 117, p. 313, 1953. It is as likely as not that the true magnitude is within 0.03 mag. of the quoted figure, on the average. Variable stars are indicated with a " v ". The type of variability, range, R, in magnitudes, and period in days are given.

Colour index $(B-V)$. The blue magnitude, B, is the brightness of a star as observed photoelectrically through a blue filter. The difference $B-V$ is therefore a measure of the colour of a star. The table reveals a close relation between $B-V$ and spectral type. Some of the stars are slightly reddened by interstellar dust. The probable error of a value of $B-V$ is only 0.01 or 0.02 mag .

Type. The customary spectral (temperature) classification is given first. The Roman numerals are indicators of luminosity class. They are to be interpreted as follows: Ia-most luminous supergiants; Ib-less luminous supergiants; II-bright giants; III—normal giants; IV-subgiants; V-main sequence stars. Intermediate classes are sometimes used, e.g. Iab. Approximate absolute magnitudes can be assigned to the various spectral and luminosity class combinations. Other symbols used in this column are: p-a peculiarity; e-emission lines; v -the spectrum is variable; m-lines due to metallic elements are abnormally strong; f-the O -type spectrum has several broad emission lines; n or nn -unusually wide or diffuse lines. A composite spectrum, e.g. $\mathbf{M} 1 \mathrm{Ib}+\mathrm{B}$, shows up when a star is composed of two nearly equal but unresolved components. In the far southern sky, spectral types in italics were provided through the kindness of Prof. R. v. d. R. Woolley, Australian Commonwealth Observatory. Types in parentheses are less accurately defined (g-giant, d-dwarf, c-exceptionally high luminosity). All other types were very kindly provided especially for this table by Dr. W. W. Morgan, Yerkes Observatory.

Parallax (π). From "General Catalogue of Trigonometric Stellar Parallaxes" by Louise F. Jenkins, Yale Univ. Obs., 1952.

Absolute visual magnitude $\left(\mathrm{M}_{V}\right)$, and distance in light-years (D). If π is greater than $0.030^{\prime \prime}$ the distance corresponds to this trigonometric parallax and the absolute magnitude was computed from the formula $\mathrm{M}_{V}=V+5+5 \log \pi$. Otherwise a generally more accurate absolute magnitude was obtained from the luminosity class. In this case the formula was used to compute π and the distance corresponds to this "spectroscopic" parallax. The formula is an expression of the inverse square law for decrease in light intensity with increasing distance. The effect of absorption of light by interstellar dust was neglected, except for three stars, ζ Per, σ Sco and ζ Oph, which are significantly reddened and would therefore be about a magnitude brighter if they were in the clear.
Annual proper motion (μ), and radial velocity (R). From "General Catalogue of Stellar Radial Velocities" by R. E. Wilson, Carnegie Inst. Pub. 601, 1953. Italics indicate an average value of a variable radial velocity.

The star names are given for all the officially designated navigation stars and a few others. Throughout the table, a colon (:) indicates an uncertainty.

							סָּ	$\begin{aligned} & \text { 了忿 } \\ & \text { 胞 } \\ & \text { 弟 } \\ & \text { O } \end{aligned}$			$\begin{aligned} & \text { 元 } \\ & \frac{0}{0} \\ & 0.0 \\ & \text { O} \end{aligned}$	
Star	R．A． 19	7 Dec．	V	$B-V$		Type	π	M_{V}	D	μ	\mathbf{R}	
Sun	h m	－，	－26．73	＋0．63		V	＂	＋4．84	1．y．	＂	km．／sec．	Sun
α And	0006.8	＋28 55	2.06	-0.08	B9p		0.024	-0.1	90	0.209	-11.7	Manganese star Alpheratz
β Cas	07.6	$+5859$	2.26	＋0．34	F2	IV	0.072	＋1．6	45	0.555	＋11．8	Caph
γ Peg	11.7	＋1501	$2.84 v$	-0.23	B2	IV	$-.004$	-3.4	570	0.010	＋04．1	β CMa type，R in $V 2.83-2.85,0.15^{\text {d }}$
β Hyi	24.2	-7725	2.78	＋0．62	G1	IV	0.153	＋3．7	21	2.255	$+22.8$	$\gamma \mathrm{Peg}=$ Algenib
α Phe	24.8	－42 28	2.39	＋1．08	K0	III	0.035	＋0．1	93	0.442	＋74．6	Ankaa
δ And A	37.7	＋30 42	3．25：	＋1．26	K3	III	0.024	-0.2	160	0.161	－07．3	$B 12^{\mathrm{m}} 28^{\prime \prime}$
α Cas	38.8	$+5622$	2.16	＋1．18	K0	II－III	0.009	-1.1	150	0.058	－03．8	Var．？Schedar
β Cet	42.1	-1809	2.02	＋1．03	K1	III	0.057	＋0．8	57	0.234	＋13．1	Diphda
η Cas A	47.3	＋5739	3.47	＋0．56	G0	V	0.182	＋4．8	18	1.221	＋09．4	B7．26 ${ }^{\mathrm{m}} 9^{\prime \prime}$
γ Cas A	54.9	＋6033	2.13 v	$-0.16 \mathrm{v}$	B0	IV：pe	0.034	－0．3：	96：	0.026	－06．8	Var．B 8．18m ${ }^{\prime \prime}$
β Phe $A B$	0104.7	-46.53	3.30	＋0．88	G8	III	0.017	＋0．3	190	0.035	－01．1	A 4．1 ${ }^{\mathrm{m}} \mathrm{B} 4.1^{\mathrm{m}} 2^{\prime \prime}$
η Cet	07.1	-1020	3.47	＋1．16	K3	III	0.032	＋1．0	102	0.250	＋11．5	
β And	08.0	＋35 28	2.02	＋1．57	M0	III	0.043	＋0．2	76	0.211	$+00.3$	Mirach
δ Cas	23.8	＋6005	2.67	＋0．13	A5	V	0.029	$+2.1$	43	0.301	$+06.7$	Ecl．？R 0．08：${ }^{\mathrm{m}} 759^{\text {d }}$
γ Phe	27.1	-4328	3.44	＋1．56	K5	Ib	$-.003$	-4.6	1300	0.209	$+25.7$	
α Eri	36.6	-5723	0.51	-0.16	B5	IV：	0.023	-2.3	118	0.098	$+19$	Achernar
τ Cet	42.7	-1606	3.50	＋0．72	G8	Vp	0.275	＋5．70	12	1.921	－16．2	

Star	R.A. 19	70 Dec.	V	$B-V$	Type	π	M_{V}	D	μ	R	
	h m	-				"		1.y.	'	km./sec.	
α Tri	0151.4	+29 26	3.45	+0.46	F6 IV	0.050	$+2.0$	65	0.230	-12.6	
ε Cas	52.2	+63 31	3.33	-0.15	B3 IV:p	0.007	-2.7	520	0.038	-08.1	
β Ari	53.0	$+2040$	2.68	+0.14	A5 V	0.063	+1.7	52	0.147	-01.9	
$\alpha \mathrm{Hyi}$	57.8	-6143	2.84	+0.28	F0 V		$+2.9$	31	0.265	+07	
γ And A	0202.1	$+4211$	2.14:	+1.16:	K3 II	0.005	-2.4	260	0.068	-11.7	B 5.4 ${ }^{\mathrm{m}} \mathrm{C} 6.2^{\mathrm{m}} A-B C 10^{\prime \prime} B-C 0.7^{\prime \prime}$
$\alpha \mathrm{UMi} A$	02.5	+89 08	1.99v	$+0.60 \mathrm{v}$	F8 Ib	0.003	-4.6	680	0.046	-17.4	Cep., $R 0.11^{\mathrm{m}} 4.0^{\text {d }}, B 8.9^{\mathrm{m}} 18^{\prime \prime}=$ Almach ${ }^{\prime}$ Polaris
α Ari	05.5	+2319	2.00	+1.15	K2 III	0.043	+0.2	76	0.241	-14.3	Hamal
$\boldsymbol{\beta}$ Tri	07.8	+3451	3.00	+0.13	A5 III	0.012	-0.1	140	0.156	+09.9	
o Cet A	17.8	-03 07	2.0v		(gM6e)	0.013	-0.5	103	0.232	+63.8	LP, $R 2.0-10.1,332^{\text {d }}$, B $10^{\mathrm{m}} 1^{\prime \prime} \quad$ Mira
γ Cet $A B$	41.7	+03 07	3.48	+0.11	A2 V	0.048	$+2.0$	68	0.203	-05.1	$A 3.57^{\mathrm{m}}$ B $6.23{ }^{\mathrm{m}} 3^{\prime \prime}$
θ Eri $A B$	57.1	-4025	2.92	+0.13	$A 3 \quad V$	0.028	+1.7	65	0.061	+1i.9	A 3.25^{m} B $4.36^{\mathrm{m}} 8^{\prime \prime} \quad$ Acamar
α Cet	0300.7	+03 58	2.54	+1.63	M2 III	0.003	-0.5	130	0.075	-25.9	Menkar
γ Per	02.6	+5323	2.91:	+0.72:	G8 III: + A3:	0.011	+0.3	113	0.004	+02.5	
ρ Per	03.1	$+3843$	3.5v		M4 II-III	0.008	-1.0	260	0.172	+28.2	Irr. R 3.2-3.8
β Per	06.0	$+4050$	2.06 v	-0.07	B8 V	0.031	-0.5	105	0.006	+04.0	Ecl. $R 2.06$-3.28, $2.87{ }^{\text {d }}$ Algol
α Per	22.2	+49 45	1.80	+0.48	F5 Ib	0.029	-4.4	570	0.035	-02.4	Mirfak
δ Per	40.8	+47 42	3.03	-0.14	B5 III	0.007	-3.3	590	0.046	-09	
η Tau	45.7	$+2401$	2.86	-0.09	B7 III	0.005	-3.2	541	0.050	+10.1	in Pleiades Alcyone
γ Hyi	47.7	-7420	3.30	+1.61	M2 II-III	$-.001$	-1.5	300	0.125	+16.0	
$\zeta \operatorname{Per} A$	52.1	+3148	2.83	+0.13	B1 Ib	0.007	-6.1	1000	0.015	+20.6	B $9.36{ }^{\text {m }} 13^{\prime \prime}$
$\varepsilon \operatorname{Per} A$	55.8	+39 55	2.88	-0.17	B0.5 V	$-.001$	-3.7	680	0.036	-01	B7.99 ${ }^{\text {m }}{ }^{\prime \prime}$
$\boldsymbol{\gamma}$ Eri	56.6	-1336	3.01	+1.58	M0 III	0.003	-0.5	160	0.126	+61.7	
α Ret A	0414.0	-6233	3.33	+0.91	G6 II	0.008	-2.1	390	0.064	+35.6	B 12 ${ }^{\text {m } 49}{ }^{\prime \prime}$
ε Tau	26.9	+19 07	3.54	+1.02	K0 III	0.018	$+0.1$	160	0.118	+38.6	
$\theta^{2} \mathrm{Tau}$	26.9	+1548	3.42	+0.17	A7 III	0.025	$+0.2$	140	0.108	$+39.5$	
α Dor	33.3	-5506	3.28	-0.08	A0 IIIp	0.011	-1.2	260	0.051	$+25.6$	Silicon star
α Tau A	34.2	+1627	0.86 v	$+1.52$	K5 III	0.048	-0.7	68	0.202	+ 54.1	Irr.? R0.78-0.93, B13 ${ }^{\text {m }} 31^{\prime \prime}$ Aldebaran
π^{3} Ori	48.2	+0655	3.17	+0.45	F6 V	0.125	+3.65	26	0.468	+24.3	
1 Aur	55.0	+33 07	2.64:	+1.49	K3 II	0.015	-2.4	330	0.021	+17.5	

Star	R.A. 1970 Dec.		V	$B-V$	Type	π	M_{V}	D	μ	R	
	h m					"		1.y.	"	km./sec.	
ε Aur	0459.8	$+4347$	3.0v	+0.50:	F0 Iap	0.004	-7.1	3400	0.008	-02.5	Ecl. $R 0.81{ }^{\mathrm{m}} 9886^{\text {d }}$
ε Lep	0504.2	-22 25	3.21	$+1.46$	K5 III	0.006	-0.4	170	0.077	+01.0	
η Aur	04.4	+41 12	3.17	-0.18	B3 V	0.013	-2.1	370	0.077	+07.4	
β Eri	06.4	-05 07	2.79	+0.13	A3 III	0.042	+0.9	78	0.122	-08	
μ Lep	11.6	-1614	3.29	-0.09	B9 IIIp	0.018	-2.1	390	0.049	+27.7	Manganese star
β Ori A	13.1	-08 14	0.14 v	-0.04	B8 Ia	$-.003$	-7.1	900	0.001	+20.7	Irr. ? R 0.08-0.20, B 6.65 ${ }^{\mathrm{m}} 9^{\prime \prime} \quad$ Rigel
α Aur	14.5	+45 58	0.05	$+0.80$	G8 III: + F	0.073	-0.6	45	0.435	+30.2	Capella
η Ori $A B$	23.0	-02 25	3.32v	-0.18	B0.5 V	0.004	-3.7	940	0.008	+19.8	Ecl. $R 3.32-3.50,8.0^{\text {d }}, A 3.59^{\mathrm{m}}$ B4.98 ${ }^{\mathrm{m}} 1^{\prime \prime}$
γ Ori	23.5	+0619	1.64	-0.23	B2 III	0.026	-4.2	470	0.015	+18.2	Bellatrix
$\boldsymbol{\beta}$ Tau	24.4	+28 35	1.65	-0.13	B7 III	0.018	-3.2	300	0.178	+08.0	Elnath
β Lep A	27.0	-20 47	2.81	+0.82	G5 III	0.014	+0.1	113	0.090	-13.5	B 9.4 ${ }^{\text {m }} 3^{\prime \prime}$
δ Ori A	30.5	-00 19	2.20 v	-0.20	O9.5 II	0.004	-6.1	1500	0.002	$+16.0$	Ecl. R 2.20-2.35 5.7 ${ }^{\text {d }}$, B 6.74 ${ }^{\text {m }} 53^{\prime \prime}$
α Lep	31.4	-17 51	2.58	+0.22	F0 Ib	0.002	-4.6	900	0.006	+24.7	
λ Ori $A B$	33.5	+09 55	3.40	-0.18	O8	0.006	-5.1	1800	0.006	+33.5	$A 3.56^{\mathrm{m}}$ B 5.54m $4^{\prime \prime}$ C $10.92^{\mathrm{m}} 29^{\prime \prime}$
1 Ori $A B$	34.0	-05 56	2.76	-0.24	O9 III	0.021	-6.1	2000	0.005	+21.5	$A 2.78^{\mathrm{m}}$ B $7.31^{\mathrm{m}} 11^{\prime \prime}$
ε Ori	34.7	-01 13	1.70	-0.19	B0 Ia	$-.007$	-6.8	1600	0.000	+26.1	Alnilam
ζ Tau	35.9	$+2108$	3.07:	-0.13:	B2 III:p	$-.002$	-4.2	940	0.023	+24.3	Shell star
$\alpha \operatorname{Col} A$	38.6	-34 05	2.64	-0.11	B8 Ve	$-.005$	-0.6	140	0.026	+35	B $12^{\mathrm{m}} 12^{\prime \prime}$
ζ Ori $A B$	39.2	-01 57	1.79	-0.22	09.5 Ib	0.022	-6.6	1600	0.004	+18.1	A 1.91^{m} B4.05 ${ }^{\mathrm{m}} 3^{\prime \prime}$
κ Ori	46.3	-09 41	2.06	-0.17	B0.5 Ia	0.009	-6.9	2100	0.004	+20.6	
β Col	49.9	-35 47	3.12	+1.16	(gK1)	0.023	+0.0	140	0.402	+89.4	
α Ori	53.5	+0724	0.41 v	+1.87:	M2 Iab	0.005	-5.6	520	0.028	+21.0	Irr.? R 0.06:-0.75: ${ }^{\mathrm{m}} \quad$ Betelgeuse
β Aur	57.3	+44 57	1.86	+0.06	A2 V	0.037	-0.3	88	0.051	-18.2	
θ Aur $A B$	57.7	$+3713$	2.65	-0.07	B9.5pv	0.018	+0.1	108	0.097	$+29.3$	Silicon star $A 2.67^{\mathrm{m}}$ B $7.14^{\mathrm{m}} 3^{\prime \prime}$
η Gem A	0613.1	$+2231$	3.33 v	$+1.58$	M3 III	0.013	-0.6	200	0.066	$+19.0$	$R 0.27^{\mathrm{m}}, B 6.70^{\mathrm{m}} 1^{\prime \prime}$
$\zeta \mathrm{CMa}$	19.2	-3003	3.04	-0.18	B2.5 V	$-.003$	-2.4	390	0.004	+32.2	
μ Gem	21.1	+22 32	2.92 v	+1.63	M3 III	0.021	-0.6	160	0.129	+ 54.8	$R 0.14^{\text {m }}$
$\beta \mathrm{CMa}$	21.4	-1756	1.96	-0.24	B1 II-III	0.014	-4.8	750	0.004	+ 33.7	β CMa type variable
α Car	23.3	-52 41	-0.72	+0.16	F0 Ib-II	0.018	-3.1	98	0.025	$+20.5$	Canopus
γ Gem	36.0	+1626	1.93	0.00	A0 IV	0.031	-0.6	105	0.066	-12.5	

Star	R.A. 19	70 Dec.	V	$B-V$	Type	π	M_{V}	D	μ	R	
	h m	- ,				"		$1 . y$.	"	km./sec.	
v Pup	0636.8	-43 10	3.19	-0.10	$B 7 \quad$ III		-3.2	620	0.010	+28.2	
ε Gem	42.1	+25 10	3.00	+1.39	G8 Ib	0.009	-4.6	1080	0.016	+09.9	
ξ Gem	43.6	+1256	3.38	+0.43	F5 IV	0.051	+1.9	64	0.224	+25.3	
$\alpha \mathrm{CMa} A$	43.8	-16 41	-1.42	+0.01	A1 V	0.375	+1.45	8.7	1.324	-07.6	$B 8.66^{\mathrm{m}} 1960: 9^{\prime \prime}, \theta=90^{\circ} \quad$ Sirius
α Pic	48.1	-61 54	3.27	+0.21	A5 V		$+2.1$	57	0.272	$+20.6$	
τ Pup	49.2	-50 35	2.97	+1.17	K0 III		$+0.1$	124	0.079	$+36.4$	
$\varepsilon \mathrm{CMa} A$	57.4	-2856	1.48:	-0.18 :	B2 II		-5.1	680	0.004	+27.4	$B 7.5^{\mathrm{m}} 8^{\prime \prime} \quad$ Adhara
$\sigma^{2} \mathrm{CMa}$	0701.8	-23 47	3.02	-0.09	B3 Ia		-7.1	3400	0.000	+48.4	
$\delta \mathrm{CMa}$	07.2	-26 21	1.85	+0.65	F8 Ia	$-.018$	-7.1	2100	0.005	+34.3	
L_{2} Pup	12.6	-44 36			(gM5e)	0.016	-3.1	650	0.342	+53.0	LP, $R 3.4-6.2,141^{\text {d }}$
π Pup	16.1	-37 03	2.81	+1.56:	(gK4)	0.023	-0.3	140	0.008	$+15.8$	
η CMa	22.9	-29 14	2.46	-0.08	B5 Ia		-7.1	2700	0.008	$+41.1$	
β CMi	25.7	+0821	2.91	-0.09	B7 V	0.020	-1.1	210	0.065	+22	
$\sigma \operatorname{Pup} A$	28.3	-4314	3.28	+1.49	${ }^{(\mathrm{gK} 5)}$	0.013	-0.4	180	0.195	+88.1	$B 9.4^{\mathrm{m}} 22^{\prime \prime}$
α Gem A	32.7	+3157	1.97	+0.00:	A1 V	0.072	+1.3	45	0.199	+06.0	5 $5^{\prime \prime}, B-V+0.02, C 9.08 \mathrm{v}^{\mathrm{m}} 73^{\prime \prime}$ Castor
α Gem B	32.7	+3157	2.95	+0.07:	A5m ${ }_{\text {F5 }}$	0.072	+2.3	45	0.199	-01.2	$\int_{B} 10.7^{\mathrm{m}} 5^{\prime \prime}$ Procyon
$\alpha \mathrm{CMi} A$	37.7	+0518	0.37	+0.41	F5 IV-V	0.288	$+2.7$	11.3	1.250	-03.2	B $10.7^{m} 5^{\prime \prime}$ Procyon
β Gem	43.5	+2806	1.16	+1.02	K0 III	0.093	$+1.0$	35 1240	0.625	+03.3	Pollux
${ }_{\boldsymbol{\xi}}^{\boldsymbol{\chi}} \mathrm{Pup}$	48.0 56.0	+2448 -5254	3.34 3.48	+1.23 -0.18	$\mathrm{G}^{\text {(B3) }}{ }^{\text {Ib }}$	$-.003$	-4.6	1240 430	0.005 0.039	+02.7 +19.1	
χ Car	56.0	-5254	3.48	-0.18	(B3)		-2.1	430	0.039	+19.1	
ζ Pup	0802.5	-39 55	2.23	-0.26	O5f		-7.1	2400	0.033	-24	
ρ Pup	06.3	-24 13	2.80 v	+0.42	F6 IIp	0.031	+0.3:	105:	0.098	$+46.6$	Var. R 2.72-2.87
$\boldsymbol{\gamma} \operatorname{Vel} A$	08.6	-47 16	1.88	-0.26	WC7		-4.1	520	0.011	+35	B $4.31^{\mathrm{m}} 41^{\prime \prime}$
$\varepsilon \mathrm{Car}$	21.9	-5924 +6049	1.97	+1.14:	$(\mathrm{K} 0+\mathrm{B})$		-3.1:	340 150	0.030	+11.5 +198	$B 15^{\mathrm{m}} 7^{\prime \prime}$ Avior
- UMa A	27.8	+6049	3.37	$+0.83$	G5 III	0.004	+0.1	150	0.171	+19.8	
$\delta \mathrm{Vel} A B$	43.9	+5436 +0632	1.95 3.39	$+0.05$	$\begin{array}{lr}\text { A0 } & V \\ \\ \text { co } \\ \end{array}$	0.043	+0.2	76	0.086	+02.2	$A 2.0^{\mathrm{m}}$ B 5.1m.$^{\mathrm{m}} 3^{\prime \prime} C D 10^{\mathrm{m}} 69^{\prime \prime}$
ε Hya $A B C$	45.2	+06 32	3.39	+0.68	G0 comp.	0.010	$+0.6$	140	0.198	$+36.4$	$A 3.7^{\mathrm{m}} B 5.2^{\mathrm{m}} 0.2^{\prime \prime} 15^{\mathrm{y}}, C 6.8^{\mathrm{m}} 3^{\prime \prime} \mathrm{D} 12^{\mathrm{m}} 20^{\prime \prime}$
ζ Hya	53.8	+0604 +0609	3.11	+1.00	K0 \quad II-III	0.029	-1.1	220	0.101	+22.8 +12.2	
1 UMa A	57.2	+48 09	3.12	+0.19	A7 V	0.066	+2.2	49	0.505	+12.2	$B C 10.8^{\mathrm{m}} 7^{\prime \prime}$

Star	R.A. 1970 Dec.		V	$B-V$	Type	π	M_{V}	D	μ	R	
	$\mathrm{h} \quad \mathrm{m}$	-				"		1.y.	"	km./sec.	
γ UMa	1152.2	$+5352$	2.44	0.00	A0 V	0.020	+0.2	90	0.094	-12.9	Phecda
δ Cen	1206.8	-5033	2.59 v	-0.15:	B2 Ve		-2.7	370	0.042	+09	Var. R 2.56-2.62
ε Crv	08.6	-22 27	3.04	$+1.33$	K3 III		-0.2	140	0.069	+04.9	Var. R 2.56-2.62
δ Cru	13.5	-58 35	2.81 v	-0.23	B2 IV		-3.4	570	0.041	$+26.4$	Var R 2.78-2.84
$\delta \mathrm{UMa}$	13.9	+ 5712	3.30	+0.07	A3 V	0.052	+1.9	63	0.106	-12.9	Megrez
γ Crv	14.3	-1722	2.59	-0.10	B8 III		-3.1	450	0.163	-04.2	Gienah
α Cru A	24.9	-6256	1.39	-0.25	B1 IV		-3.9	370	0.042	-11.2	
α Cru B	24.9	-62 56	1.86	-0.25	(B3)		-3.4	370	0.042	-00.6	$5^{\prime \prime}, C 4.90^{\mathrm{m}} 89^{\prime \prime} \quad$ Acrux
$\delta \operatorname{Crv} A$	28.3	-1621	2.97	-0.04	B9.5 V:n	0.018	+0.1	124	0.255	+09	B $8.26{ }^{\text {m }} 24^{\prime \prime}$
γ Cru	29.5	-56 57	1.69	+1.55	M3 II		-2.5	220	0.274	+21.3	Gacrux
β Crv	32.8	-23 14	2.66	+0.89	G5 III	0.027	+0.1	108	0.059	-07.7	
α Mus	35.4	-68 58	2.70 v	-0.20	B3 IV		-2.9	430	0.037	+18	Var. R 2.66-2.73
γ Cen $A B$	39.9	-48 48	2.17	$+0.00$	A0 IV:	0.006	-0.5	160	0.197	-07.5	$A 2.9^{\mathrm{m}}$ B $2.9^{\mathrm{m}} 1^{\prime \prime}$
$\gamma \operatorname{Vir} A B$	40.1	-01 17	2.76	+0.34	F0 V	0.101	+3.5	32	0.567	-19.7	$A 3.50^{\mathrm{m}}$ B $3.52^{\mathrm{m}} 4^{\prime \prime}$
β Mus $\boldsymbol{A B}$	44.4	-67 57	3.06	-0.17:	$B 3 \quad V$		-2.1	470	0.041	$+42$	A 3.7 ${ }^{\mathrm{m}}$ B $4.0^{\mathrm{m}} 1^{\prime \prime}$
β Cru	46.0	-59 32	1.28	-0.25	BO III		-4.6	490	0.049	$+20.0$	Beta Crucis
ε UMa	52.7	+5607	1.79	-0.03	A0pv	0.008	+0.2	68	0.113	-09.3	Chromium-europium star Alioth
$\alpha \operatorname{CVn} A$	54.6	+38 29	2.90	-0.10	B9.5pv	0.023	+0.1	118	0.238	-03.3	Silicon-europium star. B5.61 ${ }^{\text {m }} 20^{\prime \prime}$
ε Vir	1300.7	+1108	2.86	+0.93	G9 II-III	0.036	$+0.6$	90	0.274	-14.0	
γ Hya	17.3	-2301	2.98	+0.92	G8 III	0.021	+0.3	113	0.086	-05.4	
1 Cen	18.9	-3633	2.76	+0.05	$A 2 \quad V$	0.046	+1.1	71	0.351	+00.1	
$\zeta \mathrm{UMa} A$	22.7	$+5505$	2.26	+0.02	A2 V	0.037	+0.1	88	0.127	-09.0	$B 3.94{ }^{\text {m }} 14^{\prime \prime}$ (Alcor, 224 ${ }^{\prime \prime}$) Mizar
α Vir	23.6	-1100	0.91 v	-0.24	B1 V	0.021	-3.3	220	0.054	+01.0	Ecl. R 0.91-1.01, $4.0^{\text {d }}$ Spica
ζ Vir	33.2	-00 27	3.40	+0.10	A3 Vn	0.035	+1.1	93	0.287	-13.2	
ε Cen	38.0	-5319	2.33	-0.23	B1 IV		-3.9	570	0.033	+05.6	
η UMa	46.4	+49 28	1.87	-0.20	B3 V	0.004	-2.1	210	0.123	-10.9	Alkaid
v Cen	47.7	-4132	3.42	-0.22	B2 IV		-3.4	750	0.037	+09.0	
μ Cen	47.8	-42 20	3.12 v	-0.13:	B2 V:pne		-2.7	470	0.032	+12.6	Var. R 3.08-3.17
η Boo	53.3	+18 33	2.69	+0.59	G0 IV	0.102	+2.7	32	0.370	-00.1	
ζ Cen	53.7	-4709	2.56	-0.23:	B2 IV		-3.4	520	0.076	+06.5	

4	 䋃1＋＋11111＋＋11＋1＋	$\begin{aligned} & \text { amrnn } \\ & \text { aiginnos } \\ & 1111 \end{aligned}$	$\begin{array}{r} 1 \\ +1 \\ + \end{array}$	
2	 $0^{\circ} 0^{\circ}$ No 0° м $00^{\circ} 0^{\circ} 0^{\circ}$	 $00^{\circ 0} 00^{\circ}$	$\begin{aligned} & n \\ & 00 \\ & 00 \\ & 00 \end{aligned}$	
Q		연요웍역	$\stackrel{\circ}{i}$	
\sum^{*}	กッのmNommm＠onntr niooomvinitionomi $1++1+1++1+++111$	möNmbN $\begin{aligned} & 0 \times 1+00 \\ & +++1+ \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { No } \\ & 1+ \end{aligned}$	
E	=	Nown Ni 0000	9 0 0	
$\stackrel{0}{\circ}$			$\begin{aligned} & \text { n } \\ & \text { NO } \end{aligned}$	
A	 $1++++1++1++++11$	$\begin{aligned} & n 6 \ddot{0} \%=0 \\ & 0<0 \\ & +++1 \end{aligned}$	$\begin{gathered} \text { NO } \\ \text { OO } \\ 11 \end{gathered}$	
λ	－miomioniniviNm	$\dot{m i n m i v i}$	$\begin{aligned} & \circ \stackrel{\rightharpoonup}{n} \\ & \infty \\ & \text { NN } \end{aligned}$	
$\begin{aligned} & \text { 8ं } \\ & \text { 日 } \\ & \text { ᄋ } \end{aligned}$	 ｜1 1＋＋1 1 1 1 1＋1＋1 1		すす ジ우 $+1+$	
+	 ュむ			
気				

Star	R.A. 1970 Dec.		V	$B-V$		Type	π	M_{V}	D	μ	R		
	$\mathrm{h} \quad \mathrm{m}$	-					"		1.y.	"	km./sec.		
β Sco $A B$	1603.7	-19 43	2.65	-0.09	B0.5	V	0.004	-3.7	650	0.027	-06.6	$A 2.78^{\mathrm{m}}$ B $5.04^{\mathrm{m}} 1^{\prime \prime}, C 4$	$14^{\prime \prime}$
δ Oph	12.8	-03 36	2.72	+1.59	M1	III	0.029	-0.5	140	0.156	-19.9	A 2.78 B 5.04 1 , C 4.	14
ε Oph	16.7	-04 38	3.22	+0.97	G9	III	0.036	$+1.0$	90	0.089	-10.3		
σ Sco A	19.4	-25 31	2.86 v	+0.14	B1	III		-4.4	570	0.030	-00.4	β CMa R 2.82-2.90, 0.25	$8.49^{\text {m }} 20^{\prime \prime}$
$\eta \operatorname{Dra} A$	23.6	+6134	2.71	+0.92	G8	III	0.043	+0.9	76	0.062	-14.3	$B 8.7^{\mathrm{m}} 6^{\prime \prime}$	8.4 20
α Sco A	27.6	-26 22	0.92 v	+1.84	M1	$\mathrm{Ib}+\mathrm{B}$	0.019	-5.1	520	0.029	-03.2	$A 0.86^{\mathrm{m}}-1.02^{\mathrm{m}}$ B $5.07^{\mathrm{m}} 3^{\prime \prime}$	Antares
β Her	28.9	+2133	2.78	+0.92	G8	III	0.017	$+0.3$	103	0.105	-25.5		
τ Sco	34.0	-28 09	2.85	-0.25	B0	V		-4.0	750	0.030	-00.7		
ζ Oph	35.5	-10 30	2.57	$+0.00$	O9.5	V	$-.007$	-4.3	520	0.022	-19		
ζ Her $A B$	40.2	+31 39	2.81	+0.64	G0	IV	0.110	+3.1	30	0.608	-69.9	$A 2.91^{\mathrm{m}}$ B $5.46^{\mathrm{m}} 1^{\prime \prime}$	
$\eta \mathrm{Her}$	41.9	+3859	3.46	$+0.92$	G7	III-IV	0.053	+2.1	62	0.097	+08.3		
$\alpha \operatorname{Tr} A$	45.5	-68 59	1.93	+1.43	K2	III	0.024	-0.1	82	0.044	-03.6		Atria
ε Sco	48.2	-34 15	2.28	+1.16	K2	III-IV	0.049	$+0.7$	66	0.664	-02.5		Atria
μ^{1} Sco	49.8	-3800	2.99 v	-0.20	B1.5	V		-3.0	520	0.033	-25	Ecl. R 2.99-3.09, 1.4 ${ }^{\text {d }}$	
ζ Ara	56.1	-55 56	3.16	+1.61		K5)	0.036	+0.9	90	0.042	-06.0		
κ Oph	56.3	+09 26	3.18	+1.15	K2	III	0.026	-0.1	150	0.293	-55.6		
ζ Dra	1708.7	+6545	3.20	-0.12	B6	III	0.017	-3.2	620	0.026	-14.1		
η Oph $A B$	08.7	-1541	2.46	+0.06	A2.5	V	0.047	+1.4	69	0.097	-00.9	$A 3.0^{\text {m }}$ B $3.4^{\mathrm{m}} 1^{\prime \prime}$	Sabik
η Sco	10.0	-43 12	3.33	$+0.38$	F2	III	0.063	+2.3	52	0.293	-28.4		
α Her $\boldsymbol{A} \boldsymbol{B}$	13.3	+14 25	3.10 v	+1.41	M5	II	$-.007$	-2.3	410	0.032	-33.1	$A 3.2^{\mathrm{m}} \pm 0.3 B 5.4^{\mathrm{m}} 5^{\prime \prime}$	Ras-Algethi
δ Her	13.8	+2452	3.14	+0.09	A3	IV	0.034	+0.8	96	0.164	-41		
π Her	14.0	+3650	3.13	+1.43	K3	II	0.020	-2.4	410	0.029	-25.7		
θ O Oph	20.2	-24 58	3.29	-0.22	B2	IV		-3.4	710	0.025	-03.6		
$\underset{\gamma}{\beta}$ Ara	22.8	-55 30	2.90	+1.45:	K3	Ib	0.026	-4.6	1030	0.035	-00.4		
γ Ara A	22.9	-5621	3.32	-0.16	B1	V		-3.3	680	0.017	-04	$B 10^{\mathrm{m}} 18^{\prime \prime}$	
\checkmark Sco	28.7	-37 16	2.71	-0.22	B2	IV		-3.4	540	0.039	+18		
α Ara	29.5	-49 52	2.95	-0.18:	B2.5	V		-2.4	390	0.083	-02		
$\beta{ }_{\lambda} \mathrm{Dra}_{\text {Sco }}$	29.7	$+5220$	2.77	+0.96	G2	II	0.009	-2.1	310	0.019	-20.0	$B 11.49^{m} 4^{\prime \prime}$	
$\lambda{ }_{\alpha}$ Sco	31.6	-3705	1.60	-0.24	B1	V		-3.3	310	0.031	00		Shaula
$\begin{array}{ll}\alpha & \text { Oph } \\ \theta & \text { Sco }\end{array}$	33.5	+1235	2.09	+0.16	A5	III	0.056	+0.8	58	0.260	$+12.7$		Rasalhague
θ Sco	35.2	-42 59	1.86	+0.39	F0	$I b$	0.020	-4.6	650	0.012	+01.4		Rasalhague

Star	R.A. 19	70 Dec.	V	$B-V$	Type	π	$\mathbf{M}_{\boldsymbol{V}}$	D	μ	R	
	h m	\bigcirc,				"		1.y.	"	km./sec.	
\ldots Sco	1740.4	-39 01	2.39	-0.21	B2 IV		-3.4	470	0.031	-10	
β Oph	42.0	+04 35	2.77	+1.16	K2 III	0.023	-0.1	124	0.160	-12.0	
μ Her A	45.3	+27 45	3.42	+0.75	G5 IV	0.108	+3.6	30	0.811	-15.6	$B C$ 9.78 ${ }^{\text {m }} 33^{\prime \prime}$
l^{1} Sco	45.5	-40 06	2.99	+0.49	F2 Ia	0.013	-7.1	3400	0.004	-27.6	
G Sco	47.7	-3702	3.21	+1.18	(gK1)	0.032	$+0.7$	102	0.064	$+24.7$	
$\boldsymbol{\gamma}$ Dra	55.9	+5129	2.21	+1.52	K5 III	0.017	-0.4	108	0.026	-27.6	Eltanin
v Oph	57.4	-09 47	3.32	+1.00	G9 III	0.015	+0.2	140	0.118	+12.4	
$\boldsymbol{\gamma}$ Sgr	1803.9	-3026	2.97	+1.00	KO III	0.018	+0.1	124	0.200	+22.1	
$\eta \mathrm{Sgr} A$	15.6	-36 47	3.17	$+1.55$	M3 II	0.038	+1.1:	$86:$	0.218	+00.5	$B 10^{m} 4^{\prime \prime}$
$\delta \mathrm{Sgr}$	19.1	-29 50	2.71	+1.39	K2 III	0.039	$+0.7$	84	0.050	-20.0	
η Ser	19.7	-02 54	3.23	+0.94	K0 III-IV	0.054	+1.9	60	0.894	+08.9	
$\varepsilon \mathrm{Sgr}$	22.2	-34 24	1.81	-0.02	B9 IV	0.015	-1.1	124	0.135	-11	Kaus Australis
$\lambda \mathrm{Sgr}$	26.1	-25 27	2.80	+1.05	K2 III	0.046	+1.1	71	0.194	-43.3	
$\alpha \mathrm{Lyr}$	35.9	$+3845$	0.04	0.00	A0 V	0.123	+0.5	26.5	0.345	-13.9	Vega
ϕ Sgr	43.8	-2702	3.20	-0.11	B8 III		-3.1	590	0.052	+21.5	
β Lyr A	49.0	+3320	3.38 v	-0.05:	Bpe	$-.011$	-4.6	1300	0.007	-19.2	Ecl. R 3.38-4.36, 12.9 ${ }^{\text {d }}$, B7.8 ${ }^{\mathrm{m}} 46^{\prime \prime}$ Nunk
io Sgr	53.4	-2620	2.12	-0.21	B2 V		-2.7	300	0.059	-11 -19.	Nunk
ξ^{2} Sgr	55.9	-2108	3.51	+1.18:	(gK1)	0.006	+0.0	160	0.035	-19.9	
$\boldsymbol{\gamma}$ Lyr	57.8	+32 39	3.25	-0.05	B9 III	0.011	-2.1	370	0.007	-21.5	
$\zeta \operatorname{Sgr} A B$	1900.7	-2955	2.61	+0.08	A2 IV	0.020	$+0.1$	140	0.020	$+22$	$A 3.3^{\mathrm{m}}$ B $3.5^{\mathrm{m}} 1$
ζ Aql A	04.0	+13 49	2.99	+0.01	A0 V:nn	0.036	+0.8	90	0.101	-26.3	$B 12^{\mathrm{m}} 5^{\prime \prime}$
λ Aql	04.7	-04 56	3.44	-0.07	B9: V:n	0.025	-0.1	160	0.092	-14	
$\tau \mathrm{Sgr}$	05.1	-27 43	3.30	+1.18	(gK1)	0.038	+1.2	86	0.261	+45.4	
$\pi \operatorname{Sgr} A B C$	08.0	-21 04	2.89	+0.35	F2 II-III	0.016	-0.7	250	0.040	-09.8	$A 3.7^{\mathrm{m}}$ B $3.8^{\mathrm{m}} C 6.0^{\mathrm{m}}<1^{\prime \prime}$
δ Dra	12.5	+67 37	3.06	+1.00	G9 III	0.028	+0.2	124	0.130	+24.8	
δ Aql	24.0	+03 03	3.38	+0.31	F0 IV	0.062	+2.3	53	0.267	-29.9	
β Cyg A	29.5	$+2754$	3.07	+1.12	K3 II: +B :	0.004	-2.4	410	0.009	-24.0	$B 5.11^{\mathrm{m}} 35^{\prime \prime} \quad$ Albireo
$\delta \operatorname{Cyg} A B$	44.0	+4504	2.87	-0.03	B9.5 III	0.021	-1.7	270	0.060	-21	A $2.91{ }^{\text {m }}$ B $6.44^{\mathrm{m}} 2^{\prime \prime}$
γ Aql	44.8	+1032	2.67	+1.48	K3 II	0.006	-2.4	340	0.012	-02.1	
α Aql	49.3	+08 47	0.77	+0.22	A7 IV, V	0.198	+2.2	16.5	0.658	-26.3	Altair

Star	R.A. 1970 Dec.			V	$\boldsymbol{B}-\boldsymbol{V}$	Type	π	\mathbf{M}_{V}	D	$\boldsymbol{\mu}$	R	
	h		${ }^{\circ}$ '				"		$1 . y$.	"	km./sec.	
θ Aql	20	09.8	-00 54	3.31	-0.07	B9.5 III	0.008	-1.7	330	0.034	-27.3	
$\beta \operatorname{Cap} A$		19.3	-1453	3.06	$+0.76$	comp.	0.005	+0.1	130	0.039	-18.9	Type gK0: + late B; B $5.97^{\mathrm{m}} 205^{\prime \prime}$
γ Cyg		21.1	$+4009$	2.22	+0.66	F8 Ib	$-.006$	-4.6	750	0.001	-07.5	
α Pav		23.3	-56 50	1.95	-0.20	B3 IV		-2.9	310	0.087	+02.0	Peacock
α Ind		35.5	-47 23	3.11	$+1.00$	K0 III	0.039	$+1.1$	84	0.082	-01.1	
α Cyg		40.4	+45 10	1.26	+0.09	A2 Ia	$-.013$	-7.1	1600	0.003	-04.6	Deneb
β Pav		42.3	-66 19	3.45	+0.16	A5 III	0.026	-0.1	160	0.046	+09.8	
η Cep		44.7	+6143	3.41	+0.92	K0 IV	0.071	$+2.7$	46	0.825	-87.3	
ε Cyg		45.0	$+3351$	2.46	$+1.03$	K0 III	0.044	+0.7	74	0.481	-10.3	
$\zeta \mathrm{Cyg}$	21	11.7	$+3006$	3.25:		G8 II	0.021	-2.2	390	0.056	+17.4	
α Cep		17.9	+6228	2.44	+0.24	A7 IV, V	0.063	+1.4	52	0.156	-10	Alderamin
β Cep		28.3	$+7025$	3.15 v	$-0.22 \mathrm{v}$	B2 III	0.005	-4.2	980	0.014	-08.2	β CMa R 3.14-3.16, 0.19 ${ }^{\text {d }}$
β Aqr		30.0	-05 43	2.86	$+0.82$	G0 Ib	0.000	-4.6	1030	0.017	+06.5	
$\varepsilon \operatorname{Peg} A$		42.7	+09 45	2.31	+1.55	K2 Ib	$-.005$	-4.6	780	0.025	+04.7	B11 ${ }^{\text {m }} 82^{\prime \prime}$ Enif
δ Cap		45.4	-1616	2.92 v	+0.29	A6m	0.065	$+2.0$	50	0.392	-06.3	Var. R 2.88-2.95
γ Gru		52.1	-3730	3.03	-0.10	B8 III:	0.008	-3.1	540	0.102	-02.1	
$\alpha \mathrm{Aqr}$	22	04.2	-00 28	2.96	+0.96	G2 Ib	0.003	-4.6	1080	0.016	+07.5	
α Gru		06.3	-47 07	1.76	-0.14	B5 V	0.051	+0.3:	64:	0.194	+11.8	Al Na'ir
ζ Cep		09.8	$+5803$	3.31	+1.55	K1 Ib	0.019	-4.6	1240	0.015	-18.4	
α Tuc		16.4	-60 24	2.87	+1.40	K3 III-IV	0.019	+1.5	62	0.079	+42.2	
$\delta \operatorname{Cep} A$		28.1	$+5816$	3.96 v	+0.66v	F5-G2 Ib	0.005	-4.0	1300	0.012	-16.8	Cep. $R 3.51-4.42,5.4^{\text {d }}, B 6.19^{\mathrm{m}} 41^{\prime \prime}$
$\zeta \mathrm{Peg}$		40.0	+10 41	3.40:	-0.08:	B8 V	$-.004$	-0.6	210	0.077	+07	
β Gru		40.9	-4702	2.17 v	$+1.59$	M3 II	0.003	-2.5	280	0.134	$+01.6$	Var. R 2.11-2.23
$\eta \mathrm{Peg}$		41.6	$+3004$	2.95	+0.85	G8 II: + F?	-. 002	-2.2	360	0.027	$+04.3$	
$\delta \mathrm{Aqr}$		53.1	-1559	3.28	$+0.08$	A3 V	0.039	+1.2	84	0.047	$+18.0$	
α PsA		56.0	-2947	1.19	$+0.10$	A3 V	0.144	+2.0	22.6	0.367	+06.5	Fomalhaut
$\boldsymbol{\beta}$ Peg	23	02.3	$+2755$	2.5 v	$+1.67$	M2 II-III	0.015	-1.5	210	0.234	+08.7	Var. R 2.4-2.7 Scheat
α Peg		03.3	+1502	2.50	-0.03	B9.5 III	0.030	-0.1	109	0.071	-03.5	Markab
γ Cep		38.1	+7727	3.20	+1.02	K1 IV	0.064	+2.2	51	0.168	-42.4	

THE NEAREST STARS

By Alan H. Batten and Russell O. Redman

The accompanying table is similar to one that has been published in the Handbook for several years past. Like its predecessor, it has been based on the work of Professor van de Kamp who published in the Publications of the Astronomical Society of the Pacific for 1969 a revision of his list of the nearest stars. The new list contains three new stars (two of them forming a binary system) and three new unseen companions of stars already in the list. In addition, many distances have been revised, and this has changed the order of stars in the list. The relative luminosities in the last column have also been changed a little, partly because of the revisions of distances, but also because of a small change in the adopted absolute magnitude of the sun.

Measuring the distances of the stars is one of the most difficult and most important tasks of the observational astronomer. As the earth travels around the sun each year, the directions of the nearer stars seem to change very slightly when measured against the background of the more distant stars. This change is called annual parallax. Even for the nearest star, the parallax is less than one second of arc-which is the angle subtended by a penny at a distance of about 2.5 miles. That explains the difficulty of the task. Its importance stems from the fact that all our knowledge of the luminosities of stars, and hence of the structure of the galaxy, depends on the relatively few stellar distances that can be directly and accurately measured. To describe these vast distances, astronomers have invented new units. The most familiar is the light-year-the distance light travels in a year, nearly six million million miles. More convenient in many calculations is the parsec, which is about 3.26 light-years. The distance in parsecs is simply the reciprocal of the parallax.

The table gives the name and position of each star, the annual parallax π, the distance in light-years D, the spectral type, the proper motion μ in seconds of arc per year (that is the apparent motion of the star across the sky each year-nearby stars often have large proper motions), the total space velocity W in km ./sec., if known, the visual apparent magnitude and the luminosity in terms of the sun. In column 6, $w d$ stands for white dwarf, and e indicates the presence of emission lines in the spectrum. Note how very few stars in our neighbourhood are brighter than the sun. There are no very luminous or very hot stars at all. Most stars in this part of the galaxy are small, cool, and insignificant objects.

The list contains 59 stars, including the sun, and seven unseen companions. Thirty-one of these objects are either single stars or have only unseen companions. There are eleven double-star systems and two triple systems. Of the unseen companions, one of the most interesting is that of Barnard's Star. Van de Kamp has shown that the observed perturbations in the motion of Barnard's Star can be explained on the assumption that the star is accompanied by a body about twice the size of Jupiter. Alternatively, two objects each about the size of Jupiter could produce the observed perturbations. Perhaps this star has the first planetary system to be discovered outside our own system.

THE NEAREST STARS

Name	1970		π	D	Sp.		W	m	L
	α	δ							
	h m		'	1.y.			km./sec.		
Sun α Cen \mathbf{A}		-60 43	0.760	4.3	G2	3.68		-26.8 0.1	1.0
		-60 43			K5			1.5	0.36
C	1427	-62 33			M5e			11.0	0.00006
Barnard's*	1756	+. 0436	. 552	5.9	M5	10.30	140	9.5	0.00044
Wolf 359	1055	+0713	. 431	7.6	M6e	4.84	55	13.5	0.00002
Lal. 21185*	1102	+3610	. 402	8.1	M2	4.78	103	7.5	0.0052
Sirius A	644	-1641	. 377	8.6	A1	1.32	18	-1.5	${ }^{23.008}$
$\begin{aligned} & \text { Luy. } 726-8 \mathrm{~B} \end{aligned}$	137	-1807	. 365	8.9	wd M6e	3.35	52	7.2 12.5	0.008 0.00006
Luy. ${ }^{\text {B6-8 }}$		-18 07			M6e			13.0	0.00004
Ross 154	1848	-23 51	. 345	9.4	M5e	0.74	12	10.6	0.0004
Ross 248	2340	+4401	. 317	10.3	M6e	1.82	86	12.2	0.00011
ε Eri	0332	-0934	. 305	10.7	K2	0.97	22	3.7	0.301
Luy. 789-6	2237	-15 31	. 302	10.8	M6	3.27	79	12.2	0.00012
Ross 128	1146	+0101	. 301	10.8	M5	1.40	26	11.1	0.00033
61 Cyg A	2106	+38 36	. 292	11.2	K5	5.22	106	5.2	0.083
ε Ind	2202	-5655	. 291	11.2	K5	4.67	86	4.7	0.040 0.13
Procyon A	0738	+0518	. 287	11.4	F5	1.25	21	0.3	7.6
B					wd			10.8	0.0005
$\Sigma 2398$ A	1842	+59 35	. 284	11.5	M3. 5	2.29	39	8.9	0.0028
					M4			9.7 8.1	$\begin{aligned} & 0.0013 \\ & 0.0058 \end{aligned}$
Groom. $34 \underset{\text { B }}{\text { A }}$	0017	+4351	. 282	11.6	M1	2.91	52	88.1	$\begin{aligned} & 0.0058 \\ & 0.00040 \end{aligned}$
Lacaille 9352	2304	-3602	. 279	11.7	M2	6.87	117	7.4	0.012
τ Ceti	0143	-16 06	. 273	11.9	G8	1.92	37	3.5	0.44
BD $+5^{\circ} 1668^{*}$	0726	+0528	266	12.2	M4	3.73	71	9.8	0.0014
Lacaille 8760	2115	-39 00	. 260	12.5	M1	3.46	67	6.7	0.025
Kapteyn's	0511	-4500	256	12.7	M0	8.79	292	8.8	0.0040
Kruger 60 A	2227	+5733	. 254	12.8	M4 M6	0.87	31	9.7 11.2	0.0017 0.00044
Ross 614 A	0628	-0248	. 249	13.1	M5e	0.97	30	11.3	0.0004
B					?			14.8	0.00002
BD $-12^{\circ} 4523$	1629	-1235	. 249	13.1	M5	1.18	38	10.0	0.0013
van Maanen's	0047	+0516	. 234	13.9	$w d \mathrm{~F}$	2.98	270	12.4	0.00017
Wolf 424 A	1232	+0912	. 229	14.2	M6e	1.87	39	12.6 12.6	0.00014
CD-37 ${ }^{\circ}{ }_{15492}^{\text {B }}$	0003	-37 30	225	14.5	M6e	6.09	130	12.6 8.6	0.00014 0.0058
Groom. 1618	1009	+4936	. 217	15.0	M0	1.45	40	6.6	0.040
CD-46 ${ }^{\circ} 11540$	1727	-46 53	216	15.1	M4	1.15		9.4	0.0030
CD-49 ${ }^{\circ} 13515$	2131	-49 08	214	15.2	M3	0.78		8.7	0.0058
CD-44 ${ }^{\circ} 11909$	1736	-44 17	213	15.3	M5	1.14		11.2	0.00063
Luy. 1159-16	0158	+1257	212	15.4	(M7)	2.08		12.3	0.00023
Lai. 25372	1344	+1504	. 208	15.7	M3.5	2.30	55	8.5	0.0076
AOe 17415-6*	1737	+6822	. 207	15.7	M3.5	1.31	34	9.1	0.0044
CC 658	1144	-64 39	. 206	15.8	wd	2.69		11.0	0.0008
Ross 780	2251	-14 25	. 206	15.8	M5	1.17	28	10.2	0.0016
o^{2} Eri A	0414	-0742	. 205	15.9	K0	4.08	104		
$\stackrel{\text { B }}{\text { C }}$					${ }_{\text {w }}^{\text {M }}$ M 4			9.9 11.2	$\begin{aligned} & 0.0027 \\ & 0.00063 \end{aligned}$
BD $+20^{\circ} 2465^{*}$	1018	$+2001$. 202	16.1	M4.5	0.49	15	9.4	0.0036
Altair	1949	+08 47	. 196	16.6	A7	0.66	31	0.8	
70 Oph. A	1804	+0231	. 195	16.7	K1	1.13	29	4.2	0.44
B					K6			6.0	0.083
$\mathrm{AC}+79^{\circ} 3888$	1145	+7850	. 194	16.8	M4	0.87	121	11.0	0.0009
BD + 43° 4305*	2246	+4411	. 193	16.9	M5e	0.84	21	10.1	0.0021
Stein 2051 A	0429	+5856	. 192	17.0	(M5) $w d$	2.37		11.1 12.4	$\begin{aligned} & 0.0008 \\ & 0.0003 \end{aligned}$

*Star has an unseen component.

VARIABLE STARS

The systematic observation of variable stars is an area in which an amateur can make a valuable contribution to astronomy. For beginning observers, maps of the fields of four bright variable stars are given below. In each case, the magnitudes (with decimal point omitted) of several suitable comparison stars are given. Using two comparison stars, one brighter, one fainter than the variable, estimate the brightness of the variable in terms of these two stars. Record also the date and time of observation. When a number of observations have been made, a graph of magnitude versus date may be plotted. The shape of this "light curve" depends on the type of variable. Further information about variable star observing may be obtained from the American Association of Variable Star Observers, 187 Concord Ave., Cambridge, Mass. 02138.

In the tables the first column, the Harvard designation of the star, gives the 1900 position: the first four figures give the hours and minutes of R.A., the last two figures give the Dec. in degrees, italicised for southern declinations. The column headed Max. gives the mean maximum magnitude. The Period is in days. The Epoch gives the predicted date of the earliest maximum occurring this year; by adding the period to this epoch other dates of maximum may be found. The list of long-period variables has been prepared by the American Association of Variable Star Observers and includes the variables with maxima brighter than mag. 8.0, and north of Dec. -20°. These variables may reach maximum two or three weeks before or after the listed epoch and may remain at maximum for several weeks. The second table contains stars which are representative of other types of variable. The data are taken from "The General Catalogue of Variable Stars" by Kukarkin and Parenago and for eclipsing binaries from Rocznik Astronomiczny Obserwatorium Krakowskiego, 1971, International Supplement.

LONG-PERIOD VARIABLE STARS

Variable	Max. m	$\begin{gathered} \text { Per } \\ \mathrm{d} \end{gathered}$	$\begin{gathered} \text { Epoch } \\ 1972 \end{gathered}$	Variable	Max. m	$\begin{gathered} \mathrm{Per} \\ \mathrm{~d} \end{gathered}$	$\begin{gathered} \text { Epoch } \\ 1972 \end{gathered}$
001755 T Cas	7.8	445	May 26	142539 V Boo	7.9	258	Apr. 13
001838 R And	7.0	409	May 28	143227 R Boo	7.2	223	Mar. 15
021143 W And	7.4	397	Aug. 3	151731 S CrB	7.3	361	Feb. 2
021403 o Cet	3.4	332	May 30	154639 V CrB	7.5	358	Nov. 20
022813 U Cet	7.5	235	Apr. 25	154615 R Ser	6.9	357	Oct. 16
023133 R Tri	6.2	266	May 31	160625 RU Her	8.0	484	Aug. 20
043065 T Cam	8.0	374	Dec. 3	162119 U Her	7.5	406	Jan. 3
045514 R Lep	6.8	432	Dec. 6	162112 V Oph	7.5	298	July 8
050953 R Aur	7.7	459		163266 R Dra	7.6	245	Jan. 9
054920 U Ori	6.3	372	July 31	164715 S Her	7.6	307	Feb. 28
061702 V Mon	7.0	335	Aug. 30	170215 R Oph	7.9	302	Aug. 12
065355 R Lyn	7.9	379	Feb. 10	171723 RS Her	7.9	19	Apr. 25
070122aR Gem	7.1	370	May 27	180531 T Her	8.0	165	Feb. 7
070310 R CMi	8.0	338	Jan. 5	181136 W Lyr	7.9	196	Jan.
072708 S CMi	7.5	332	Aug. 16	183308 X Oph	6.8	334	June
081112 R Cnc	6.8	362	Dec. 1	190108 R Aql	6.1	300	July 5
081617 V Cnc	7.9	272	Sept. 9	191017 T Sgr	8.0	392	Feb.
084803 S Hya	7.8	257	Apr. 19	191019 R Sgr	7.3	269	June
085008 T Hya	7.8	288	Feb. 4	193449 R Cyg	7.5	426	Oct. 10
093934 R LMi	7.1	372	Feb. 1	194048 RT Cyg	7.3	190	Feb.
094211 R Leo	5.8	313	Feb. 25	194632χ Cyg	5.2	407	
103769 R UMa	7.5	302	Mar. 6	201647 U Cyg	7.2	465	Jan. 13
121418 R Crv	7.5	317	July 2	204405 T Aqr	7.7	202	Jan. 23
122001 SS Vir	6.8	355	Jan. 28	210868 T Cep	6.0	390	Apr. 13
123160 T UMa	7.7	257	July 11	213753 RU Cyg	8.0	234	May 19
123307 R Vir	6.9	146	Jan. 8	230110 R Peg	7.8	378	Jan. 3
123961 S UMa	7.8	226	June 1	230759 V Cas	7.9	28	Feb. 21
131546 V CVn	6.8	192	Apr. 9	231508 S Peg	8.0	319	May 24
132706 S Vir	7.0	378	Dec. 20	233815 R Aqr	6.5	387	Oct. 29
134440 R CVn	7.7	328	Oct. 9	235350 R Cas	7.0	431	May 8
142584 R Cam	7.9	270	Aug. 19	235715 W Cet	7.6	351	Mar. 18

OTHER TYPES OF VARIABLE STARS

Variable		Max. m	Min. m	Type	Sp. Cl.	$\underset{\mathrm{d}}{\text { Period }}$	$\begin{gathered} \text { Epoch } 1972 \\ \text { E.S.T. } \end{gathered}$
005381	U Cep	6.7	9.8	Ecl.	B8+gG2	2.49302	Jan. 1.32*
025838	p Per	3.3	4.0	Semi R	M4	33-55,1100	
030140	β Per	2.1	3.3	Ecl.	B8+G	2.86731	Jan. 3.77*
035512	λ Tau	3.5	4.0	Ecl.	B3	3.952952	Jan. 2.33*
060822	η Gem	3.1	3.9	Semi R	M3	233.4	
061907	T Mon	6.4	8.0	$\delta \mathrm{Cep}$	F7-K1	27.0205	Jan. 7.54
065820	$\zeta \mathrm{Gem}$	4.4	5.2	$\delta \mathrm{Cep}$	F7-G3	10.15172	Jan. 2.63
154428	R Cr B	5.8	14.8	R CriB	cFpep		-
171014	$\alpha \mathrm{Her}$	3.0	4.0	Semi R	M5	50-130, 6 yrs.	
184205	R Sct	6.3	8.6	RVTau	G0e-K0p	144	
184633	β Lyr	3.4	4.3	Ecl.	B8	12.931163	Jan. 2.96*
192242	RR Lyr	6.9	8.0	RR Lyr	A2-F1	0.5668223	$\begin{array}{ll}\text { Jan. } & 1.49 \\ \\ \text { Jan. }\end{array}$
194700	${ }^{\eta} \mathrm{C}$ Aql	4.1 4.1	5.2 5.2	δ Cep δ Cep	F6-G4	7.176641 5.36631	$\begin{array}{ll}\text { Jan. } & 6.71 \\ \text { Jan. } & 1.68\end{array}$
222557	δ Cep	4.1	5.2	δ Cep	F5-G2	5.366341	Jan. 1.68

[^1]
DOUBLE AND MULTIPLE STARS

By Charles E. Worley

Many stars can be separated into two or more components by use of a telescope The larger the aperture of the telescope, the closer the stars which can be separated under good seeing conditions. With telescopes of moderate size and average optical quality, and for stars which are not unduly faint or of large magnitude difference, the minimum angular separation is given by 4.6/D, where \mathbf{D} is the diameter of the telescope's objective in inches.

The following lists contain some interesting examples of double stars. The first list presents pairs whose orbital motions are very slow. Consequently, their angular separations remain relatively fixed and these pairs are suitable for testing the performance of small telescopes. In the second list are pairs of more general interest, including a number of binaries of short period for which the position angles and separations are changing rapidly.

In both lists the columns give, successively: the star designation in two forms; its right ascension and declination for 1970; the combined visual magnitude of the pair and the individual magnitudes; the apparent separation and position angle for 1972. 0; and the period, if known.

Many of the components are themselves very close visual or spectroscopic binaries. (Other double stars appear in the table of The Brightest Stars, p. 75, and of The Nearest Stars, p. 86.)

Star		A.D.S.			1970 Dec		Magnitudes comb. A B			Sep. P.A. 1972.0		$\begin{gathered} \mathbf{P} \\ \text { (app.) } \\ \text { years } \end{gathered}$	
		h	m										
λ	Cas		434	00	30.1	$+54$	22	4.9	5.5	5.8	0.6	180	640
α	Psc	1615	02	00.4	+02	37		4.3	5.3	1.8	287	720	
33	Ori	4123	05	29.6	+03	16	5.7	6.0	7.3	1.8	27		
O2	156	5447	06	45.7	+18	14	6.1	6.8	7.0	0.5	249	1100	
Σ	1338	7307	09	19.2	+38	19	5.8	6.5	6.7	1.1	242	220	
35	Com	8695	12	51.8	+21	25	5.1*	5.2	7.4	0.9	161	670	
Σ	2054	10052	16	23.3	+61	45	5.6	6.0	7.2	1.1	355		
ε^{1}	Lyr \dagger	11635	18	43.4	+39	39	5.1	5.4	6.5	2.7	357	1200	
ε^{2}	Lyr \dagger	11635	18	43.4	+39	36	4.4	5.1	5.3	2.3	87	600	
π	Aql	12962	19	47.4	+11	44	5.6	6.0	6.8	1.4	110		
σ	Cas	17140	23	57.4	+55	36	5.2	5.4	7.5	3.0	326		
η	Cas	671	00	47.3	+57	39	3.5*		7.2	11.6	302	480	
Σ	186	1538	01	54.3	+01	42	6.0	6.8	6.8	1.4	56		
γ	And $\mathbf{A B}$	1630	02	02.0	+42	12	2.1*	2.1	5.4	9.8	64		
α	C_{Ma}	5423	06	43.9	-16	41	-1.4-	1.4	8.5	11.3	64	50	
α	Gem	6175	07	32.7	+31	58	1.6	2.0	2.8	1.9	123	420	
ζ	Cnc AB	6650	08	10.4	+17	44	5.0	5.6	5.9	1.0	321	60	
ζ	Cnc AC	6650	08	10.4	+17	44	5.2	5.4	7.3	5.9	84	1150	
$+42$	${ }^{\circ} 1956$	KUI	08	58.7	+41	53	3.9	4.1	6.2	0.5	182	22	
	Leo	7724	10	18.3	+20	00	1.8	2.1	3.4	4.4	122	620	
ξ	U Ma AB	8119	11	16.7	+31	42	3.8	4.3	4.8	3.1	121	60	
$\boldsymbol{\gamma}$	Vir	8630	12	40.1	-01	18	2.8	3.5	3.5	4.4	302	170	
Σ	1785	9031	13	47.7	+27	08	7.0	7.6	8.0	3.3	154	155	
ζ	Boo	9343	14	39.8	+13	52	3.8	4.5	4.5	1.1	307	125	
ξ	Boo	9413	14	50.0	+19	14	4.5	4.7	6.8	7.1	338	150	
ζ	Her	10157	16	40.2	+31	39	2.8	2.9	5.5	1.1	207	35	
α	Her AB	10418	17	13.3	+14	26	3.1*	3.2	5.4	4.6	108		
Σ	2173	10598	17	28.8	-01	02	5.3	6.0	6.1	0.5	134	46	
70	Oph	11046	18	03.9	+02	32	4.0	4.2	6.0	2.1	39	88	
β	648	11871	18	56.0	+32	52	5.2	5.4	7.5	0.4	114	60	
4	Aqr	14360	20	49.9	-05	45	6.0	6.4	7.2	1.0		150	
τ	Cyg	14787	21	13.6	+37	54	3.7	3.8	6.4	1.0	178	50	
Σ	3050	17149	23	57.9	+33	34	5.8	6.5	6.7	1.6	299	800	

[^2]
MESSIER'S CATALOGUE OF DIFFUSE OBJECTS

This table lists the 103 objects in Messier's original catalogue. The columns contain: Messier's number (M), the number in Dreyer's New General Catalogue (NGC), the constellation, the 1970 position, the integrated visual magnitude (m_{v}), and the class of object. OC means open cluster, GC, globular cluster, PN, planetary nebula, DN, diffuse nebula, and G, galaxy. The type of galaxy is also indicated, as explained in the table of external galaxies. An asterisk indicates that additional information about the object may be found elsewhere in the Handbook, in the appropriate table.

M NGC	Con	α	1970	m_{V}	Type	M	NGC	Con	$\alpha \quad 197$	0 \%	m_{V}	Type
11952	Tau	532.7	+2201	11.3	DN*	56	6779	Lyr	1915.4	$+3007$	8.33	GC
27089	Aqr	2131.9	-00 57	6.27	GC*	57	6720	Lyr	1852.5	+3300	9.0	PN*
35272	CVn	1340.8	+28 32	6.22	GC*	58	4579	Vir	1236.2	+1159	9.9	G-SBb
46121	Sco	1621.8	-26 26	6.07	GC*	59	4621	Vir	1240.5	+1150	10.3	G-E
5 5904	Ser	$15 \quad 17.0$	+02 13	5.99	GC*	60	4649	Vir	1242.1	+1144	9.3	G-E
66405	Sco	1738.1	-32 11	6	OC*	61	4303	Vir	1220.3	+04 39	9.7	G-Sc
76475	Sco	1751.9	-34 48	5	OC*	62	6266	Sco	1659.3	-3004	7.2	GC
86523	$\mathbf{S g r}$	1801.8	-24 23		DN*	63	5055	CVn	1314.4	+42 11	8.8	G-Sb*
96333	Oph	$17 \quad 17.5$	-18 29	7.58	GC	64	4826	Com	1255.2	+2151	8.7	G-Sb*
106254	Oph	1655.5	-04 04	6.40	GC*	65	3623	Leo	1117.3	+1316	9.6	G-Sa
116705	Sct	1849.5	-06 19	7	OC*	66	3627	Leo	1118.6	$+1310$	9.2	G-Sb
126218	Oph	1645.6	-01 54	6.74	GC*	67	2682	Cnc	849.5	+1156	7	OC*
136205	Her	1640.6	+36 31	5.78	GC*	68	4590	Hya	1237.8	-2635	8.04	GC
146402	Oph	17 36.0	-0314	7.82	GC	69	6637	$\underset{\mathrm{Sgr}}{ }$	$\begin{array}{ll}18 & 29.4 \\ 18 & 41.3\end{array}$	-32 23 -32	7.7	GC
157078	Peg	2128.6	$+1202$	6.29	GC*	70	6681	Sgr	1841.3	-32 19	8.2	GC
166611	Ser	1817.2	-13 48	7	OC*	71	6838	Sge	1952.4	+1842	6.9	GC
176618	Sgr	18 19.1	-1612	7	DN*	72	6981	Aqr	2051.8	-1241	9.15	GC
186613	Sgr	1818.2	-17 09	7	OC	73	6994	Aqr	2057.3	-1246		OC
196273	Oph	1700.7	-26 13	6.94	GC	74	628	Psc	135.1	+1538	9.5	G-Sc
206514	Sgr	1800.6	-2302		DN*	75	6864	Sgr	2004.3	-22 01	8.31	GC
216531	Sgr	1802.8	-22 30	7	OC	76	650	Per	140.3	+5125	11.4	PN*
226656	Sgr	1834.6	-23 56	5.22	GC**	77	1068	Cet	241.1	-00 07	9.1	G-Sb
236494	Sgr	1755.1	-19 00	6	OC*	78	2068	Ori	$\begin{array}{lll}5 & 45.3 \\ 5 & 22.9\end{array}$	+00 02		DN
246603	${ }_{\text {Sgr }}^{\text {Sgr }}$	$\begin{array}{ll}18 & 16.7 \\ 18 & 29.9\end{array}$	-18 27	6	OC	79	1904	Lep	522.9 1615.2	-24 33	7.3	GC
25 4725 \dagger	$\mathbf{S g r}$	$18 \quad 29.9$	-19 16	6	OC*	80	6093	Sco	1615.2	-22 55	7.17	GC
266694	Sct	1843.6	-09 26	9	OC	81	3031	UMa	953.4	+69 12	6.9	G-Sb*
276853	Vul	1958.4	+22 38	8.2	PN*	82	3034	UMa	953.6	+69 50	8.7	G-Irr*
286626	Sgr	1822.6	-24 52	7.07	GC	83	5236	Hya	1335.3	-29 43	7. 5	G-Sc*
296913	Cyg	2022.9	+38 25	8	OC	84	4374	Vir	1223.6	+1303	9.8	G-E
307099	Cap	2138.6	-2318	7.63	GC	85	4382	Com	1223.8	+1821	9.5	G-SO
31224	And	041.1	+4106	3.7	G-Sb*	86	4406	Vir	1224.6	+1306	9.8	G-E
32221	And	041.1	+40 42	8.5	G-E*	87	4486	Vir	1229.2	+1233	9.3	G-Ep
$33 \quad 598$	Tri	132.2	+30 30	5.9	G-Sc*	88	4501	Com	1230.4	+1435	9.7	G-Sb
341039	Per	240.1	+4240	6	OC	89	4552	Vir	$12 \mathrm{34}$.	+1243 +1319	10.3 9.7	G-E
352168	Gem	607.0	+2421	6	OC*	90	4569	Vir	1235.3	+1319	9.7	G
361960	Aur	534.3	+3405	6	OC	91	-	-		- 11		M58?
372099	Aur	550.4	+32 33	6	OC*	92	6341	Her	1716.2	+4311	6.33	GC*
381912	Aur	526.6	+3548	6	${ }^{\text {OC }}$	93	2447	Pup	743.2 1249.6	+2348 +417		
397092	Cyg	2131.1	+48 18	6	OC	94	4736	CVn	1249.6 10 42.3	+4117 +1152	8.1 9.9	$\left\lvert\, \begin{aligned} & \text { G-Sb* } \\ & \mathbf{G - S B b} \end{aligned}\right.$
40 -	UMa				2 stars	95	3351	Leo	1042.3	+1152	9.9	G-SBb
412287	CMa	645.8	-20 42	6	OC*	96	3368	Leo	1045.1	+1159	9.4	G-Sa
421976	Ori	533.9	-05 24		DN*	97	3587	UMa	1113.1	+55 11	11.1	PN^{*}
431982	Ori	534.1	-05 18		DN	98	4192	Com	1212.2	+1504	10.4	G-Sb
442632	Cnc	838.2	$+2006$	4	OC*	99	4254	Com	$\begin{array}{ll}12 & 17.3 \\ 12 & 21.4\end{array}$	+14 35	9.9	G-Sc
45	Tau	345.7	$+2401$	2	OC*	100	4321	Com	1221.4	+15 59	9.6	G-Sc
462437	Pup	740.4	-14 45	7	OC*	101	5457	UMa	1402.1	$+5430$	8.1	
472422	Pup	735.1	-14 26	5	OC	102	581	-		60		M101?
482548	Hya	812.0	-05 41	6	OC	103	581	Cas	131.2	+60 32	7	OC
494472	Vir	1228.3	+08 10	8.9	G-E*							
502323	Mon	701.5	-08 18	7	OC		ndex	atalo	ue Numb			
515194	CVn	1328.6	+4721	8.4	G-Sc*							
527654	Cas	2322.9	+6126	7	OC							
535024	Com	1311.5	$+1820$	7.70	GC							
546715	Sgr	1853.2	-3031	7.7	GC							
556809	Sgr	1938.1	-31 01	6.09	GC*							

STAR CLUSTERS

By T. Schmidt-KALER

The star clusters for this list have been selected to include those most conspicuous. Two types of clusters can be recognized: open (or galactic), and globular. Globulars appear as highly symmetrical agglomerations of very large numbers of stars, distributed throughout the galactic halo but concentrated toward the centre of the Galaxy. Their colour-magnitude diagrams are typical for the old stellar population II. Open clusters appear usually as irregular aggregates of stars, sometimes barely distinguished from random fluctuations of the general field. They are concentrated to the galactic disk, with colour-magnitude diagrams typical for the stellar population I of the normal stars of the solar neighbourhood.

The first table includes all well-defined open clusters with diameters greater than 40^{\prime} or integrated magnitudes brighter than 5.0, as well as the richest clusters and some of special interest. NGC indicates the serial number of the cluster in Dreyer's New General Catalogue of Clusters and Nebulae, M, its number in Messier's catalogue, α and δ denote right ascension and declination, P, the apparent integrated photographic magnitude according to Collinder (1931), D, the apparent diameter in minutes of arc according to Trumpler (1930) when possible, in one case from Collinder; m, the photographic magnitude of the fifth-brightest star according to Shapley (1933) when possible or from new data, in italics; r, the distance of the cluster in kpcs ($1 \mathrm{kpc}=3263$ light-years), as a mean from the values given by Johnson, Hoag et al. (1961), and by Becker (1963/64), in a few cases from other sources, with values in italics from Trumpler; $S p$, the earliest spectral type of cluster stars as determined from three-colour photometry, or from spectral types in italics. The spectral type also indicates the age of the cluster, expressed in millions of years, thus: $\mathrm{O} 5=0.5 ; \mathrm{b} 0=5 ; \mathrm{b} 5=50 ; \mathrm{a} 0=300 ; \mathrm{a} 5=1000 ; \mathrm{f} 0=3000 ; \mathrm{f} 5=10,000$.

The second table includes all globular clusters with a total apparent photographic magnitude brighter than 7.6. The first three columns are as in the first table, followed by B, the total photographic magnitude; D, the apparent diameter in minutes of arc containing 90 per cent of the stars, and in italics, total diameters from miscellaneous sources; $S p$, the integrated spectral type; m, the mean blue magnitude of the 25 brightest stars (excluding the five brightest); N, the number of known variables; r, the distance in kpcs (absolute magnitude of RR Lyrae variables taken as $M_{B}=$ +0.5); V, the radial velocity in $\mathrm{km} / \mathrm{sec}$. The data are taken from a compilation by Arp (1965); in case no data were available there, various other sources have been used, especially H. S. Hogg's Bibliography (1963).

NGC	Open Clusters							
	$\alpha 1970$ \%		P	D	m	r	Sp	Remarks
	h m	- ,						
188	0041.0	+85 11	9.3	14	14.6	1.55	f5	oldest known
752	0156.0	+3732	6.6	45	9.6	0.38	f0	
869	0216.9	+5701	4.3	30	9.5	2.26	b0	h Per
884	0220.3	+5659	4.4	30	9.5	2.41	b0	χ Per, M supergiants
Perseus	0320	+4830	2.3	240	5	0.17	b3	moving cl., α Per
Pleiades	0345.3	+2402	1.6	120	4.2	0.125	b7	M45, best known
Hyades	0418	+1534	0.8	400	1.5	0.040	a2	moving cl. in Tau*
1912	0526.6	+3549	7.0	18	9.7	1.37	b8	movis
1976/80	0533.9	-05 24	2.5	50	5.5	0.40	05	Trapezium, very young
2099	0550.4	+3232	6.2	24	9.7	1.28	b8.	M37
2168	0607.0	+24 21	5.6	29	9.0	0.87	b5	M35
2232	0625.0	-04 44	4.1	20	7	0.49	b3	
2244	0630.8	+0453	5.2	27	8.0	1.65	05	Rosette, very young
2264	0639.4	+0955	4.1	30	8.0	0.73	09	S Mon
2287	0645.8	-20 42	5.0	32	8.8	0.67	b3	M41
2362	0717.6	-24 53	3.8	7	9.4	1.53	b0	$\tau \mathrm{CMa}$

[^3]| NGC | $\alpha 1970$ S | | P | D | m | r | Sp | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | h m | - , | | | | | | |
| 2422 | 0734.2 | -14 26 | 4.3 | 30 | 9.8 | 0.48 | b4 | |
| 2437 | 0740.4 | -14 45 | 6.6 | 27 | 10.8 | 1.66 | b3 | M46 |
| 2451 | 0744.3 | -37 54 | 3.7 | 37 | 6 | 0.30 | b5 | |
| 2516 | 0757.8 | -60 49 | 3.3 | 50 | 10.1 | 0.37 | b9 | |
| 2546 | 0811.4 | -37 33 | 5.0 | 45 | 7 | 0.74 | b0 | |
| 2632 | 0838.4 | +2006 | 3.9 | 90 | 7.5 | 0.158 | a5 | Praesepe, M44 |
| IC2391 | 0839.4 | -52 57 | 2.6 | 45 | 3.5 | 0.15 | b3 | |
| IC2395 | 0840.1 | -48 05 | 4.6 | 20 | 10.1 | 0.90 | b2 | |
| 2682 | 0848.8 | +1156 | 7.4 | 18 | 10.8 | 0.83 | f2 | M67, old cl. |
| 3114 | 1001.7 | -59 58 | 4.5 | 37 | 7 | 0.85 | b6 | |
| IC2602 | 1042.2 | -64 14 | 1.6 | 65 | 6 | 0.16 | b2 | $\theta \mathrm{Car}$ |
| Tr 16 | 1044.0 | -59 33 | 6.7 | 10 | 10 | 1.95 | b0 | η Car and Nebula |
| 3532 | 1105.1 | -58 30 | 3.4 | 55 | 8.1 | 0.42 | b9 | |
| 3766 | 1134.7 | -61 27 | 4.4 | 12 | 8.1 | 1.63 | b0 | |
| Coma | 1223.6 | +2616 | 2.9 | 300 | 5.5 | 0.08 | a2 | Very sparse cl. |
| 4755 | 1251.8 | -60 10 | 5.2 | 12 | 7 | 1.34 | b3 | κ Cru, "jewel box" |
| 6067 | 1610.9 | -5408 | 6.5 | 16 | 10.9 | 2.10 | b3 | G and K supergiants |
| 6231 | 1651.9 | -41 45 | 8.5 | 16 | 7.5 | 1.82 | 05 | Osupergiants, WR-stars |
| Tr 24 | 1654.9 | -40 37 | 8.5 | 60 | 7.3 | 0.58 | 05 | |
| 6405 | 1738.1 | -32 12 | 4.6 | 26 | 8.3 | 0.57 | b4 | M6 |
| IC4665 | 1745.2 | +0544 | 5.4 | 50 | 7 | 0.33 | b5 | |
| 6475 | 1751.9 | -34 48 | 3.3 | 50 | 7.4 | 0.24 | b8 | M7 |
| 6494 | 1755.1 | -19 01 | 5.9 | 27 | 10.2 | 0.55 | b9 | M23 |
| 6523 | 1801.3 | -24 23 | 5.2 | 45 | 7 | 1.47 | O5 | M8, Lagoon neb. and very young cl. NGC6530 |
| 6611 | 1817.2 | -13 48 | 6.6 | 8 | 10.6 | 1.90 | O5 | M16, nebula |
| IC4725 | $18 \quad 29.9$ | -19 16 | 6.2 | 35 | 9.3 | 0.60 | b3 | M25, Cepheid, U Sgr |
| IC4756 | 1837.8 | +05 25 | 5.4 | 50 | 8.5 | 0.44 | a3 | |
| 6705 | 1849.5 | -06 19 | 6.8 | 12.5 | 12 | 1.72 | b8 | M11, very rich cl. |
| Mel 227 | 2006.7 | -79 25 | 5.2 | 60 | 9 | 0.24 | ${ }^{\text {b9 }}$ | |
| IC1396 | 2138.0 | +5722 | 5.1 | 60 | 8.5 | 0.73 | 06 | Tr 37 |
| 7790 | 2356.9 | +61 | 7.1 | 4.5 | 11.7 | 3.39 | b4 | C Ceph: CEa, CEb, CF Cas |

Globular Clusters

NGC	M	~ 1970 ס			B	D	Sp	m	N	r	V
		h	h m								
104	47 Tuc		022.6	-72 14	4.35	44	G3	13.54	11	5	-24
1851			513.0	-40 03	7.72:	11.5	F7		3	14.0	+309
2808			911.3	-64 44	7.4	18.8	F8	15.09	4	9.1	+101
5139	ω Cen		325.0	-47 09	4.5	65.4	F7	13.01	165	5.2	$+230$
5272	3		340.8	+28 32	6.86	9.3	F7	14.35	189	10.6	-153
5904	5		517.0	+02 12	6.69	10.7	F6	14.07	97	8.1	+49
6121	4	16	621.8	-26 27	7.05	22.6	G0	13.21	43	4.3	+65
6205	13		640.6	+36 31	6.43	12.9	F6	13.85	10	6.3	-241
6218	12		645.6	-0154	7.58	21.5	F8	14.07	1	7.4	-16
6254	10		655.5	-04 04	7.26	16.2	G1	14.17	3	6.2	+71
6341	92		176.2	+4311	6.94	12.3	F1	13.96	16	7.9	-118
6397			738.4	-53 40	6.9	19	F5	12.71	3	2.9	+11
6541			805.8	-43 45	7.5	23.2	F6	13.45	1	4.0	-148
6656	22		834.5	-23 57	6.15	26.2	F7	13.73	24	3.0	-144
6723			857.6	-36 40	7.37	11.7	G4	14.32	19	7.4	-3
6752		19	98.2	-60 02	6.8	41.9	F6	13.36	1	5.3	-39
6809	55	19	938.2	-3100	6.72	21.1	F5	13.68	6	6.0	+170
7078	15	21	128.6	+1202	6.96	9.4	F2	14.44	103	10.5	-107
7089		21	131.9	-00 58	6.94	6.8	F4	14.77	22	12.3	-5

GALACTIC NEBULAE

By René Racine

The following objects were selected from the brightest and largest of the various classes to illustrate the different types of interactions between stars and interstellar matter in our galaxy. Emission regions (HII) are excited by the strong ultraviolet flux of young, hot stars and are characterized by the lines of hydrogen in their spectra. Reflection nebulae (Ref) result from the diffusion of starlight by clouds of interstellar dust. At certain stages of their evolution stars become unstable and explode, shedding their outer layers into what becomes a planetary nebula (P1) or a supernova remnant (SN). Protostellar nebulae (PrS) are objects still poorly understood; they are somewhat similar to the reflection nebulae, but their associated stars, often variable, are very luminous infrared stars which may be in the earliest stages of stellar evolution. Also included in the selection are four extended complexes (Compl) of special interest for their rich population of dark and bright nebulosities of various types. In the table \mathbf{S} is the optical surface brightness in magnitude per square second of arc of representative regions of the nebula, and m^{*} is the magnitude of the associated star.

NGC	M	Con	$\alpha 1970$ \%		Type	Size	$\underset{\text { mag. }}{\mathbf{S}}$$\mathbf{s q}^{\prime}$	m	$\begin{aligned} & \text { Dist. } \\ & 10^{3} \\ & \text { l.y. } \end{aligned}$	Remarks
			h	-						
650/1	76	Per	0140.3	+5125	P1	1.5	20	17	15	
IC348		Per	0342.6	+ 3205	Ref	3	21	8	0.5	Nebulous cluster
1435		Tau	0345.7	+23 59	Ref	15	20	4	0.4	Merope nebula
1535		Eri	0412.8	-12 49	P1	0.5	17	12		
1952	1	Tau	0532.7	+2205	SN	5	19	16v	4	"Crab" + pulsar
1976	42	Ori	0533.8	-05 25	HII	30	18	4	1.5	Orion nebula
1999		Ori	0535.0	-06 45	PrS	1		10v	1.5	
$\zeta \mathrm{Ori}$		Ori	0539.3	-0157	Comp	2°			1.5	Incl. "Horsehead"
2068	78	Ori	0545.3	+0002	Ref	5	20		1.5	
IC443		Gem	0615.8	+2236	SN	40				
2244		Mon	0630.8	+0453	HII	50	21	7	3	Rosette neb.
2247		Mon	0631.5	+1020	PrS	2	20	9		
2261		Mon	0637.5	+0845	${ }^{\text {PrS }}$	2		12v	4	Hubble's var. neb.
2392		Gem	0727.4	+20 58	P1	0.3	18	10	10	Clown face neb.
3587	97	UMa	1113.0	+5511	P1	3	21	13	12	Owl nebula
${ }_{\theta} \mathrm{OOph}$		Oph	1623.8	$\begin{array}{r} -2323 \\ -2458 \end{array}$	Comp	$4^{\circ}{ }^{\circ}$			0.5	Bright + dark neb. Incl. "S" neb.
-60ph	20	$\underset{\text { Oph }}{\mathbf{O p h}}$	1720.1 1800.6	-24 -23 02	Comp	15	19		3.5	Trifid nebula
6523	8	$\stackrel{\text { Sgr }}{ }$	1801.8	-24 23	HII	40	18		4.5	Lagoon nebula
6543		Dra	1758.6	+66 37	P1	0.4	15	11	3.5	
6611	16	Ser	1817.2	-1348	HII	15	19	10	6	
6618	17	Sgr	1819.1	-1612	HII	20	19		3	Horseshoe neb.
6720	57	Lyr	1852.5	+3300	Pl	1.2	18	15	5	Ring nebula
6826		Cyg	1944.1	+50 27	P1	0.7	16	10	3.5	
6853	27	Vul	1958.2	+22 38	P1	7	20	13	3.5	Dumb-bell neb.
6888		Cyg	2011.2	+3819	HII	15				
${ }_{6} \gamma \mathrm{Cyg}$		Cyg	2021.1	+4010	Comp	6°				HII + dark neb.
6960/95		Cyg	2044.4	+30 36	SN	150			2.5	Cygnus loop
7000		Cyg	2057.8	+4412	HII	100	22		3.5	N. America neb.
7009		Aqr	2102.5	-1130	P1	0.5	16	12	3	Saturn nebula
7023		Cep	2101.3	+6803	Ref	5	21	I	1.3	
7027		Cyg	2106.0	+4207	${ }^{\text {Pl }}$	0.2	15	13		
7129		Cep	2142.3	+65 57	Ref	${ }^{3}$	21	10	2.5	Small cluster
7293 7662		Anr	2228.0 2324.5	-2057 +4222	P1 P1	${ }^{13} 0$	22	13	4	Helix nebula

RADIO SOURCES

By John Galt

Although several thousand radio sources have been catalogued most of them are only observable with the largest radio telescopes. This list contains the few strong sources which could be detected with amateur radio telescopes as well as representative examples of astronomical objects which emit radio waves.

Name	α (1970) δ		Remarks
	h m		
Tycho's s'nova	0024.0	+63 58	Remnant of supernova of 1572
Andromeda gal.	0041.0	+4106	Closest normal spiral galaxy
IC 1795, W3	0223.1	+6158	Multiple HII region, OH emission
PKS 0237-23	0238.7	-23 17	Quasar with large red shift $\mathrm{Z}=2.2$
NGC 1275, 3C 84	0317.8	+4124	Seyfert galaxy, radio variable
Fornax A	0321.2	-37 17	10th mag. SO galaxy
CP 0328	0330.5	+54 27	Pulsar, period $=0.7145 \mathrm{sec} ., \mathrm{H}$ abs'n.
Crab neb, M1	0532.6	+2200	Remnant of supernova of 1054
NP 0527	0532.6	+2200	Radio, optical \& X-ray pulsar
V 371 Orionis	0532.2	+0154	Red dwarf, radio \& optical flare star
Orion neb, M42	0533.8	-05 24	HII region, OH emission, IR source
IC 443	0615.5	+22 36	Supernova remnant (date unknown)
Rosette neb	0630.4	+04 53	HII region
YV CMa	0721.8	-20 41	Optical var. IR source, $\mathbf{O H}, \mathrm{H}_{2} \mathrm{O}$ emission
3C 273	1227.5	+02 13	Nearest, strongest quasar
Virgo A, M87	1229.3	+1233	EO galaxy with jet
Centaurus A	1323.6	-42 52	NGC 5128 peculiar galaxy
3C 295	1410.3	+52 21	21st mag. galaxy, 4,500,000 light years
Scorpio X-1	1618.2	-15 34	X-ray, radio optical variable
3C 353	1719.0	-00 57	Double source, probably galaxy
Kepler's s'nova	1727.0	-21 16	Remnant of supernova of 1604
Galactic nucleus	1743.7	-28 56	ComplexregionOH, $\mathrm{NH}_{3} \mathrm{em}$., $\mathrm{H}_{2} \mathrm{CO} \mathrm{CObs}^{\prime} \mathrm{n}$.
Omega neb, M17	1818.7	-1610	HII region, double structure
W 49	1908.9	+09 04	HII region s'nova remnant, OH emission
CP 1919	1920.4	+2149	First pulsar discovered, $P=1.337 \mathrm{sec}$.
Cygnus A	1958.4	+40 39	Strong radio galaxy, double source
Cygnus \mathbf{X}	2021.5	+40 17	Complex region
NML Cygnus	2045.4	+4000	Infrared source, OH emission
Cygnus loop	2051.0	+29 34	S'nova remnant (Network nebula)
N. America	2054.0	+43 57	Radio shape resembles photographs
3C 446	2224.2	-05 07	Quasar, optical mag. \& spectrum var.
Cassiopeia A	2322.0	+58 39	Strongest source, s'nova remnant
Sun			Continuous emission \& bursts
Moon			Thermal source only
Jupiter			Radio bursts controlled by Io

EXTERNAL GALAXIES

By S. van den Bergh

Among the hundreds of thousands of systems far beyond our own Galaxy relatively few are readily seen in small telescopes. The first list contains the brightest galaxies. The first four columns give the catalogue numbers and position. In the column Type, E indicates elliptical, I, irregular, and $S a, S b, S c$, spiral galaxies in which the arms are more open going from a to c. Roman numerals I, II, III, IV, and V refer to supergiant, bright giant, giant, subgiant and dwarf galaxies respectively; p means "peculiar". The remaining columns give the apparent photographic magnitude, the angular dimensions and the distance in millions of light-years.

The second list contains the nearest galaxies and includes the photographic distance modulus ($m-M)_{p g}$, and the absolute photographic magnitude, $M_{p g}$.

The Brightest Galaxies

NGC or name	M	$\alpha 1970$ \%		Type	$m_{p g}$	Dimensions	Distance millions of $1 . y$.
		h m					
55		0013.5	-39 23	Sc or Ir	7.9	30×5	7.5
205		0038.7	+41 32	E6p	8.89	12×6	2.1
221	32	0041.1	+40 43	E2	9.06	3.4×2.9	2.1
224	31	0041.1	+41 07	Sb I-II	4.33	163×42	2.1
247		0045.6	-20 54	S IV	9.47	21×8.4	7.5
253		0046.1	-25 27	Scp	7.0:	22×4.6	7.5
SMC		0051.7	-72 59	Ir IV or IV-V	2.86	216×216	0.2
300		0053.5	-3751	Sc III-IV	8.66	22×16.5	7.5
598	33	0132.2	+30 30	Sc II-III	6.19	61×42	2.4
Fornax		0238.3	-34 39	dE	9.1:	50×35	0.4
LMC		0523.8	-69 47	Ir or Sc III-IV	0.86	432×432	0.2
2403		0733.9	+65 40	Sc III	8.80	22×12	6.5
2903		0930.4	+21 39	Sb I-II	9.48	16×6.8	19.0
3031	81	0953.1	+69 12	Sb I-II	7.85	25×12	6.5
3034	82	0953.6	+69 50	Scp:	9.20	10×1.5	6.5
4258		1217.5	+4728	Sbp	8.90	19×7	14.0
4472	49	1228.3	+08 09	E4	9.33	9.8×6.6	37.0
4594	104	1238.3	-1128	Sb	9.18	7.9×4.7	37.0
4736	94	1249.5	+4116	Sbp II:	8.91	13×12	14.0
4826	64	1255.3	+2151	?	9.27	10×3.8	12.0:
4945		1303.5	-49 19	Sb III	8.0	20×4	-
5055	63	1314.4	+42 11	Sb II	9.26	8.0×3.0	14.0
5128		1323.6	-42 51	E0p	7.87	23×20	
5194	51	1328.6	+4721	Sc I	8.88	11×6.5	14.0
5236	83	1335.4	-29 43	Sc I-II	7.0:	13×12	8.0:
5457	101	1402.1	+54 29	Sc I	8.20	23×21	14.0
6822		1943.2	-1450	Ir IV-V	9.21	20×10	1.7

The Nearest Galaxies

Name	NGC	$\alpha 1970$ ¢		$m_{p g}$	$(m-M)_{p g}$	$M_{p g}$	Type	Dist. thous. of 1.y
		h m	- ,					
M31	224	0041.1	+4107	4.33	24.65	-20.3	Sb I-II	2,100
Galaxy						-18. 5	Sb or Sc	
M33 LMC	598	$\begin{array}{ll}01 & 32.2 \\ 05 & 23.8\end{array}$	+3030 -6947	6.19 0.86	24.70 18.65	-18.5 -17.8	$\mathrm{S}_{\text {Sc II- } \mathrm{III}}^{\text {Ir }}$ SBc	2,400
							Ir III-IV	
SMC		0051.7	-72 59	2.86	19.05	-16.2	Ir IV or	190
NGC	205	0038.7	+4132	8.89	24.65	-15.8	E6p	2,100
M32	221	0041.1	+40 43	9.06	24.65	-15.6	E2	2,100
NGC	6822	1943.2	-14 50	9.21	24.55	-15.3	Ir IV-V	1,700
NGC	185	0037.2	+48 11	10.29	24.65	-14.4	E0	2,100
IC1613		0103.5	+01 58	10.00	24.40	-14.4	Ir V	2,400
NGC	147	0031.5	+48 11	10.57	24.65	-14.1	dE4	2,100
Fornax		0238.3	-34 39	9.1:	20.6:	-12:	dE	430
Leo I		1006.9	+12 27	11.27	21.8:	-10:	dE	750 :
Sculptor		0058.4	-33 52	10.5	19.70	-9.2	dE	280:
Leo II		1111.9	+22 19	12.85	21.8:	-9:	dE	750 :
Draco		1719.7	+ 5757	-	19.50	?	dE	260
Ursa Minor		1508.4	+6713	-	19.40	?	dE	250

$1 \leqslant(k-1)!c_{9}\left\{\left(c_{4}{ }^{k} \mu^{-1}\right)^{r(\log r)^{\frac{1}{2}}}+\left(c_{4}{ }^{k} c_{5}\right)^{r\left(\log r \frac{1}{2}\right.} \sum_{i=2}^{k}\left|u_{i}\right|\left(r_{i}!\right)^{-1}\right\}$,

Do you know...

- That the University of Toronto Press is one of only four printing plants in the world using the four-line system of typesetting mathematical formulas mechanically?
- That this system has been developed to its highest degree of mechanization and efficiency right here at University of Toronto Press?
■ That printing experts and scholars from the United States, Great Britain, and other parts of the world regularly visit our plant to see this system in operation?
- That this research and experimentation has been made possible only by the co-operation of Canadian scholars, scientific societies and non-profit scientific journals?

for mathematical and scientific printing UNIVERSITY OF TORONTO PRESS

$h_{2}(z)=\exp \left(\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{e^{i t}+z}{e^{i t}-z} k(t) d t\right) \cdot \exp \left(-\frac{1}{2 \pi} \int_{K^{\prime \prime}} \frac{e^{i t}+z}{e^{i t}-z} d \nu(t)\right)$

The above map represents the evening sky at

Midnight	Feb. 21
11 p.m.	.Mar. 7
10 "	" 22
9	.Apr. 6
8	21
7	.May

The centre of the map is the zenith, the circumference the horizon. To identify the stars hold the map so that the part of the horizon you are facing is down. A set of four 8 -inch horizon maps may be obtained by writing to the National Office.

STAR MAP 2

The above map represents the evening sky at

Midnight	. May 24
11 p.m.	.June 7
10	22
9	.July 6
8	21

The centre of the map is the zenith, the circumference the horizon. To identify the stars hold the map so that the part of the horizon you are facing is down.

The above map represents the evening sky at

Midnight	.Aug. 21
11 p.m.	.Sept. 7
10 "	" 23
9	.Oct. 10
8	" 26
7	.Nov. 6
6 "	" 21
5	.Dec. 7

The centre of the map is the zenith, the circumference the horizon. To identify the stars hold the map so that the part of the horizon you are facing is down.

STAR MAP 4

The above map represents the evening sky at

Midnight	Nov. 21
11 p.m.	.Dec. 6
10 "	" 21
9	.Jan. 5
8	20
7	.Feb. 6
6 "	21

The centre of the map is the zenith, the circumference the horizon. To identify the stars hold the map so that the part of the horizon you are facing is down.

Presenting-UNITRON'S New 2.4" Equatorial with Setting Circles and Optional Motor Drive

New features have been added to UNITRON'S popular, portable 2.4" Equatorial. Setting circles are now standard equipment. An optional synchronous motor clock drive may be obtained with the telescope or added later. In addition to the hand drive, a supplementary R.A. slow motion has been included to facilitate changes in this coordinate without the need to stop or disengage the motor.

If this sounds like what you have been waiting for in a telescope, we have some good news indeed. These new feature-the circles and supplementary slow motion-are included at no extra charge. The price of $\$ 225$ includes view finder, 5 eyepieces, UNIHEX Rotary Eyepiece Selector Achromatic Amplifier, sunglass, cabinets, etc. The accessory drive is priced at $\$ 50$ extra. Write for complete details.

NEW UNITRON CLOCK DRIVE MODELS

Synchronous motor clock drives are now available for all UNITRON Equatorial Models. The new drive, pictured on the back cover of this issue, is priced at $\$ 50$ for the $2.4^{\prime \prime}$ and at $\$ 60$ for the $3^{\prime \prime}$ and $4^{\prime \prime}$ models. The $4^{\prime \prime}$ refractors are also available with our popular weight-driven clock drive which operates independently of a source of electricity.
2.4" ALTAZIMUTH
with eyepieces for 100x, 72x, 50x, 35x
$\$ 125$
2.4" EQUATORIAL
\$225
with eyepieces for 129x, 100x, 72x, 50x, 35x
$3^{\prime \prime}$ ALTAZIMUTH $\$ 265$
with ey:pieces for 171x, 131x, 96x, 67x, 48x
$3^{\prime \prime}$ EQUATORIAL \$435
with eyepieces for 200x, 131x, 96x, 67x, 48x
3" PHOTO-EQUATORIAL $\$ 550$
with eyepieces for 200x, 171x, 131x, 96x, 67x, 48x
4' ALTAZIMUTH \$465
with eyepieces for $250 x, 214 x, 167 x, 120 x$, 83x, 60x
$4^{\prime \prime}$ EQUATORIAL $\$ 785$ with eyepieces for $250 x, 214 x, 167 x, 120 x$, 83x, 60x, 38x
$4^{\prime \prime}$ PHOTO-EQUATORIAL $\$ 890$ with eyepieces for 250x, 214x, 167x, 120x, 83x, 60x, 38x
4" EQUATORIAL with weight-driven \$985 clock drive, eyepieces as above
4" EQUATORIAL with weight-driven \$1075 clock drive, metal pier, eyepieces as above
4" PHOTO-EQUATORIAL with weight- \$1175 driven clock drive and ASTRO-CAMERA, with eyepieces for 250x, 214x, 167x, 120x, 83x, 60x, 38x, 25x
4" PHOTO-EQUATORIAL with weight- \$1280 driven clock drive, pier, ASTRO-CAMERA, eyepieces for $375 x, 300 x, 250 x, 214 x, 167 x$, 120x, 83x, 60x, 38x, 25x
$5^{\prime \prime}$ PHOTO-EQUATORIAL with clock
\$2275
drive and ASTRO-CAMERA with eyepieces for 500x, 400x, 333x, 286x, 222x, 160x, 111x, 80x, 50x, 33x
6" EQUATORIAL with clock drive,
\$5125 pier, 2.4" view finder, with 10 eyepieces
6" PHOTO-EQUATORIAL as above but $\$ 5660$ with $4^{\prime \prime}$ guide telescope, illuminated diagonal, UNIBALANCE, ASTRO-CAMERA Model 330
6" PHOTO-EQUATORIAL as above with \$6075 addition of $3^{\prime \prime}$ Astrographic Camera Model 80

Each UNITRON comes complete with an assortment of eyepieces and accessories as standard equipment. In addition, our barlow-type Achromatic Amplifier is now included at no extra cost. A proven reputation for optical and mechanical quality plus unique features and extra value make a UNITRON Refractor the logical telescope for you to choose.

Get UNITRON's FREE

Observer's Guide and Catalog on

ASTRONOMICAL TELESCOPES

This valuable 38-page book is yours for the asking!

With artificial satellites already launched and space travel almost a reality, astronomy has become today's fastest growing hobby. Exploring the skies with a telescope is a relaxing diversion for father and son alike. UNITRON's handbook contains full-page illustrated articles on astronomy, observing, telescopes and accessories. It is of interest to both beginners and advanced amateurs.
Contents include -

- Observing the sun, moon, planets and wonders of the sky
- Constellation map
- Hints for observers
- Glossary of telescope terms
- How to choose a telescope
- Amateur clubs and research programs

66 NEEDHAM STREET, NEWION HIGHLANDS, MASS. 02161

HOW TO ORDER

Send check or money order in full. Shipments made express collect. Send 20% deposit for C.O.D. shipment. UNITRON instruments are fully guaranteed for quality workmanship, and performance.

ASTRONOMY IN SPACE

BOLLER \＆CHIVENS EQUIPMENT TO FLY ON SKYLAB

The articulated mirror system and space port being assembled in the clean room，above，is one of several contributions to space astronomy of Boller \＆ Chivens experience established，over the years，in ground－based astronomical instrument production．

For space applications，the firm offers the same precision of design and manufacture，under MilSpec clean room conditions with full configura－ tion and quality－control management，as exhibited by their fine telescopes and other professional astronomical instruments．

Doesn＇t it make sense？Precision in pointing，measuring，and moving is our business－ground－based，airborne，or in space．Problems like this are always welcome at Boller \＆Chivens，where precision is a way of life．

BOLLER \＆CHIVENS
engineers
manufacturers
5
MERIDIAN AVENUE • SQUTH PASADENA，CALIFDRNIA A DIVISIロN ロF THE PERKIN－ELMER CDRPDRATIロN

ELIX
 SCIENTIFIC

HELIX SCIENTIFIC is a young, independent company, beholden to no others, obliged only to its customers, and is dedicated to serving the needs of both amateur and professional scientists, teachers, and hobbyists. Each item we sell has been carefully selected and it is our opinion that it represents the finest example available in its price range. In the future, should we find that any item is not performing as we had expected, or should another be found that is better, then it will either be dropped from our lists, or replaced. Our intention is to supply only what we would use ourselves.

Write for our free catalogues. We have three, dealing with different sciences:
ASTRONOMY: telescopes, telescope making supplies, mirror kits, parts, accessories, books, atlases, binoculars, spotting scopes, etc.

TEACHING AIDS: science demonstrators, kits, charts, experiments, equipment for physics, chemistry, weather, biology, nature study, etc. Glasswear, scientific and educational games, globes, atlases, etc.

MICROSCOPY: microscopes, accessories, parts, allied equipment, books, etc.

Optical design is a specialty of our CANOC division. Custom instrumentation and consultation is what this division was set up for, as well as for repair services and modifications of existing equipment.

HELIX SCIENTIFIC

1377 Weston Road
Toronto 335, Ont.

Keep Informed on Astronomy and Space

THE WORLD'S LARGEST MONTHLY MAGAZINE ON ASTRONOMY

Join the leading astronomers and thousands of amateurs throughout the world who look to SKY AND TELESCOPE as a welcome monthly package of pleasingly illustrated informative articles, up-to-date news items, observing material, telescope making notes, and the latest advances in space.

SUBSCRIPTION:

In Canada and Pan American Postal One year, \$9.00; two years, \$16.00; Union Countries (U.S. funds)

In the United States and possessions
three years, $\$ 23.00$.
One year, \$8.00; two years, $\$ 14.50$; three years, $\$ 21.00$.

STAR ATLASES

We publish the largest selection of sky atlases to fit your observing needs. Whether you're a beginning amateur or an advanced astronomer, write for our free booklet "C" describing these celestial maps and other Sky Publications.

Please enclose check or money order (U.S. funds) payable to

Sky Publishing Corporation

TELESCOPES

- are our specialty and have been for over three years in Canada. Where practical, components are manufactured in our optical shop. Our line of completed telescopes are built in Canada, with accessories from University Optics, a company whose high-quality products complement ours. Below are just a few of our many products; drop us a postcard and we'll send you a copy of our latest catalogue.

DIAGONAL MIRRORS (Made in Canada)

figured to one-ninth wave; aluminized
1.25" minor axis
\$ 9.50 ppd.
1.75" minor axis $\$ 17.95$ ppd.

University Optics Orthoscopic Eyepieces
fully coated precision optics
$4,5,6,9,12.5,18 \& 25 \mathrm{~mm} . \$ 25.95$ each ppd.
COMPLETED TELESCOPES (Made in Canada)
Constructed with precision optics housed in heavy gauge enameled aluminum tubes. Equatorial mountings fabricated of welded steel with bronze bearings. Standard equipment includes drive clock, setting circles, rotatable focusing mount (Univ. Optics), three orthoscopic eyepieces, Barlow lens, 12×40 finder and star charts. Shipped crated F.O.B. Toronto plant. Pedestal mounts except $12 \frac{1}{2}{ }^{\prime \prime}$ which is on pier type.

$6^{\prime \prime}$	$f 8.0$	$\$ 575.00$	$8^{\prime \prime}$	$f 8.0$	$\$ 775.00$
$10^{\prime \prime}$	$f 7.0$	$\$ 1075.00$	$121 / 2^{\prime \prime}$	$f 6.0$	$\$ 1950.00$

note: $12 \frac{1}{2 \prime \prime}$ scope includes 5 ortho eyepieces, declination slow motion, 25×50 guidescope, lighted setting circles and extra counterweights.

BREDBERG OPTICAL COMPANY

400 Don Park Rd., Suite 7, Markham, Ont. 416-293-1357

One of Canada's most complete telescope supply houses

Require SIDEREAL Time?

DIGITAL SIDEREAL CLOCKS

Model 21 as illustrated, highly accurate and reliable, operates on 110 volts, 60 cycles
$\$ 90$

DARKROOM AIDS

PHOTOGRAPHIC PLATE-

CUTTERS, model 42, with guides and adjustable stops for cutting spectroscopic plates to any size in total darkness; hard carbide cutting tool withstands much more hard service than diamond and is superior in every way
\$500

TRAY-ROCKERS, model 31 to ensure continuous agitation and uniform processing of plates $\$ 100$

These instruments are being used by amateurs and observatories everywhere.

Specifications on request.
Prices shown are FOB Nashville, Tennessee, U.S. Funds.

INTERNATIONAL OBSERVATORY INSTRUMENTS
5401 Wakefield Drive
Nashville, Tenn. 37220

January

March

May
June
S M T W T F S
$\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6\end{array}$ $\begin{array}{lllllll}7 & 8 & 9 & 10 & 11 & 12 & 13\end{array}$ 14151617181920 $\begin{array}{lllllllllllllllll}21 & 22 & 23 & 24 & 25 & 26 & 27 & 18 & 19 & 20 & 21 & 22 & 24\end{array}$ $28293031 \quad 252627282930$

September
October

November
December
 31

UNITRON'S 6" Refractor on left, $4^{\prime \prime}$ on right

Amateur and professional astronomers alike continue to proclaim their enthusiasm and high praise for UNITRON's new 6-inch Refractor. And little wonder-for this latest and largest UNITRON offers features, precision, and performance usually associated only with custombuilt) observatory telescopes of much larger aperture. Here, indeed, is the ideal telescope for the serious observer and for the school and college observatory.

Imagine yourself at the controls of this $6^{\prime \prime}$ UNITRON-searching the skies, seeing more than you have ever seen before, photographically recording your observations-truly, the intellectual adventure of a lifetime.
Full specifications are given in the UNITRON Telescope Catalog available on request. There are three massive $6^{\prime \prime}$ models from which to choose with prices starting at $\$ 5125$.

[^0]: *At mean opposition distance.
 \dagger From D. L. Harris in "Planets and Satellites", The Solar System, vol. 3, 1961, except numbers in brackets which are rough estimates.
 \ddagger Inclination of orbit referred to planet's equator; a value greater than 90° indicates retrograde motion.
 §Varies 18° to 29°. The eccentricity of the mean orbit of the moon is 0.05490 .
 Satellites Io, Europa, Ganymede, Callisto are usually denoted I, II, III, IV respectively, in order of distance from the planet.

[^1]: *Minimum.

[^2]: *There is a marked colour difference between the components.
 \dagger The separation of the two pairs of $\varepsilon \operatorname{Lyr}$ is $208^{\prime \prime}$.

[^3]: *Basic for distance determination.

