THE
 OBSERVER'S HANDBOOK 1970

Sixty-second Year of Publication
THE ROYAL ASTRONOMICAL SOCIETY OF CANADA

THE ROYAL ASTRONOMICAL SOCIETY OF CANADA

Incorporated 1890 - Royal Charter 1903
 Federally Incorporated 1968

The National Office of the Royal Astronomical Society of Canada is located at 252 College Street, Toronto 2B, Ontario. The business office of the Society, reading rooms and astronomical library, are housed here.

Membership in the Society is open to anyone interested in astronomy. Applicants may affiliate with one of the Society's seventeen centres across Canada, or may join the National Society direct. Centres of the Society are established in St. John's, Quebec, Montreal, Ottawa, Kingston, Hamilton, Niagara Falls, London, Windsor, Winnipeg, Saskatoon, Edmonton, Calgary, Vancouver, Victoria, and Toronto. Addresses of the Centres' secretaries may be obtained from the National Office.

Publications of the Society are free to members, and include the Journal (6 issues per year) and the Observer's Handbook (published annually in November). Annual fees of $\$ 10.00$ ($\$ 5.00$ for full-time students) are payable October 1 and include the publications for the following year.

VISITING HOURS AT SOME CANADIAN OBSERVATORIES
David Dunlap Observatory, Richmond Hill, Ont.
Tuesday mornings, 10:00-11:00 a.m.
Saturday evenings, April through October (by reservation).
Dominion Astrophysical Observatory, Victoria, B.C.
Monday to Friday, daytime, no program.
Saturday evenings, April through November.
Dominion Observatory, Ottawa, Ont.
Monday to Friday, daytime, rotunda only.
Saturday evenings, April through October.
Dominion Radio Astrophysical Observatory, Penticton, B.C.
Sunday, July and August only (2:00-5:00 p.m.).

Planetariums

The Calgary Centennial Planetarium, Mewata Park, Calgary 2, Alta.
Winter: Wed. and Thurs. 7:15 p.m.; Fri. 7:15 and 8:45 p.m.; Sat. and Sun. 3:00, 7:15 and 8:45 p.m.
Summer: Daily (except Tues.) 3:00, 7:15 and 8:45 p.m.
Dow Planetarium, 1000 St. Jacques St. W., Montreal, P.Q.
In English: Tue. through Fri. 12:15 p.m.; Sat. 1:00 and 3:30 p.m.; Sun. 2:15 p.m. Evenings (except Mon.) 8:15 p.m.
In French: Tue, through Sat. 2:15 p.m., also Sat. $4: 30$ p.m.; Sun. 1:00, 3:30 and 4:30 p.m. Evenings (except Mon.) 9:30 p.m.
H. R. MacMillan Planetarium, 1100 Chestnut St., Vancouver 9, B.C.

Tues. through Thurs. 4:00 and 8:00 p.m.; Fri. 4:00, 7:30 and 9:00 p.m.;
Sat., Sun. and holidays $2: 00,4: 00,7: 30$ and $9: 00$ p.m. (closed on Mondays).
Manitoba Museum of Man and Nature Planetarium, 147 James Ave., Winnipeg 2.
Sept.-June: Sun. and holidays*: 1:00, 2:30, 4:00 p.m.; Tue. through Fri. 3:30, 8:30 p.m.; Sat. 1:00, 2:30, 4:00, 7:30, 9:00 p.m.
July-August: Sat., Sun. and holidays same as above; Tue. through Fri. 11:00 a.m., 3:00, 7:30, 9:00 p.m.
*Christmas show 3:30, 7:30, 9:00 p.m. (Closed on Mondays except holidays.)
McLaughlin Planetarium, 100 Queen's Park, Toronto, Ont.
Tue. through Fri. 3:30, 8:00 p.m.; Sat. 11:00 a.m., 2:00, 3:30, 5:00, 8:00
p.m., Sun. 2:00, 3:30, 5:00 and 7:30 p.m. During July and August, additional
weekday show at $2: 00$ p.m.
McMaster University, Dept. of Continuing Education, Hamilton, Ont.
Group reservations only.
Queen Elizabeth Planetarium, Edmonton, Alta.
Winter: Tue. through Fri. 8:00 p.m.; Sat. 3:00 p.m.; Sun. and holidays 2:00, 4:00 p.m.
Summer: Mon. through Sat. 3:00, 8:00 p.m.; Sun. and holidays 2:00, 4:00, 8:00 p.m.
The University of Manitoba Planetarium, 500 Dysart Rd., Winnipeg, Man.
Wed. and Thurs. 12:40, 8:30 p.m.; Fri. 12:40, 7:00, 8:30 p.m.

THEOBSERVER'S HANDBOOK

1970

Editor

Ruth J. Northcott

Sixty-second Year of Publication TIIE ROYAL ASTRONOMICAL SOCIETY OF CANADA

252 College Street, Toronto 2B, Ontario
PAGE
Anniversaries and Festivals 3
Asteroids-Ephemerides at Opposition 70
Calendar 11
Clusters 90
Constellations 5
Eclipses 63
Galaxies 93
Julian Day Calendar 3
Jupiter-Belts and Zones 57
-Longitude of Central Meridian 60
-Phenomena of Satellites 56
Mercury-Transit 63
Messier's Catalogue. 96
Meteors, Fireballs and Meteorites. 71
Miscellaneous Astronomical Data 6
Moon-Observation. 62
Moonrise and Moonset 20
Nebulae-Galactic 92
Occultations-by Moon 64
-by Planets; Appulses 70
Planets-General 26
-Elements 8
Precession for 50 Years 72
Radio Sources 95
Satellites of Solar System (List) 9
Saturn-Rings 59
-Satellites 58
Sky and Astronomical Phenomena Month by Month 32
Solar System-Elements 8
-Satellites (List) 9
Star Maps 97
Stars-Brightest (Positions, etc.) 74
-Double and Multiple 85
-Names, Finding List 73
-Nearest 86
-Variable 88
Sun-Ephemeris 7
-Physical Observations 61
-Sun-spot Cycle 26
Sunrise and Sunset 13
Symbols and Abbreviations 4
Time-Correction to Sun-dial 7
-Radio Time Signals. 11
-Solar, Sidereal, Universal, Standard, Ephemeris 10
-Zones (Map) 12a
Twilight 19
the observer's handbook for 1970 is the 62 nd edition. The time zone map has been supplied courtesy of the Department of Energy, Mines and Resources of Canada. The sections on Nearest Stars, Galactic Nebulae and Radio Sources have been rewritten.

Cordial thanks are offered to all individuals who assisted in the preparation of this edition, to those whose names appear in the various sections and to Barbara Gaizauskas, Gretchen Hagen, Anson Moorhouse, John Percy, Roslyn Shemilt, Maude Towne, and Isabel Williamson. Special thanks are extended to Margaret W. Mayall, Director of the A.A.V.S.O., for the predictions of Algol and the variable stars and to Gordon E. Taylor and the British Astronomical Association for the prediction of planetary appulses and occultations. My deep indebtedness to the British Nautical Almanac Office and to the American Ephemeris is gratefully acknowledged.

Ruth J. Northcott
postscript. Miss Ruth Northcott had finished most of the editorial work, including the gathering of material for the 1970 OBSERVER'S HANDBOOK before her untimely death on July 29, 1969. We have finished the preparation for this issue, and express the hope that the quality of the 1970 handbook will not be seriously impaired by the fact that the Editor of the past 13 years was not able to see it through to completion.

John F. Heard
Helen S. Hogg

ANNIVERSARIES AND FESTIVALS, 1970

JULIAN DAY CALENDAR, 1970

J.D. 2,400,000 plus the following:

Jan.	,588	May 1......... 40,708	Sept. 1. 40,831
Feb.	40,619	June 1...... . . . 40,739	Oct. 1......... . 40,861
Mar.	40,647	July 1......... . 40,769	Nov. 1. 40,892
Apr.	.40,678	Aug. 1........ . .40,800	Dec. 1. 40,922
	ay com		

SYMBOLS AND ABBREVIATIONS

SUN, MOON AND PLANETS

The Mo Mercury Venus Earth Mars	

24	Jupiter
b	Saturn
@	Uranus
Ψ	

ASPECTS AND ABBREVIATIONS

σ Conjunction, or having the same Longitude or Right Ascension.
\circ° Opposition, or differing 180° in Longitude or Right Ascension.
Quadrature, or differing 90° in Longitude or Right Ascension.
\& Ascending Node; ϑ Descending Node.
α or R.A., Right Ascension; δ or Dec., Declination.
h, m, s, Hours, Minutes, Seconds of Time.
${ }^{\circ}$ '", Degrees, Minutes, Seconds of Arc.
SIGNS OF THE ZODIAC

\uparrow	Ar	0°	Ω		120°		Sagittarius	270
\bigcirc	Tauru	. 30°	m	Virgo	150°	万	Capricornus	270°
II	Gemini	60 ${ }^{\circ}$		Libra	180°		Aquarius.	300°
(3)	Cancer	90	m	Scorpi	210°	-	Pisces...	330°

THE GREEK ALPHABET

$\mathbf{A}, \boldsymbol{\alpha}$	Alpha
B, $\boldsymbol{\beta}$	Beta
$\boldsymbol{\Gamma}, \boldsymbol{\gamma}$	Gamma
$\Delta, \boldsymbol{\delta}$	Delta
$\mathbf{E}, \boldsymbol{\epsilon}$	Epsilon
$\mathbf{Z}, \boldsymbol{\zeta}$	Zeta
$\mathbf{H}, \boldsymbol{\eta}$	Eta
$\boldsymbol{\theta}, \boldsymbol{\theta}, \vartheta$	Theta

I, ι	Iota
$\mathrm{K}, \kappa_{\kappa}$	Kappa
Λ, λ	Lambda
$\mathrm{M}, \boldsymbol{\mu}$	Mu
$\mathrm{N}, \boldsymbol{\nu}$	Nu
$\mathbf{\Xi}, \boldsymbol{\xi}$	Xi
$\mathbf{O}, \boldsymbol{\mathrm { O }}$	Omicron
$\mathrm{II}, \boldsymbol{\pi}$	Pi

$\mathbf{P}, \boldsymbol{\rho}$	Rho
$\boldsymbol{\Sigma}, \boldsymbol{\sigma}$	Sigma
$\mathbf{T}, \boldsymbol{\tau}$	Tau
\mathbf{r}, v	Upsilon
$\boldsymbol{\Phi}, \phi$	Phi
$\mathbf{X}, \boldsymbol{\chi}$	Chi
$\mathbf{\Psi}, \psi$	Psi
Ω, ω	Omega

THE CONFIGURATIONS OF JUPITER'S SATELLITES

In the Configurations of Jupiter's Satellites (pages 33, 35, etc.), O represents the disk of the planet, d signifies that the satellite is on the disk, * signifies that the satellite is behind the disk or in the shadow. Configurations are for an inverting telescope.

CALCULATIONS FOR ALGOL

The calculations for the minima of Algol are based on the epoch J.D. 2437965.6985 and period 2.8673285 days as published in Sky and Telescope, 1963.

CELESTIAL DISTANCES

Celestial distances given herein are based on the standard value of $8.794^{\prime \prime}$ for the sun's parallax, and the astronomical unit of 92.957 million miles.

THE CONSTELLATIONS

Latin and French Names with Abbreviations

The approximate position of the centre of each constellation is indicated by the right ascension in hours and the declination as follows: on the zodiac, Z; on the equator, E; northern hemisphere, N ; southern hemisphere, S ; italics are used for constellations completely within 45° of a pole.

Andromeda, Andromede. And	1	N	Indus, Indien (l'Oiseau). Ind	21	
Antlia, La Machine Pneumatique.Ant	10	S	Lacerta, Le Lézard.Lac	22	N
Apus, L'Oiseau de Paradis. Aps	16	S	Leo, Le Lion Leo	10	Z
Aquarius, Le Verseau............ Aqr	22	Z	Leo Minor, Le Petit Lion LMi	10	N
Aquila, L'Aigle. Aql	19	E	Lepus, Le LièvreLep	5	
Ara, L'Autel....................Ara	17	S	Libra, La Balance. Lib	15	
Aries, Le Bélier. Ari	2	Z	Lupus, Le Lou	15	
Auriga, Le Cocher. Aur	5	N	Lynx, Le Lynx Lyn	7	N
Boötes, Le Bouvier Boo	14	N	Lyra, La Lyre ${ }^{\text {yr }}$	18	
Caelum, Le Burin du Graveur. . . . Cae	4	S	Mensa, La Table	5	
Camelopardalis, La Girafe....... . Cam	6	N	Microscopium, Le Microscope. . . . Mic	20	
Cancer, Le Cancer Cnc	8	Z	Monoceros, La Licorne Mo	6	
Canes Venatici,			Musca, La Mouche............... Mus	12	
Les Chiens de Chasse. CVn	13	N	Norma, La Regle. Nor	15	
Canis Major, Le Grand Chien.... CMa	6	S	Octans, L'Octant. Oct		
Canis Minor, Le Petit Chien..... CMi	7	N	Ophiuchus, Ophiuchus. Oph	17	E
Capricornus, Le Capricorne...... Cap	21	Z	Orion, Orion. Ori	5	
Carina, La Carène du Navire. . . . Car	8	S	Pavo, Le Pao	19	S
Cassiopeia, Cassiopée........... Cas	1	N	Pegasus, Pégase. Peg	22	N
Centaurus, Le Centaure. Cen	12	S	Perseus, Persée. Per	3	N
Cepheus, Céphée................ . Cep	23	N	Phoenix, Le Phénix. Phe	0	S
Cetus, La Baleine. Cet	1	E	Pictor, Peintre (le Chevalet du)...Pic	5	S
Chamaeleon, Le Caméléon....... Cha	10	S	Pisces, Les Poissons............ . Psc	0	Z
Circinus, Le Comp	14	S	Piscis Austrinus,		
Columba, La Colombe Col	5	S	Le Poisson Austral........... . PsA	22	S
Coma Berenices, La Chevelure de Bérénice...................... Com	12	N	Puppis, La Poupe du Navire..... .Pup Pyxis, La Boussole. Pyx	$\begin{aligned} & 7 \\ & 8 \end{aligned}$	S
Corona Australis,			Reticulum, Le Réticule. Ret	3	S
La Couronne Australe. CrA	18	S	Sagitta, La Flèche. Sge	19	N
Corona Borealis,			Sagittarius, Le Sagittaire Sgr	18	Z
La Couronne Boréale CrB	15	N	Scorpius, Le Scorpion. Sco	16	Z
Corvus, Le Corbeau Cr	12	S	Sculptor, Sculpteur (1'Atelier du).Scl	0	S
Crater, La Coupe Crt	11	S	Scutum, L'Ecu. Sct	18	S
Crux, La Croix du Sud. Cru	12	S	Serpens, Le Serpent. Ser	16	E
Cygnus, Le Cygne. Cyg	20	N	Sextans, Le Sextant. Sex	10	E
Delphinus, Le Dauphin......... . . Del	20	N	Taurus, Le Taureau. Tau	4	Z
Dorado, La Dorade. Dor	5	S	Telescopium, Le Télescope........Tel	19	S
Draco, Le Dragon. Dra	16	N	Triangulum, Le Triangle. Tri	2	N
Itquuleus, Le Petit Cheval. Equ	21	N	Triangulum Australe,		
liridanus, Eridan. Eri	3	S	Le Triangle Austral. TrA	16	S
liornax, Le Fourneau. For	2	S	Tucana, Le Toucan. T	23	S
Gemini, Les Gémeaux Gem	7	Z	Ursa Major, La Grande Ourse....UMa	11	N
Cirus, La Grue. Gru	22	S	Ursa Minor, La Petite Ourse..... UMi		N
Hercules, Hercule. Her	17	N	Vela, Les Voiles du Navire.Vel	9	S
Horologium, L'Horloge Hor	3	S	Virgo, La Vierge. Vir	13	Z
Hydra, L'Hydre Femelle. Hya	11	S	Volans, Le Poisson Volant. Vol	7	S
Ilydrus, L'Hydre Mâle. Hyi	2	S	Vulpecula, Le Renard. Vul	20	N

MISCELLANEOUS ASTRONOMICAL DATA

Units of Length

1 Angstrom unit $=10^{-8} \mathrm{~cm}$. 1 micron, $\mu=10^{-4} \mathrm{~cm} .=10^{4} \mathrm{~A}$.
$\begin{array}{lll}1 \text { inch } & =\text { exactly } 2.54 \text { centimetres } & 1 \mathrm{~cm} .=10 \mathrm{~mm} .=0.39370 \ldots \text { in. } \\ 1 \text { yard } & =\text { exactly } 0.9144 \text { metre } & 1 \mathrm{~m} .=10^{2} \mathrm{~cm}=1.0936 .\end{array}$
1 mile $\quad=$ exactly 1.609344 kilometres $\quad 1 \mathrm{~km} .=10^{5} \mathrm{~cm} .=0.62137 \ldots \mathrm{mi}$.
1 astronomical unit $=1.496 \times 10^{13} \mathrm{~cm} .=1.496 \times 10^{8} \mathrm{~km} .=9.2957 \times 10^{7} \mathrm{mi}$.
1 light-year $\quad=9.461 \times 10^{17} \mathrm{~cm} .=5.88 \times 10^{12} \mathrm{mi} .=0.3068$ parsecs
1 parsec $\quad=3.084 \times 10^{18} \mathrm{~cm} .=1.916 \times 10^{13} \mathrm{mi} .=3.2601 . \mathrm{y}$.
1 megaparsec $\quad=10^{6}$ parsecs

Units of Time

Sidereal day $\quad=23 h 56 \mathrm{~m} 04.09 \mathrm{~s}$ of mean solar time
Mean solar day $\quad=24 h 03 m 56.56 \mathrm{~s}$ of mean sidereal time
Synodic month $\quad=29 d 12 h 44 m 03 \mathrm{~s} \quad$ Sidereal month $=27 d 07 \mathrm{~h} 43 \mathrm{~m} 12 \mathrm{~s}$
Tropical year (ordinary) $=365 d 05 h 48 \mathrm{~m} 46 \mathrm{~s}$
Sidereal year $\quad=365 d 06 \mathrm{~h} 09 \mathrm{~m} 10 \mathrm{~s}$
Eclipse year $=346 d 14 h 52 m 52 s$

The Earth

Equatorial radius, $a=6378.160 \mathrm{~km} .=3963.20 \mathrm{mi}$: flattening, $c=(a-b) / a=1 / 298.25$
Polar radius, $\quad b=6356.77 \mathrm{~km} .=3949.91 \mathrm{mi}$.
1° of latitude $\quad=111.137-0.562 \cos 2 \phi \mathrm{~km} .=69.057-0.349 \cos 2 \phi \mathrm{mi}$. (at lat. ϕ)
1° of longitude $\quad=111.418 \cos \phi-0.094 \cos 3 \phi \mathrm{~km} .=69.232 \cos \phi-0.0584 \cos 3 \phi \mathrm{mi}$.
Mass of earth $\quad=5.98 \times 10^{24} \mathrm{kgm} .=13.2 \times 10^{24} \mathrm{lb}$.
Velocity of escape from $\oplus=11.2 \mathrm{~km} . / \mathrm{sec} .=6.94 \mathrm{mi} . / \mathrm{sec}$.

Earth's Orbital Motion

Solar parallax $=8^{\prime \prime} .794$ (adopted)
Constant of aberration $=20^{\prime \prime} .496$ (adopted)
Annual general precession $=50^{\prime \prime} .26$; obliquity of ecliptic $=23^{\circ} 26^{\prime} 35^{\prime \prime}$ (1970)
Orbital velocity $=29.8 \mathrm{~km}$. $/ \mathrm{sec}$. $==18.5 \mathrm{mi}$. $/ \mathrm{sec}$.
Parabolic velocity at $+=42.3 \mathrm{~km}$. $/ \mathrm{sec} .=26.2 \mathrm{mi} . / \mathrm{sec}$.

Solar Motion

Solar apex, R.A. $18 h 04 m$, Dec. $+30^{\circ}$; solar velocity $=19.4 \mathrm{~km} . / \mathrm{sec} .=12.1 \mathrm{mi} . / \mathrm{sec}$.
The Galactic System
North pole of galactic plane R.A. $12 h 49 m$, Dec. $+27 .{ }^{\circ} 4$ (1950)
Centre of galaxy R.A. 17 h 42.4 m , Dec. $-28^{\circ} 55^{\prime}$ (1950) (zero pt. for new gal. coord.)
Distance to centre $\sim 10,000$ parsecs; diameter $\sim 30,000$ parsecs
Rotational velocity (at sun) $\sim 262 \mathrm{~km}$./sec.
Rotational period (at sun) $\sim 2.2 \times 10^{8}$ years
Mass $\sim 2 \times 10^{11}$ solar masses
External Galaxies
Red Shift $\sim+100 \mathrm{~km} . / \mathrm{sec} . /$ megaparsec $\sim 19 \mathrm{miles} / \mathrm{sec} . /$ million 1.y.

Radiation Constants

Velocity of light, $c=2.997925 \times 10^{10} \mathrm{~cm} . / \mathrm{sec} .=186,282.1 \mathrm{mi} . / \mathrm{sec}$.
Frequency, $\nu=c / \lambda ; \nu$ in Hertz (cycles per sec.), c in $\mathrm{cm} . / \mathrm{sec} ., \lambda$ in cm .
Solar constant $=1.93$ gram calories/square $\mathrm{cm} . /$ minute
Light ratio for one magnitude $=2.512 \ldots$; log ratio $=$ exactly 0.4
Stefan's constant $=5.6694 \times 10^{-5}$ c.g.s. units

Miscellaneous

Constant of gravitation, $G=6.670 \times 10^{-8}$ c.g.s. units
Mass of the electron, $m=9.1083 \times 10^{-28} \mathrm{gm}$.; mass of the proton $=1.6724 \times 10^{-24} \mathrm{gm}$.
Planck's constant, $h=6.625 \times 10^{-27} \mathrm{erg}$. sec.
Absolute temperature $=T^{\circ} \mathrm{K}=T^{\circ} \mathrm{C}+273^{\circ}=5 / 9\left(T^{\circ} \mathrm{F}+459^{\circ}\right)$
1 radian $=57^{\circ} .2958 \quad \pi=3.141,592,653,6$

$$
=3437^{\prime} .75 \quad \text { No. of square degrees in the sky }=41,253
$$

$=206,265^{\prime \prime} \quad 1 \mathrm{gram}=0.03527 \mathrm{oz}$.

SUN-EPHEMERIS AND CORRECTION TO SUN-DIAL

Date		$\begin{gathered} \text { Apparent } \\ \text { R.A. } \\ 0 \text { E.T. } \end{gathered}$	Corr. to Sun-dial 12h E.T.	$\begin{aligned} & \text { Apparent } \\ & \text { Dec. } \\ & \text { Oh E.T. } \end{aligned}$	Date		Apparent R.A. Oh E.T.	Corr. to Sun-dial 12h E.T.	Apparent Dec. Oh E.T.
Jan.		h m					hm s	m s	\bigcirc,
	1	184412	+ 330	-2303.4	July	3	64623	+403	+23 01.0
	4	185725	$\begin{array}{r}\text { + } \\ + \\ + \\ \hline\end{array}$	-22 47.4		6	65845	a +436	+22 45.5
	7	191036	+ 614	-22 27.2			71104	+504 +50	+22 26.4
	10	19 23 19 42 19	730 +841	-2203.1 -21		12	72320 73531	a +50 +550	+22 03.8
	13	19 19 19 4943	+ +841 +946	-2135.1 -21		15	73531 74738	+550 +606	+2137.9 +2108.6
	16	19 20 20	+846 +1044	-21 03.4		21	75939	+606 +618	+20 36.1
	22	201510	+1136	-19 49.2		24	81136	+ 624	+20 00.5
	25	202746	+1220	-19 07.0		27	82328	+625	+19 21.8
	28	204015	+1258	-18 21.7		30	83515	+621	+1840.3
Feb.	31	205236	+1329	-1733.5			84656	+612	+1756.0
	3	210450	+13 52	-16 42.3			85832	+ 512	+1709.1
	6	211657	+1408	-15 48.6		8	91002	+ 537	+1619.6
	9	212857	+1417	-14 52.4		11	${ }_{9}^{9} 2127$	+ 511	+15 27.9
	12	214049	+1418	-13 54.0		14	93247	+ 440	+1433.9
	15	215235	+1413	-1253.5		17	94401	+405	+13 37.8
	18	220414	+1401	-1151.2		20	95511	+324	+1239.8
	21	221546	+1343	-10 47.2		23	100617	+ 239	+1140.0
	24	222713	+1319	- 941.6		26	101718	+151	+1038.5
	27	223834	+1250	- 834.8		29	102817	+ 059	+ 935.4
Mar.	2	224950	+12 16	- 726.8	Sept.		103912	+ 004	+ 831.0
	5	230102	+1137	- 617.8		4	105004	- 054	+ 725.4
	8	231210	+1055	- 508.0		7	110054	- 154	+ 618.6
	11	232315	+10 09	- 357.7		10	111142	- 256	+ 511.0
	14	233417	+ 921	- 246.8		13	112229	- 359	+ 402.6
	17	234516	+830	- 135.8		16	113315	- 503	+ 253.5
	20	235613	+ 737	- 024.6		19	114400	- 607	+ 144.0
	23	00708	+ 643	+ 046.4		22	115446	- 711	+ 034.1
	26	01803	+ 548	+ 157.3		25	120533	-814	- 036.0
	29	02858	+ 453	+ 307.7		28	$\begin{array}{ll}12 & 1621\end{array}$	-915	- 146.2
Apr.		03953	+ 359	+ 417.7	Oct.	1	122711	-10 14	- 256.3
	4	05050	+ 306	+ 526.9		4	123804	-1110	- 406.1
	7	10147	+ 214	+ 635.3		7	124859	-12 04	- 515.4
	10	11247	+ 124	+ 742.7		10	125958	-1254	- 624.1
	13	12349	+137 +03	+ 848.9		13	131101	-13 40	- 732.0
	16	13453	- 008	+ 953.8		16	132209	-14 21	- 839.0
	19	14601	- 049	+10 57.2		19	133322	-14 57	- 944.9
	22	15712	- 127	+1158.9		22	134440	-15 27	-10 49.6
	25	20827	- 201	+1258.9		25	135604	-15 52	-11 52.8
	28	21946	-230	+13 57.0		28	14 14 0735	-16 09	-12 54.4
						31	141913	-1620	-13 54.2
May				$\begin{aligned} & +1453.0 \\ & +1546.8 \end{aligned}$					
	7	$\begin{aligned} & 24240 \\ & 2 \\ & 54 \\ & \hline \end{aligned}$	-315 -329	+1546.8 +1638.3	Nov.	3 6	14 14 142 42	-1624	-14 52.0
	10	$\begin{array}{llll}3 & 05 & 53 \\ 3\end{array}$	- 339	+1727.3		9	145449	-1609	-16 40.8
	13	3 17 18	- 344	+18 13.6		12	150656	-15 51	-17 31,5
	16	32927	- 343	+18 57.2		15	15 191910	-15 25	- 1819.5
	19	$\begin{array}{llll}3 & 41 & 21 \\ 3 & 53\end{array}$	- 338	+1937.9		18	15 151 15 15	-1452	-19 04.6
	22	35320	- 328	+20 15.6		21	154402	-14 11	-19 46.6
	25	40524	- 313	+20 50.1		24	155639	-13 22	-20 25.4
	28	41733	- 253	+21 21.5		27	160923	-1227	-21 00.8
	31	42946	- 229	+2149.5		30	$\begin{array}{ll}16 & 2214\end{array}$	-1124	-21 32.7
June		4202	- 201	+22 14.2	Dec.	3	163510	-10 16	-22 00.8
	6	45423	- 130	+22 35.3		6	164813	-903	-22 25.2
	9	50646	- 056	+22 52.9		9	170120	- 745	-22 45.6
	12	51911	- 020	+23 06.8		12	171431	- 623	-23 02.0
	15	53138	+ 018	+23 17.1		15	172745	- 458	-23 14.3
	18	54406	+ 056	+23 23.7		18	174102	- 330	-23 22.4
	21	55635	+135	+23 26.6		21	175420	- 201	-23 26.3
	24	60903	+ 214	+23 25.7		24	180740	- 031	-23 26.0
	27	62131	+252	+23 21.2		27	182059	+058	-23 21.4
	30	63358	+ 329	+23 12.9		30	183417	+ 227	-23 12.7

PRINCIPAL ELEMENTS OF THE SOLAR SYSTEM

MEAN ORBITAL ELEMENTS (for epoch 1960 Jan. 1.5 E.T.)

Planet	Mean Distance from Sun (a)		Period of Revolution		Eccen tricity (e)	In-clination (i)	Long. of Node (८)	Long. of Perihelion (π)	Mean Long at Epoch (L)
	A. U.	millions of miles	Sidereal (P)	Synodic					
				days		-	。	-	
Mercury	0.387	36.0	88.0d.	116	. 206	7.0	47.9	76.8	222.6
Venus	0.723	67.2	224.7	584	. 007	3.4	76.3	131.0	174.3
Earth	1.000	92.9	365.26 017	0.0	0.0	102.3	100.2
Mars	1.524	141.5	687.0	780	. 093	1.8	49.2	335.3	258.8
Jupiter	5.203	483.4	11.86y.	399	. 048	1.3	100.0	13.7	259.8
Saturn	9.539	886.	29.46	378	. 056	2.5	113.3	92.3	280.7
Uranus	19.18	1782.	84.01	370	. 047	0.8	73.8	170.0	141.3
Neptune	30.06	2792.	164.8	367	. 009	1.8	131.3	44.3	216.9
Pluto	39.44	3664.	247.7	367	. 250	17.2	109.9	224.2	181.6

PHYSICAL ELEMENTS

Object	Equatorial Diameter miles	Ob-lateness	Mass $\oplus=1$	Mean Density water $=1$	Surface Gravity $\oplus=1$	Rotation Period	Inclination of Equator to Orbit	Albedo
\odot Sun	864,000	0	332,958	1.41	27.9	$25^{\text {d }}-35^{\text {d }} \dagger$		
(d) Moon	2,160	0	0.0123	3.34	0.16	$27^{\text {d }} 07^{\text {b }} 43^{\text {m }}$	6.7	0.067
¢ Mercury	3,025	0	0.055	5.46	0.38	$58.65{ }^{\text {d }}$?	0.056
\bigcirc ¢ Venus	7,526	0	0.815	5.23	0.90	$244{ }^{\text {d }}$ (retro.)	10	0.76
\oplus Earth	7,927	1/298	1.000	5.52	1.00	$23^{\mathrm{b}} 56^{\mathrm{m}} 04^{\text {b }}$	23.4	0.36
\bigcirc^{7} Mars	4,218	1/192	0.107	3.93	0.38	243723	24.0	0.16
2 Jupiter	88,700	1/16	318.0	1.33	2.64	95030	3.1	0.73
b Saturn	75,100	1/10	95.2	0.69	1.13	$10 \quad 14$	26.7	0.76
${ }^{\circ}$ Uranus	29,200	1/16	14.6	1.56	1.07	1049	97.9	0.93
Ψ Neptune	27,700	1/50	17.3	2.27	1.41	14 ?	28.8	0.84
P Pluto	3,500?	?	0.06 ?	4 ?	0.3 ?	$6.387^{\text {d }}$?	0.14 ?

\dagger Depending on latitude. For the physical observations of the sun, p. 61; the sidereal period of rotation is $25.38 \mathrm{~m} . \mathrm{s}$.d.

SATELLITES OF THE SOLAR SYSTEM

Name	Mag.	Diam. $*$ $*$	miles	Mean Distance from Planet	Revolution Period	Orbit Incl.

Satellite of the Earth

Satellites of Mars

Phobos	11.6	(10)	5,800	25	0	07	39	1.0			
Deimos	12.8	(<10)	14,600	62	1	06	18	1.3	$	$	Hall, 1877
:---											
Hall, 1877											

Satellites of Jupiter

V	13.0	(100)	112.000	59	0	11	57	0.4	\|Barnard, 1892
Io	4.8	2020	262,000	138	1	18	28	0	Galileo, 1610
Europa	5.2	1790	417,000	220	3	13	14	0	Galileo, 1610
Ganymede	4.5	3120	665,000	351	7	03	43	0	Galileo, 1610
Callisto	5.5	2770	1,171,000	618	16	16	32	0	Galileo, 1610
VI	13.7	(50)	7,133,000	3765	250	14		27.6	Perrine, 1904
VII	16	(20)	7,295,000	3850	259	16		24.8	Perrine, 1905
X	18.6	(<10)	7,369,000	3888	263	13		29.0	Nicholson, 1938
XII	18.8	(<10)	13,200,000	6958	631	02		147	Nicholson, 1951
XI	18.1	(<10)	14,000,000	7404	692	12		164	Nicholson, 1938
VIII	18.8	(<10)	14,600,000	7715	738	22		145	Melotte, 1908
IX	18.3	(<10)	14,700,000	7779	758			153	Nicholson, 19

Satellites of Saturn

Janus	(14)	<300	100,000		0	17	59		A. Dollfus, 1966
Mimas	12.1	$300:$	116,000	30	0	22	37	1.5	W. Herschel, 1789
Enceladus	11.8	$400:$	148,000	38	1	08	53	0.0	W. Hersche, 1789
Tethys	10.3	600	183,000	48	1	21	18	1.1	G. Cassini, 1684
Dione	10.4	$600:$	235,000	61	2	17	41	0.0	G. Cassini, 1684
Rhea	9.8	810	327,000	85	4	12	25	0.4	G. Cassini, 1672
Titan	8.4	2980	759,000	197	15	22	41	0.3	Huygens 1655
Hyperion	14.2	(100)	920,000	239	21	06	38	0.4	G. Bond, 1848
Iapetus	11.0	(500)	$2,213,000$	575	79	07	56	14.7	G. Cassini, 1671
Phoebe	(14)	(100)	$8,053,000$	2096	550	11		150	W. Pickering, 1898

Satellites of Uranus

Miranda	16.5	(200)	77,000	9	1	09	56	0
Kuiper, 1948								
Ariel	14.4	(500)	119,000	14	2	12	29	0
Lassell, 1851								
Umbriel	15.3	(300)	166,000	20	4	03	38	0
Lassell, 1851								
Titania	14.0	(600)	272,000	33	8	16	56	0
Oberon	14.2	(500)	365,000	44	13	11	07	0
W. Herschel, 1787								
W. Herschel, 1787								

Satellites of Neptune

Triton	13.6	2300	220,000	17	5	21	03	160.0	Lassell, 1846
Nereid	18.7	(200)	$3,461,000$	264	359	10		27.4	Kuiper, 1949

*At mean opposition distance.
\dagger From D. L. Harris in "Planets and Satellites", The Solar System, vol. 3, 1961, except numbers in brackets which are rough estimates.
\ddagger Inclination of orbit referred to planet’s equator; a value greater than 90° indicates retrograde motion.
§Varies 18° to 29°. The eccentricity of the mean orbit of the moon is 0.05490 .
Satellites Io, Europa, Ganymede, Callisto are usually denoted I, II, III, IV res. pectively, in order of distance from the planet.

TIME

Any recurring event may be used to measure time. The various times commonly used are defined by the daily passages of the sun or stars caused by the rotation of the earth on its axis. The more uniform revolution of the earth about the sun, causing the return of the seasons, defines ephemeris time.

A sun-dial indicates apparent solar time, but this is far from uniform because of the earth's elliptical orbit and the inclination of the ecliptic. If the real sun is replaced by a fictitious mean sun moving uniformly in the equator, we have mean (solar) time. Apparent time - mean time $=$ equation of time. This is the same as correction to sun-dial on page 7 , with reversed sign.

If instead of the sun we use stars, we have sidereal time. The sidereal time is zero when the vernal equinox or first of Aries is on the meridian. As the earth makes one more revolution with respect to the stars than it does with respect to the sun during a year, sidereal time gains on mean time $3^{\mathrm{m}} 56^{\mathrm{s}}$ per day or 2 hours per month. Right Ascension (R.A.) is measured east from the vernal equinox, so that the R.A. of a body on the meridian is equal to the sidereal time.

Sidereal time is equal to mean time plus 12 hours plus the R.A. of the fictitious mean sun, so that by observation of one kind of time we can calculate the other. Sidereal time $=$ Standard time (0 h at midnight) - correction for longitude (p. 12) $+12 \mathrm{~h}+\mathrm{R} . A$. sun (p. 7) - correction to sun-dial (p. 7). (Note that it is necessary to obtain R.A. of the sun at the standard time involved.)

The foregoing refers to local time, in general different in different places on the earth. The local mean time of Greenwich, now known as Universal Time (UT) is used as a common basis for timekeeping. Navigation and surveying tables are generally prepared in terms of UT. When great precision is required, UT 1 and UT 2 are used differing from UT by polar variation and by the combined effects of polar variation and annual fluctuation respectively.

To avoid the inconveniences to travellers of a changing, local time, standard time is used. The earth is divided into 24 zones, each ideally 15 degrees wide, the zero zone being centred on the Greenwich meridian. All clocks within the same zone will read the same time.

In Canada and the United States there are 8 standard time zones as follows: Newfoundland (N), $3{ }^{\mathrm{h}} 30^{\mathrm{m}}$ slower than Greenwich; 60 th meridian or Atlantic (A), 4 hours; 75th meridian or Eastern (E), 5 hours; 90 th meridian or Central (C), 6 hours; 105th Meridian or Mountain (M), 7 hours; 120th meridian or Pacific (P), 8 hours; 135th meridian or Yukon (Y), 9 hours; and 150th meridian or Alaska (AL), 10 hours slower then Greenwich.*

The mean solar second, defined as $1 / 86400$ of the mean solar day, has been abandoned as the unit of time because random changes in the earth's rotation make it variable. The unit of time now has two definitions. In terms of Ephemeris Time (ET) it is $1 / 31,556,925.9747$ of the tropical year 1900 January 0 at 12 hrs ET. In terms of the caesium beam frequency standard at zero magnetic field, it is defined as $9,192,631,770$ cycles. Ephemeris Time is required in celestial mechanics, while the caesium resonator makes the unit readily available. The difference, $\Delta \mathrm{T}$, between UT and ET is measured as a small error in the observed longitude of the moon, in the sense $\Delta \mathrm{T}=\mathrm{ET}$ - UT. The moon's position is

[^0]tabulated in ET, but observed in UT. Δ T was zero near the beginning of the century, but in 1970 will be about 40 seconds.

RADIO TIME SIGNALS

National time services distribute co-ordinated time called UTC, which approximates UT2. It is derived from the atomic standard by offsetting the output frequency. The offset is reviewed annually, and a change, if necessary, is applied at the beginning of the year. A divergence between UTC and UT2 amounting to 0.1 s is corrected by a step adjustment at the beginning of the next month. By agreement these changes are co-ordinated through the Bureau International de l'Heure, so that most time services are synchronized to the millisecond.

Radio time signals readily available in Canada include:
CHU Ottawa, Canada $3330,7335,14670 \mathrm{kHz}$
WWV Fort Collins, Colorado 2.5, 5, 10, 15, 20, 25 MHz
WWVH Maui, Hawaii $\quad 2.5,5,10,15 \mathrm{MHz}$

CALENDAR
1970

January	February	March	April
T	M T W	S M T W T F S	M T W
4 5 6 7 8 2 3	$\begin{array}{cccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 8 & 9 & 10 & 11 & 12 & 13 & 14\end{array}$	1 2 3 4 5 6 7 8 9 10 11 12 13 14	1 2 3 8 9 10
11121314151617	15161718192021	15161718192021	1213141516
18192021222324	22232425262728	22232425262728	1920212223
25262728293031		293031	2627282930

May	June	July	August
S M			
$\begin{array}{lllllllll}3 & 4 & 5 & 6 & 7 & 8 & \mathbf{8}\end{array}$	$\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 \\ 7 & 8 & 9 & 10 & 11 & 1213\end{array}$	5 6 7 1 2 3 3 4	234567
10111213141516	14151617181920	12131415161718	9101112131415
17181920212223	21222324252627	19202122232425	16171819202122
24252627282930	282930	262728293031	23242526272829
31			3031
September	October	November	December
S M T W T F	S M TW T F S	S M TWTES	S M T W T F
$\begin{array}{llllll}1 & 2 & 3 & 4 & 5\end{array}$	123	$\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$	1234
6789101112	456678910	891011121314	67889101112
13141516171819	11121314151617	15161718192021	13141516171819
20212223242526	18192021222324	22232425262728	20212223242526
27282930	25262728293031	2930	2728293031

TIMES OF RISING AND SETTING OF THE SUN AND MOON

The times of sunrise and sunset for places in latitudes ranging from 30° to 54° are given on pages 13 to 18 , and of twilight on page 19. The times of moonrise and moonset for the 5 h meridian are given on pages 20 to 25 . The times are given in Local Mean Time, and in the table below are given corrections to change from Local Mean Time to Standard Time for the cities and towns named.

The tabulated values are computed for the sea horizon for the rising and setting of the upper limb of the sun and moon, and are corrected for refraction. Because variations from the sea horizon usually exist on land, the tabulated times can rarely be observed.

The Standard Times for Any Station

To derive the Standard Time of rising and setting phenomena for the places named, from the list below find the approximate latitude of the place and the correction in minutes which follows the name. Then find in the monthly table the Local Mean Time of the phenomenon for the proper latitude on the desired day. Finally apply the correction to get the Standard Time. The correction is the number of minutes of time that the place is west (plus) or east (minus) of the standard meridian. The corrections for places not listed may be obtained by converting the longitude found from an atlas into time ($360^{\circ}=24 \mathrm{~h}$).

CANADIAN CITIES AND TOWNS						AMERICAN CITIES		
	Lat.	Corr.		Lat.	Corr.		Lat.	Corr.
Athabasca	55°	+33M	Penticton	49°	-02P	Atlanta	34°	+37E
Baker Lake	64	$+24 \mathrm{C}$	Peterborough	44	$+13 \mathrm{E}$	Baltimore	39	+06E
Brandon	50	+40C	Port Harrison	59	+13E	Birmingham	33	$-13 \mathrm{C}$
Brantford	43	+21E	Port Arthur	48	+57E	Boston	42	-16E
Calgary	51	+36M	Prince Albert	53	+63C	Buffalo	43	+15E
Charlottetown	46	+12A	Prince Rupert	54	+41P	Chicago	42	-10C
Churchill	59	+17C	Quebec	47	$-15 \mathrm{E}$	Cincinnati	39	+38E
Cornwall	45	$-1 \mathrm{E}$	Regina	50	$+58 \mathrm{C}$	Cleveland	42	+26E
Edmonton	54	+34M	St. Catharines	43	+17E	Dallas	33	+27C
Fort William	48	$+57 \mathrm{E}$	St. Hyacinthe	46	-08E	Denver	40	00M
Fredericton	46	+27A	Saint John, N.B.	45	$+24 \mathrm{~A}$	Detroit	42	+32E
Gander	49	$+8 \mathrm{~N}$	St. John's, Nfld.	48	+01N	Fairbanks	65	-10AL
Glace Bay	46	00A	Sarnia	43	$+29 \mathrm{E}$	Flagstaff	35	$+27 \mathrm{M}$
Goose Bay	53	+ 2A	Saskatoon	52	+67C	Indianapolis	40	$-15 \mathrm{C}$
Granby	45	-09E	Sault Ste. Marie	47	+37E	Juneau	58	$+58 \mathrm{P}$
Guelph	44	$+21 \mathrm{E}$	Shawinigan	47	-09E	Kansas City	39	+18C
Halifax	45	+14A	Sherbrooke	45	$-12 \mathrm{E}$	Los Angeles	34	$-07 \mathrm{P}$
Hamilton	43	+20E	Stratford	43	$+24 \mathrm{E}$	Louisville	38	-17C
Hull	45	+03E	Sudbury	47	$+24 \mathrm{E}$	Memphis	35	00C
Kapuskasing	49	$+30 \mathrm{E}$	Sydney	46	+01A	Miami	26	$+21 \mathrm{E}$
Kingston	44	+06E	The Pas	54	$+45 \mathrm{C}$	Milwaukee	43	$-09 \mathrm{C}$
Kitchener	43	+22E	Timmins	48	+26E	Minneapolis	45	+13C
London	43	$+25 \mathrm{E}$	Toronto	44	+18E	New Orleans	30	00 C
Medicine Hat	50	+23M	Three Rivers	46	-10E	New York	41	-04E
Moncton	46	+19A	Trail	49	-09P	Omaha	41	+24C
Montreal	46	-06E	Truro	45	+13A	Philadelphia	40	$+01 \mathrm{E}$
Moosonee	51	+23E	Vancouver	49	+12P	Phoenix	33	+28M
Moose Jaw	50	+62C	Victoria	48	+13P	Pittsburgh	40	$+20 \mathrm{E}$
Niagara Falls	43	+16E	Whitehorse	61	00Y	St. Louis	39	+01C
North Bay	46	+18E	Windsor	42	$+32 \mathrm{E}$	San Francisco	38	+10P
Ottawa	45	+03E	Winnipeg	50	$+29 \mathrm{C}$	Seattle	48	+09P
Owen Sound	45	$+24 \mathrm{E}$	Yellowknife	62	+38M	Washington	39	+08E

Example-Find the time of sunrise at Owen Sound, on February 12.
In the above list Owen Sound is under " 45° ", and the correction is +24 min. On page 13 the time of sunrise on February 12 for latitude 45° is 7.06 : add 24 min . and we get 7.30 (Eastern Standard Time).

MAP OF STANDARD TIME ZONES

 Nーシ20～N ما م1 150000
우NNNN

小のサかom
－ 0
o o o o o

सN
NOOMN OTNNN
NNNNN
O
サホ M M M
घ M M H N M M N
๑9용․․
12 \rightarrow Nin

－ 0 O
－

－ 0
 － 0 O
M M NTNT

がザザ
NOUNO
onNNN

水みザザ
HiN8
oonN

1020 H H H
○M10
－ 0 O
∞ ONOTO
102010 2
Hi HM

HONONMN
No ON
पN स M M M

－
サNㅓㅇㅇㅇㅇ
مد مـ ما مـ ما

G	$100^{10 \infty} 0_{0}=$	$\stackrel{\infty}{4} \mathbb{- 1} 0 \underset{1}{\infty}$
O	\bigcirc－ 0 －	－ 0 O 0
\＃	$\mathfrak{\omega}$	¢
\＆ 0 O OOO	0 cocoobloll	CO20 2020
	$8 \infty 80=$	$\stackrel{\infty}{\infty}$
\＆ $0^{\circ} 000$	$\bigcirc 0000$	cococo
	HFOe	NON
H	$\bigcirc 0000$	O2
Nサー		NNNণ

NN No No	$9 O M 12$ NM M M M	$\underset{\sim}{\infty} \underset{\sim}{\infty} \underset{H}{\infty}$
－ 0 O 0	$\bigcirc 000$	\bigcirc O O O
∞	MNON N	Nown
OL	O2	ת2
NONN N N	$\begin{array}{lll} 1 \\ N \sim N O N \\ N \end{array}$	అ N M M ఱ
－0000	$\bigcirc 0000$	－ 0000
	$\infty \propto$ MNO ભ M M N	Nownco
م2	O2	م2
\cdots パパ	$\Rightarrow \cdots 10 N \theta$	 MNNNT

	$+1$	Latitu Sunrise	de 30° Sunset	Latitu Sunrise	ude 35° Sunset	Latitu Sunrise	40° Sunset	Sunrise	Sunset	Sunrise	ude $\mathbf{4 6}^{\circ}$ Sunset	Latitu Sunrise	48 ${ }^{\circ}$ Sunset	Latitu Sunrise	de 50° Sunset	Sunrise	de 54° Sunset
		h m	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m
		517	637	510	645	501	654	453	703	448	707	442	712	437	717	425	731
	3	516	638	508	646	459	656	450	705	444	710	439	715	433	721	421	735
	5	514	640	506	648	456	658	447	707	441	713	435	718	430	724	417	738
	7	512	641	504	650	454	700	444	710	439	715	433	721	427	727	413	742
	9	511	642	502	651	451	702	442	712	436	718	430	724	423	730	409	746
	11	510	643	500	653	449	704	439	714	434	720	427	726	420.	733	405	749
	13	508	645	458	655	447	706	437	717	431	723	424	729	418	736	401	753
	15	507	646	457	656	445	708	435	719	429	725	421	732	415	739	358	756
	17	506	647	455	658	443	710	432	721	426	728	419	735	412	742	354	759
	19	505	649	454	659	442	712	430	723	423	730	416	737	409	745	351	803
D	21	504	650	452	701	440	713	428	725	421	732	414	740	407	747	348	806
	23	503	651	451	702	438	715	426	727	419	734	412	742	404	750	345	809
	25	502	652	450	704	437	717	425	729	418	737	410	744	402	752	343	812
	27	501	653	449	705	436	718	423	731	416	739	408	747	400	755	340	814
	29	500	655	448	707	434	720	422	733	415	740	406	749	358	757	338	817
	31	500	656	447	708	433	721	420	735	413	742	405	751	357	759	336	819
	2	459	657	447	709	433	723	419	736	412	744	404	753	355	801	334	822
	4	459	658	446	710	432	724	418	738	411	746	402	754	354	803	333	824
	6	459	659	446	711	431	725	418	739	410	747	401	756	353	805	331	826
	8	458	700	445	712	431	727	417	741	409	749	401	758	352	806	330	828
	10	458	701	445	$\begin{array}{ll}7 & 13\end{array}$	431	728	416	742	409	750	400	759	351	808	329	830
	12	458	702	445	$\begin{array}{ll}7 & 14\end{array}$	430	729	416	743	408	751	359	800	351	809	328	832
	14	458	702	445	715	430	730	416	744	408	752	359	801	350	810	327	833
	16	458	703	445	716	430	731	416	745	408	753	359	803	350	811	327	834
	18	459	703	446	717	431	731	417	746	408	754	359	803	350	812	327	835
	20	459	704	446	717	431	732	417	746	409	754	359	803	350	812	327	835
	22	459	704	446	718	432	732	417	747	409	755	359	804	350	813	327	836
	24	500	705	447	718	432	733	417	747	409	755	400	804	351	813	328	836
	26	500	705	448	718	433	733	418	747	410	755	401	804	352	813	329	836
	28	501	705	448	718	433	733	419	747	411	755	402	804	353	813	330	836
	30	501	705	449	718	434	733	420	747	412	755	403	804	354	813	331	835

上 $\infty \infty \infty \infty \infty \infty \infty \infty$

엉ㅇㅇㅇ $\infty \infty \infty \infty$

 $\cdots \infty \infty \infty \infty \infty \infty \infty$

NONINO

NㅗNㅇㅇ

上 $\infty \infty \infty \infty$
$\infty \infty \infty \infty 1$
E 1015.80

みれ世れみ
Eずと我ご
 $\approx \infty \infty \infty \infty \infty$ NNMNN

NT $\mathbb{O} \infty$
』みがれが
ザザみみ゙
MONGNG
みがれ゙が
I－INMN
GeOMOO MNNNI $\mathrm{N}-\mathrm{N}=0$ e ツががが
 $12 \infty \in \mathbb{O} \rightarrow 0$ ザぜぜ
 $\mathrm{I}-\mathrm{I}-\mathrm{I}-\mathrm{I}$ MONONON かん 世－心 $\pm ®$ ® $1 \rightarrow N M I$

みせせれせ
中
 E．20 4 2020 in QOMHEH －$-\mathrm{N}=\mathrm{N}$ $1 \rightarrow \mathrm{~N}=\mathrm{I}$ $\underset{\sim}{\sim} \underset{\sim}{\infty} \infty 6 \infty$ I－I－NN
 $\mathrm{N} \rightarrow \mathrm{N}=\mathrm{I}$

N स O W－W みみザサ

คに 10 O
れれれ1020 $\rightarrow \infty \rightarrow \infty$ 151020101520

QNQ PGN
$1-N \mathrm{~N}$

田みみみみが
ザザザサ
$\cdots \infty \rightarrow M \mathrm{~m}$
がかせれ

स NO $\rightarrow \infty$
$\rightarrow 6$
$\mathrm{N}-\mathrm{I}-\mathrm{I}$
स सि
サザみみ

ればがか
E $\infty \times \infty$ N N
COMNOMNOMN
$\mathrm{N}=\mathrm{N}=\mathrm{N}$
$\cdots=\infty \times 10$
$\cdots N M N N$
बO 0
2010201020

m
05
05
05
04
04
04
玉 ANNN N
O®ODOD
$N N N N N$
Noo 0

$\stackrel{N}{\infty} \varnothing \bigcirc=-$
202020

20202020
ボボixie

$\mathrm{N} N \mathrm{~N} \mathrm{~N}$

ザれ゙が

HWEITO
$\mathrm{N}=\mathrm{I}-\mathrm{I}-\mathrm{N}$

＊
${ }_{-}^{\omega}-\infty \infty$ $\infty \rightarrow \infty \rightarrow \infty$ 20102020
 © e o co

ONNWN N N W N
1210121010
$\cdots N \ln N$

ت＠
上is F H G H O
NINNe
 サ1 21010
 NNece © o e o ect
 MGMOHON 151520102012

Hin $\overbrace{2}$ H O O O C

NOM H NO N co e o eo

2
10201021021020

20

$+1$		Latitu Sunrise	30° Sunset	Latitu Sunrise	35 ${ }^{\circ}$ Sunset	Latitu Sunrise	Sunset	Latitu Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	ude 50° Sunset	Latitud Sunrise	de 54° Sunset
		h m	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m
	(2	537	622	533	626	528	631	523	635	521	637	518	640	516	643	509	650
	4	538	619	535	624	530	628	525	632	523	634	521	636	519	638	513	644
	6	$\begin{array}{ll}5 & 39\end{array}$	617	536	621	532	624	528	628	526	630	524	632	522	634	517	639
	8	540	615	537	618	534	621	530	625	529	626	527	628	525	629	520	634
	10	542	612	539	615	535	618	532	621	531	622	529	624	527	625	524	629
	12	543	610	540	612	537	615	535	617	533	618	531	620	530	621	527	625
	14	544	608	541	609	539	611	537	613	536	614	534	616	533	616	531	620
	16	545	605	543	607	541	608	539	610	538	610	537	611	536	612	534	615
	18	546	603	544	604	543	605	542	606	541	607	540	607	539	608	538	610
	20	547	600	546	601	545	602	544	602	543	602	542	603	542	603	5 5	605
	22	548	558	547	558	547	558	546	559	546	559	545	$5 \quad 59$	545	559	545	600
	24	549	555	549	555	549	555	549	555	548	555	548	555	548	555	548	555
	26	550	553	551	552	551	552	551	551	551	5.51	551	551	551	5.51	552	550
	28	551	550	552	549	553	548	553	548	553	547	5.54	547	554	547	556	545
	30	552	548	554	546	555	545	556	544	556	543	5.57	543	557	542	559	540
$\begin{aligned} & \text { 니 } \\ & \text { 0. } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	(2	5.54	545	555	543	557	542	559	540	$5 \quad 59$	540	600	538	601	537	603	535
	4	555	543	$\begin{array}{ll}5 & 57\end{array}$	540	559	538	601	536	602	536	603	534	603	533	607	530
	6	556	540	558	537	601	535	603	533	604	532	606	530	607	529	610	5 5
	8	557	538	600	535	603	532	606	529	607	528	609	526	610	525	614	521
	10	558	535	602	532	605	529	608	526	609	524	611	522	613	520	617	516
	12	600	533	603	530	607	526	610	522	612	520	614	518	616	516	621	511
	14	601	531	605	527	609	523	$\begin{array}{ll}6 & 13\end{array}$	$\begin{array}{ll}5 & 19\end{array}$	615	$5 \quad 17$	617	514	619	512	625	507
	16	602	529	606	525	611	520	615	515	618	513	620	510	622	508	629	502
	18	603	527	608	522	613	517	618	512	620	510	623	507	625	504	633	457
	20	605	525	609	519	615	514	620	509	623	506	626	503	629	500	636	452
	22	606	5 23	611	517	617	511	623	506	626	503	629	459	632	456	640	448
	24	607	521	613	515	619	508	626	502	629	459	632	456	636	452	645	443
	26	609	519	615	513	6. 22	506	628	459	632	456	635	452	639	448	649	439
	28	610	$\begin{array}{ll}5 & 17\end{array}$	616	511	624	503	631	456	634	453	638	449	642	445	653	435
	30	612	516	618	508	626	501	933	4.54	637	449	642	446	646	443	657	431

 ハサササー は ○ず゚ール flNNNN
 ※ サ サ サ サ サ サ E OMNO NOM －
 \＆ g \ddagger 我 $\rightarrow 100000$

目 H H H H

\＆

A

上 F H サ H
घ
上
घ
＝
ష
上 1 OOOO
 عL

上 0 O O O
∞
－ 01010
サザツハ

NNNNN

NのNが心 みみみみ

NNNNN

Nペ̊ㅇำ
H H H H H
용ㅇN
coNNNN ตーNONON H H H H

HNO NO oonN

かん MN NO

ザサザ
 OOCON が みザザ
 － 0 O 0 かった みササササ
 － 0 O

 2020 2020 0 － 0

$\cdots \times 10 \infty$ ๗๗๙๗๓
∞ か NNNNN
 みみみみ゙み
 $N N N N N$ ががい ザサザサ No NNNN

か円ைNN サみザザ

Oーツ NNNNN

NNOMN H N みみチが Q NNNN
 स स स स स

下以 －0 O ON

중ㅇㅇ악 HHHH 억 $\underset{A}{\infty} \operatorname{Hin}^{\infty}$ 00000

엉ㅇㅇ 10202020 $\bigcirc 000$

$\infty \infty \infty \infty$ ๗๗๗๗๗
 ๗๗๗๗๗๓
 $\infty \infty \infty \infty \infty$

 NNMNNN

NNMNNNNNNNNNNNN

$\therefore \infty \rightarrow \infty$

	Nサ1	O

MNNNN NNNNN
NNNNNN

 ザザザザ

 かの NNNNNNNNN
 HHFH H H H H H
 Hサササザ

 －ONNNNNNNNN
 サ1 O2
 00000 － 0 o 0 © o e o oco

дәquәวəด

The above table gives the local mean time of the beginning of morning twilight, and of the ending of evening twilight, for various latitudes. To obtain the corresponding standard time, the method used is the same as for correcting the sunrise and sunset tables, as described on page 12 . The entry - in the above table indicates that at such dates and latitudes, twilight lasts all night. This table, taken from the American Ephemeris, is computed for astronomical twilight, i.e. for the time at which the sun is 108° from the zenith (or 18° below the horizon).

MOONRISE AND MOONSET, 1970 (Local Mean Time)

DATE	Latitude 30° Moon		Latitude 35° Moon		Latitude 40° Moon		Latitude 45° Moon		Latitude 50° Moon		Latitude 54° Moon	
	Rise	Set										
Jan.	h m	h m	h m	h m	h m		h m		h m		h m	m
1	0022	1159	0027	1155	0032	1148	0037	1141	0043	1133	0049	1125
2	0122	1231	0129	1223	0137	1213	0147	1202	0159	1148	0211	
3	0225	1309	0236	1257	0247	1244	0302	1228	0320	1209	$03 \quad 37$	1150
4	0333	1354	0346	13 39	0402	1323	0421	1302	0444	1238	0509	1212
5	0443	1448	0458	1432	0517	1413	0540	1350	0608	1321	0639	1249
6	0552	1553	0609	1536	0628	1516	0652	1453	0723	1422	0757	1349
7	0656	1706	0712	1650	0730	1632	0753	1610	0821	1542	0852	1512
8	0751	1821	0805	1808	0821	1753	0840	1736	0902	1714	0927	1651
9	0838	1935	0849	1926	0901	1915	0915	1903	0932	1848	0948	1832
10	0917	2045	0924	2040	0932	2034	0941	2027	0952	2018	1002	2009
11	0952	2152	0955	2150	0959	2148	1003	2146	1008	2143	1013	2141
12	1023	2256	1024	2258	1023	2300	1023	2302	1023	2305	1023	
13	1054	2358	1051		1046		1042		1036		1031	
14	1125		1118	0003	1110	0009	1102	0016	1051	0024	1041	0034
15	1157	0059	1148	0107	1137	0117	1124	0129	1108	0143	1053	
16	1234	0200	1222	0211	1207	0225	1150	0241	1129	0301	1108	0321
17	1315	0300	1300	0315	1244	03 31	12.23	0351	1157	0416	1130	0441
18	1401	0359	1345	0415	1326	0433	1303	0457	1234	0525	1203	0556
19	1452	0455	1435	0512	1416	0531	1353	0555	1322	0625	1250	0657
20	1547	0546	1531	0601	1513	0621	1450	0644	1422	0713	1351	0743
21	1644	0630	1630	0645	1613	0702	1554	0723	1529	0749	1503	0815
22	1741	0709	1729	0722	1715	0737	1659	0754	1639	0815	1619	0836
23	1837	0743	1828	0754	1818	0805	1806	0819	1751	0835	1736	0851
24	1932	0814	1926	0821	1919	0830	1911	0840	1901	0851	1851	0902
25	2026	0842	2023	0846	2020	0851	2015	0857	2010	0904	2005	0911
26	2120	0908	2120	0910	2120	0911	2120	0913	2120	0916	2120	0918
27	2215	0934	2218	0933	2221	0931	2225	0929	2230	0927	$22 \quad 35$	0925
28	2312	1001	2318	0956	2325	0952	2333	0946	2343	0939	2353	0933
29		1030		1023		1014		1005		0953		0941
30 ®	0012	1104	0021	1053	0032	1041	0044	1028	0100	1011	0115	0953
31	0115	1144	0127	1130	0142	1115	0159	1057	0220	1034	0242	1011
Feb.	0221	1232	0237	1216	0254	1158	0316	1136	0342	1109		
2	0330	1330	0346	1313	0406	1253	0429	1229	0459	1159	0533	1126
3	0435	1437	0451	1421	0511	1401	0535	1338	0605	1308	0638	1236
4	0534	1551	0548	1536	0607	1519	0628	1459	0654	1434	0721	1407
5	0624	1706	0637	1655	0651	1642	0708	1627	0728	1608	0749	1548
6	0708	1820	0717	1813	0727	1804	0738	1754	0753	1742	0807	1730
7	0746	1930	07.51	1927	0757	1923	0804	1918	0811	1912	0819	1907
8	0820	2038	0821	2038	0823	2038	0825	2038	0827	2040	$08 \quad 29$	2040
9	0852	2142	0850	2147	0847	2151	0844	2157	0841	2203	0838	2209
10	0924	2246	0918	2254	0911	2303	0904	2313	0856	2325	0848	2337
11	0956	2350	0948		0938		0926		0913		0859	
12 1	1032		1021	0001		0012		0027	0932	0045	0913	0104
13	1113	0052	1059	0105	1042	0121	1022	0140	0958	0203	0933	0228
14	1157	0153	1142	0208	1123	0227	1100	0248	1032	0316	1002	0346
15	1247	0250	1230	0306	1211	0326	1147	0349	1117	0419	1044	0452
16									1213			
17	14 15 15 15	0429	${ }_{14}^{14} 22$	0444	$\begin{array}{ll}14 & 05 \\ 15\end{array}$	${ }^{05} 02$	1345	0524	1318	0551	1250	0619
18	1535	0510	${ }_{15}^{15} 22$	0523	1507	0538	1450	0557	1428	0620	1405	0644
19	1631	0546	1621	0556	1610	0609	1556	0624	1539	0642	1522	0700
20	1726	0617	1720	0625	1712	0635	1702	0645	1651	0659	1639	0712
21	1821	0646	1817	0651	1813	0656	1807	0704	1801	0713	$17 \quad 54$	0721
22	1915	0712	1915	0715	1914	0717	1912	0720	1911	0724	1909	0728
23	2010	0738	2012	0738	2015	0737	2017	0736	2021	0736	2024	0735
24	2106	0805	2112	0801	2118	0757	2124	0753	2132	0748	2141	0743
25	2205	0833	2213	0827	2223	0819	2234	0810	2247	0800	2301	0751
26	2306	0904	2318	0855	2331	0844	2346	0832		0816		0801
27		0942		0929		0914		0858	0006	0837	0025	0816
28 ©	0011	1025	0024	1010	0041	0953	0101	0932	0125	0906	0152	0839

DATE	Latitude 30° Moon		Latitude 35° Moon		Latitude 40° Moon		Latitude 45° Moon		Latitude 50° Moon		Latitude 54° Moon	
	Rise	Set	Rise	Set	Rise	Set	se	Set	Rise	Set	Rise	St
Mar.		h m										
1.	0116	1117	0132	1100	0151	1041	0214	1018	0243	0948	0315	0916
2	0220	1218	0237	1201	0257	1142	0321	1118	0352	1047	0425	1014
3	0319	1327	0336	1312	0354	1253	0417	1231	0446	1203	0516	
4		1439	0426	1427	0442	1412	0501	1354	0525	1331	0549	1309
5	0458	1553	0509	1544	0521	1533	0536	1520	0553	1504	0610	1449
6	0537	1704	0545	1658	0553	1652	0603	1645	0614	1636	0625	1627
	0613	1813	0617	1812	0620	1810	0625	1808	0630	1805	0636	1802
8	0647	1921	0646	1923	0646	1925	0646	1927	0645	1931	0645	1934
9	0719	2027	0715	2032	0710	2039	0706	2046	0700	2056	0654	2105
10	0752	2133	0745	2141	0737	2152	0727	2205	0716	2220	0705	2236
1	0828	22	0817		0806	2304	0752	2320	0735	2342	0718	
12	0907	2341	0854	23	0839		0821		0758		0736	0004
13	0951		0936		0918	0013	0857	0033	0830	0100	0801	0127
14	1040	00	1024	005	1004	0116	0941	0139	0911	0209	0839	0241
15	1133	01	1117	01	1057	0212	1034	0236	1004	0307	0931	0339
16	12	0225	1214	0241	1156	0300	1134	0322	1106	0350	1036	0420
17	1327	0308	1313	0322	1257	0339	1239	0358		0423	1150	0448
18	1424	0346	1412	0357	1400	0411	1345	0427	1326	0447	1307	0507
19	1519	0418	1511	0428	1502	0438	1451	0450	1438	0505	1424	
20	1614	0448	1609	0454	1604	0501	1557	0510	1548	0520	1540	0530
	17		1707	0519	1705	0522	1702		1658	0533	1655	
22	1804	0541	1805	0542	1806	0543	1807	0543	1809	0544	1810	
23	1900	0608	1905	0606	1909	0603	1914	0600	1921	0556	1927	0553
24	1959	0636	2006	0631	2014	0625	2024	0617	2036	0609	2048	0601
25	2059	0707	2110	0658	2122	0649	2136	0638	2154	0624	2212	
26	2204	0742	2216	0731	2232	0718	22	0702	2314	0643	2338	0624
27	2308	0824	$23 \quad 24$		2342	0753		0734		0709		
28		0913		0856		0838	0005	0816	0032	0746	0102	16
29	0012	1010	0029	0953	0049	0934	0113	0910	0144	0839	0217	0806
30	0112	1115	0129	1059	0148	1040	0211	1017	0241	0948	0313	0917
31	0206	1224	0221	1210	0238	1154	0258	1134	0324	1110	0350	1045
Apr.												
2	${ }_{03} 023$	1444	0342	1437	$03 \quad 52$	1429	0403	1419	0417	1407	0431	
3	0409	1552	0414	1549	0420	1545	0426	1540	0434	1534	0442	1529
4	0442	1659	0444	1659	0445	1659	0447	1659	0450	1700	0452	1700
5 .	0515	1805	0512	1809	0510	1813	0507	1818	0504	1825	0502	1831
6		1911	0541	1919		1927	0529	1937	0520	1950	0511	
7	0622	2017	0613	2028	0602	2040	0551	2055	0537	2113	0523	
8	0700	2122	0648	2136	0634	2152	0618	2211	0559	2235	0539	
9	0743	2226	0728	2242	0712	2300	0651	2322	0627	2350	0601	
10	0831	2324	0815	2341	0755		0733		0705		0634	0021
11	0923		0907		0847	0001	0824	0024	0753	0054	0720	
12	1019	0018	1003	0034	0945	0053	0922	0116	0853	0145	0822	0216
13	1116	0104	1102	0118	1045	0136	1026	0157	1001	0223	0934	0250
14	1214	0143	1202	0156	1148	0211	1132	0228	1111	0250	1050	0311
15		0218		0228		0240		0254	1223	0311	12	
16	1405	0249	1359	0256	1352	0305	1344	0315	1333	0327	1323	
17	1459	0317	1457	0321	1453	0326	1449	0333	1443	0340	1438	0347
18	1555	0343	1554	0345	1554	0347	1554	0349	1553	0352	1553	
19	1651	0410	1654	0408	1657	0407	1700	0406	1705	0404	1709	0402
20	1749	0437	1754		1802	0428		0423	1819		1829	
21												
22	19 19 20 59	05 42	20 21 21	05 06 06 09	2020	0520	2037	0506	2058	0449	2120	0432
23	2059	0622	2114	0609	2132	0553	2152	0535	${ }_{23} 219$	0513	2247	
24	2205	0709	$22 \quad 21$	0654	2241	0636	23.04	0614	2334	0547		0518
25	2307	0805	2324	0749	2343	0729		0705		06	0006	0603
27		09 10 10 16		$\begin{array}{ll}08 & 51 \\ 10 & 01\end{array}$		0833 09 15	$\begin{array}{ll}00 & 06 \\ 00 & 57\end{array}$	08 09 09 24	$\begin{array}{lll}00 & 36 \\ 01 & 23\end{array}$	0740 0858	$\begin{array}{ll}01 & 09 \\ 01 & 51\end{array}$	
28	0051	1125	0103	1114	0118	1100	-1 36	1044	O1 57	1023	O2 19	10831 104
29	0133	1234	0142	1226	0153	1216	0206	1204	0222	1151	0237	1137
30	0209	1341	0215	1335	0222	1330	0230	1323	0240	1316	0250	1309

DATE	Latitude 30° Moon		Latitude 35° Moon		Latitude 40° Moon		Latitude 45° Moon		Latitude 50° Moon		Latitude 54° Moon	
	Rise	Set										
May	h m		h		h ${ }^{1}$	T	h m					m
	0242	1445	0245	1444	0248	1443	0251	1441	0256	1439	0300	1437
2	0313	1549	0313	1552	0312	1555	0311	1558	0310	1601	0310	1605
3	0345	1654	0341	1700	0316	1707	0331	1714	0325	1724	03 19	1734
4	0417	1759	0411	1808	0402	1819	0352	1832	0341	1847	0330	1903
5 …	0454	1905	0444	1917	0432	1931	0417	1948	0401	2010	0344	2031
6	0534	2009	0522	2024	0506	2041	0448	2101	0425	21. 28	0402	2156
7	0621	2110	0605	2127	0548	2146	0526	2209	0459	2239	0431	2310
8	0712	2207	0655	2223	0636	2242	0613	2306	0543	2336	0512	
9	0807	2256	0751	2312	0732	2329	0709	2352	0639		0608	0007
10	0905	2339	0850	$23 \quad 52$	0832		0812		0745	00	0717	
11	1003		0950		0935	0008	0917	0027	0855	0050	0832	0114
12	1100	0016	1049	0027	1038	0040	1024	0055	1007	0113	0949	0132
13	1155	0048	1148	0056	1140	0106	1130	0117	1117	0131	1105	0144
14	1249	0117	1245	0122	1240	0128	1234	0137	1227	0146	1219	0154
15	1343	0143	1342	0147	1341	0149	1339	0153	1337	0158	1334	0202
16	1439	0210	1440	0210	1442	0210	1444	0210	1447	0210	1449	0209
17	1535	0237	1540	0234	1546	0231	1552	0227	1600	$02 \cdot 22$	1607	0217
18	1635	0306	1643	0300	1652	0253	1702	0245	1716	0235	1729	0226
19	1738	0339	1749	0329	1802	0319	1817	0306	1836	0252	1856	0237
20 (c)	1844	0417	1859	0405	1914	0351	1934	0334	1959	0314	2024	0254
21	1952	0502	2008	0447	2026	0430	2049	0410	2118	0344	2149	
22	2057	0556	2114	0540	2133	0521	2157	0457	2227	0428	2259	
23	2156	0658	2213	0641	2230	0623	2253	0559	2321	0528	2350	0456
24	2248	0807	2302	0751	2317	0734	2336	0712	2359	0645		0616
25	2332	0917	2342	0904	2355	0850		0832		0810	0023	0748
26		1026		1017		1007	0009	0954	0026	0938	0043	0922
27	0010	1134	0017	1127	0026	1121	0035	1113	0047	1104	0057	
28	0044	1238	0048	1236	0052	1234	0057	1231	0103	1227	0108	1224
29	0115	1341	0116	1343	0116	1345	0116	1346	0117	1348	0118	1350
30	0146	1444	0143	1449	0140	1455	0136	1501	0131	1509	0127	1516
31	0218	1547	0211	1556	0204	1605	0157	1616	0147	1630	0137	1643
1	0252	1651	0242	1703	0231	1716	0219	1731	0204	1751	0149	1810
2	0330	1755	0318	1810	0304	1826	0247	1845	0227	1910	0207	1935
3	0414	1858	0359	1914	0342	1932	0322	1954	0257	2023	0231	2053
4	0503	1956	0447	2012	0428	2032	0406	2055	0336	2125	0306	2156
5	0557	2049		2104	0521	2123	0458	2145	0429	2213	0357	2243
6	0654	2134	0639	2148	0620	2204	0559	2225	0530	2249	0501	
7	0752	2213	0739	2225	0722	2239	0704	2255	0640	2315	0615	
8	0850	2246	0838	2256	0825	2307	0810	2319	0751	2335	0732	
9	0945	2317	0937	2323	0928	2331	0917	2340	0903	2351	0849	
10	1040	2344	1035	2348	1029	2352	1021	2357	1012		1003	0001
11	1134		1131		1129		1125		1120		1116	0009
12	1227	0010	1228	0011	1229	0012	1229	0014	1230		1230	
13	1323	0037	1326	0035	1330	0032	1334	0030	1340	0028	1345	0025
14	1420	0104	1426	0059	1434	0054	1443	0047	1454	0040	1504	0033
15	1520	0134	1530	0126	1542	0118	1555	0107	1611		1627	
16	1625	0209	1638	0159	1652	0146	1710	0132	1732	0114	1755	0056
17	1732	0251	1748	0238	1805	0222	1827	0203	1854	0140	1922	0117
18	1840	0342	1857	0326	1916	0307	1940	0246	2010	0217	2042	0149
19	1943	0442	2000	0425	2018	0405	2042	0342	2111	0311	2142	0240
20	2039	0549	2054	0533	2111	0515	2131	0452	2156	0424	2222	
21	2128	0701	2139	0648	2153	0632	2208	0613	2228	0549	2247	0524
22	2209	0814	2217	0803	$22 \quad 27$	0751	2238	0737	2251	0720	2304	0701
23	2245	0924	2249	0917	2255	0909	2301	0900	2309	0849	2316	0837
24	2317	1031	2319	1027	2320	1024	2322	1019	2324	1014	2326	1010
25 ©	2348	1135	2347	1136	2344	1136	2341	1137	$23 \quad 38$	1137	$23 \quad 35$	1138
26		1238		1242		1247		1252	2353	1258	2345	1304
27	0020	1341	0014	1349	0008	1357	0001	1407		1419	$23 \quad 57$	1430
28	0052	1444	0045	1455	0035	1507	0023	1521	0010	1539		1556
29	0129	1547	0118	1601	0105	1616	0049	1635	0030	1658	000	1721
30	0211	1650	0157	1705	0141	1723	0121	1745	0057	1811	0033	1841

DATE	Latitude 30° Moon		Latitude 35° Moon		Latitude 40° Moon		Latitude 45° Moon		Latitude 50° Moon		Latitude 54° Moon	
		Set	Rise	Set								
July	h			h			h m					
	0258	1748	0241	1805	0223	1824	0201	1847	0133	1917	0104	1948
2	0349	1842	0333	1859	0314	1918	0251	1940	0221	2010	0149	2040
3 (13)	0445	1930	0429	1945	0411	2002	0348	2023	0320	2049	0249	2116
4	0543	2011	0529	2024	0512	2038	0452	2057	0427	2118	0400	
5	0641	2047	0629	2057	0615	2108	0558	2123	0538	2140	0516	2157
6	07	2118		2125	0718		0705	2144	0649	2156		2208
7	0832		0826	2151	0819	2156	0809	2203	0759	2211	0748	2218
8	0926	2212	0923	2214	0918	2216	0913	2219	0908	2222	0902	2225
9	1019	2237	1019	2237	1018	2236	1017	2235	1016	2234	1015	2232
10	1112	2304	1115	2300	1118	2256	1121	2252	1125	2246	1129	2240
11 D	1208	2332	1214	2326	1219	2318	1226	2309	1235	2259	1244	2249
12	1306		1314	2355	1324	2344	1336	2331	1349	2315	1403	
13	1407	0004	1419		1432		1448	23	1508	2338	1527	
14	1512	0042	1526	0030	1543	0016	1603		1628		1654	2341
15	1619	0128	1635	0113	1654		1717	0035	1746	0009	1817	
16	1724	0222	1741	0206	1801	0147	1824	0124	1854	0054	1926	
17	1824	0327	1840	0310	1858	0250	1920	0228	1947	0157	2016	
18	1918	0437	1931	0423	1945	0406	2003	0345	2025	0318	2048	50
19	2002	0551	2012	0540	2024	0526	2037	0509	2052	0449	2108	
20	2041	0705	2048	0657	2055	0647	2103	0636	2113	0622	2122	0607
21	21	08	2119	0811	2122	0806	2125	0800	2129	0752	2133	0745
22	2149	0924		0923	2147	0921	2146	0920	2144	0919		
23	2221	1029	2216	1032	2211	1035	2206	1039	2159	1043		
24	2254	1133	2247	1140	2238	1147	2228	1156	2216	1206	2204	1215
25 ©	2330	1237		1247	2307	1259	22	1312	2235	1327	2218	
26		1341	2357	1354	23	1408	2322	1426	2300		2237	1509
27	0010	1444		1459		1516		1537	2333	1604		
28	0054	1544	0039	1600	0022	1619	0000	1642		1711	2345	
29	0144	1639	0128	1655	0109	1714	0046	1738	0016	1807		1839
30	0239	1728	0223	1744	0204	1801	0141	1823	0111	1850	40	1919
31	0336	1811	0322	1824	0304	1840	0243	1859	0216	1922	0148	1946
ig.												
2	0531			1928	0509	1938	0455	1949	0438		20	
3	0626	1949	0619	1954	0611	2001	0600	2009	0548	2018	0536	2027
4	0721	2015	0716	2018	0711	2021	0704	2025	0657	2030	0650	2034
5	0814	2040	0812	2041		2041		2041		2041		
6	0906	2107	0908	2104	0910	2100	0911	2057	0913	2053	0915	2049
8	1000	2134	1005			2122	1016	2114	1023	2106	1030	
8	1056	2204	1104	2155		2146	1122	2134	1134		1146	
9	1155	2238	1205	2226	1217	2214	1232	2158	1249	2139	1307	2121
10.	1257	2319	1310	2304		2249		2229	1406	2205		
11	1401		1417	2351		2333	1457	2311	1524	2242	1553	2212
12	1505	0008	1522		1542		1605				1708	
13	1607	0106	1624	0049	1642	0029	1706	0006	1735		1806	
14	1703	0212	1718	0156	1734	0138	1754	0115	1819	0047	1846	0016
15	1752	0325	1803	0311		0255		0236	1851	0212		
16	1834		1842				1902	0402	1915	0345	1928	
17	1911	0552	1915	0546	1921	0538	1927	0529	1933	0518	1940	0507
18	1946	0703	1946	0700	1947	0657	1948	0653	1949	0649	1950	0645
19	2019	0811	2016	0813	2012	0814	2009	0816	2004	0817	2000	0819
20	2052	0919	2046	0924	2039	0929	2031	0935	2021		2011	
21	2128	1026	2118	1034	2108	1043	2055	1054	2040			
22	2208	1132	2155	1143	2141	1156	2124	1212	2103	1232	2042	1252
23 ©	2252	1236	2237	1250	2219	1307	2159	1327	2133	1351	2106	1418
24	2341	1337	2324	1353	2306	1413	2243	1435	2213	1503	2142	1535
25		1435		1451	2358	1511	2335	1534	2305	1604	2233	1636
26	0034	1526	0018	1542		1600		1623		1651	2337	1721
27	0130	1610	0115	1625	0057	1641	0035	1701	0007	1726		1751
28	${ }_{0} 228$	1649	0215	1701	0158	1715	0140	1731	0116	1751	0051	1811
29	0326	1722	0314	1732	0301	1743	0246	1755	0227	1810	0208	1825
30	0421	1752	0413	1759	0403	1806	0352	1816	0338	1826	0324	1836
31 ⒈0ㅁ	0516	1819	0510	1823	0504	1827	0456	1832	0447	1839	0439	1844

DATE	Latitude 30° Moon		Latitude 35° Moon		Latitude 40° Moon		Latitude 45° Moon		Latitude 50° Moon		Latitude 54° Moon	
	Rise	Set										
S	h^{m}											
	0609	1845	0607	1846	0604	1847	0600	1848	0556	1850	0552	1851
2	0702	1911	0703	1909	0703	1907	0703	1904	0704	1902	0705	1859
3	0755	1938	0759	1932	0803	1928	0808	1921	0813	1914	0819	19
4	0851	2006	0857	1959	0904	1950	0913	1939	0923	1927	0934	19
5	0948	2038	0957	2028	1009	2016	1021	2002	1037	1944	1052	19
6	1048	2116	1100	2103	1114	2048	1131	2030	1152	2007	1214	
7	1150	2201	1205	2145	1222	2127	1243	2106	1308	2040	1336	20
8	1253	2253	1309	2237	1328	2217	1351	2154	1421	2124	1453	205
9	1354	2354	1411	2338	1430	2319	1453	2255	1524	2226	1556	2153
10	1450		1505		1524		1545		1613	2343	1642	2314
11	1540	0102	1554	0047	1609	0030	1627	0009	1649		1711	
12	1624	0214	1634	0202	1646	0148	1700	0131	1715	0110	1731	0049
13	1703	0326	1710	0318	1717	0308	1726	0256	1736	0242	1746	0227
14	1739	0438	1742	0432	1745	0427	1748	0421	1752	0413	1757	
15 상	1813	0547	1812	0546	1811	0545	1810	0544	1808	0543	1807	05
16	1847	0656	1843	0659	1838	0703	1832	0706	1825	0711	1818	
17	1923	0805	1915	0811	1905	0819	1855	0828	1842	0839	1830	
18	2002	0913	1950	0924	1937	0935	1923	0949	1904	1006	1845	1023
19	2046	1021	2031	1034	2015	1049	1956	1108	1932	1131	1907	
20	2134	1126	2118	1141	2059	1200	2037	1221	2010	1249	1940	1317
21	2227	1227	2211	1243	2151	1302	2128	1326	2058	1355	2026	427
22 ©	2323	1321	2307	1337		1356	2226	1419	2158	1448	2127	1519
23		1408		1423	2350	1441	2330	1501	2305	1527	2239	
24	0021	1448	0007	1502		1516		1534		1556	2355	1618
25	0119	1524	0107	1534	0053	1546	0036	1600	0016	1617		16
26	0215	1555	0206	1602	0155	1611	0143	1621	0127	1633	0112	1645
27	0310	1623	0304	1628	0257	1633	0247	1640	0236	1647	0226	
28	0404	1649	0400	1651	0356	1653	0351	1656	0345	1659	0340	1702
29	0457	1715	0457	1714	0456	1713	0455	1712	0454	1711	0453	
30 ‥ㅅ	0550	1742	0553	1737	0556	1733	0559	1729	0603	1723	0607	1717
Oct.												
		1809		1803			0704		0713	1736	0722	1726
2	0742	1841	0751	1832	0801	1820	0812	1808	0826	1752	0840	
3	0842	1917	0853	1905	0906	1850	0922	1834	0941	1813	1001	1752
4	0943	1959	0957	1945	1013	1927	1033	1908	1058	1842	1123	
5	1046	2049	1101	2032	1120	2013	1143	1951	1211	1922	1241	1851
6	1146	2146	1203	2129	1222	2110	1246	2047	1316	2016	1348	
7	1243	2249	1259	2234	1317	2216	1340	2154	1409	2127	1438	2057
8	1334	2357	1348		1404	2329	1423	2311	1447	2248	1512	
9	1419		1430		1443		1458		1517		1535	23
10	1458	0107	1506	00		0045	1526	0031	1538	0014		
11	1534	0216	1538	0210	1543	0202	1549	0153	1556	0142	1603	
12	1608	0324	1609	0322	1609	0319	1610	0315	1612	0310	1613	0306
13	1641	0432	1638	0434	1636	0435	1632	0436	1628	0437	1623	04
14 (6)	1716	0540	1710	0545	1703	0551	1654	0557	1645	0605	1635	0613
15	1754	0649	1744		1733	0708	1720	0719	1705	0732	1650	
16	1836	0758	1823	0811	1809	0824	1751	0840	1730	0900	1708	0920
17	1923	0907	1908	0921	1851	0938	1830	0958	1804	1023	1737	
18	2016	1012	2000	1028	1941	1046	1917	1109	1848	1137	1818	1209
19		1110	2056	1127	2038	1146	2014	1208	1945	1238	1914	1310
20	2211	1201	2156	1217	2138	1235	2118	1256	2051	1323	2024	
21	2310	1245	2257		2242	1315	2224	1333	2202	1356	2139	
22		1323	2356	1334	2345	1347	2331	1402	2314	1421	2256	
23	0007	1355		1404		1414		1425		1439		1452
24	0102	1425	0055	1430	0047	1437	0036	1445	$00 \dot{24}$	1454	0012	1503
25	0156	1451	0152	1455	0147	1458	0140	1502	0133	1507	0126	
26	0250	1517	0248	1518	0246	1518	0244	1518	0241	1519	0239	
27	0343	1544	0345	1541	0346	1538	0348	$15 \quad 35$	0350	1531	$03 \quad 52$	1526
28	0438	1611	0442	1606	0447	1600	0453	1552	0500	1543	0507	1535
29	0534	1642	0542	1633	0551	1624	0600	1613	0612	1559	0624	1546
30	0634	1717	0644	1706	0656	1653	0710	1637	0727	1618	0745	1600
31	0735	1758	0749	1744	0803	1728	0822	1709	0845	1645	0908	1621

DATE	Latitude 30° Moon		Latitude 35° Moon		Latitude 40° Moon		Latitude 45° Moon		Latitude 50° Moon		Latitude 54° Moon	
	Rise	Set										
Nov.	h											
	0838	1845	0853	1830	0912	1812	0933	1749	1000	1722		1652
2	0940	1941	0957	1925	1016	1906	1039	1842	1108	1812	1140	1740
3	1038	2043	1055	2027	1114	2009	1136	1947	1205	1918	1236	1848
4	1131	2149	1145	2136	1203	2119	1222	2100	1248	2036	1314	2011
5	1217	2257	1229	2246	1242	2234	1259	2218	1319	2200	1339	2141
	1257		1306	2357	1316	2348	1328	2337	1342	2325	1357	
8	1333	0005	1338		1344		1352		1401		1409	
8	1406	0111	1408	0106	1410	0102	1413	0056	1417	0050	1420	
9	1438	0217	1437	0216	1435	0215	1434	0214	1432	0214	1430	
10	1511	0322	1507	0326	1502	0328	1456	0332	1448	$03 \quad 38$	1442	0343
11	1547	0429	1539	0436	1530	0443	1519	0452	1506	0503	1454	0513
12	1626	0536	1616	0547	1603	0559	1547	0613	1529	0629	1511	0646
13 (c)	1711	0645	1658	0659	1641	0713	1623	0732	1559	0754	1535	0817
14	1802	0752	1746	0808	1728	0825	1706	0846	1638	0914	1610	0942
15	1858	0854	1842	0911	1823	0930	1800	0953	1731	1022	1700	
16	1958	0950	1942	1006	1923	1025	1902	1046	1834	1115	18	
17	2057	1038	2044	1052	$20{ }^{27}$	1109	2008	1129	1944	1153	1920	1219
18	2156	1119	2145	1131	2131	1145	2116	1202	2057	1222	2038	1242
19	2252	1154	2244	1204	2235	1214	2223	1227	2209	1243	2155	1258
20 ©	2347	1225	2342	1231	2336	1239	2327	1248	2318	1259	2309	
21		1252		1256		1300		1306		1313		
22	0041	1318	0038	1320	0035	1321	0031	1322	0027	1325	0023	
23	0134	1344	0134	1343	0134	1341	0134	1339	0134	$13 \quad 37$	0135	
24	0227	1411	0230	1406	0234	1402	0239	1356	0244	1349	0249	1342
25	0323	1441	0329	1433	0336	1425	0344	1416	0354	1404	0404	
26	0422		0430	1504	0441	1452	0454	1439	0509	1422	0524	
27	0522	1553	0535	1540	0548	1525	0605	1507	0625	1445	0647	
28	0626	1639	0641	1624	0657	1606	0718	1546	0743	1519	0810	1451
29	0730	1733	0746	1717	0804	1658	0827	1635	0856	1606	0927	
30	0831	1835	0847	1818	0905	1759	0929	1737	0958	1708	1029	1637
1	0926	1941	0941	1927	0959	1909	1020	1849	1046	1824	1113	1758
2	1015	2049	1028	2038	1043	2024	1100	2008	1122	1948	1142	1927
3	1057	2158	1107	2149	1118	2139	1131	2127	1147	2114	1202	2059
4	1134	2304	1140	2258	1148	2253	1157	2246	1207	2238	1217	
5	1208		1211		1214		1218		1223		1228	2358
6	1239	0008	1239	0007	1239	0005	1238	0003	1238	0001	1238	
7	1311	0112	1307	0114	1303	0117	1259	0119	1253	0122	1248	0125
8	1344	0217	1338	0222	1330	0228	1321	0236	1310	0244	1300	0254
9	1422	0322	1412	0331	1400	0341	1346	0353	1330	0408	1314	
10	1504	0429						0511	1357	0531	1335	
11	$15 \quad 51$	0535	1536	0550	1518	0606	1458	0627	1431	0652	1404	
12	1644	0639	1628	0655	1610	0714	1547	0736	1518	0804	1448	
13	1743	0737	1727	0754	1708	0813	1646	0835	1617	0904	1547	0934
14	1843	0829	1828	0844	1812	0902	1751	0922	1725	0948	1659	1016
15	1943	0913	1931	0926	1916	0941	1859	0959	1838	1021	1817	
16		0951	2031	1001	2020	1014	2008	1028	1952	1045	1936	
17	2137	1023	2130	1031	2123	1040	2114	1050	2103	1103	2052	
18	2231	1052	$22 \quad 27$	1057	2223	1102	2218	1110	2212	1118	2206	
19	2324	1118	2323	1121	2322	1123	2321	1126	2319	1130	2318	1133
20 ©		1144		1144		1143		1143		1142		
21	0017	1211	0019	1207	0021	1203	0023	1200	0027	1154	0030	
22	0111	1238	0115	1233	0121	1225	0128	1217	0136	1207	0144	1158
23	0207	1309	0215	1301	0224	1250	0234	1238	0248	1224	0301	1209
24	0306	1346	0317	1334	0329	1320	0344	1304	0403	1244	0421	1225
25	0408	1428	0422	1414	0437	1357		1338	0520	1313	0544	
26	0512	1519	0528	1503	0546	1445	0607	1422	0636	1354	0704	1324
27	0616	1619	0632	1602	0651	1543	0714	1520	0743	1451	0815	1419
28	0714	1725	0731	1709	0749	1652	0811	1630	0839	1603	0908	1534
29	0808	1835	0821	1822	0838	1807	0856	1749	0919	1727	0943	1704
30	0854	1945	0905	1936	0917	1925	0931	1911	0949	1855	1007	1839
31	0933	2054	0941	204	0950	20	1000	2033	1012	2023	1024	2013

THE SUN AND PLANETS FOR 1970

THE SUN

The diagram represents the sun-spot activity of the current 20th cycle, as far as the final numbers are available. The present cycle began at the minimum in October 1964. For comparison, cycle 19 which began April 1954 (solid curve), and the mean of cycles 8 to 19 (dashed curve), are placed with their minima on October 1964. The sun-spot number of 1968 remained constant near 110.

The observations for sun-spot numbers may be performed by devoted amateur astronomers with small-sized telescopes (suitably protected). Here is a field for amateurs who wish to make a valuable contribution to solar astronomy.

Mercury is exceptional in many ways. It is the planet nearest the sun and travels fastest in its orbit, its speed varying from 23 mi . per sec. at aphelion to 35 mi . per sec. at perihelion. The amount of heat and light from the sun received by it per square mile is, on the average, 6.7 times the amount received by the earth. By a radar technique in 1965, the period of rotation on its axis was found to be 59 days.

Mercury's orbit is well within that of the earth, and the planet, as seen from the earth, appears to move quickly from one side of the sun to the other several times in the year. Its quick motion earned for it the name it bears. Its greatest elongation (i.e., its maximum angular distance from the sun) varies between 18° and 28°, and on such occasions it is visible to the naked eye for about two weeks.

When the elongation of Mercury is east of the sun it is an evening star, setting soon after the sun. When the elongation is west, it is a morning star and rises
shortly before the sun. Its brightness when it is treated as a star is considerable but it is always viewed in the twilight sky and one must look sharply to see it.
The most suitable times to observe Mercury are at an eastern elongation in the spring and at a western elongation in the autumn. The dates of greatest elongation this year, together with the planet's separation from the sun and its stellar magnitude, are given in the following table:

MAXIMUM ELONGATIONS OF MERCURY DURING 1970

Elong. East-Evening Sky			Elong. West-Morning Sky		
Date	Dist.	Mag.	Date	Dist.	Mag.
Apr. 18	20°	+0.3	Feb. 5	26°	+0.1
Aug. 16	27°	+0.6	Jun. 5	24°	+0.7
Dec. 10	21°	-0.3	Sept. 28	18°	0.0

The most favourable elongations are: in the evening, April 18; in the morning, Sept. 28. The apparent diameter of the planet ranges from about $4.6^{\prime \prime}$ to $12.0^{\prime \prime}$. A transit of Mercury occurs on May 9 ; it is visible, in part, over all of North America.

VENUS

Venus is the next planet in order from the sun. In size and mass it is almost a twin of the earth. Venus being within the earth's orbit, its apparent motion is similar to Mercury's but much slower and more stately. The orbit of Venus is almost circular with radius of 67 million miles, and its orbital speed is 22 miles per sec.

In Jan. 1970, Venus is close to the sun, reaching superior conjunction on Jan. 24. Greatest eastern elongation, 46°, occurs on Sept. 1, at which time its stellar magnitude is -4.0 . Greatest brilliancy, -4.4 , is reached on Oct. 6 and again on Dec. 16, inferior conjunction occurring on Nov. 10. Throughout late autumn, Venus is quite far south of the celestial equator, and is not favourably placed for viewing. On May 9 , Venus passes $0.2^{\circ} \mathrm{N}$. of Mars; this phenomenon will be visible low in the evening sky. The apparent diameter of Venus increases from $10^{\prime \prime}$ on Jan. 1 to nearly $63^{\prime \prime}$ at inferior conjunction.

Its brilliance is due to its nearness and dense clouds enshrouding the planet. On Dec. 14, 1962, the American spacecraft, Mariner II, passed within $21,700 \mathrm{mi}$. of Venus, sending back over 90 million bits of information. Among its notable discoveries were: surface temperatures up to $800^{\circ} \mathrm{F}$.; an atmosphere 10 to 20 times denser than earth's; no magnetic field or radiation belt. The rotation period is now quoted as 244 days in a retrograde direction.

MARS

The orbit of Mars is outside that of the earth and consequently its planetary phenomena are quite different from those of the two inferior planets discussed above. Its mean distance from the sun is 141 million miles and the eccentricity of its orbit is 0.093 , and a simple computation shows that its distance from the sun ranges between 128 and 154 million miles. Its distance from the earth varies from 35 to 235 million miles and its brightness changes accordingly. When Mars is nearest it is conspicuous in its fiery red, but when farthest away it is no brighter than Polaris. Unlike Venus, its atmosphere is very thin, and features on the solid surface are distinctly visible. Utilizing them its rotation period of 24 h .37 m . 22.6689s. has been accurately determined. Perhaps the most surprising result of the space programme so far is the revelation by Mariner IV that the surface of Mars contains craters much like those on the Moon.

The sidereal, or true mechanical, period of revolution of Mars is 687 days; and the synodic period (for example, the interval from one opposition to the next one) is 780 days. This is the average value; it may vary from 764 to 810 days. At the opposition on Sept. 10, 1956, the planet was closer to the earth than it will be for some years. In contrast, the opposition distance on Mar. 9, 1965, was almost a maximum.

No opposition of Mars occurs in 1970. Its motion is direct all year, and conjunction occurs on Aug. 2. On Jan. 1, Mars is an evening star in Aquarius; on Dec. 31, it is to be found in Libra (see map). The size of the disc ranges from $6^{\prime \prime}$ to $3.5^{\prime \prime}$ during the year. The distance increases from 146 million miles on Jan. 1, to 247 million miles at conjunction. Mars passes $0.2^{\circ} \mathrm{S}$. of Venus on May 9, and $0.5^{\circ} \mathrm{N}$. of Uranus on Nov. 7.

JUPITER

Jupiter is the giant of the family of the sun. Its mean diameter is 87,000 miles and its mass is $2 \frac{1}{2}$ times that of all the rest of the planets combined! Its mean distance is 483 million miles and the revolution period is 11.9 years. This planet is known to possess 12 satellites, the last discovered in 1951 (see p. 9). Bands of clouds may be observed on Jupiter, interrupted by irregular spots which may be short-lived or persist for weeks. The atmosphere contains ammonia and methane at a temperature of about $-200^{\circ} \mathrm{F}$. Intense radiation belts (like terrestrial Van Allen belts) have been disclosed by observations at radio wave-lengths. A correlation of radio bursts with the orbital position of the satellite Io has now been found.

Jupiter is a fine object for the telescope. Many details of the cloud belts as well as the flattening of the planet, due to its short rotation period, are visible, and the phenomena of its satellites provide a continual interest.

On Jan. 1, 1970, Jupiter is a morning star in Virgo (see map). Its stellar magnitude at that time is -1.4. In Sept., it moves into Libra, where it remains throughout the rest of the year. It retrogrades from Feb. 20 to June 24. Opposition occurs on Apr. 21, when the planet moves into the evening sky and is visible all night; its magnitude is then -2.0 . On Nov. 9 , it is in conjunction with the sun and moves into the morning sky for the rest of the year. The apparent polar diameter ranges from a maximum of $41^{\prime \prime}$ near opposition to a minimum of $29^{\prime \prime}$ in Nov.

SATURN

Saturn was the outermost planet known until modern times. In size it is a good second to Jupiter. In addition to its family of ten satellites, this planet has a unique system of rings, and it is one of the finest of celestial objects in a good telescope. The plane of the rings makes an angle of 27° with the plane of

the planet's orbit, and twice during the planet's revolution period of $29 \frac{1}{2}$ years the rings appear to open out widest; then they slowly close in until, midway between the maxima, the rings are presented edgewise to the sun or the earth, at which times they are invisible. The rings were edgewise in 1950, and were again in 1966; the northern face of the rings was at maximum in 1958 and the southern will be in 1973. See p. 59. (The tenth satellite was discovered in 1966.)

On Jan. 1, 1970, Saturn is in Pisces (see map), well up in the east at sunset. At that time, its stellar magnitude is +0.4 . On May 2 , it is in conjunction with the sun and moves into the morning sky. On May 17, Saturn is $0.2^{\circ} \mathrm{N}$. of Mercury, though both are close to the sun at the time. On Nov. 11 it is in opposition, and is visible all night; its magnitude is then 0.1. (Throughout most of the year, Saturn is in Aries, with brief forays into Taurus and Cetus.) The apparent diameter of the ball of the planet ranges from $15^{\prime \prime}$ to $18^{\prime \prime}$. The rings are open to nearly two-thirds of the maximum, with the southern face visible.

URANUS

Uranus was discovered in 1781 by Sir William Herschel by means of a $6 \frac{1}{4}$-in. mirror-telescope made by himself. The object did not look just like a star and he observed it again four days later. It had moved amongst the stars, and he assumed it to be a comet. He could not believe that it was a new planet. However, computation later showed that it was a planet nearly twice as far from the sun as Saturn. Its period of revolution is 84 years and it rotates on its axis in about 11 hours. Its five satellites are visible only in a large telescope.

During 1970 Uranus is in Virgo (see map). At the beginning of the year it rises about midnight. It retrogrades from Jan. 13 to June 12, with opposition on Mar. 27 when its stellar magnitude is +5.7 and its apparent diameter is $4.0^{\prime \prime}$. When conjunction occurs on Oct. 2, its magnitude is +5.9 ; it is in the morning sky for the rest of the year. On Nov. 7, Uranus is less than 0.5° from Mars.

NEPTUNE

Neptune was discovered in 1846 after its existence in the sky had been predicted from independent calculations by Leverrier in France and Adams in England. It caused a sensation at the time. Its distance from the sun is 2791 million miles and its period of revolution is 165 years. A satellite was discovered in 1846 soon after the planet. A second satellite was discovered by G. P. Kuiper at the McDonald Observatory on May 1, 1949. Its magnitude is about 19.5, its period about a year, and diameter about 200 miles. It is named Nereid.

During most of 1970 Neptune is in Libra (see map). It retrogrades from Mar. 3 to Aug. 10. Opposition occurs on May 18 when it is above the horizon all night;
its stellar magnitude is then +7.7 and during the year it fades slightly to +7.8 . Thus it is too faint to be seen with the naked eye. In the telescope it shows a greenish tint and an apparent diameter of $2.3^{\prime \prime}$ to $2.5^{\prime \prime}$. It is in conjunction with the sun on Nov. 23 and moves into the morning sky for the rest of the year.

PLUTO

Pluto, the most distant known planet, was discovered at the Lowell Observatory in 1930 as a result of an extended search started two decades earlier by Percival Lowell. The faint star-like image was first detected by Clyde Tombaugh by comparing photographs taken on different dates. Further observations confirmed that the object was a distant planet. Its mean distance from the sun is 3671 million miles and its revolution period is 248 years. It appears as a 15 th mag. star in the constellation Coma. It is in opposition to the sun on Mar. 17 at which time its astrometric position is R.A. 12 h 12 m , Dec. $+16^{\circ} 26^{\prime}$, and its distance from the earth is $2,850,000,000 \mathrm{mi}$.

DEPT. 0 P.O. BOX 1059

COLORADO SPRINGS, COLO. 80901
Free Catalogue on Request
-WORLD'S LARGEST PRODUCER OF ASTRONOMICAL SLIDES -

THE SKY MONTH BY MONTH
 By John F. Heard

THE SKY FOR JANUARY 1970

Positions of the sun and planets are given for 0h Greenwich Ephemeris Time.
The times of transit at the 75 th meridian are given in local mean time, 0 h at midnight; to change to Standard Time, see p. 10. Estimates of altitude are for an observer in latitude $45^{\circ} \mathrm{N}$.

The Sun-During January the sun's R.A. increases from 18 h 44 m to 20 h 57 m and its Decl. changes from $23^{\circ} 03^{\prime} \mathrm{S}$. to $17^{\circ} 17^{\prime} \mathrm{S}$. The equation of time changes from -3 m 36 s to -13 m 30 s . These values of the equation of time are for noon E.S.T. on the first and last days of the month in this and in the following months. The earth is in perihelion or nearest the sun on the 1st at a distance of $91,405,000$ mi . For changes in the length of the day, see p. 13.

The Moon-For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page. Times of moonrise and moonset are given on p. 20.

Mercury on the 1 st is in R.A. 20 h 05 m , Decl. $20^{\circ} 51^{\prime} \mathrm{S}$., and on the 15 th is in R.A. 19 h 27 m , Decl. $18^{\circ} 38^{\prime} \mathrm{S}$. On the first few evenings of the month it may be seen very low in the south-west just after sunset. On the 1st it is only 12° above the horizon at sunset, and lower on successive evenings. Inferior conjunction is on the 13th.

Venus on the 1 st is in R.A. 18 h 19 m , Decl. $23^{\circ} 38^{\prime}$ S., and on the 15 th is in R.A. 19 h 36 m , Decl. $22^{\circ} 24^{\prime}$ S., mag. -3.5 , and transits at 12 h 01 m . Being close to the sun it is not easily observed. Superior conjunction is on the 24th.

Mars on the 15 th is in R.A. 23 h 34 m , Decl. $3^{\circ} 26^{\prime}$ S., mag. +1.1 , and transits at 15 h 57 m . Moving from Aquarius into Pisces, it is past the meridian at sunset and sets about five hours later.

Jupiter on the 15 th is in R.A. 14 h 09 m , Decl. $11^{\circ} 41^{\prime}$ S., mag. -1.5 , and transits at 6 h 31 m . In Virgo, it rises about an hour after midnight and passes the meridian before sunrise. It is in western quadrature on the 25 th. For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 56.

Saturn on the 15 th is in R.A. 2 h 03 m , Decl. $9^{\circ} 55^{\prime}$ N., mag. +0.5 , and transits at 18 h 23 m . In Aries, it is approaching the meridian at sunset. On the 4 th it is stationary in R.A. and resumes direct, or eastward motion among the stars. It is in eastern quadrature on the 22 nd.

Uranus on the 15 th is in R.A. 12 h 33 m , Decl. $2^{\circ} 49^{\prime}$ S. and transits at 4 h 56 m .
Neptune on the 15 th is in R.A. 15 h 54 m , Decl. $18^{\circ} 35^{\prime}$ S. and transits at 8 h 16 m .
Pluto-For information in regard to this planet, see p. 31.

ASTRONOMICAL PHENOMENA MONTH BY MONTH

Explanation of abbreviations on p. 4, of time on p. 10, of colongitude on p. 62.
${ }^{l}$ Jan. 2, 3, -7.77°; Jan. 15, $+7.31^{\circ}$; Jan. 31, -7.88°.
${ }^{b}$ Jan. $6,+6.56^{\circ}$; Jan. 18, -6.66°.

THE SKY FOR FEBRUARY 1970

Positions of the sun and planets are given for 0h Greenwich Ephemeris Time.
The times of transit at the 75th meridian are given in local mean time, 0 h at midnight; to change to Standard Time, see p. 10. Estimates of altitude are for an observer in latitude $45^{\circ} \mathrm{N}$.

The Sun-During February the sun's R.A. increases from 20h 57 m to 22 h 46 m and its Decl. changes from $17^{\circ} 17^{\prime} \mathrm{S}$. to $7^{\circ} 50^{\prime} \mathrm{S}$. The equation of time changes from -13 m 39 s to a maximum of -14 m 19 s on the 11 th and then to -12 m 37 s at the end of the month. For changes in the length of the day, see p. 13.

The Moon-For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page. Times of moonrise and moonset are given on p. 20. There is a partial eclipse of the moon, visible in North America, on the night of the 20th-21st.

Mercury on the 1 st is in R.A. 19 h 12 m , Decl. $20^{\circ} 50^{\prime} \mathrm{S}$., and on the 15 th is in R.A. 20 h 17 m , Decl. $20^{\circ} 24^{\prime} \mathrm{S}$. On the 5th it is in greatest western elongation and so is to be seen low in the south-east just before sunrise. This is an unfavourable elongation, however, Mercury being only 11° above the horizon at sunrise.

Venus on the 1st is in R.A. 21 h 05 m , Decl. $17^{\circ} 59^{\prime} \mathrm{S}$., and on the 15 th is in R.A. 22 h 14 m , Decl. $12^{\circ} 28^{\prime}$ S., mag. -3.5 , and transits at 12 h 36 m . Moving east of the sun, Venus is becoming visible as an evening star, and at the end of the month is about 5° above the western horizon at sunset and so may be seen for about half an hour in the twilight.

Mars on the 15 th is in R.A. Oh 57 m , Decl. $6^{\circ} 02^{\prime}$ N., mag. +1.4 , and transits at 15 h 18 m . In Pisces, it is well past the meridian at sunset and sets about four hours later.

Jupiter on the 15 th is in R.A. 14 h 16 m , Decl. $12^{\circ} 13^{\prime}$ S., mag. -1.7 , and transits at 4 h 36 m . In Virgo, it rises before midnight and is well past the meridian at sunrise. On the 20th it is stationary in R.A. and begins to retrograde, i.e. to move westward among the stars. For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 56.

Saturn on the 15 th is in R.A. 2 h 09 m , Decl. $10^{\circ} 34^{\prime}$ N., mag. +0.6 , and transits at 16 h 27 m . In Aries, it is past the meridian at sunset and sets before midnight.

Uranus on the 15 th is in R.A. 12 h 32 m , Decl. $2^{\circ} 37^{\prime}$ S. and transits at 2 h 52 m .
Neptune on the 15 th is in R.A. 15 h 56 m , Decl. $18^{\circ} 41^{\prime}$ S. and transits at 6 h 16 m . It is in western quadrature on the 20th.

Pluto-For information in regard to this planet, see p. 31.

Explanation of abbreviations on p. 4, of time on p. 10, of colongitude on p. 62.
${ }^{\imath}$ Feb. 12, $+7.43^{\circ}$; Feb. 28, $-7.05^{\circ} . \quad{ }^{\circ}$ Feb. 2, $+6.73^{\circ}$; Feb. 15, -6.80°.

Positions of the sun and planets are given for 0h Greenwich Ephemeris Time.
The times of transit at the 75th meridian are given in local mean time, 0 h at midnight; to change to Standard Time, see p. 10. Estimates of altitude are for an observer in latitude $45^{\circ} \mathrm{N}$.

The Sun-During March the sun's R.A. increases from 22 h 46 m to 0 h 40 m and its Decl. changes from $7^{\circ} 50^{\prime} \mathrm{S}$. to $4^{\circ} 18^{\prime} \mathrm{N}$. The equation of time changes from -12 m 25 s to -4 m 13 s . On the 20 th at 19 h 57 m E.S.T. the sun crosses the equator on its way north, enters the sign of Aries and spring commences. For changes in the length of the day, see p. 14. There is a total eclipse of the sun visible in North America on the 7th.

The Moon-For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page. Times of moonrise and moonset are given on p. 21.

Mercury on the 1st is in R.A. 21 h 41 m , Decl. $16^{\circ} 00^{\prime}$ S., and on the 15 th is in R.A. 23 h 12 m , Decl. $7^{\circ} 24^{\prime} \mathrm{S}$. It is too close to the sun for observation, superior conjunction being on the 23 rd.

Venus on the 1st is in R.A. 23 h 20 m , Decl. $5^{\circ} 51^{\prime}$ S., and on the 15 th is in R.A. 0 h 24 m , Decl. $1^{\circ} 16^{\prime} \mathrm{N}$. , mag. -3.4 , and transits at 12 h 55 m . It is an evening star to be seen very low in the west for about an hour after sunset.

Mars on the 15 th is in R.A. 2 h 13 m , Decl. $13^{\circ} 41^{\prime}$ N., mag. +1.6 , and transits at 14 h 43 m . Moving from Pisces into Aries, it is well down in the west at sunset and sets about three hours later.

Jupiter on the 15 th is in R.A. 14 h 13 m , Decl. $11^{\circ} 52^{\prime}$ S., mag. -1.9 , and transits at 2 h 43 m . In Virgo, it rises two hours or more before midnight and is visible the rest of the night. For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 56.

Saturn on the 15 th is in R.A. 2 h 18 m , Decl. $11^{\circ} 30^{\prime}$ N., mag. +0.6 , and transits at 14 h 47 m . In Aries, it is well down in the west at sunset and sets about three hours later.

Uranus on the 15 th is in R.A. 12h 28 m , Decl. $2^{\circ} 13^{\prime}$ S. and transits at 0 h 58 m . Opposition is on the 27th.

Neptune on the 15 th is in R.A. 15 h 56 m , Decl. $18^{\circ} 40^{\prime}$ S. and transits at $4 \mathrm{~h} \mathbf{2 6 m}$.
Pluto-For information in regard to this planet, see p. 31.

1970			MARCH E.S.T.	$\begin{gathered} \text { Min. } \\ \text { of } \\ \text { Algol } \end{gathered}$	Config. of Jupiter's 1 h 45 m	$\begin{aligned} & \text { Sun's } \\ & \text { Selen. } \\ & \text { Colong. } \\ & \text { Oh U.T: } \end{aligned}$
d	h	m		h m		-
Sun. 1					43012	$185.24{ }^{\text {b }}$
Mon. 2					43102	197.42
Tue. 3	12		Neptune stationary	1930	42031	209.60
Wed. 4					42103	221.79
Thu. 5					41023	233.99
Fri. 6	5		Moon at perigee, $223,600 \mathrm{mi}$.	1620	d4013	246.20
	18		Ceres in conjunction with sun			
Sat. 7	12	43	(10. New Moon; eclipse of \odot, p. 64		32410	258.40
Sun. 8					30241	270.61
Mon. 9				1310	31024	282.82
Tue. 10	20		Mars $4^{\circ} \mathrm{S}$. of moon		20314	295.03
Wed. 11	3		Saturn $7^{\circ} \mathrm{S}$. of moon		21034	307.23
Thu. 12			Mercury greatest hel. lat. S.	1000	01234	$319.43{ }^{\text {l }}$
Fri. 13					dO134	331.63
Sat. 14	16	16	1id First Quarter		23104	$343.82{ }^{\text {b }}$
Sun. 15				650	30214	356.00
Mon. 16	21		Pluto at opposition		314 O 2	8.18
Tue. 17	3		Mars $3^{\circ} \mathrm{N}$. of Saturn		4201*	20.36
Wed. 18	7		Moon at apogee, $251,900 \mathrm{mi}$.	330	42103	32.53
Thu. 19					40123	44.69
Fri. 20	4		Regulus $0.7^{\circ} \mathrm{S}$. of moon		4023*	56.85
	19	57	Equinox. Spring begins			
Sat. 21				020	42310	69.01
Sun. 22	20	53	(2) Full Moon		4301*	81.17
Mon. 23	9		Uranus $3^{\circ} \mathrm{N}$. of moon	2110	34102	93.32
	10		Mercury in superior conjunction			
Tue. 24					23401	105.48
Wed. 25	14		Jupiter $6^{\circ} \mathrm{N}$. of moon		21043	117.63
Thu. 26				1800	01234	129.79
Fri. 27	13		Neptune $7^{\circ} \mathrm{N}$. of moon		10234	141.96
	16		Uranus at opposition			
Sat. 28	2		Antares $0.7{ }^{\circ} \mathrm{N}$. of moon		23104	$154.13{ }^{\text {b }}$
	6		Vesta stationary			
Sun. 29				1450	32 O 14	166.30
Mon. 30	6	05	(1) Last Quarter		31024	178.48
Tue. 31			Mercury at ascending node		32014	190.67

Explanation of abbreviations on p. 4, of time on p. 10, of colongitude on p. 62. ${ }^{l}$ Mar. 12, $+6.75^{\circ}$; Mar. 27, -5.84°.
${ }^{6}$ Mar. $1,+6.80^{\circ}$; Mar. 14, -6.84°, Mar. 28, $+6.71^{\circ}$.

Positions of the sun and planets are given for 0h Greenwich Ephemeris Time.
The times of transit at the 75th meridian are given in local mean time, 0 h at midnight; to change to Standard Time, see p. 10. Estimates of altitude are for an observer in latitude $45^{\circ} \mathrm{N}$.

The Sun-During April the sun's R.A. increases from 0 h 40 m to 2 h 31 m and its Decl. changes from $4^{\circ} 18^{\prime} \mathrm{N}$. to $14^{\circ} 53^{\prime} \mathrm{N}$. The equation of time changes from -3 m 55 s to +2 m 49 s , being zero on the 15 th. For changes in the length of the day, see p. 14.

The Moon-For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page. Times of moonrise and moonset are given on p. 21.

Mercury on the 1 st is in R.A. 1 h 12 m , Decl. $7^{\circ} 40^{\prime}$ N., on the 15 th is in R.A. 2 h 43 m , Decl. $18^{\circ} 20^{\prime} \mathrm{N}$. Greatest eastern elongation is early on the 18th, and this is a favourable one. On the evening of the 17 th Mercury will stand about 20° above the western horizon at sunset. For about a week before and after elongation it will be easy to see the planet low in the west just after sunset.

Venus on the 1st is in R.A. 1 h 41 m , Decl. $9^{\circ} 47^{\prime}$ N., and on the 15 th is in R.A. 2 h 47 m , Decl. $16^{\circ} 01^{\prime} \mathrm{N}$., mag. -3.3 , and transits at 13 h 17 m . It is a prominent evening star visible low in the west at sunset and setting about two hours later.

Mars on the 15 th is in R.A. 3 h 40 m , Decl. $20^{\circ} 10^{\prime} \mathrm{N}$. and transits at 14 h 08 m . Moving from Aries into Taurus, it is well down in the west at sunset and sets about three hours later.

Jupiter on the 15 th is in R.A. 14 h 01 m , Decl. $10^{\circ} 45^{\prime} \mathrm{S} .$, mag. -2.0 , and transits at 0 h 29 m . In Virgo, it rises soon after sunset and is nearly setting by sunrise. Opposition is on the 21 st at a distance of $412,400,000 \mathrm{mi}$. from earth. For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 56.

Saturn on the 15 th is in R.A. 2 h 32 m , Decl. $12^{\circ} 44^{\prime}$ N., and transits at 12 h 59 m . In Aries, it is very low in the west at sunset and sets within about an hour. Late in the month it is too close to the sun for observation.

Uranus on the 15th is in R.A. 12h 23 m , Decl. $1^{\circ} 41^{\prime}$ S. and transits at 22 h 47 m .
Neptune on the 15th is in R.A. 15 h 55 m , Decl. $18^{\circ} 33^{\prime}$ S. and transits at 2 h 22 m .
Pluto-For information in regard to this planet, see p. 31.

1970			$\begin{gathered} \text { APRIL } \\ \text { E.S.T. } \end{gathered}$	$\begin{gathered} \text { Min. } \\ \text { of } \\ \text { Algol } \end{gathered}$	Config. of Jupiter's 0 h 15 m	$\begin{aligned} & \text { Sun's } \\ & \text { Selen. } \\ & \text { Colong. } \\ & \text { Oh U.T. } \end{aligned}$
	h	m		h m		-
				1140	21043	202.87
Thu. 2					40123	215.07
Fri. 3	6		Moon at perigee, 226,800 mi.		41023	227.29
Sat. 4				830	42130	239.50
Sun. 5			Mercury at perihelion		43201	251.72
	23	09	(10) New Moon			
Mon. 6					43102	263.95
Tue. 7	41118		Mercury $3^{\circ} \mathrm{S}$. of moon Venus $5^{\circ} \mathrm{S}$. of moon Saturn 7° S. of moon	520	43201	276.17
Wed. 8	18		Mars $5^{\circ} \mathrm{S}$. of moon		42103	288.39
Thu. 9					40213	$300.62^{\text {l }}$
Fri. 10				210	10423	$312.84{ }^{\text {b }}$
Sat. 11	8				dd2O4	325.05
Sun. 12	$\begin{aligned} & 17 \\ & 10 \end{aligned}$		Mercury $5^{\circ} \mathrm{N}$. of Saturn	2300	3204*	337.26
Mon. 13		44	iid First Quarter		31024	349.46
Tue. 14					30214	1.66
Wed. 15			Mercury greatest hel. lat. N. Moon at apogee, $251,300 \mathrm{mi}$.	1950	21034	13.86
	1					
Thu. 16	11		Moon at apogee, $251,300 \mathrm{mi}$. Regulus $0.6^{\circ} \mathrm{S}$. of moon		O2134	26.04
Fri. 17			Venus at ascending node		10234	38.23
Sat. 18	3		Mercury greatest elong. E., 20°	1640	20341	50.41
Sun. 19	14		Uranus $3^{\circ} \mathrm{N}$. of moon		34210	62.58
Mon. 20					43102	74.76
Tue. 21	10		Jupiter at opposition (2) Full Moon	1330	43021	86.93
	11	21				
	15		Jupiter $6^{\circ} \mathrm{N}$. of moon			
Wed. 22			Lyrid meteors		42103	$99.10{ }^{\text {l }}$
Thu. 23	18		Neptune $7^{\circ} \mathrm{N}$. of moon		4013*	111.27
Fri. 24	8		Antares $0.5{ }^{\circ} \mathrm{N}$. of moon	1010	41023	123.44
Sat. 25					42 O 31	$135.62{ }^{\text {b }}$
Sun. 26					32410	147.80
Mon. 27				700	30142	159.99
Tue. 28	12	18	(d) Last Quarter		3024*	172.18
	16		Mercury stationary			
Wed. 29	23		Moon at perigee, 229,600 mi.		2104*	184.38
Thu. 30				350	20134	196.59

Explanation of abbreviations on p. 4, of time on p. 10, of colongitude on p. 62.
${ }^{l}$ Apr. $9,+5.73^{\circ}$; Apr. 22, $-5.31^{\circ} . \quad{ }^{b}$ Apr. 10, -6.72°; Apr. 25, $+6.59^{\circ}$.

THE SKY FOR MAY 1970

Positions of the sun and planets are given for Oh Greenwich Ephemeris Time.
The times of transit at the 75 th meridian are given in local mean time, 0 h at midnight; to change to Standard Time, see p. 10. Estimates of altitude are for an observer in latitude $45^{\circ} \mathrm{N}$.

The Sun-During May the sun's R.A. increases from 2 h 31 m to 4 h 34 m and its Decl. changes from $14^{\circ} 53^{\prime} \mathrm{N}$. to $21^{\circ} 58^{\prime} \mathrm{N}$. The equation of time changes from +2 m 56 s to a maximum of +3 m 44 s on the 14 th and then to +2 m 27 s at the end of the month. For changes in the length of the day, see p. 15.

The Moon-For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page. Times of moonrise and moonset are given on p. 22.

Mercury on the 1st is in R.A. 3 h 17 m , Decl. $20^{\circ} 19^{\prime}$ N., and on the 15 th is in R.A. 2 h 52 m , Decl. $14^{\circ} 48^{\prime}$ N. It is too close to the sun for observation, inferior conjunction being on the 9 th. On this date Mercury transits the sun's disk (see page 63).

Venus on the 1st is in R.A. 4h 07 m , Decl. $21^{\circ} 30^{\prime}$ N., and on the 15 th is in R.A. 5 h 20 m , Decl. $24^{\circ} 18^{\prime} \mathrm{N}$., mag. -3.4 , and transits at 13 h 52 m . It is an evening star prominent in the west after sunset and setting north of the west point two hours or more after sunset. On the evening of the 8th it is very close to Mars.

Mars on the 15 th is in R.A. 5 h 07 m , Decl. $23^{\circ} 42^{\prime}$ N., and transits at 13 h 37 m . Moving through Taurus, it is low in the west at sunset and sets within two hours thereafter. (See Venus.)

Jupiter on the 15 th is in R.A. 13 h 47 m , Decl. $9^{\circ} 31^{\prime}$ S., mag. -2.0 , and transits at 22 h 13 m . In Virgo, it is well up in the south-east at sunset and sets before sunrise. For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 56.

Saturn on the 15 th is in R.A. 2 h 47 m , Decl. $13^{\circ} 55^{\prime}$ N., and transits at 11 h 16 m . It is too close to the sun all month for easy observation, conjunction being on the 2nd.

Uranus on the 15 th is in R.A. 12 h 20 m , Decl. $1^{\circ} 19^{\prime}$ S. and transits at 20 h 46 m .
Neptune on the 15 th is in R.A. 15 h 52 m , Decl. $18^{\circ} 23^{\prime}$ S. and transits at 0 h 21 m . Opposition is on the 20th.

Pluto-For information in regard to this planet, see p. 31.

[^1]Positions of the sun and planets are given for 0 h Greenwich Ephemeris Time.
The times of transit at the 75th meridian are given in local mean time, 0 h at midnight; to change to Standard Time, see p. 10. Estimates of altitude are for an observer in latitude $45^{\circ} \mathrm{N}$.

The Sun-During June the sun's R.A. increases from 4 h 34 m to 6 h 38 m and its Decl. changes from $21^{\circ} 58^{\prime} \mathrm{N}$. to $23^{\circ} 09^{\prime} \mathrm{N}$., reaching $23^{\circ} 27^{\prime} \mathrm{N}$. on the 21 st. The equation of time changes from +2 m 18 s to -3 m 31 s , being zero on the 13 th. The summer solstice is on the 21 st at 14 h 43 m E.S.T. For changes in the length of the day, see p. 15.

The Moon-For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page. Times of moonrise and moonset are given on p. 22.

Mercury on the 1st is in R.A. 3 h 01 m , Decl. $13^{\circ} 14^{\prime}$ N., and on the 15 th is in R.A. 4 h 02 m , Decl. $18^{\circ} 14^{\prime}$ N. Greatest western elongation is on the 4 th, but this is an unfavourable one, Mercury being only about 10° above the eastern horizon at sunrise. It will be difficult to see.

Venus on the 1 st is in R.A. 6 h 50 m , Decl. $24^{\circ} 40^{\prime}$ N., and on the 15 th is in R.A. 8 h 02 m , Decl. $22^{\circ} 27^{\prime}$ N., mag. -3.4 , and transits at 14 h 31 m . It is prominent in the western evening sky, setting more than two hours after the sun.

Mars on the 15 th is in R.A. 6 h 37 m , Decl. $24^{\circ} 10^{\prime}$ N., and transits at 13 h 04 m . In Gemini, it is now so close to the horizon at sunset that it would be difficult to observe.

Jupiter on the 15 th is in R.A. 13 h 39 m , Decl. $8^{\circ} 52^{\prime}$ S., mag. -1.8 , and transits at 20 h 03 m . In Virgo, near Spica, it is nearly to the meridian at sunset and sets about an hour after midnight. On the 23 rd it is stationary in R.A. and resumes direct, or eastward, motion among the stars. For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 56.

Saturn on the 15 th is in R.A. 3 h 02 m , Decl. $14^{\circ} 58^{\prime}$ N., mag. +0.5 , and transits at 9 h 29 m . In Aries, it is a morning star rising about two hours before the sun.

Uranus on the 15 th is in R.A. 12 h 18 m , Decl. $1^{\circ} 12^{\prime}$ S. and transits at 18 h 43 m . It is in eastern quadrature on the 26th.

Neptune on the 15 th is in R.A. 15 h 48 m , Decl. $18^{\circ} 13^{\prime}$ S. and transits at 22 h 12 m . Pluto-For information in regard to this planet, see p. 31.

Explanation of abbreviations on p. 4, of time on p. 10, of colongitude on p. 62. ${ }^{l}$ June $3,+4.85^{\circ}$; June $16,-6.60^{\circ}$; June 29, $+5.82^{\circ}$.
${ }^{b}$ June $4,-6.53^{\circ}$; June 18, $+6.57^{\circ}$.

Positions of the sun and planets are given for 0h Greenwich Ephemeris Time.
The times of transit at the 75th meridian are given in local mean time, 0 h at midnight; to change to Standard Time, see p. 10. Estimates of altitude are for an observer in latitude $45^{\circ} \mathrm{N}$.

The Sun-During July the sun's R.A. increases from 6 h 38 m to 8 h 43 m and its Decl. changes from $23^{\circ} 09^{\prime} \mathrm{N}$. to $18^{\circ} 11^{\prime} \mathrm{N}$. The equation of time changes from -3 m 43 s to a maximum of -6 m 26 s on the 26 th and then to -6 m 18 s at the end of the month. On the 4th the earth is in aphelion, or farthest from the sun, at a distance of $94,514,000 \mathrm{mi}$. For changes in the length of the day, see p. 16.

The Moon-For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page. Times of moonrise and moonset are given on p. 23.

Mercury on the 1st is in R.A. 6 h 07 m , Decl. $23^{\circ} 59^{\prime}$ N., and on the 15 th is in R.A. 8 h 16 m , Decl. $21^{\circ} 39^{\prime}$ N. Superior conjunction is on the 6th, and Mercury is too close to the sun all month for observation.

Venus on the 1st is in R.A. 9 h 19 m , Decl. $17^{\circ} 34^{\prime}$ N., and on the 15 th is in R.A. 10 h 21 m , Decl. $11^{\circ} 46^{\prime}$ N., mag. -3.6 , and transits at 14 h 52 m . Passing close to Regulus it is prominent in the western sky from about two hours after sunset.

Mars on the 15 th is in R.A. 8 h 01 m , Decl. $21^{\circ} 39^{\prime}$ N., and transits at 12 h 30 m . It is too close to the sun for observation.

Jupiter on the 15 th is in R.A. 13 h 41 m , Decl. $9^{\circ} 12^{\prime}$ S., mag. -1.7 , and transits at 18 h 08 m . In Virgo, it is well past the meridian at sunset and sets about four hours later. It is in eastern quadrature on the 20th. For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 56.

Saturn on the 15 th is in R.A. 3 h 14 m , Decl. $15^{\circ} 43^{\prime}$ N., mag. +0.5 , and transits at 7 h 43 m . In Aries, it rises about four hours before the sun.

Uranus on the 15 th is in R.A. 12 h 20 m , Decl. $1^{\circ} 24^{\prime}$ S. and transits at 16 h 47 m .
Neptune on the 15 th is in R.A. 15 h 46 m , Decl. $18^{\circ} 07^{\prime}$ S. and transits at 20 h 12 m .
Pluto-For information in regard to this planet, see p. 31.

1970			$\begin{aligned} & \text { JULY } \\ & \text { E.S.T. } \end{aligned}$	$\underset{\substack{\text { Min. } \\ \text { of } \\ \text { Algol }}}{ }$	Config. of Sat. 21h 35m	Sun's Selen. Colong. Oh U.T.
d	h	m		h m		-
Wed. 1					34021	$234.04{ }^{\text {b }}$
Thu. 2			Mercury at perihelion	550	21340	246.29
Fri. 3	10	18	(13) New Moon		O134*	258.54
Sat. 4			Earth at aphelion		10234	270.79
Sun. 5				240	20134	283.05
Mon. 6	18		Mercury in superior conjunction		d2104	295.30
Tue. 7	0		Venus $0.9^{\circ} \mathrm{N}$. of moon	2320	31024	307.54
	7		Moon at apogee, $252,100 \mathrm{mi}$.			
	11		Regulus $0.1^{\circ} \mathrm{N}$. of moon			
Wed. 8					30124	319.79
Thu. 9					23104	332.03
Fri. 10	14		Uranus $4^{\circ} \mathrm{N}$. of moon	2010	20341	344.26
Sat. 11	11		Venus $1.1^{\circ} \mathrm{N}$. of Regulus		14023	356.49
	14	43	iib First Quarter			
Sun. 12			Mercury greatest hel. lat. N.		d4O13	8.72
	9		Jupiter $6^{\circ} \mathrm{N}$. of moon			
Mon. 13				1700	42103	20.93
Tue. 14	18		Neptune $7^{\circ} \mathrm{N}$. of moon		d4302	33.14
Wed. 15	11		Antares $0.6{ }^{\circ} \mathrm{N}$. of moon		43012	$45.35{ }^{\text {b }}$
Thu. 16				1350	42310	57.55
Fri. 17					42031	69.74
Sat. 18	14	59	(2) Full Moon		41023	81.93
Sun. 19	17		Moon at perigee, $223,000 \mathrm{mi}$.	1040	dO413	94.12
Mon. 20			Jupiter at quadrature E.		21034	106.31
Tue. 21					30124	118.50
Wed. 22				730	30124	130.69
Thu. 23					32104	142.89
Fri. 24					20314	155.10
Sat. 25	6	00	(1) Last Quarter	420	10234	167.31
Sun. 26	20		Saturn $8^{\circ} \mathrm{S}$. of moon		02143	179.53
Mon. 27					21043	191.75
Tue. 28				110	43012	$203.99{ }^{\text {b }}$
Wed. 29			δ Aquarid meteors		43012	216.22
Thu. 30	14		Mercury $0.3^{\circ} \mathrm{N}$. of Regulus	2150	43210	228.46
Fri. 31					4201*	240.71

Explanation of abbreviations on p. 4, of time on p. 10, of colongitude on p. 62.
${ }^{l}$ July $14,-7.35^{\circ}$; July $27,+7.03^{\circ}$.
${ }^{\text {b }}$ July $1,-6.62^{\circ}$; July $15,+6.69^{\circ}$; July 28, -6.76°.

Positions of the sun and planets are given for 0h Greenwich Ephemeris Time.
The times of transit at the 75th meridian are given in local mean time, 0 h at midnight; to change to Standard Time, see p. 10. Estimates of altitude are for an observer in latitude $45^{\circ} \mathrm{N}$.

The Sun-During August the sun's R.A. increases from 8 h 43 m to 10 h 39 m and its Decl. changes from $18^{\circ} 11^{\prime}$ N. to $8^{\circ} 31^{\prime}$ N. The equation of time changes from $-6 \mathrm{~m} \mathrm{15s}$ to -0 m 19 s . For changes in the length of the day, see p .16 . There is an annular eclipse of the sun, not visible in North America, on August 31-Sept. 1.

The Moon-For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page. Times of moonrise and moonset are given on p. 23. There is a partial eclipse of the moon, visible in North America, on the night of the 16th.

Mercury on the 1st is in R.A. 10 h 14 m , Decl. $11^{\circ} 37^{\prime}$ N., and on the 15 th is in R.A. 11 h 17 m , Decl. $2^{\circ} 49^{\prime}$ N. Greatest eastern elongation is on the 16 th , but this is a very poor one, Mercury standing only about 8° above the western horizon at sunset. It will be very difficult to see at this time.

Venus on the 1 st is in R.A. 11 h 31 m , Decl. $3^{\circ} 38^{\prime}$ N., and on the 15 th is in R.A. 12 h 25 m , Decl. $3^{\circ} 23^{\prime}$ S., mag. -3.8 , and transits at 14 h 53 m . It may be seen low in the western sky for about an hour and a half after sunset. On the evening of the 30th it passes within a fraction of a degree south of Spica.

Mars on the 15 th is in R.A. 9 h 22 m , Decl. $16^{\circ} 36^{\prime}$ N., and transits at 11 h 49 m . It is too close to the sun for observation, conjunction being on the 2 nd .

Jupiter on the 15 th is in R.A. 13 h 53 m , Decl. $10^{c} 26^{\prime}$ S., mag. -1.5 , and transits at 16 h 18 m . In Virgo, it is well down in the south-west at sunset and sets about two hours later. For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 57.

Saturn on the 15 th is in R.A. 3 h 22 m , Decl. $16^{\circ} 06^{\prime}$ N., mag. +0.4 , and transits at 5 h 48 m . Moving into Taurus, it rises about midnight. It is in western quadrature on the 15th.

Uranus on the 15 th is in R.A. 12 h 24 m , Decl. $1^{\circ} 54^{\prime} \mathrm{S}$. and transits at 14 h 49 m .
Neptune on the 15 th is in R.A. 15 h 45 m , Decl. $18^{\circ} 06^{\prime}$ S. and transits at 18 h 09 m . It is in eastern quadrature on the 22nd.

Pluto-For information in regard to this planet, see p. 31.

Explanation of abbreviations on p. 4, of time on p. 10, of colongitude on p. 62.
${ }^{l}$ Aug. 11, -7.60°; Aug. 24, $+7.74^{\circ}$. $\quad{ }^{b}$ Aug. 12, $+6.78^{\circ}$; Aug. 24, -6.83°.

Positions of the sun and planets are given for 0h Greenwich Ephemeris Time.
The times of transit at the 75th meridian are given in local mean time, 0 h at midnight; to change to Standard Time, see p. 10. Estimates of altitude are for an observer in latitude $45^{\circ} \mathrm{N}$.

The Sun-During September the sun's R.A. increases from 10 h 39 m to 12 h 27 m and its Decl. changes from $8^{\circ} 31^{\prime} \mathrm{N}$. to $2^{\circ} 56^{\prime} \mathrm{S}$. The equation of time changes from 0 m 00 s to +9 m 58 s . On the 23 rd at 5 h 59 m E.S.T. the sun crosses the equator moving south, enters the sign of Libra and autumn commences. For changes in the length of the day, see p. 17.

The Moon-For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page, Times of moonrise and moonset are given on p. 24.

Mercury on the 1st is in R.A. 11 h 45 m , Decl. $3^{\circ} 01^{\prime}$ S., and on the 15 th is in R.A. 11 h 09 m , Decl. $2^{\circ} 24^{\prime} \mathrm{N}$. Inferior conjunction is on the 12 th , but by the 28 th Mercury has reached greatest western elongation and at that time stands about 16° above the eastern horizon at sunrise. For about five mornings before and after this date it should be possible to see it low in the east just before sunrise.

Venus on the 1st is in R.A. 13 h 26 m , Decl. $11^{\circ} 33^{\prime}$ S., and on the 15 th is in R.A. 14 h 13 m , Decl. $17^{\circ} 26^{\prime}$ S., mag. -4.2 , and transits at 14 h 39 m . It is at greatest eastern elongation on the 1st, but nonetheless it is close to the horizon at sunset and sets within an hour. It is now becoming much brighter.

Mars on the 15 th is in R.A. 10 h 38 m , Decl. $9^{\circ} 50^{\prime}$ N., and transits at 11 h 03 m . It is a morning star but too close to the sun for easy observation.

Jupiter on the 15 th is in R.A. 14 h 12 m , Decl. $12^{\circ} 15^{\prime}$ S., mag. -1.3 , and transits at 14 h 35 m . In Virgo, it is very low in the south-west at sunset and sets about two hours later. For the configurations of Jupiter's satellites see opposite page.

Saturn on the 15 th is in R.A. 3h 23 m , Decl. $16^{\circ} 04^{\prime}$ N., mag. +0.3 , and transits at 3 h 47 m . In Taurus, it rises about two hours before midnight. On the 4th it is stationary in R.A. and begins to retrograde or move westward among the stars.

Uranus on the 15th is in R.A. 12h 31 m , Decl. $2^{\circ} 36^{\prime}$ S. and transits at 12 h 54 m .
Neptune on the 15 th is in R.A. 15 h 46 m , Decl. $18^{\circ} 12^{\prime}$ S. and transits at 16 h 09 m .
Pluto-For information in regard to this planet, see p. 31.

Explanation of abbreviations on p. 4, of time on p. 10, of colongitude on p. 62. ${ }^{i}$ Sept. 8, -7.14°; Sept. 21, $+7.72^{\circ} . \quad{ }^{b}$ Sept. 8, $+6.81^{\circ}$; Sept. 20, -6.76°.

THE SKY FOR OCTOBER 1970

Positions of the sun and planets are given for 0h Greenwich Ephemeris Time.
The times of transit at the 75th meridian are given in local mean time, 0 h at midnight; to change to Standard Time, see p. 10. Estimates of altitude are for an observer in latitude $45^{\circ} \mathrm{N}$.

The Sun-During October the sun's R.A. increases from 12h 27 m to 14 h 23 m and its Decl. changes from $2^{\circ} 56^{\prime} \mathrm{S}$. to $14^{\circ} 14^{\prime} \mathrm{S}$. The equation of time changes from +10 m 18 s to +16 m 20 s . For changes in the length of the day, see p. 17.

The Moon-For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page. Times of moonrise and moonset are given on p. 24.

Mercury on the 1st is in R.A. 11 h 25 m , Decl. $5^{\circ} 22^{\prime}$ N., and on the 15 th is in R.A. 12 h 48 m , Decl. $3^{\circ} 21^{\prime} \mathrm{S}$. Except for the first few days (see September) the planet is too close to the sun for observation, superior conjunction being on the 27th.

Venus on the 1 st is in R.A. 14 h 59 m , Decl. $22^{\circ} 38^{\prime}$ S., and on the 15 th is in R.A. 15 h 22 m , Decl. $25^{\circ} 11^{\prime}$ S., mag. -4.3 , and transits at 13 h 47 m . Greatest brilliancy is on the 6th, but Venus is now so low on the south-western horizon at sunset (about 6° altitude on the 15th) that it will not be easily seen, especially later in the month.

Mars on the 15 th is in R.A. 11 h 49 m , Decl. $2^{\circ} 25^{\prime}$ N., mag. +2.0 , and transits at 10 h 16 m . Moving from Leo into Virgo, it is a morning star rising in the east about two hours before the sun.

Jupiter on the 15 th is in R.A. 14 h 35 m , Decl. $14^{\circ} 15^{\prime}$ S., mag. -1.3 , and transits at 13 h 01 m . It is too close to the sun for easy observation.

Saturn on the 15th is in R.A. 3h 18m, Decl. $15^{\circ} 40^{\prime}$ N., mag. 0.0, and transits at 1 h 44 m . Moving back into Aries, it rises about an hour after sunset and is visible all night.

Uranus on the 15 th is in R.A. 12 h 38 m , Decl. $3^{\circ} 20^{\prime}$ S. and transits at 11 h 03 m . Conjunction with the sun is on the 2 nd .

Neptune on the 15th is in R.A. 15 h 50 m , Decl. $18^{\circ} 24^{\prime}$ S. and transits at 14 h 14 m .
Pluto-For information in regard to this planet, see p. 31.

Explanation of abbreviations on p. 4, of time on p. 10, of colongitude on p. 62.
${ }^{\circ}$ Oct. 6, -6.03°; Oct. 19, $+6.99^{\circ} .{ }^{b}$ Oct. $5,+6.71^{\circ}$; Oct. 18. -6.62°.

THE SKY FOR NOVEMBER 1970

Positions of the sun and planets are given for 0h Greenwich Ephemeris Time.
The times of transit at the 75th meridian are given in local mean time, 0 h at midnight; to change to Standard Time, see p. 10. Estimates of altitude are for an observer in latitude $45^{\circ} \mathrm{N}$.

The Sun-During November the sun's R.A. increases from 14 h 23 m to 16 h 27 m and its Decl. changes from $14^{\circ} 14^{\prime} \mathrm{S}$. to $21^{\circ} 42^{\prime} \mathrm{S}$. The equation of time changes from +16 m 22 s to a maximum of +16 m 24 s on the 3 rd and then to +11 m 19 s at the end of the month. For changes in the length of the day, see p. 18.

The Moon-For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page. Times of moonrise and moonset are given on p. 25.

Mercury on the 1 st is in R.A. 14 h 35 m , Decl. $15^{\circ} 08^{\prime}$ S., and on the 15 th is in R.A. 16 h 03 m , Decl. $22^{\circ} 11^{\prime} \mathrm{S}$. It is too close to the sun for observation.

Venus on the 1 st is in R.A. 15 h 14 m , Decl. $24^{\circ} 16^{\prime}$ S., and on the 15 th is in R.A. 14 h 45 m , Decl. $19^{\circ} 26^{\prime}$ S., mag. -3.3 , and transits at 11 h 07 m . Inferior conjunction is on the 10th, so that it will be difficult to see Venus until later in the month when it begins to be prominent as a morning star low in the south-east just before sunrise.

Mars on the 15th is in R.A. 13h 01 m , Decl. $5^{\circ} 25^{\prime}$ S., mag. +1.9 , and transits at 9 h 26 m . In Virgo, it is a morning star rising about three hours before the sun.

Jupiter on the 15 th is in R.A. 15 h 02 m , Decl. $16^{\circ} 16^{\prime}$ S., mag. -1.2 , and transits at 11 h 25 m . It is too close to the sun for observation, conjunction being on the 9 th. For the configurations of Jupiter's satellites see opposite page.

Saturn on the 15 th is in R.A. 3h 09 m , Decl. $15^{\circ} 01^{\prime}$ N., mag. -0.1 , and transits at 23 h 29 m . In Aries, it rises before sunset and is visible all night. Opposition is on the 11th, when its distance from earth is $757,900,000 \mathrm{mi}$.

Uranus on the 15 th is in R.A. 12 h 44 m , Decl. $4^{\circ} 02^{\prime} \mathrm{S}$. and transits at 9 h 07 m .
Neptune on the 15 th is in R.A. 15 h 54 m , Decl. $18^{\circ} 38^{\prime}$ S. and transits at 12 h 17 m . Conjunction with the sun is on the 23 rd.

Pluto-For information in regard to this planet, see p. 31.

Explanation of abbreviations on p. 4, of time on p. 10, of colongitude on p. 62.
${ }^{l}$ Nov. $1,-4.89^{\circ}$; Nov. 16, $+5.92^{\circ}$; Nov. $28,-4.89^{\circ}$.
${ }^{6}$ Nov. $1,+6.58^{\circ}$; Nov. $14,-6.54^{\circ}$; Nov. 28, $+6.54^{\circ}$.

THE SKY FOR DECEMBER 1970

Positions of the sun and planets are given for 0h Greenwich Ephemeris Time.
The times of transit at the 75th meridian are given in local mean time, 0 h at midnight; to change to Standard Time, see p. 10. Estimates of altitude are for an observer in latitude $45^{\circ} \mathrm{N}$.

The Sun-During December the sun's R.A. increases from 16h 27 m to 18 h 43 m and its Decl. changes from $21^{\circ} 42^{\prime} \mathrm{S}$. to $23^{\circ} 04^{\prime} \mathrm{S}$., reaching $23^{\circ} 27^{\prime} \mathrm{S}$. on the 22 nd . The equation of time changes from +10 m 57 s to -3 m 02 s , being zero on the 25th. The winter solstice occurs on the 22 nd at 1 h 36 m E.S.T. For changes in the length of the day, see p. 18.

The Moon-For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page. Times of moonrise and moonset are given on p. 25.

Mercury on the 1 st is in R.A. 17 h 45 m , Decl. $25^{\circ} 48^{\prime}$ S., and on the 15 th is in R.A. 18h 55 m , Decl. $24^{\circ} 15^{\prime}$ S. Greatest eastern elongation is on the 10 th , but this is an unfavourable one, Mercury standing only 9° above the south-western horizon at sunset. On the 28th it is in inferior conjunction.

Venus on the 1 st is in R.A. 14 h 30 m , Decl. $14^{\circ} 12^{\prime} \mathrm{S}$., and on the 15 th is in R.A. 14 h 47 m , Decl. $13^{\circ} 14^{\prime}$ S., mag. -4.4 , and transits at 9 h 13 m . It is now a morning star, very bright (greatest brilliancy on the 16th), and rising near the south-east between two and three hours before the sun.

Mars on the 15 th is in R.A. 14 h 13 m , Decl. $12^{\circ} 25^{\prime}$ S., mag. +1.8 , and transits at 8 h 39 m . Moving from Virgo into Libra, it rises four hours before sunrise.

Jupiter on the 15th is in R.A. 15 h 28 m , Decl. $17^{\circ} 59^{\prime}$ S., mag. -1.3 , and transits at 9 h 53 m . In Libra, it is a morning star rising about two hours before the sun. For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 57.

Saturn on the 15 th is in R.A. 3 h 00 m , Decl. $14^{\circ} 30^{\prime}$ N., mag. +0.1 , and transits at 21 h 22 m . In Aries, it is well up at sunset and sets before sunrise.

Uranus on the 15 th is in R.A. 12 h 49 m , Decl. $4^{\circ} 31^{\prime}$ S. and transits at 7 h 14 m .
Neptune on the 15 th is in R.A. 15 h 59 m , Decl. $18^{\circ} 52^{\prime}$ S. and transits at 10 h 23 m .
Pluto-For information in regard to this planet, see p. 31.

1970			DECEMBER E.S.T.	$\begin{gathered} \text { Min. } \\ \text { of } \\ \text { Algol } \end{gathered}$	Config. of Jupiter's 6 h 30 m	$\begin{aligned} & \text { Sun's. } \\ & \begin{array}{c} \text { Selen. } \\ \text { Colong. } \\ \text { Oh U.T. } \end{array} \end{aligned}$
d	h	m	Mercury greatest hel. lat. S.	$\begin{array}{rr} \mathrm{h} & \mathrm{~m} \\ 4 & 50 \end{array}$		-
Tue. 1					12043	300.55
Wed. 2					20134	312.74
Thu. 3					10324	324.92
Fri. 4				140	30124	337.10
Sat. 5	$\begin{array}{r} 1 \\ 15 \end{array}$		Moon at perigee, $230,100 \mathrm{mi}$. Dil First Quarter		3204*	349.27
	15	36				
Sun. 6				2230	31204	1.44
Mon. 7					O124*	13.59
Tue. 8					d1O43	25.74
Wed. 9				1920	24013	37.88
Thu. 10	$\begin{array}{r} 9 \\ 18 \end{array}$		Saturn $8^{\circ} \mathrm{S}$. of moon Mercury greatest elong. E., 21°		41023	50.02
Fri. 11					43012	$62.15{ }^{\text {b }}$
Sat. 12	16	03	(2) Full MoonGeminid meteors	1610	43210	74.28
Sun. 13					43120	$86.41{ }^{l}$
Mon. 14					43012	98.54
Tue. 15				1250	41023	110.67
Wed. 16	9		Venus at greatest brilliancy		42013	122.80
Thu. 17					10423	134.94
Fri. 18	4621		Ceres stationary	940	30124	147.08
			Regulus $0.9^{\circ} \mathrm{N}$. of moon			
			Mercury stationary			
Sat. 19	10		Moon at apogee, $251,300 \mathrm{mi}$.		3204*	159.22
Sun. 20			Mercury at ascending node		32104	171.37
	16	09	\mathbb{C} Last Quarter			
Mon. 21				630	30124	183.53
Tue. 22			Ursid meteors		10234	195.70
			Pluto in quadrature W.			
			Uranus $5^{\circ} \mathrm{N}$. of moon			
		36	Solstice. Winter begins			
Wed. 23	15		Juno stationary		20134	207.86
Thu. 24	8		Mars $6^{\circ} \mathrm{N}$. of moon	320	1034*	220.04
Fri. 25			Mercury at perihelion		30412	$232.22^{\text {lb }}$
	$\begin{array}{r} 0 \\ 10 \\ 20 \end{array}$		Venus $9^{\circ} \mathrm{N}$. of moon			
			Jupiter $6^{\circ} \mathrm{N}$. of moon			
			Neptune $7^{\circ} \mathrm{N}$. of moon			
Sat. 26	7		Antares $0.4^{\circ} \mathrm{N}$. of moon		34120	244.40
Sun. 27				010	d4320	256.59
Mon. 28	5	43	(1ay Moon		43012	268.78
	9		Mercury at inferior corrjunction			
Tue. 29				2100	41023	280.97
Wed. 30					42013	293.16
Thu. 31	5		Moon at perigee, $227,300 \mathrm{mi}$.		41203	305.34

Explanation of abbreviations on p. 4, of time on p. 10, of colongitude on p. 62.
${ }^{i}$ Dec. $13,+5.13^{\circ}$; Dec. 25, $-5.79^{\circ} . \quad{ }^{b}$ Dec. 11, -6.56°; Dec. $25,+6.62^{\circ}$.

JANUARY		$\begin{array}{r} d \\ 25 \end{array}$	h m Sat. Phen.$208 \text { II ED }$	$\begin{gathered} \mathrm{d} \\ 5 \end{gathered}$	$h \mathrm{~m}$ Sat. Phen.		$\underset{12}{\mathrm{~d}}$	$\begin{array}{ll}\text { h m } \\ 2 & 03\end{array}$	Phen. OD
d	h m Sat. Phen.				106 I	OR			
1	337 I ED		324 I OR		425 II	ED		2322	TI
	504 II Te		2338 I Se		2203 I	Se		2352	SI
2	259 I Se	26	040 I Te		2224 I	Te	13	132	Te
	407 I Te	27	112 II Te	6	2243 II	SI		202	Se
8	236 III TI		126 III SI		2326 II	TI		2029	OD
	253 II SI		347 III Se	7	115 II	Se		2310	ER
	448 III Te				152 II	Te	14	2031	Se
	513 II TI		MARCH	8	2052 II	OR	15	2345 II	TI
	524 II Se	d	h m Sat. Phen.	11	114 III	SI	16	052 II	SI
	530 I ED	3	452 I SI		228 III	TI		215 II	Te
9	241 I SI	4	204 I ED		$\begin{array}{llll}3 & 18\end{array}$	SI		2054 III	Te
	353 I TI		444 II ED		332 III	Se		2107 III	SI
	453 I Se		511 I OR		333 I	TI		2322 III	Se
	603 I Te		2321 I SI		417 III	Te	17	2234 II	ER
10	319 I OR	5	019 I TI	12	027	ED	20	108	TI
15	404 III Se		$132 \mathrm{I} \quad \mathrm{Se}$		250	OR		146	SI
	526 II SI		228 I Te		2146	SI		2215	OD
16	$435 \quad \mathrm{I}$ SI		2314 II SI		2159	TI	21	105	ER
	548 I TI		2338 I OR		2357 I	Se		2144	Te
17	459 II OR	6	108 II TI	13	009 I	Te		2225	Se
	513 I OR		145 II Se		2116 I	OR	23	203 II	TI
18	226 I Te		334 II Te	14	116 II	SI		2213 III	TI
22	537 III SI		524 III SI		140 II	TI	24	020 III	Te
23	628 I SI	9	2308 III OD		349 II	Se		106 III	SI
24	228 II ED	10	100 III OR		407 II	Te		2107 II	OD
	343 I ED	11	357 I ED	15	2018 II	ED	25	110 II	ER
25	$\begin{array}{lllll}2 & 11 & \text { I } & \text { TI }\end{array}$	12	$\begin{array}{llll}1 & 14 & \text { I } & \text { SI }\end{array}$		2308 II	OR	28	001 I	OD
	308 I Se		207 I TI	19	221 I	ED		2121	TI
	420 I Te		$325 \quad \mathrm{I} \quad \mathrm{Se}$		2340 I	SI		2210	SI
26	134 I OR		$416 \quad \mathrm{I} \quad \mathrm{Te}$		2343 I	TI		2331	Te
	208 II Te	13	125 I OR	20	151 I	Se	29	020	Se
	247 III OR		147 II SI		152 I	Te		2128 I	ER
31	504 II ED		329 II TI		2049 I	ED	31	139 III	TI
	536 I ED		418 II Se		2259 I	OR		2327 II	OD
	FEBRUARY		2242 I Te	21	350 II	SI			
		15	051 II OR		353 II	TI		JUNE	
$\begin{aligned} & \mathrm{d} \\ & 1 \end{aligned}$	h m Sat. Phen.	16	2313 III ED		2018 I	Te	d	$h \mathrm{~m}$ Sat.	Phen.
	250 I SI	17	136 III ER		$2020 \quad$ I	Se	2	2154 II	${ }_{\text {Se }}$
	$\begin{array}{llll}404 & \mathrm{I} & \text { TI }\end{array}$		237 III OD		2122 III	ER	3	2111 III	ER
	501 I Se		428 III OR	22	2252 II	OD	4	2309 I	TI
	$613 \quad \mathrm{I}$ (6	19	308 I SI	23	130 II	ER	5	005	SI
2	155 III ER		353 I TI	27	$\begin{array}{ll}1 & 27 \\ \end{array}$	TI		119	Te
	212 II TI	20	$\begin{array}{llll}0 & 18 \\ \text { I }\end{array}$		$\begin{array}{llll}1 & 34 \\ 3 & \text { I }\end{array}$	SI		2323	ER
	218 II Se		310 I OR		$\begin{array}{llll}3 & 37 \\ \end{array}$	Te	6	2043 I	Se
	326 I OR		419 II SI		346	Se	9	2156 II	SI
	435 III OD		2219 I 21		2234	OD		2228 II	Te
	439 II Te		2347 I	28	053 I	ER	10	029 II	$\mathrm{Se}^{\mathrm{Se}}$
8	443 I	21	028 I Te		$\begin{array}{llll}20 & 03\end{array}$	SI		2103 III	OR
	$\begin{array}{lllr}5 & 56 & \text { I } & \text { TI } \\ 1 & 57 & \text { I } & \text { FD }\end{array}$		2314 II ED		$\begin{array}{llll}22 & 03 \\ 22 & 14\end{array}$	Te		2255 III	ED
9	$\begin{array}{llll}1 & 57 & \text { I } \\ 2 & 20 & \text { II } & \text { SI }\end{array}$	22	$\begin{array}{lllll}3 & 10 \\ 3 & 11 & \text { III } & \text { OR }\end{array}$		$\begin{array}{lll}22 & 14 \\ 22 & 28\end{array}$	$\xrightarrow{\mathrm{Se}}$	12	$\begin{array}{lll}0 & 58 \\ 1 & 59 & \text { I }\end{array}$	TI
	$\begin{array}{lllr}2 & 20 \\ 3 & 25 & \text { III } & \text { SI }\end{array}$	24	$\begin{array}{lllll}3 & 11 & \text { III } & \text { ED } \\ 2 & 12 & \text { I } & \text { ED }\end{array}$	29	$\begin{array}{rrr}22 & 28 & \text { III } \\ 120 & \text { III }\end{array}$	OD		159 2204	OD
	442 II TI	27	2138 III Te	30	107 II	OD	13	2135	Te
	450 II Se		2330 I SI					2237 I	Se
	518 I OR	28	004 I TI				16	2221 II	TI
	551 III ER		$141 \quad \mathrm{I} \quad \mathrm{Se}$				17	032 II	SI
10	123 I Se		213 I Te		MAY			054 II	Te
	233 I Te		2322 I OR	d	h m Sat.	Phen.		2223 III	OD
11	157 II OR	29	149 II ED	1	2143 II	Te	18	043 III	OR
16	350 I ED	30	2241 II Se		2215 II	Se		2213 II	ER
	452 II SI		2337 II Te	4	$\begin{array}{llll}3 & 11 & \text { I }\end{array}$	TI	19	$2354 \quad$ I	OD
17	$\begin{array}{llll}1 & 05 & \text { I } & \text { SI }\end{array}$				$\begin{array}{llll}3 & 29 \\ 0 & 18\end{array}$	SI	20	2115	TI
	$\begin{array}{llll}2 & 14 & \text { I } & \text { TI }\end{array}$		APRIL	5	0 18	OD		2223 I	SI
	$316 \quad \mathrm{I} \quad \mathrm{Se}$	d	h m Sat. Phen.		247 I	ER		2325	Te
	423 I Te	3	405 I ED		2137 I	TI	21	2142	ER
18	135 I OR		2116 III SI		2157 I	SI	27	2307 I	TI
	426 II OR		2311 III TI		2347 I	Te	28	2101 III	SI
20	214 III TI		2334 III Se	6	008 I	Se		2313 III	Se
	407 III Te	4	059 III Te		144 III	OD		2337 I	ER
23	543 I ED		123 I SI		2116 I	ER	29	2055 I	Se
24	259 I SI		149 I TI	8	2129 II	TI			
	404 I		3 35		2217 II	SI		JULY	
	$510 \quad \mathrm{I} \quad \mathrm{Se}$		358 I Te		2358 II	Te	d	h m Sat.	Phen
25	011 I ED		2233 I ED	9	050 II	Se	2	2223 II	OD

E-eclipse, O-occultation, T-transit, S-shadow, D-disappearance, R-reappearance. I-ingress, e-egress; E.S.T. (For other times see p. 10.)
The phenomena are given for latitude 45° N., for Jupiter at least one hour above the horizon, and the sun at least one hour below the horizon.
Note: Satellites move from east to west across she face of the planet, and from west to east behind it. Before opposition shadows fall to the west. and after opposition to the east. Thus eclipse phenomena occur on the east side from May to September, and on the west side during the rest of the year.

Viewed through a telescope of 6 -inch aperture or greater, Jupiter exhibits a variety of changing detail and colour in its cloudy atmosphere. Some features are of long duration, others are short-lived. The standard nomenclature of the belts and zones is given in the figure.

SATURN'S SATELLITES TITAN, RHEA AND IAPETUS (E.S.T.) By Terence Dickinson

Titan, the largest and brightest of Saturn's moons is seen easily in a 2 -inch or larger telescope. At elongation Titan appears about 5 ring-diameters from Saturn. The satellite orbits Saturn in about 16 days and at magnitude 8.4* dominates the field around the ringed planet.

Rhea is considerably fainter than Titan at magnitude 9.8 and a good quality 3 -inch telescope may be required to detect it. At elongation Rhea is about 2 ring-diameters from the centre of Saturn.

Iapetus is unique among the satellites of the solar system in that it is five times brighter at western elongation (mag. 10.1) than at eastern elongation (mag. 11.9). When brightest, Iapetus is located about 12 ring-diameters west of its parent planet.

Of the remaining moons only Dione and "Tethys are seen in "amateur"-sized telescopes.
*All magnitudes given are at mean opposition.

SATURN'S SATELLITES, 1970

Name	Greatest E. Elongation E.S.T.*		Mean Synodic Period	
Janus (discovered 1966, orbital elements not available)				
Mimas	Nov. 11	04.6	0	22.6
Enceladus	Nov. 11	20.3	1.	08.9
Tethys	Nov. 11	04.5	1	21.3
Dione	Nov. 11	22.1	2	17.7
Rhea	Nov. 10	$13.0 \dagger$	4	12.5
Titan	Nov. 18	$16.6 \dagger$	15	23.3
Hyperion	Nov. 21	14.2	21	07.6
Iapetus	Nov. 6	$09.0 \dagger$	79	22.1
Phoebe			523	15.6

*Near opposition of Saturn, 1970 Nov. 11. \dagger See p. 58 for more information.

DIMENSIONS OF SATURN'S RINGS

Diameter		Miles	At Mean Opposition Distance	Ratio
Outer Ring, A	— outer	169,100	44.0	2.252
	- inner	148,800	38.7	1.982
	— outer	145,400	37.8	1.936
	- inner	112,400	29.2	1.498
Dusky Ring	- inner	92,700	24.1	1.236
Saturn	- equatorial	75,100	19.5	1.000

SATURN'S RINGS, 1970

Date (19h E.S.T.)	Major Axis	Minor Axis	Inclination*
	"	"	-
Jan. 1	42.6	12.0	16.4
Feb. 2	40.2	11.6	16.8
Mar. 2	38.5	11.7	17.6
July 4	38.3	14.3	21.9
Aug. 1	40.2	15.4	22.5
Sept. 2	42.6	16.4	22.6
Oct. 4	44.9	17.0	22.3
Nov. 1	46.0	17.1	21.8
Dec. 3	45.6	16.5	21.2
Dec. 31	44.1	15.7	20.9

[^2] Maximum inclination of about 28° will occur in 1973.
N甘IaİGU TVYLNGD HO GanliפNOT－yGlidnf
The table lists the longitude of the central meridian of the illuminated disk of Jupiter for given times daily during the period when the planet is favourably placed．System I applies to the regions between the middle of the North Equatorial Belt and the middle of the South Equatorial Belt；System II to the rest of the planet．Longitude increases hourly by 36.58° in
System I and 36.26° in System II．Detailed ancillary tables may be found in＂The Planet Jupiter＂by B．M．Peek（Faber \＆ Faber，1958），on pages 274 and 275.

		－
	臣路	
	$\stackrel{\dot{\text { ® }}}{\substack{5}}$	
	虫雨	
	نٌ	
	$\sum_{i=1}^{\text {min }}$	
	范足	
	$\begin{aligned} & \text { ¹ } \\ & \sum_{N}^{\text {Nan }} \end{aligned}$	－
	$\stackrel{\dot{\mathrm{E}}}{\dot{4}-\infty}$	－NONN
	阕冎	
	$\begin{aligned} & \text { gig } \\ & \text { nig } \\ & \sum_{1}^{\infty} \end{aligned}$	

SUN-EPHEMERIS FOR PHYSICAL OBSERVATIONS, 1970
For 0h U.T.

P - The position angle of the axis of rotation, measured eastward from the north point of the disk.
B_{0}-The heliographic latitude of the centre of the disk.
L_{0}-The heliographic longitude of the centre of the disk, from Carrington's solar meridian.

Carrington's Rotation Numbers-Greenwich Date of Commencement of Synodic Rotations, 1970

| No. | Commences | | No. | Commences | | No. | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Commences

THE OBSERVATION OF THE MOON

During 1970 the ascending node of the moon's orbit regresses from Aquarius into Capricornus (Ω from 345° to 326°). At the beginning of the year the range of the moon's declination is still near its maximum, but the range decreases by about a degree at the end of the year. See p. 64 for occultations of stars.

The sun's selenographic colongıtude is essentially a convenient way of indicating the position of the sunrise terminator as it moves across the face of the moon. It provides an accurate method of recording the exact conditions of illumination (angle of illumination), and makes it possible to observe the moon under exactly the same lighting conditions at a later date.

The sun's selenographic colongitude is numerically equal to the selenographic longitude of the sunrise terminator reckoned eastward from the mean centre of the disk. Its value increases at the rate of nearly 12.2° per day or about $\frac{1^{\circ}}{}{ }^{\circ}$ per hour; it is approximately $270^{\circ}, 0^{\circ}, 90^{\circ}$ and 180° at New Moon, First Quarter, Full Moon and Last Quarter respectively. (See the tabulated values for 0h U.T. starting on p. 33.)

Sunrise will occur at a given point east of the central meridian of the moon when the sun's selenographic colongitude is equal to the eastern selenographic longitude of the point; at a point west of the central meridian when the sun's selenographic colongitude is equal to 360° minus the western selenographic longitude of the point. The longitude of the sunset terminator differs by 180° from that of the sunrise terminator.

The sun's selenographic latitude varies between $+{11^{\circ}}^{\circ}$ and $-1 \frac{1}{2}^{\circ}$ during the year.

By the moon's libration is meant the shifting, or rather apparent shifting, of the visible disk. Sometimes the observer sees features farther around the eastern or the western limb (libration in longitude), or the northern or southern limb (libration in latitude). The quantities called the earth's selenographic longitude and latitude are a convenient way of indicating the two librations. When the libration in longitude, that is the selenographic longitude of the earth, is positive, the mean central point of the disk of the moon is displaced eastward on the celestial sphere, exposing to view a region on the west limb. When the libration in latitude, or the selenographic latitude of the earth, is positive, the mean central point of the disk of the moon is displaced towards the south, and a region on the north limb is exposed to view.

In the Astronomical Phenomena Month by Month the dates of the greatest positive and negative values of the libration in longitude are indicated by ${ }^{l}$ in the column headed "Sun's Selenographic Colongitude," and their values are given in the footnotes. Similarly the extreme values of the libration in latitude are indicated by ${ }^{b}$.

Two areas suspected of showing changes are Alphonsus and Aristarchus.

ECLIPSES DURING 1970

In 1970 there will be four eclipses, two of the sun and two of the moon. Of these, the total eclipse of the sun on March 7 and both partial eclipses of the moon, on the nights of February 20-21 and August 16-17, will be visible in North America.

1. A partial eclipse of the moon on the night of February 20-21, visible in North America.

> Moon enters penumbra.......... . February 21 , 0 h 59 m E.S.T.
> Moon enters umbra. 3h 02m E.S.T.
> Middle of eclipse. 3h 30m E.S.T.
> Moon leaves umbra. 3 h 58m E.S.T.
> Moon leaves penumbra. 6h 01m E.S.T.
> Magnitude of the eclipse 0.051 .
2. A total eclipse of the sun on March 7. The band of totality closely follows the east coast of the United States and Canada, crossing the eastern parts of Nova Scotia and Newfoundland where totality lasts about two minutes and occurs between 14 h 50 m and 15 h 00 m A.S.T. depending upon locality. All the rest of North America except Alaska will experience a partial eclipse. See map.
3. A partial eclipse of the moon on the night of August 16-17, visible in North America except the extreme north-western part.

Moon enters penumbra. August 16, 20h 06 m E.S.T.
Moon enters umbra. 21 h 17m E.S.T.
Middle of eclipse. 22 h 23m E.S.T.
Moon leaves umbra. 23 h 30 m E.S.T.
Moon leaves penumbra.August 17, 0h 40m E.S.T.
Magnitude of the eclipse 0.413.
4. An annular eclipse of the sun, August 31-September 1, visible only in the South Pacific Ocean.

Path of totality for the March 7 eclipse of the sun
(Adapted from map, courtesy of
Mr. H.C.S. THOM, NASA, Washington, D.C.)

TRANSIT OF MERCURY

On the morning of May 9th Mercury will transit the sun's disk. The event will be seen in its entirety in eastern Europe and Africa and in western Asia. Farther to the west the transit will already be in progress at sunrise. In eastern and central North America the egress will be seen after sunrise, but in the far west the transit will be ended before sunrise. The time of egress in latitude 45° will be approximately as shown below, and will be about 10 seconds earlier (later) per 5° of latitude farther north (south).

Interior egress $\quad 7 \mathrm{~h} 10 \mathrm{~m} 20 \mathrm{~s}$ E.S.T.
Exterior egress 7h 13m 20s E.S.T.
The position angle (reckoned from the north limb of the sun toward the east) of egress is 237°.

OCCULTATIONS BY THE MOON

When the moon passes between the observer and a star that star is said to be occulted by the moon and the phenomenon is known as a lunar occultation. The passage of the star behind the east limb of the moon is called the immersion and its re-appearance from behind the west limb the emersion. As in the case of eclipses, the times of immersion and emersion and the duration of the occultation are different for different places on the earth's surface. The tables given below, are adapted from data supplied by the British Nautical Almanac Office and give the times of immersion or emersion or both for occultations visible from six stations distributed across Canada. Stars of magnitude 7.5 or brighter are included as well as daytime occultations of very bright stars and planets. Since an occultation at the bright limb of the moon is difficult to observe the predictions are limited to phenomena occurring at the dark limb.

The terms a and b are for determining corrections to the times of the phenomena for stations within 300 miles of the standard stations. Thus if λ_{0}, ϕ_{0}, be the longitude and latitude of the standard station and λ, ϕ, the longitude and latitude of the neighbouring station then for the neighbouring station we have:
Standard Time of phenomenon $=$ Standard Time of phenomenon at the standard station $+a\left(\lambda-\lambda_{0}\right)+b\left(\phi-\phi_{0}\right)$
where $\lambda-\lambda_{0}$ and $\phi-\phi_{0}$ are expressed in degrees. The quantity P is the position angle of the point of contact on the moon's disk reckoned from the north point towards the east.

In 1970 the moon will still occult some of the stars in the Pleiades, but the number of stars occulted is markedly less than in 1969.

The co-ordinates of the standard stations are: Halifax, $\lambda_{0} 63^{\circ} 36.0^{\prime}, \phi_{0}+44^{\circ}$ 38.0^{\prime}; Montreal, $\lambda_{0} 73^{\circ} 34.5^{\prime}, \phi_{0}+45^{\circ} 30.3^{\prime}$; Toronto, $\lambda_{0} 79^{\circ} 24.0^{\prime}, \phi_{0}+43^{\circ} 39.8^{\prime}$; Winnipeg, $\lambda_{0} 97^{\circ} 06.0^{\prime}, \phi_{0}+49^{\circ} 55.0^{\prime}$; Edmonton, $\lambda_{0} 113^{\circ} 04.5^{\prime}, \phi_{0}+53^{\circ} 32.0^{\prime}$; Vancouver, $\lambda_{0} 123^{\circ} 06.0^{\prime}, \phi_{0}+49^{\circ} 30.0^{\prime}$.

LUNAR OCCULTATIONS VISIBLE AT HALIFAX AND MONTREAL, 1970

LUNAR OCCULTATIONS VISIBLE AT TORONTO AND WINNIPEG, 1970

Date		Star	Mag.	$\left\|\begin{array}{c} \mathrm{I} \\ \mathrm{or} \\ \mathrm{E} \end{array}\right\|$	Elong. of Moon	Toronto				Winnipeg				
		E.S.T.				a	b	P	C.S.T.	a	b	P		
Jan.						$\stackrel{\circ}{\circ}$		m	m	$\stackrel{\circ}{\circ}$	h m	m	m	
	10	54 Aqr	7.0	I	43	1849.1	-1.1	-1.3	90	1728.8		+0.2	47	
	10	σ Aqr	4.9	I	44	${ }_{19}$ Low 6				1936.7	-0.5	-0.8	68	
	11	316 B. Aqr 180 B. Psc	6.6 6.7	$\left\lvert\, \begin{gathered} \mathrm{I} \\ \mathrm{I} \end{gathered}\right.$	57 84	19 55.6	-0.3	+0.8	27	No Occ. 2032.6				
	13	180 B. Psc	6.7 6.9	$\left.\begin{array}{\|c} \overrightarrow{\mathrm{I}} \\ \mathrm{I} \end{array} \right\rvert\,$	84	No Occ. Low				2032.6 23 1	0.0	-3.1	119	
	15	μ Ari	5.7	I	108	2200.7	-i.6	-2.9	ii5	2021.5	-1.7	0.0	79	
	17	16 Tau	5.4	I	122	Low				213.9	+0.2	-2.2	115	
	17	19 Tau	4.4	I	122	Low				223.2	-0.1	-1.2	76	
	17	20 Tau	4.0	I	122	Low				239.7	+0.2	-1.7	102	
	17	21 Tau	5.8	I	122	Low	\ldots		\ldots	245.1	-0.2	-0.8	60	
	17	22 Tau	6.5	I	123	Low			\ldots	247.2	-0.1	-0.9	67	
	17	$+23^{\circ} 523$	7.0	I	123	Low			.	306.1	+0.9	-3.0	140	
	17	+240 562	6.7	I	123	Low				310.5	+0.1	-1.1	75	
	18	+260 $731 m$	6.5	I	134	328.0	-0.4	-0.3	50	215.2	-0.7	-0.6	57	
	18	$354 \mathrm{~B} . \mathrm{Tau}$	6.3	I	142	2015.9	-1.8	+0.9	86	1905.8	-0.6	+2.6	48	
	19	107 B . (Aur)	6.5	I	145	439.7	+0.5	-1.6	115	$\begin{array}{lll}3 & 33.9\end{array}$	+0.2	-2.2	125	
	25	45 Leo	5.9	E	210	137.0			246	007.1			242	
	25	ρ Leo	3.8	I	211	432.9	-	-	62	245.1	-2.1	0.0	90	
	25	ρ Leo	3.8	E	211	503.2	-	-	15	347.7	-0.4	-2.5	346	
Feb.	25		5.8		212	Sun				600.8	-0.8	-1.9	299	
	31	$-23^{\circ} 12133$	6.4	E	281	Sun				503.9	-2.2	+1.8	244	
	12	161 B. Ari	7.0	I	89	1913.7	-1.7	+1.0	53	Sun				
	14	38 B . (Aur)	6.5	I	112	1947.5	-2.3	-2.1	124	Sun				
	14	$47 \mathrm{~B} \text { (Aur) }$	6.1	I	113	2301.5	-1.8	+0.6	49	2134.9	-1.9	+2.0	39	
	16	$+27^{\circ} 1270$	7.0 6.4	I	135 149	2043.7 4 37.4	-2.2 +0.2	+1.6 -1.5	68 104	$\begin{array}{r}19 \\ 3 \\ 3 \\ 27.7 \\ \hline 1\end{array}$			34 115	
Mar.	18	5 B. Cnc $134 \mathrm{B}$.Ari	6.4 6.7	I	149	437.4 2147.1	\pm	-1.5	104	3027.1 20	-0.1 -0.7	-1.9 -1.0	115 73	

LUNAR OCCULTATIONS VISIBLE AT EDMONTON AND VANCOUVER, 1970

24" $\times 36^{\prime \prime}$ photo-quality prints of plates from world's great observatories. Twelve prints in black and white, two in full color. Heavy matte paper.

Venus, b\&w; \#12, Trifid nebula, b\&w. ALSO AVAILABLE: \#1, Composite photo of thirdquarter moon, b\&w; \#2, Orion nebula, b\&w; \#3, Triangulum spiral, b\&w; \#8, Edge-on spiral in Andromeda, b\&w; \#10, Full moon, b\&w.

> Black and white AstroMurals $-\$ 7.50$ ea.
> Color AstroMurals

Set of 12 black and white AstroMurals - $\$ 75.00$
Set of 14 AstroMurals ($12 \mathrm{~b} \& \mathrm{w}, 2$ color) - $\$ 100.00$
All postpaid.
Phone (after 6 P.M. EST): 703-280-5216
astro-murals
box 7563-0
Washington, D.C. 20044

PLANETARY APPULSES AND OCCULTATIONS

No planetary appulses or occultations are observable from Canada this year.

ASTEROIDS-EPHEMERIDES AT OPPOSITION, 1970

The asteroids are many small objects revolving around the sun mainly between the orbits of Mars and Jupiter. The largest, Ceres, is only 480 miles in diameter. Vesta, though half the diameter of Ceres, is brighter. The next brightest asteroids, Juno and Pallas, are 120 and 300 miles in diameter, respectively. Unlike the planets the asteroids move in orbits which are appreciably elongated. Thus the distance of an asteroid from the earth (and consequently its magnitude) varies greatly at different oppositions.

The four brightest asteroids all come to opposition in 1970. Ephemerides near opposition are given for the three brightest, and maps for Ceres and Vesta. Dates and times of the table are for 0 h E.T., and the positions are based on the equinox of 1950.0.

Asteroids-Ephemerides at Opposition, E.T.

Vesta (No. 4) Opp. Feb. 8 in Leo Mag. 6.3			$\begin{gathered} \text { Ceres (No. 1) } \\ \text { Opp. Oct. } 24 \text { in Cet Mag. } 7.0 \end{gathered}$					
	h m	${ }^{\circ}{ }^{\prime}$					h m	- $\quad 1$
Jan. 19	951.4	+1906	Oct. 4	226.9	+104	Oct. 25	348.8	-0 08
24	947.8	+19 45	9	223.5	+0 46		3 3 36.6	-107
29	943.6	+20 26	14	219.6	+028	Nov. 4	343.8	-2 02
Feb. 3	939.0	+2106	19	215.4	+0 12	9	340.6	-252
8	934.0	+2146	24	211.0	-0 03	14	337.0	-3 35
13	928.9	+22 23	29	206.5	-0 15	19	333.3	-409
18	$\begin{array}{ll}9 & 23.9\end{array}$		Nov. 3	202.0	-0 24	24		-435
23	919.1	+2327	8	157.7	-029	29	326.2	-451
28	914.6	+23 53	13	153.7	-0 31	Dec.	323.2	-457

METEORS, FIREBALLS AND METEORITES

By Peter M. Millman

Meteroids are small solid particles moving in orbits about the sun. On entering the earth's atmosphere at velocities ranging from 15 to 75 kilometres per second they become luminous and appear as meteors or fireballs and, if large enough to avoid complete vaporization, in rare cases they may fall to the earth as meteorites.

Meteors are visible on any night of the year. At certain times of the year the earth encounters large numbers of meteors all moving together along the same orbit. Such a group is known as a meteor shower and the accompanying list gives the more important showers visible in 1970. Although in 1970 we are well past the Leonid peak of 1966, the shower may still be above average strength.

On the average an observer sees 7 meteors per hour which are not associated with any recognized shower. These have been included in the hourly rates listed in the table. The radiant is the position among the stars from which the meteors of a given shower seem to radiate. The appearance of any very bright fireball should be reported immediately to the nearest astronomical group or other organization concerned with the collection of such information. Where no local organization exists, reports should be sent to Meteor Centre, National Research Council, Ottawa 7, Ontario. Free fireball report forms and instructions for their use, printed in either French or English, may be secured at the above address. If sounds are heard accompanying a bright fireball there is a possibility that a meteorite may have fallen. Astronomers must rely on observations made by the general public to track down such an object.

Meteor Showers for 1970

Shower	Shower Maximum			Radiant				Single Observer Hourly Rate	Velocity	Normal Duration to $\frac{1}{4}$ strength of Max.
	Date	E.S.T.	Moon	Position at Max. R.A. Dec.		$\begin{gathered} \text { Daily } \\ \text { Motion } \\ \text { R,A. Dec. } \end{gathered}$				
				${ }^{\text {h m }}$		m			km/sec	days
Quadrantids	Jan. 3	07 h	L.Q.	$\begin{array}{ll}15 & 28 \\ 18\end{array}$	+50	-		40		1.1
Lyrids	Apr. 22	08 10	F.M.	${ }_{22}^{18} 16$	+34	+4.4	0.0 +0.4	15	48	${ }_{3}^{2}$
η Aquarids	May ${ }^{\text {Muly }} \mathbf{5}$	10	N.M.	2224 2236	00 -17	+3.6 +3	+0.4 +0.17	20	64 40	3
Perseids	Aug. 12	10	F.Q.	0304	+58	+5.4	+0.12	50	60	4.6
Orionids	Oct. 21	13	L.Q.	0620	+15	+4.9	+0.13	25	66	2
Taurids	Nov. 5		F.Q.	0332	+14	+2.7	+0.13	15	28	
Leonids	Nov. 17	07	L.Q.	1008	+22	+2.8	-0.42	25	72	
Geminids Ursids	$\left\lvert\, \begin{aligned} & \text { Dec. } \\ & \text { Dec. } 22\end{aligned}\right.$	03 21	F.M. L.Q.	0732 1428	+32 +76	$\underline{+4.2}$	-0.07	50 15	35 34	2.6

TABLE OF PRECESSION FOR 50 YEARS

¢		$\begin{aligned} & \circ 80 \\ & 080 \\ & 0000 \end{aligned}$	$\begin{array}{ll} 888 \\ 0 \\ \infty \\ \infty & 8 \\ \infty \end{array}$					
			$\begin{array}{ccc} \infty \\ \underset{\sim}{\infty}+\infty \\ 1 \\ 1 \end{array}$	111				
			Fiٌo io					Oim A్
						NiN Nox		®.
	を			か్ల్ ผ่ ล่ ค่ ค			옷NNN N	
				$\because 8$ ล่ ล่ ล่				
								ఱ م్ల
		숫ํㅜㅜ	Bix ix ix id					
				Nix M M M్లి				－
		区内	N్ల్ల్ల్ల్ స్ల	운 웅 ๗ゥ ゥ ゥ			¢	압 ¢
		Wion in pion		が心			－	®®
		Oin ion ion	बֻj					
	ם a	¢9\％${ }_{\text {¢ }}^{\text {¢ }}$	¢ ¢ ¢ ¢	¢0		mion		
	ם ¢ ¢ ¢ ¢ ¢	号菏范		Oit				
		¢ ${ }_{\text {¢ }}^{\text {Nit }}$						
						111	要垫 111	
				$++++$	$\stackrel{\sim}{\circ} \stackrel{0}{\circ}$	毕毕毕	禺管蕆	
¢	$\begin{aligned} & 1888 \\ & 1800 \\ & 00 \end{aligned}$		$\begin{aligned} & 808 \\ & \infty \\ & \infty \\ & \infty \end{aligned}$				$\begin{aligned} & 888 \\ & 0080 \end{aligned}$	

FINDING LIST OF NAMED STARS

Name		R．A．	Name		R．A．
Acamar	θ Eri	02	Fomalhaut	α PsA	22
Achernar	$\boldsymbol{\alpha}$ Eri	01	Gacrux	$\gamma \mathrm{Cru}$	12
Acrux	$\boldsymbol{\alpha}$ Cru	12	Gienah	$\gamma \mathrm{Crv}$	12
Adhara	¢ CMa	06	Hadar	$\boldsymbol{\beta}$ Cen	14
Al Na＇ir	α Gru	22	Hamal	$\boldsymbol{\alpha}$ Ari	02
Albireo	β Cyg	19	Kaus Australis	e Sgr	18
Alcyone	η Tau	03	Kochab	β UMi	14
Aldebaran	α Tau	04	Markab	$\boldsymbol{\alpha} \mathrm{Peg}$	23
Alderamin	$\boldsymbol{\alpha}$ Cep	21	Megrez	δ UMa	12
Algenib	$\boldsymbol{\gamma} \mathrm{Peg}$	00	Menkar	α Cet	03
Algol	$\boldsymbol{\beta}$ Per	03	Menkent	θ Cen	14
Alioth	¢ UMa	12	Merak	β UMa	10
Alkaid	$\boldsymbol{\eta}$ UMa	13	Miaplacidus	β Car	09
Almach	$\boldsymbol{\gamma}$ And	02	Mira	－Cet	02
Alnilam	$\epsilon \mathrm{Ori}$	05	Mirach	β And	01
Alphard	$\boldsymbol{\alpha}$ Hya	09	Mirfak	$\boldsymbol{\alpha}$ Per	03
Alphecca	$\boldsymbol{\alpha} \mathrm{CrB}$	15	Mizar	$\zeta \mathrm{UMa}$	13
Alpheratz	α And	00	Nunki	${ }_{\sigma} \mathrm{Sgr}$	18
Altair	$\boldsymbol{\alpha}$ Aql	19	Peacock	α Pav	20
Ankaa	α Phe	00	Phecda	$\boldsymbol{\gamma}$ UMa	11
Antares	α Sco	16	Polaris	$\boldsymbol{\alpha}$ UMi	01
Arcturus	$\boldsymbol{\alpha}$ Boo	14	Pollux	β Gem	07
Atria	$\boldsymbol{\alpha}$ TrA	16	Procyon	${ }_{\alpha} \mathrm{CMi}$	07
Avior	¢ Car	08	Ras－Algethi	$\boldsymbol{\alpha} \mathrm{Her}$	17
Bellatrix	γ Ori	05	Rasalhague	α Oph	17
Betelgeuse	α Ori	05	Regulus	$\boldsymbol{\alpha}$ Leo	10
Canopus	$\alpha \mathrm{Car}$	06	Rigel	$\boldsymbol{\beta}$ Ori	05
Capella	$\boldsymbol{\alpha}$ Aur	05	Rigil Kentaurus	α Cen	14
Caph	β Cas	00	Sabik	η Oph	17
Castor	$\boldsymbol{\alpha}$ Gem	07	Scheat	β Peg	23
Deneb	α Cyg	20	Schedar	${ }_{\alpha}$ Cas	00
Denebola	β Leo	11	Shaula	λ Sco	17
Diphda	β Cet	00	Sirius	α CMa	06
Dubhe	$\boldsymbol{\alpha}$ UMa	11	Spica	$\boldsymbol{\alpha}$ Vir	13
Elnath	β Tau	05	Suhail	λ Vel	09
Eltanin Enif	$\underset{\boldsymbol{r}}{\boldsymbol{\gamma} \mathrm{Prag}}$	17 21	Vega Zubenelgenubi	α Lyr α Lib	18

THE BRIGHTEST STARS

By Donald A. MacRae

The 286 stars brighter than apparent magnitude 3.55.
Star. If the star is a visual double the letter A indicates that the data are for the brighter component. The brightness and separation of the second component B are given in the last column. Sometimes the double is too close to be conveniently resolved and the data refer to the combined light, $A B$; in interpreting such data the magnitudes of the two components must be considered.

Visual Magnitude (V). These magnitudes are based on photoelectric observations, with a few exceptions, which have been adjusted to match the yellow colour-sensitivity of the eye. The photometric system is that of Johnson and Morgan in $A p$. J., vol. 117, p. 313, 1953. It is as likely as not that the true magnitude is within 0.03 mag. of the quoted figure, on the average. Variable stars are indicated with a " v ". The type of variability, range, R, in magnitudes, and period in days are given.

Colour index $(B-V)$. The blue magnitude, B, is the brightness of a star as observed photoelectrically through a blue filter. The difference $B-V$ is therefore a measure of the colour of a star. The table reveals a close relaton between $B-V$ and spectral type. Some of the stars are slightly reddened by interstellar dust. The probable error of a value of $B-V$ is only 0.01 or 0.02 mag .

Type. The customary spectral (temperature) classification is given first. The Roman numerals are indicators of luminosity class. They are to be interpreted as follows: Ia-most luminous supergiants; Ib-less luminous supergiants; II-bright giants; III-normal giants; IV-subgiants; V-main sequence stars. Intermediate classes are sometimes used, e.g. Iab. Approximate absolute magnitudes can be assigned to the various spectral and luminosity class combinations. Other symbols used in this column are: p-a peculiarity; e-emission lines; v -the spectrum is variable; m -lines due to metallic elements are abnormally strong; f-the O-type spectrum has several broad emission lines; n or nn-unusually wide or diffuse lines. A composite spectrum, e.g. $\mathrm{M} 1 \mathrm{Ib}+\mathrm{B}$, shows up when a star is composed of two nearly equal but unresolved components. In the far southern sky, spectral types in italics were provided through the kindness of Prof. R. v. d. R. Woolley, Australian Commonwealth Observatory. Types in parentheses are less accurately defined (g-giant, d-dwarf, c-exceptionally high luminosity). All other types were very kindly provided especially for this table by Dr. W. W. Morgan, Yerkes Observatory.

Parallax (π). From "General Catalogue of Trigonometric Stellar Parallaxes" by Louise F. Jenkins, Yale Univ. Obs., 1952.

Absolute visual magnitude $\left(\mathrm{M}_{\nabla}\right)$, and distance in light-years (D). If π is greater than $0.030^{\prime \prime}$ the distance corresponds to this trigonometric parallax and the absolute magnitude was computed from the formula $M_{V}=V+5+5 \log \pi$. Otherwise a generally more accurate absolute magnitude was obtained from the luminosity class. In this case the formula was used to compute π and the distance corresponds to this "spectroscopic" parallax. The formula is an expression of the inverse square law for decrease in light intensity with increasing distance. The effect of absorption of light by interstellar dust was neglected, except for three stars, ζ Per, σ Sco and ζ Oph, which are significantly reddened and would therefore be about a magnitude brighter if they were in the clear.

Annual proper motion (μ), and radial velocity (R). From "General Catalogue of Stellar Radial Velocities" by R. E. Wilson, Carnegie Inst. Pub. 601, 1953. Italics indicate an average value of a variable radial velocity.

The star names are given for all the officially designated navigation stars and a few others. Throughout the table, a colon (:) indicates an uncertainty.

	$\begin{array}{r} \text { uo!suəวsy } \\ 7 \Psi \bar{\delta}!4 \end{array}$									$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 9 \\ & 3 \\ & 3 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$$	
Star	R.A. 19	70 Dec.	V	$B-V$		Type	π	M_{V}	D	μ	R	
Sun	h m	- ,	-26.73	+0.63		V	"	+4.84	1.y.	"	km./sec.	Sun
$\boldsymbol{\alpha}$ And	0006.8	+28 55	2.06	-0.08	B9p		0.024	-0.1	90	0.209	-11.7	Manganese star Alpheratz
β Cas	07.6	+58 59	2.26	+0.34	F2	IV	0.072	+1.6	45	0.555	+11.8	Caph
$\boldsymbol{\gamma}$ Peg	11.7	+1501	2.84 v	-0.23	B2	IV	$-.004$	-3.4	570	0.010	+04.1	β CMa type, R in V 2.83-2.85, $0.15^{\text {d }}$
$\boldsymbol{\beta} \mathrm{Hyi}$	24.2	-7725	2.78	+0.62	G1	IV	0.153	+3.7	21	2.255	+22.8	$\boldsymbol{\gamma} \mathrm{Peg}=$ Algenib
$\boldsymbol{\alpha}$ Phe	24.8	-42 28	2.39	+1.08	K0	III	0.035	+0.1	93	0.442	+74.6	Ankaa
δ And A	37.7	+30 42	3.25:	+1.26	K3	III	0.024	-0.2	160	0.161	-07.3	$B 12 \mathrm{~m}{ }^{\text {m }}{ }^{\prime \prime}$
$\boldsymbol{\alpha}$ Cas	38.8	+56 22	2.16	+1.18	K0	II-III	0.009	-1.1	150	0.058	-03.8	Var.? Schedar
β Cet	42.1	-18 09	2.02	+1.03	K1	III	0.057	+0.8	57	0.234	+13.1	- Diphda
$\boldsymbol{\eta}$ Cas A	47.3	+5739	3.47	+0.56	G0	V	0.182	+4.8	18	1.221	+09.4	$B 7.26{ }^{\mathrm{m}} 9^{\prime \prime}$
$\boldsymbol{\gamma}$ Cas A	54.9	$+6033$	2.13 v	-0.16v	B0	IV: pe	0.034	-0.3:	96:	0.026	-06.8	Var. $B 8.18^{\mathrm{m}} \mathbf{2}^{\prime \prime}$
β Phe $A B$	0104.7	-46 53	3.30	+0.88	G8	III	0.017	$+0.3$	190	0.035	-01.1	$A 4.1{ }^{\mathrm{m}}$ B $4.1^{\mathrm{m}} 2^{\prime \prime}$
$\boldsymbol{\eta}$ Cet	07.1	-1020	3.47	+1.16	K3	III	0.032	+1.0	102	0.250	+11.5	
$\boldsymbol{\beta}$ And	08.0	+35 28	2.02	+1.57	M0	III	0.043	+0.2	76	0.211	+00.3	Mirach
δ Cas	23.8	+60 05	2.67	+0.13	A5	V	0.029	+2.1	43	0.301	+06.7	Ecl. ? R 0.08:m 759 ${ }^{\text {d }}$
$\boldsymbol{\gamma}$ Phe	27.1	-4328	3.44	+1.56	K5	Ib	$-.003$	-4.6	1300	0.209	+25.7	
$\boldsymbol{\alpha}$ Eri	36.6	-5723	0.51	-0.16	B5	$I V:$	0.023	-2.3	118	0.098	+19	Achernar
τ Cet	42.7	-1606	3.50	+0.72	G8	Vp	0.275	$+5.70$	12	1.921	-16.2	

Star	R.A. 19	70 Dec.	V	$B-V$	Type	π	$M_{\text {V }}$	D	μ	R	
	m	- \quad				"		1.y.	"	km./sec.	
$\boldsymbol{\alpha}$ Tri	0151.4	+29 26	3.45	+0.46	F6 IV	0.050	+2.0	65	0.230	-12.6	
ϵ Cas	52.2	+63 31	3.33	-0.15	B3 IV: p	0.007	-2.7	520	0.038	-08.1	
β Ari	53.0	+20 40	2.68	+0.14	A5 V	0.063	+1.7	52	0.147	-01.9	
$\boldsymbol{\alpha} \mathrm{Hyi}$	57.8	-61 43	2.84	+0.28	FO V		+2.9	31	0.265	+07	
$\boldsymbol{\gamma}$ And A	0202.1	$+4211$	2.14:	+1.16:	K3 II	0.005	-2.4	260	0.068	-11.7	$B 5.4^{\mathrm{m}} C 6.2^{\mathrm{m}} A-B C 10^{\prime \prime} B-C 0.7^{\prime \prime}$
$\boldsymbol{\alpha}$ UMi A	02.5	+89 08	1.99v	+0.60v	F8 Ib	0.003	-4.6	680	0.046	-17.4	
$\boldsymbol{\alpha}$ Ari	05.5	+23 19	2.00	+1.15	K2 III	0.043	+0.2	76	0.241	-14.3	Hamal
β Tri	07.8	+34 51	3.00	+0.13	A5 III	0.012	-0.1	140	0.156	+09.9	
- Cet A	17.8	$\begin{array}{lll}-03 & 07\end{array}$	2.0v		(gM6e)	0.013	-0.5	103	0.232	+63.8	LP, R 2.0-10.1, 332 ${ }^{\text {d }}$, B 10 ${ }^{\mathrm{m}} 1^{\prime \prime}$ Mira
$\boldsymbol{\gamma}$ Cet $A B$	41.7	+03 07	3.48	+0.11	A2 V	0.048	+2.0	68	0.203	-05.1	$A 3.57^{\mathrm{m}} \text { B } 6.23^{\mathrm{m}} 3^{\prime \prime}$
$\theta \operatorname{Eri} A B$	57.1	-40 25	2.92	+0.13	A3 V	0.028	+1.7	65	0.061	+11.9	$A 3.25{ }^{\text {m }}$ B 4.36 ${ }^{\text {m }} \mathrm{8}^{\prime \prime}$ Acamar
α Cet	0300.7	+03 58	2.54	+1.63	M2 III	0.003	-0.5	130	0.075	-25.9	Menkar
$\boldsymbol{\gamma}$ Per	02.6	+53 23	2.91:	+0.72:	G8III: + A3:	0.011	+0.3	113	0.004	+02.5	
ρ Per	03.1	+38 43	$3.5 v$		M4 II-III	0.008	-1.0	260	0.172	+28.2	Irr. R 3.2-3.8
$\boldsymbol{\beta}$ Per	06.0	+4050	2.06v	-0.07	B8 V	0.031	-0.5	105	0.006	+04.0	Ecl. R 2.06-3.28, $2.87{ }^{\text {d }}$ Algol
$\boldsymbol{\alpha}$ Per	22.2	+49 45	1.80	+0.48	F5 Ib	0.029	-4.4	570	0.035	-02.4	Mirfak
δ Per	40.8	+4742	3.03	-0.14	B5 III	0.007	-3.3	590	0.046	-09	
$\boldsymbol{\eta}$ Tau	45.7	+2401	2.86	-0.09	B7 III	0.005	-3.2	541	0.050	+10.1	in Pleiades Alcyone
γ Hyi	47.7	-74 20	3.30	+1.61	M2 II-III	-. 0.001	-1.5	300	0.125	$+16.0$	
ζ Per A	52.1	+3148	2.83	+0.13	B1 Ib	0.007	-6.1	1000	0.015	$+20.6$	$B 9.36{ }^{\mathrm{m}} 13^{\prime \prime}$
ϵ Per A	55.8	+39 55	2.88	-0.17	B0.5 V	-. 0001	-3.7	680	0.036	-01	B 7.99 ${ }^{\text {m }} 9^{\prime \prime}$
$\boldsymbol{\gamma}$ Eri	56.6	-1336	3.01	+1.58	M0 III	0.003	-0.5	160	0.126	+61.7	
$\boldsymbol{\alpha}$ Ret A	0414.0	-62 33	3.33	+0.91	G6 II	0.008	-2.1	390	0.064	+35.6	B $12^{\mathrm{m}} 49^{\prime \prime}$
ϵ Tau	26.9	+19 07	3.54	+1.02	K0 III	0.018	$+0.1$	160	0.118	+38.6	
$\boldsymbol{\theta}^{\mathbf{2}}$ Tau	26.9	+15 48	3.42	+0.17	A7 III	0.025	+0.2	140	0.108	$+39.5$	
$\boldsymbol{\alpha}$ Dor	33.3	-55 06	3.28	-0.08	A0 IIIp	0.011	-1.2	260	0.051	$+25.6$	Silicon star
$\boldsymbol{\alpha}$ Tau A	34.2	+16	0.86v	+1.52	K5 III	0.048	-0.7	68	0.202	+54.1	Irr.? R0.78-0.93, B13 ${ }^{\text {m }} 31^{\prime \prime}$ Aldebaran
π^{8} Ori	48.2	+06 55	3.17	+0.45	F6 V	0.125	+3.65	26	0.468	$+24.3$	
6 Aur	55.0	+33 07\|	2.64:	+1.49	K3 II	0.015	-2.4	330	0.021	+17.5	

Star	R.A. 19	70 Dec.	V	$B-V$	Type	π	M_{V}	D	μ	R	
	h m	- 1				\%		l.y.	"	km./sec.	
v Pup	0636.8	-4310	3.19	-0.10	B7 III		-3.2	620	0.010	+28.2	
ϵ Gem	42.1	+25 10	3.00	+1.39	G8 Ib	0.009	-4.6	1080	0.016	+09.9	
$\boldsymbol{\xi}$ Gem	43.6	+1256	3.38	+0.43	F5 IV	0.051	+1.9	64	0.224	+25.3	
$\boldsymbol{\alpha}$ CMa A	43.8	-1641	-1.42	+0.01	A 1	0.375	$+1.45$	8.7	1.324	-07.6	$B 8.66{ }^{\text {m }} 1960: 9^{\prime \prime}, \theta=90^{\circ} \quad$ Sirius
$\boldsymbol{\alpha}$ Pic	48.1	-61 54	3.27	+0.21	$A 5 \quad V$		+2.1	57	0.272	+20.6	B 8.66 1960.9'0 ${ }^{(0)}$
τ Pup	49.2	-5035	2.97	+1.17	KO III		+0.1	124	0.079	+36.4	
e CMa A	57.4	-28 56	1.48:	-0.18:	B2 II		-5.1	680	0.004	$+27.4$	$B 7.5{ }^{\mathrm{m}} 8^{\prime \prime} \quad$ Adhara
$0^{2} \mathrm{CMa}$	0701.8	-23 47	3.02	-0.09	B3 Ia		-7.1	3400	0.000	+48.4	
$\delta \mathrm{CMa}$	07.2	-2621	1.85	+0.65	F8 Ia	$-.018$	-7.1	2100	0.005	+34.3	
L_{2} Pup	12.6	-44 36			(gM5e)	0.016	-3.1	650	0.342	+53.0	LP, R 3.4-6.2, $141^{\text {d }}$
π Pup	16.1	-37 03	2.81	+1.56:	${ }^{(g K 4)}$	0.023	-0.3	140	0.008	+15.8	
$\boldsymbol{\eta}$ CMa	22.9	-29 14	2.46	-0.08	B5 Ia		-7.1	2700	0.008	+41.1	
$\boldsymbol{\beta} \mathrm{CMi}$	25.7	+0821	2.91	-0.09	B7 V	0.020	-1.1	210	0.065	+22	
$\sigma \operatorname{Pup} A$	28.3	-43 14	3.28	+1.49	(gK5)	0.013	-0.4	180	0.195	$+88.1$	$B 9.4^{\text {m }} 22^{\prime \prime}$
$\boldsymbol{\alpha}$ Gem A	32.7	+3157	1.97	+0.00:	A1 V	0.072	+1.3	45	0.199	+06.0	
$\alpha \text { Gem } B$	32.7	+3157	2.95	+0.07:	A5m	0.072	+2.3	45	0.199	-01.2	$\} 5^{\prime \prime}, B-V+0.02, C 9.08 v^{\text {m }} 73^{\prime \prime}$ Castor
$\boldsymbol{\alpha}$ CMi A	37.7	$\begin{array}{r}+05 \\ + \\ +28 \\ \hline\end{array}$	0.37	+0.41	F5 IV-V	0.288	+2.7	11.3	1.250	-03.2	$B 10.7{ }^{\text {m }} 5^{\prime \prime} \quad$ Procyon
β Gem	43.5	+28 06	1.16	+1.02	K0 III	0.093	$+1.0$	35	0.625	+03.3	Pollux
$\boldsymbol{\xi}$ Pup	48.0	$\left\lvert\, \begin{array}{ll}-24 & 48 \\ -52 & 54\end{array}\right.$	3.34 3.48	+1.23	G3 Ib	$-.003$	-4.6	1240	0.005	+02.7 +19.1	
$\boldsymbol{\chi}$ Car	56.0	-52 54	3.48	-0.18	(B3)		-2.1	430	0.039	+19.1	
ζ Pup	0802.5	-3955	2.23	-0.26	O5f		-7.1	2400	0.033	-24	
ρ Pup	06.3	-24 13	2.80 v	+0.42	F6 \quad IIp	0.031	+0.3:	105:	0.098	$+46.6$	Var. R 2.72-2.87
γ Vel A	08.6	-47 16	1.88	-0.26	$W C 7$		-4.1	520	0.011	+35	$B 4.31{ }^{\mathrm{m}} 41^{\prime \prime}$
$\epsilon \mathrm{Car}$	21.9	-59 24	1.97	+1.14:	$(\mathrm{K} 0+\mathrm{B})$		-3.1:	340	0.030	+11.5	17m 7' Avior
- UMa A	27.8	+60 49	3.37	+0.83	G5 III	0.004	+0.1	150	0.171	$+19.8$	
δ Vel $A B$	43.9	-54 36	1.95	+0.05	$A 0 \quad V$	0.043	+0.2	76	0.086	+02.2	$A 2.0^{\mathrm{m}} B 5.1^{\mathrm{m}} 3^{\prime \prime} C D 10^{\mathrm{m}} 69^{\prime \prime}$
ϵ Hya $A B C$	45.2	+06 32	3.39	+0.68	G0 comp.	0.010	+0.6	140	0.198	$+36.4$	$A 3.7^{\mathrm{m}} B 5.2^{\mathrm{m}} 0.2^{\prime \prime} 15^{\mathrm{y}}, C 6.8^{\mathrm{m}} 3^{\prime \prime} D 12^{\mathrm{m}} 20^{\prime \prime}$
ζ Hya	53.8	+06 04	3.11	$+1.00$	K0 II-III	0.029	-1.1	220	0.101	+22.8	
\checkmark UMa A	57.2	+48 09	3.12	+0.19	A7 V	0.066	+2.2	49	0.505	+12.2	$B C 10.8{ }^{\mathrm{m}} 7^{\prime \prime}$

Star	R.A. 19	70 Dec.	V	$B-V$	Type	π	M_{V}	D	μ	R	
	$h \mathrm{~m}$	- ,				"		1.y.	"	km./sec.	
$\boldsymbol{\lambda}$ Vel	0906.9	$\begin{array}{ll}-43 & 19\end{array}$	2.24	+1.64:	K5 Ib	0.015	-4.6	750	0.026	+18.4	Suhail
a Car	10.2	-5850	3.43	-0.17	B3 IV		-2.9	590	0.028	+23.3	
β Car	12.9	-69 36	1.67	+0.01	$A 0 \quad I I I$	0.038	-0.4	86	0.183	-05	Miaplacidus
, Car	16.3	-5908	2.25	+0.17	FO Ib		-4.6	750	0.019	+13.3	
$\boldsymbol{\alpha}$ Lyn	19.3	+34 32	3.17	+1.54	M0 III	0.021	-0.5	180	0.217	+37.6	
κ Vel	21.2	-5453	2.45	-0.15	B2 IV	0.007	-3.4	470	0.012	+21.9	
$\boldsymbol{\alpha}$ Hya	26.1	-08 32	1.98	+1.44	K4 III	0.017	-0.3	94	0.034	-04.3	Alphard
N Vel	30.3	-5654	3.19	+1.56	(gK5)	0.015	-0.4	170	0.036	-13.9	
θ UMa A	30.8	+51 49	3.19	+0.46	F6 IV	0.052	+1.8	63	1.094	+15.4	$B 14{ }^{\text {m }} 5^{\prime \prime}$
e Leo	44.1	+23 54	2.99	+0.81	G0 II	0.002	-2.1	340	0.048	+05.0	
1 Car	44.4	-6223	4.1		(cG0)	0.019	-5.5	2700	0.016	+04.0	Cep. max. 3.4^{m} min. $4.8{ }^{\mathrm{m}}, 35.52^{\text {d }}$
v Car $A B$	46.4	-6456	2.95	+0.26	$A 7^{\text {I }}$ II	0.020	-2.1	340	0.012	+13.6	$A 3.02^{\mathrm{m}}$ B 6.03 ${ }^{\mathrm{m}} 5^{\prime \prime}$
$\boldsymbol{\alpha}$ Leo A	1006.8	+1207	1.36	-0.11	B7 V	0.039	-0.7	84	0.248	+03.5	$B 8.1^{\text {m }} 177{ }^{\prime \prime}$ Regulus
ω Car	13.0	-6953	3.33	-0.08	B8.5 IV		-1.5	300	0.029	+04	B.1-177 Regulus
ζ Leo	15.1	+23 34	3.46	+0.30	F0 III	0.009	+0.5	130	0.023	-15.0	
$\boldsymbol{\lambda}$ UMa	15.3	+43 04	3.45	+0.03	A2 IV	-. 010	+0.1	150	0.170	+18.3	
q Car	16.1	-61 11	3.41v	+1.55	K5 Ib	0.018	-4.6	1300	0.023	+08.6	Var. R 3.38-3.44
$\boldsymbol{\gamma}$ Leo $A B$	18.3	+2000	1.99	$+1.13$	K0 IIIp	0.019	+0.1	90	0.350	-36.6	$A 2.29{ }^{\text {m }} B 3.54{ }^{\text {m }} 4^{\prime \prime}$
$\mu \mathrm{UMa}$	20.5	+4139	3.05	+1.55	M0 III	0.031	+0.5	105	0.086	-20.5	
p Car	31.0	-61 32	3.30 v	-0.11	B5 IVpe		-2.3	430	0.021	+26.0	Var. R 3.22-3.39
θ Car	41.9	-64 14	2.74	-0.22	BO Vp		-4.0	710	0.018	+24	
μ Vel $A B$	45.5	-49 16	2.67	+0.89	G5 III		+0.1	108	0.085	+06.9	$A 2.7^{\text {m }} B 7.2^{\mathrm{m}} \mathbf{2}^{\prime \prime}$
v Hya	48.1	-1602	3.12	+1.25	K3 III	0.022	-0.2	150	0.221	-01.0	
β UMa	1100.0	$+5633$	2.37	-0.03	A1 V	0.042	+0.5	78	0.087	-12.0	Merak
$\boldsymbol{\alpha}$ UMa $A B$	01.9	+6155	1.81	+1.06	K0 III	0.031	-0.7	105	0.138	-08.9	$A 1.88{ }^{\mathrm{m}}$ B $4.82^{\mathrm{m}} 1^{\prime \prime} \quad$ Dubhe
ψ UMa	08.0	+4439	3.00	+1.14	K1 III		$+0.0$	130	0.072	-03.8	
δ Leo	12.5	+20 41	2.57	+0.13	A4 V	0.040	+0.6	82	0.201	-20.6	
θ Leo	12.7	+15 36	3.34	0.00	A2 V	0.019	+1.1	90	0.104	+07.8	
λ Cen	34.4	-6251	3.15	-0.05	$B 9$ III		-2.1	370	0.039	+07.9	
$\boldsymbol{\beta}$ Leo	47.5	+14 44	2.14	+0.09	A3 V	0.076	+1.5	43	0.511	-00.1	Denebola

Star	R.A. 19	70 Dec.	V	$B-V$	Type	π	$\mathbf{M}_{\boldsymbol{V}}$	D	μ	R	
	h m	$\bigcirc 1$				11		1.y.	"	km./sec.	
β Cen $A B$	1401.7	-6013	0.63	-0.23:	$B 1 \quad I I:$	0.016	-5.2	490	0.035	-12	$A 0.7{ }^{\text {m }}$ B $3.9 \mathrm{~m}^{\prime \prime} \mathrm{I}^{\prime \prime} \quad$ Hadar
* Hya	04.7	-2632	3.25	$+1.13$	K2 III	0.039	+1.2	84	0.156	+27.2	
θ Cen	04.9	-3614	2.04	+1.03	K0 III-IV	0.059	+0.9	55	0.738	+01.3	Menkent
$\boldsymbol{\alpha}$ Boo	14.3	$+1920$	-0.06	+1.23	K2 IIIp	0.090	-0.3	36	2.284	-05.2	Arcturus
$\boldsymbol{\gamma}$ Boo	30.9	+38 27	3.05	+0.19	A7 III	0.016	+0.2	118	0.186	-35.5	
$\boldsymbol{\eta}$ Cen	33.6	-4201	2.39 v	-0.21	B1.5 Vine		-3.0	390	0.049	-00.2	Var. R 2.33-2.45
$\boldsymbol{\alpha} \operatorname{Cen} A$	37.6	-6043	0.01	+0.68	G2 V	$\} .751$	+4.39	4.3	3.676	-24.6	\} 18'' Rigil Kentaurus
$\boldsymbol{\alpha}$ Cen B	37.6	-6043	1.40 :	+0.73:	(dK1)	$\int .751$	+5.8	4.3	3.676	-20.7	\} 18 Rigil nentautus
$\boldsymbol{\alpha}$ Lup	40.0	-4716	2.32	-0.22	B1 V		-3.3	430	0.033	+07.3	
$\alpha \operatorname{Cir} A B$	40.1	-6450	3.18	+0.25	FO Vp	0.049	$+1.6$	66	0.308	+07.4	Strontium star. $A 3.19{ }^{\mathrm{m}} B 8.61 \mathrm{~m} 16^{\prime \prime}$
¢ Boo $A B$	43.7	+27 12	2.37	+0.96	K1: III: + A	0.013	$+0.0$	103	0.051	-16.5	$A 2.47{ }^{\mathrm{m}}$ B $5.04^{\mathrm{m}} 3^{\prime \prime}$
$\boldsymbol{\alpha} \operatorname{Lib} A$	49.2	-1552	2.76	+0.15	A3m	0.049	$+1.2$	66	0.130	-10	$B 5.15{ }^{\mathrm{m}} 231^{\prime \prime} \quad$ Zubenelgenubi
β UMi	50.8	+74 16	2.04	+1.47	K4 III	0.031	-0.5	105	0.033	+16.9	Kochab
β Lup	56.6	-4301	2.69	-0.23	B2 IV		-3.4	540	0.066	-00.3	
$\boldsymbol{*}$ Cen	57.1	-4159	3.15	-0.21	B2 V		-2.7	470	0.033	+09.1	
β Boo	1500.8	$+4030$	3.48	+0.95	G8 III	0.022	+0.3	140	0.059	-19.9	
$\sigma \mathrm{Lib}$	02.3	-2510	3.31	+1.65	M4 III	0.056	+2.0:	58:	0.089	-04.3	
$\zeta \operatorname{Lup} A$	10.1	-5159	3.42	+0.90:	K0 III	0.036	+1.2	90	0.135	-09.7	$B 7.8{ }^{\text {m }} 71^{\prime \prime}$
δ Boo A	14.3	+33 26	3.47	+0.95	G8 III	0.028	+0.3	140	0.148	-12.2	$B 7.84{ }^{\mathrm{m}} 105^{\prime \prime}$
$\beta \mathrm{Lib}$	15.4	-0916	2.61	-0.11	B8 V	$-.012$	-0.6	140	0.101	-35.2	
$\boldsymbol{\gamma} \mathrm{Tr} \mathrm{A}$	16.1	-6834	2.94	-0.01	A0 Vp	0.005	+0.2	113	0.067	00	Europium star
δ Lup	19.4	-4032	3.24	-0.23	B2 IV		-3.4	680	0.032	+02	
$\boldsymbol{\gamma}$ UMi	20.8	+7156	3.08	+0.06	A3 II-III	$-.005$	-1.5	270	0.026	-03.9	
¢ Dra	24.3	$+5904$	3.28	+1.18	K2 III	0.032	+0.8	102	0.012	-11.0	
$\gamma \operatorname{Lup} A B$	33.1	-4104	2.80	-0.22	B2 Vn		-2.7	570	0.037	+06	$A 3.5{ }^{\mathrm{m}} B 3.7^{\mathrm{m}} 1^{\prime \prime}$
$\boldsymbol{\alpha} \mathrm{CrB}$	33.4	+26 49	2.23 v	-0.02	A0 V	0.043	$+0.4$	76	0.154	+01.7	Ecl. $\mathrm{P} 0.11^{\mathrm{m}}, 17.4^{\mathrm{d}}$ Alphecca
$\boldsymbol{\alpha}$ Ser	42.8	+06 31	2.65	+1.17	K2 III	0.046	+1.0	71	0.139	+02.9	
β TrA	52.5	-63 20	2.87	+0.28:	F2 V	0.078	+2.3	42 570	0.448	-00.3	
$\pi \text { Sco }$	57.0	-26 02	2.92	-0.19	B1 V	0.005	-3.3	570	0.034		
$\eta \operatorname{Lup} A B$	58.1	-38 19	3.45	-0.23	B2		-2.7	570	0.042	$+07$	$A 3.47 \mathrm{~m}$ ($7.70{ }^{\mathrm{m}} 15^{\prime \prime}$
δ Sco	58.6	-2232	2.34	-0.13	B0 V		-4.0	590	0.032	-14	

Star	R.A. 197	70 Dec.	V	$B-V$	Type	π	M_{V}	D	μ	R	
	h m	- 1				"		1.y.	"	km./sec.	
β Sco $A B$	1603.7	-19 43	2.65	-0.09	B0.5 V	0.004	-3.7	650	0.027	-06.6	$A 2.78{ }^{\mathrm{m}} B 5.04^{\mathrm{m}} 1^{\prime \prime}, C 4.93^{\mathrm{m}} 14^{\prime \prime}$
δ Oph	12.8	-03 36	2.72	+1.59	M1 III	0.029	-0.5	140	0.156	-19.9	
- Oph	16.7	-04 38	3.22	+0.97	G9 III	0.036	+1.0	90	0.089	-10.3	
σ Sco A	19.4	-25 31	2.86v	+0.14	B1 III		-4.4	570	0.030	-00.4	β CMa R 2.82-2.90, $0.25{ }^{\text {d }}$, B 8.49 ${ }^{\text {m }} \mathbf{2 0}^{\prime \prime}$
$\boldsymbol{\eta}$ Dra A	23.6	+61 34	2.71	+0.92	G8 III	0.043	+0.9	76	0.062	-14.3	$B 8.7 \mathrm{~m} \mathrm{6}^{\prime \prime}$
α Sco A	27.6	-26 22	0.92v	+1.84	M1 Ib+B	0.019	-5.1	520	0.029	-03.2	$A 0.86{ }^{\mathrm{m}-1.02}{ }^{\mathrm{m}}$ B $5.07{ }^{\mathrm{m}} 3^{\prime \prime} \quad$ Antares
β Her	28.9	+21 33	2.78	+0.92	G8 III	0.017	$+0.3$	103	0.105	-25.5	
τ Sco	34.0	-28 09	2.85	-0.25	B0 V		-4.0	750	0.030	-00.7	
ζ Oph	35.5	-1030	2.57	+0.00	O9.5 V	$-.007$	-4.3	520	0.022	-19	
ζ Her $A B$	40.2	+3139	2.81	+0.64	G0 IV	0.110	+3.1	30	0.608	-69.9	$A 2.91{ }^{\text {m }} B 5.46{ }^{\text {m }} 1^{\prime \prime}$
η Her	41.9	+38 59	3.46	+0.92	G7 III-IV	0.053	+2.1	62	0.097	+08.3	
$\boldsymbol{\alpha}$ TrA	45.5	-68 59	1.93	+1.43	K2 III	0.024	-0.1	82	0.044	-03.6	Atria
e Sco	48.2	-34 15	2.28	+1.16	K2 III-IV	0.049	$+0.7$	66	0.664	-02.5	
μ^{1} Sco	49.8	-38 00	2.99 v	-0.20	B 1.5 V		-3.0	520	0.033	-25	Ecl. R 2.99-3.09, 1.4 ${ }^{\text {d }}$
ζ Ara	56.1	-5556	3.16	+1.61	(gK5)	0.036	+0.9	90	0.042	-06.0	
κ Oph	56.3	+09 26	3.18	+1.15	K2 III	0.026	-0.1	150	0.293	-55.6	
ζ Dra	$17 \quad 08.7$	+65 45	3.20	-0.12	B6 III	0.017	-3.2	620	0.026	-14.1	
η Oph $A B$	108.7	-15 41	2.46	+0.06	A2.5 V	0.047	+1.4	69	0.097	-00.9	$A 3.0^{\mathrm{m}}$ B 3.4 ${ }^{\mathrm{m}} 1^{\prime \prime} \quad$ Sabik
η Sco	10.0	-43 12	3.33	+0.38	F2 III	0.063	+2.3	52	0.293	-28.4	
α Her $A B$	13.3	+14 25	3.10 v	+1.41	M5 II	$-.007$	-2.3	410	0.032	-33.1	$A 3.2{ }^{\mathrm{m}} \pm 0.3 B 5.4^{\mathrm{m}} 5^{\prime \prime} \quad$ Ras-Algethi
δ Her	13.8	+2452	3.14	+0.09	A3 IV	0.034	+0.8	96	0.164	-41	
π Her	14.0	+36 50	3.13	+1.43	K3 II	0.020	-2.4	410	0.029	-25.7	
θ Oph	20.2	-24 58	3.29	-0.22	B2 IV		-3.4	710	0.025	-03.6	
β Ara	22.8	-55 30	2.90	+1.45:	K3 Ib	0.026	-4.6	1030	0.035	-00.4	
γ Ara A	22.9	-56 21	3.32	-0.16	B1 V		-3.3	680	0.017	-04	$B 10^{\mathrm{m}} 18^{\prime \prime}$
v Sco	28.7	$\begin{array}{lll}-37 & 16\end{array}$	2.71	-0.22	B2 \quad IV		-3.4	540	0.039	+18	
α Ara	29.5	-49 52	2.95	-0.18:	B2.5 V		-2.4	390	0.083	-02	
β Dra A	29.7	+52 20	2.77	+0.96	G2 II	0.009	-2.1	310	0.019	-20.0	$B 11.49{ }^{\text {m }} 4^{\prime \prime}$
λ Sco	31.6	-3705 +1235	1.60	-0.24	B1 V		-3.3	310	0.031	+00	Shaula
$\boldsymbol{\alpha}$ Oph	33.5	+12 35	2.09	+0.16	A5 III	0.056	+0.8	58	0.260	+12.7	Rasalhague
θ Sco	35.2	-42 59	1.86	+0.39	FO Ib	0.020	-4.6	650	0.012	+01.4	

Star	R.A. 19	70 Dec.	V	$B-V$	Type	π	M_{V}	D	μ	R	
	$h \mathrm{~m}$	- ,				"		1.y.	"	km./sec.	
κ Sco	1740.4	-39 01	2.39	-0.21	B2 IV		-3.4	470	0.031	-10	
β Oph	42.0	+04 35	2.77	+1.16	K2 III	0.023	-0.1	124	0.160	-12.0	
$\boldsymbol{\mu}$ Her A	45.3	+27 45	3.42	+0.75	G5 IV	0.108	+3.6	30	0.811	-15.6	$B C 9.78{ }^{\text {m }} 33^{\prime \prime}$
${ }^{1}$ Sco	45.5	-40 06	2.99	+0.49	F2 Ia	0.013	-7.1	3400	0.004	-27.6	
G Sco	47.7	-37 02	3.21	+1.18	(gK1)	0.032	+0.7	102	0.064	+24.7	
$\boldsymbol{\gamma}$ Dra	55.9	+51 29	2.21	+1.52	K5 III	0.017	-0.4	108	0.026	-27.6	Eltanin
\% Oph	57.4	-09 47	3.32	+1.00	G9 III	0.015	+0.2	140	0.118	+12.4	
$\boldsymbol{\gamma} \mathrm{Sgr}$	1803.9	-30 26	2.97	$+1.00$	KO III	0.018	+0.1	124	0.200	+22.1	
$\eta \operatorname{Sgr} A$	15.6	-3647	3.17	+1.55	Ms II	0.038	+1.1:	86:	0.218	+00.5	$B 10^{\mathrm{m}} 4^{\prime \prime}$
$\delta \mathrm{Sgr}$	19.1	-29 50	2.71	+1.39	K2 III	0.039	+0.7	84	0.050	-20.0	
η Ser	19.7	-02 54	3.23	+0.94	K0 III-IV	0.054	+1.9	60	0.894	+08.9	
e Sgr	22.2	-34 24	1.81	-0.02	$B 9$ IV	0.015	-1.1	124	0.135	-11	Kaus Australis
$\lambda \mathrm{Sgr}$	26.1	-25 27	2.80	+1.05	K2 III	0.046	+1.1	71	0.194	-43.3	
$\alpha \mathrm{Lyr}$	35.9	+38 45	0.04	0.00	A0 V	0.123	+0.5	26.5	0.345	-13.9	Vega
¢ Sgr	43.8	-27 02	3.20	-0.11	$B 8$ III		-3.1	590	0.052	+21.5	
β Lyr A	49.0	+33 20	3.38 v	-0.05:	Bpe	-. 011	-4.6	1300	0.007	-19.2	Cl. R 3.38-4.36, 12.9 ${ }^{\text {d }}$, $7^{\text {7.8 }}{ }^{\text {m }} \mathbf{4 6}^{\prime \prime}$
${ }^{\circ} \mathrm{Sgr}$	53.4	-26 20	2.12	-0.21	B2 V		-2.7	300	0.059	-11	Nunk
$\xi^{2} \mathrm{Sgr}$	55.9	-21 08	3.51	+1.18:	(gK1)	0.006	+0.0	160	0.035	-19.9	
$\boldsymbol{\gamma}$ Lyr	57.8	+32 39	3.25	-0.05	B9 III	0.011	-2.1	370	0.007	-21.5	
$\zeta \operatorname{Sgr} A B$	1900.7	-29 55	2.61	+0.08	A\% IV	0.020	+0.1	140	0.020	+22	$A 3.3^{\mathrm{m}} B 3.5^{\mathrm{m}} 1^{\prime \prime}$
ζ Aql A	04.0	+13 49	2.99	+0.01	A0 V:nn	0.036	+0.8	90	0.101	-26.3	$B 12^{\mathrm{m}} 5^{\prime \prime}$
$\boldsymbol{\lambda}$ Aql	04.7	-04 56	3.44	-0.07	B9: V: n	0.025	-0.1	160	0.092	-14	
$\tau \mathrm{Sgr}$	05.1	-27 43	3.30	+1.18	(gK1)	0.038	+1.2	86	0.261	+45.4	
π Sgr $A B C$	08.0	$\begin{array}{ll}-21 & 04\end{array}$	2.89	+0.35	F2 II-III	0.016	-0.7	250	0.040	-09.8	$A 3.7^{\mathrm{m}} B 3.8^{\mathrm{m}} C 6.0^{\mathrm{m}}<1^{\prime \prime}$
δ Dra	12.5	+6737	3.06	+1.00	G9 III	0.028	+0.2	124	0.130	+24.8	
δ Aql	24.0	+03 03	3.38	+0.31	F0 IV	0.062	+2.3	53	0.267	-29.9	
β Cyg A	29.5	+2754	3.07	+1.12	K3 II: + B :	0.004	-2.4	410	0.009	-24.0	$B 5.11^{\mathrm{m}} 35^{\prime \prime} \quad$ Albirco
δ Cyg $A B$	44.0	+45 04	2.87	-0.03	B9.5 III	0.021	-1.7	270	0.060	-21	$A 2.91{ }^{\text {m }}$ B 6.44 ${ }^{\text {m }} \mathbf{2}^{\prime \prime}$
$\boldsymbol{\gamma}$ Aql	44.8	+10 32	2.67	+1.48	K3 II	0.006	-2.4	340	0.012	-02.1	
$\boldsymbol{\alpha}$ Aql	49.3	+08 47	0.77	+0.22	A7 IV, V	0.198	+2.2	16.5	0.658	-26.3	Altair

Star	R.A. 19	70 Dec.	V	$B-V$	Type	π	M_{V}	D	μ	R	
	$h \mathrm{~m}$	- ,				"		1.y.	"	km./sec.	
θ Aql	$20 \quad 09.8$	-00 54	3.31	-0.07	B9.5 III	0.008	-1.7	330	0.034	-27.3	
β Cap A	19.3	-1453	3.06	+0.76	comp.	0.005	+0.1	130	0.039	-18.9	Type gK0: + late B; B 5.97m ${ }^{\text {m }}$ (${ }^{\prime \prime}$
$\boldsymbol{\gamma}$ Cyg	21.1	+40 09	2.22	+0.66	F8 Ib	$-.006$	-4.6	750	0.001	-07.5	
$\boldsymbol{\alpha}$ Pav	23.3	-5650	1.95	-0.20	B3 IV		-2.9	310	0.087	+02.0	Peacock
α Ind	35.5	-4723	3.11	+1.00	K0 III	0.039	+1.1	84	0.082	-01.1	
α Cyg	40.4	+45 10	1.26	+0.09	A2 Ia	$-.013$	-7.1	1600	0.003	-04.6	Deneb
β Pav	42.3	-66 19	3.45	+0.16	A5 III	0.026	-0.1	160	0.046	+09.8	
η Cep	44.7	+61 43	3.41	+0.92	K0 IV	0.071	+2.7	46	0.825	-87.3	
$\in \mathrm{Cyg}$	45.0	+33 51	2.46	+1.03	K0 III	0.044	+0.7	74	0.481	-10.3	
$\zeta \mathrm{Cyg}$	2111.7	+30 06	3.25 :		G8 II	0.021	-2.2	390	0.056	+17.4	
$\boldsymbol{\alpha}$ Cep	17.9	+62 28	2.44	+0.24	A7 IV, V	0.063	+1.4	52	0.156	-10	Alderamin
β Cep	28.3	+70 25	3.15v	$-0.22 \mathrm{v}$	B2 III	0.005	-4.2	980	0.014	-08.2	β CMa R 3.14-3.16, $0.19^{\text {d }}$
β Aqr	30.0	-0543	2.86	+0.82	G0 Ib	0.000	-4.6	1030	0.017	+06.5	
¢ Peg A	42.7	+09 45	2.31	+1.55	K2 Ib	-. 0005	-4.6	780	0.025	+04.7	B $11^{\mathrm{m}} 82^{\prime \prime}$ Enif
δ Cap	45.4	-1616	2.92v	+0.29	A6m	0.065	+2.0	50	0.392	-06.3	Var. R 2.88-2.95
$\boldsymbol{\gamma}$ Gru	52.1	-37 30	3.03	-0.10	B8 III:	0.008	-3.1	540	0.102	-02.1	
$\boldsymbol{\alpha}$ Aqr	2204.2	-0028	2.96	+0.96	G2 Ib	0.003	-4.6	1080	0.016	+07.5	
$\boldsymbol{\alpha}$ Gru	06.3	-47 07	1.76	-0.14	B5 V	0.051	+0.3:	64:	0.194	+11.8	Al $N a^{\prime}{ }^{\text {ir }}$
ζ Cep	09.8	+58 03	3.31	+1.55	K1 Ib	0.019	-4.6	1240	0.015	-18.4	
$\boldsymbol{\alpha}$ Tuc	16.4	-6024	2.87	+1.40	K3 III-IV	0.019	+1.5	62	0.079	+42.2	
$\delta \operatorname{Cep} A$	28.1	+58 16	3.96 v	+0.66v	F5-G2 Ib	0.005	-4.0	1300	0.012	-16.8	Cep. R 3.51-4.42, $5.4{ }^{\text {d }}, B 6.19^{\mathrm{m}} 41^{\prime \prime}$
ζ Peg	40.0	+10 41	3.40:	-0.08:	B8 V	$-.004$	-0.6	210	0.077	+07	
β Gru	40.9	-47.02	2.17 v	+1.59	M3 II	0.003	-2.5	280	0.134	+01.6	Var. R 2.11-2.23
η Peg	41.6	+30 04	2.95	+0.85	G8 II: + F ?	$-.002$	-2.2	360	0.027	+04.3	
δ Aqr	53.1	-15 59	3.28	+0.08	A3 V	0.039	+1.2	84	0.047	$+18.0$	
α PsA	56.0	-2947	1.19	+0.10	A3 V	0.144	+2.0	22.6	0.367	+06.5	Fomalhaut
β Peg	2302.3	+27 55	2.5 v	+1.67	M2 II-III	0.015	-1.5	210	0.234	+08.7	Var. R 2.4-2.7 Scheat
α Peg	03.3	+15 02	2.50	-0.03	B9.5 III	0.030	-0.1	109	0.071	-03.5	Markab
$\boldsymbol{\gamma}$ Cep	38.1	+77 27	3.20	+1.02	K1 IV	0.064	+2.2	51	0.168	-42.4	

DOUBLE AND MULTIPLE STARS

By Charles E. Worley

Many stars can be separated into two or more components by use of a telescope. The larger the aperture of the telescope, the closer the stars which can be separated under good seeing conditions. With telescopes of moderate size and average optical quality, and for stars which are not unduly faint or of large magnitude difference, the minimum angular separation is given by $4.6 / \mathrm{D}$, where D is the diameter of the telescope's objective in inches.

The following lists contain some interesting examples of double stars. The first list presents pairs whose orbital motions are very slow. Consequently, their angular separations remain relatively fixed and these pairs are suitable for testing the performance of small telescopes. In the second list are pairs of more general interest, including a number of binaries of short period for which the position angles and separations are changing rapidly.

In both lists the columns give, successively; the star designation in two forms; its right ascension and declination for 1970; the combined visual magnitude of the pair and the individual magnitudes; the apparent separation and position angle for 1970. 0; and the period, if known.

Many of the components are themselves very close visual or spectroscopic binaries. (Other double stars appear in the table of The Brightest Stars, p. 74, and of The Nearest Stars, p. 86.)

[^3]\dagger The separation of the two pairs of e Lyr is $208^{\prime \prime}$

THE NEAREST STARS

By Alan H. Batten and Russell O. Redman

The accompanying table is similar to one that has been published in the Handbook for several years past. Like its predecessor, it has been based on the work of Professor van de Kamp who published in the Publications of the Astronomical Society of the Pacific for 1969 a revision of his list of the nearest stars. The new list contains three new stars (two of them forming a binary system) and three new unseen companions of stars already in the list. In addition, many distances have been revised, and this has changed the order of stars in the list. The relative luminosities in the last column have also been changed a little, partly because of the revisions of distances, but also because of a small change in the adopted absolute magnitude of the sun.

Measuring the distances of the stars is one of the most difficult and most important tasks of the observational astronomer. As the earth travels around the sun each year, the directions of the nearer stars seem to change very slightly when measured against the background of the more distant stars. This change is called annual parallax. Even for the nearest star, the parallax is less than one second of arc-which is the angle subtended by a penny at a distance of about 2.5 miles. That explains the difficulty of the task. Its importance stems from the fact that all our knowledge of the luminosities of stars, and hence of the structure of the galaxy, depends on the relatively few stellar distances that can be directly and accurately measured. To describe these vast distances, astronomers have invented new units. The most familiar is the light-year-the distance light travels in a year, nearly six million million miles. More convenient in many calculations is the parsec, which is about 3.26 light-years. The distance in parsecs is simply the reciprocal of the parallax.

The table gives the name and position of each star, the annual parallax π, the distance in light-years D, the spectral type, the proper motion μ in seconds of arc per year (that is the apparent motion of the star across the sky each year-nearby stars often have large proper motions), the total space velocity W in $\mathrm{km} . / \mathrm{sec}$., if known, the visual apparent magnitude and the luminosity in terms of the sun. In column 6, wd stands for white dwarf, and e indicates the presence of emission lines in the spectrum. Note how very few stars in our neighbourhood are brighter than the sun. There are no very luminous or very hot stars at all. Most stars in this part of the galaxy are small, cool, and insignificant objects.

The list contains 59 stars, including the sun, and seven unseen companions. Thirty-one of these objects are either single stars or have only unseen companions. There are eleven double-star systems and two triple systems. Of the unseen companions, one of the most interesting is that of Barnard's Star. Van de Kamp has shown that the observed perturbations in the motion of Barnard's Star can be explained on the assumption that the star is accompanied by a body about twice the size of Jupiter. Alternatively, two objects each about the size of Jupiter could produce the observed perturbations. Perhaps this star has the first planetary system to be discovered outside our own system.

THE NEAREST STARS

Name	1970		π	D	Sp.		W	m	L
	α	δ							
Sun	h m		"	1.y.		"	km./sec.		
								-26.8	1.0
$\boldsymbol{\alpha}$ Cen ${ }_{\text {A }}^{\text {A }}$		-6043	0.760	4.3	G2	3.68		0.1 1.5	1.3 0.36
C	1427	-6233			M5e			11.0	0.00006
Barnard's*	1756	+04 36	. 552	5.9	M5	10.30	140	9.5	0.00044
Wolf 359	1055	+0713	. 431	7.6	M6e	4.84	55	13.5	0.00002
Lal. 21185*	1102	+3610	. 402	8.1	M2	4.78	103	7.5	0.0052
Sirius A	644	-1641	. 377	8.6	Al	1.32	18	-1.5	${ }^{23}{ }^{0} 008$
Luy. 726-8A	137	-18 07	. 365	8.9	M6e	3.35	52	12.5	0.008 0.00006
B					M6e			13.0	0.00004
Ross 154	1848	-23 51	. 345	9.4	M5e	0.74	12	10.6	0.0004
Ross 248	2340	+44 01	. 317	10.3	M6e	1.82	86	12.2	0.00011
ϵ Eri ${ }_{\text {E }}$	$\begin{array}{ll}03 & 32 \\ 22\end{array}$	-09 34	. 305	10.7	K2	0.97	22	3.7	0.30
Luy. 789-6	2237	-1531	. 302	10.8	M6	3.27	79	12.2	0.00012
Ross 128	1146	+0101	. 301	10.8	M5	1.40	26	11.1	0.00033
$61 \text { Cyg A }$	2106	+38 36	. 292	112	K5	5.22	106	5.2 6.0	0.083
ϵ Ind	2202	-5655	. 291	11.2	K5	4.67	86	4.7	0.13
Procyon A	0738	+05 18	. 287	11.4	F5	1.25	21	0.3 10.8	$\begin{aligned} & 7.6 \\ & 0.0005 \end{aligned}$
$\Sigma 2398$ A	1842	+59 35	. 284	11.5	M3. 5	2.29	39	10.8 8.9	0.0028
					M4			9.7	0.0013
Groom. 34 A	0017	+43 51	. 282	11.6	M1	2.91	52	8.1	0.0058
Lacaille 9352	2304	-36 02	279	11.7	M6	6.87	117	11.0	0.00040 0.012
τ Ceti	0143	-1606	. 273	11.9	G8	1.92	37	3.5	0.44
BD $+5^{\circ} 1668 *$	0726	+05 28	. 266	12.2	M4	3.73	71	9.8	0.0014
Lacaille 8760	2115	-39 00	260	12.5	M1	3.46	67	6.7	0.025
Kapteyn's	$\begin{array}{lll}05 & 11 \\ 22 & \end{array}$	-4500	. 256	12.7	M0	8.79	292	8.8	0.0040
Kruger 60 A	$22 \quad 27$	+57 33	. 254	12.8	M4	0.87	31	9.7 11.2	$\begin{aligned} & 0.0017 \\ & 0.00044 \end{aligned}$
Ross 614 A	0628	-02 48	. 249	13.1	M5e	0.97	30	11.3	0.0004
${ }_{\text {BD }}{ }^{\text {B }}$								14.8	0.00002
BD-1204523	1629	-1235	. 249	13.1	M5	1.18	38	10.0	0.0013
van Maanen's	0047	+05 16	. 234	13.9	$w d \mathrm{~F}$	2.98	270	12.4	0.00017
Wolf 424 A	1232	+09 12	. 229	14.2	$\mathrm{M} 6 e$ $\mathrm{M} 6 e$	1.87	39	12.6	0.00014
CD-37 ${ }^{\circ} 15492$	0003	-3730	. 225	14.5	M6e M 3	6.09	130	12.6 8.6	0.00014 0.0058
Groom. 1618	1009	+4936	. 217	15.0	M0	1.45	40	6.6	0.040
CD-466 ${ }^{\circ} 11540$	1727	-4653	. 216	15.1	M4	1.15		9.4	0.0030
CD-49 ${ }^{\circ} 13515$	2131	-49 08	. 214	15.2	M3	0.78		8.7	0.0058
CD-44011909	1736	-44 17	. 213	15.3	M5	1.14		11.2	0.00063
Luy. 1159-16	${ }_{01} 158$	+1257	. 212	15.4	(M7)	2.08		12.3	0.00023
Lal. 25372	1344	+15 04	. 208	15.7	M3.5	2.30	55	8.5	0.0076
AOe 17415-6*	1737	+6822	. 207	15.7	M3.5	1.31	34	9.1	0.0044
CC 658	${ }_{11}^{11} 44$	-64 39	. 206	15.8	wd	2.69		11.0	0.0008
Ross 780	2251	-14 25	. 206	15.8	M5	1.17	28	10.2	0.0016
\bigcirc^{2} Eri A	0414	-0742	. 205	15.9	K0	4.08	104	4.4	0.33
${ }_{\text {C }}{ }_{\text {B }}$					${ }^{\text {wd }} \mathrm{A}$			9.9	0.0027
BD $+20^{\text {C }} 2465 *$	1018	+20 01	. 202	16.1	M4e M4.5	0.49	15	11.2 9.4	0.00063 0.0036
Altair	1949	+0847	. 196	16.6	A7	0.66	31	0.8	
70 Oph. A	1804	+02 31	. 195	16.7	K1	1.13	29	4.2	0.44
AC $+79^{\circ}{ }^{\text {B }} 8888$					K6			6.0	0.083
BD $+43^{\circ} 4305^{*}$	2246	+7811 +44	. 193	16.8	M 4 ¢	0.87 0.84	121	11.0 10.1	0.0009 0.0021
Stein 2051 A	0429	+58 56	.192	17.0	(M5)	2.37		11.1	0.0008
B					wd			12.4	0.0003

*Star has an unseen component.

VARIABLE STARS

Maps of the fields of four bright variable stars are given below. In each case the magnitudes of several suitable comparison stars are given. Note that the decimal points are omitted: a star 36 is of mag. 3.6. Use two comparison stars, one brighter and one fainter than the variable, and estimate the brightness of the variable in terms of these two stars. Record the date and time of observation. When a number of observations have been made, a graph may be plotted showing the magnitude estimate as ordinates against the date (days and tenths of a day) as abscissae. Each type of variable has a distinctive shape of light curve.
In the tables the first column, the Harvard designation of the star, gives the 1900 position: the first four figures give the hours and minutes of R.A., the last two figures give the Dec. in degrees, italicised for southern declinations. The column headed Max. gives the mean maximum magnitude. The Period is in days. The Epoch gives the predicted date of the earliest maximum occurring this year; by adding the period to this epoch other dates of maximum may be found. The list of long-period variables has been prepared by the American Association of Variable Star Observers and includes the variables with maxima brighter than mag. 8.0, and north of Dec. -20°. These variables may reach maximum two or three weeks before or after the listed epoch and may remain at maximum for several weeks. The second table contains stars which are representative of other types of variable. The data are taken from "The General Catalogue of Variable Stars' by Kukarkin and Parenago and for eclipsing binaries from Rocznik Astronomiczny Obserwatorium Krakowskiego, 1969, International Supplement.

LONG-PERIOD VARIABLE STARS

Variable	$\underset{\mathrm{m}}{\operatorname{Max}}$	$\underset{\mathrm{d}}{\mathrm{Per}}$	$\begin{gathered} \text { Epoch } \\ 1970 \end{gathered}$	Variable	Max. m	$\underset{\mathrm{d}}{\mathrm{Per}}$	$\begin{gathered} \text { Epoch } \\ 1970 \end{gathered}$
001755 T Cas	7.8	445		142539 V Boo	7.9	258	Mar. 5
001838 R And	7.0	409	Feb. 20	143227 R Boo	7.2	223	May 23
021143 W And	7.4	397	June 5	151731 S CrB	7.3	361	Feb. 24
021403 o Cet	3.4	332	July 20	154639 V CrB	7.5	358	Dec. 14
022813 U Cet	7.5	235	May 26	154615 R Ser	6.9	357	Nov. 12
023133 R Tri	6.2	266	Mar. 19	160625 RU Her	8.0	484	
043065 T Cam	8.0	374	Nov. 21	162119 U Her	7.5	406	Nov. 12
045514 R Lep	6.8	432	Aug. 7	162112 V Oph	7.5	298	Nov. 22
050953 R Aur	7.7	459	Sept. 4	163266 R Dra	7.6	245	Aug. 28
054920 U Ori	6.3	372	July 17	164715 S Her	7.6	307	June 22
061702 V Mon	7.0	335	Nov. 4	170215 R Oph	7.9	302	Feb. 23
065355 R Lyn	7.9	379	Jan. 20	171723 RS Her	7.9	219	June 30
070122aR Gem	7.1	370	May 21	180531 T Her	8.0	165	Apr. 23
070310 R CMi	8.0	338	Mar. 8	181136 W Lyr	7.9	196	May 16
072708 S CMi	7.5	332	Oct. 18	183308 X Oph	6.8	334	Aug. 14
081112 R Cnc	6.8	362	Jan. 9	190108 R Aql	6.1	300	Feb. 22
081617 V Cnc	7.9	272	June 29	191017 T Sgr	8.0	392	Dec. 29
084803 S Hya	7.8	257	Mar. 10	191019 R Sgr	7.3	269	Mar. 17
085008 T Hya	7.8	288	June 12	193449 R Cyg	7.5	426	June 13
093934 R LMi	7.1	372	Jan. 20	194048 RT Cyg	7.3	190	July 2
094211 R Leo	5.8	313	June 13	$194632 \times$ Cyg	5.2	407	Oct. 23
103769 R UMa	7.5	302	July 11	201647 U Cyg	7.2	465	Oct. 11
121418 R Crv	7.5	317	Oct. 13	204405 T Aqr	7.7	202	May 23
122001 SS Vir	6.8	355	Feb. 2	210868 T Cep	6.0	390	Mar. 20
123160 T UMa	7.7	257	June 1	213753 RU Cyg	8.0	234	June 24
123307 R Vir	6.9	146	May 23	230110 R Peg	7.8	378	Dec. 20
123961 S UMa	7.8	226	July 20	230759 V Cas	7.9	228	Mar. 19
131546 V CVn	6.8	192	Feb. 24	231508 S Peg	8.0	319	Aug. 27
132706 S Vir	7.0	378	Nov. 21	233815 R Aqr	6.5	387	Sept. 22
134440 R CVn	7.7	328	Jan. 29	235350 R Cas	7.0	431	Jan. 18
142584 R Cam	7.9	270	May 23	235715 W Cet	7.6	351	Apr. 2

OTHER TYPES OF VARIABLE STARS

Variable		$\underset{\mathrm{m}}{\operatorname{Max}}$	Min. m	Type	Sp. Cl .	Period d	Epoch 1970 E.S.T.
005381	U Cep	6.7	9.8	Ecl	B8+gG2	2.49302	Jan. 3.35*
025838	ρ Per	3.3	4.0	Semi R		33-55, 1100	
030140	β Per	2.1	3.3	Ecl	B8+G	2.86731	Jan. 2.59*
035512	λ Tau	3.5	4.0	Ecl	B3	3.952952	Jan. 1.04*
060822	η Gem	3.1	3.9	Semi R	M3	233.4	
061907	T Mon	6.4	8.0	$\delta \mathrm{Cep}$	F7-K1	27.0205	Jan. 7.99
065820	ζ Gem	4.4	5.2	$\delta \mathrm{Cep}$	F7-G3	10.15172	Jan. 2.04
154428	RCrB	5.8	14.8	R Cr B	cFpep		
171014	α Her	3.0	4.0	Semi R	M5	50-130, 6 yrs.	
184205	R Sct	6.3	8.6	RVTau	G0e-K0p	144	
184633	β Lyr	3.4	4.3	Ecl	B8	12.931163	Jan. 8.72*
192242	RR Lyr	6.9	8.0	RR Lyr	A2-F1	0.5668223	Jan. 1.38
194700	$\eta \mathrm{Aql}$	4.1	5.2	$\delta^{\delta} \mathrm{Cep}$	F6-G4	7.176641	Jan. 4.69
222557	$\delta \mathrm{Cep}$	4.1	5.2	$\delta \mathrm{Cep}$	F5-G2	5.366341	Jan. 1.87

[^4]
STAR CLUSTERS

By T. Schmidt-Kaler

The star clusters for this list have been selected to include those most conspicuous. Two types of clusters can be recognized: open (or galactic), and globular. Globulars appear as highly symmetrical agglomerations of very large numbers of stars, distributed throughout the galactic halo but concentrated toward the centre of the Galaxy. Their colour-magnitude diagrams are typical for the old stellar population II. Open clusters appear usually as irregular aggregates of stars, sometimes barely distinguished from random fluctuations of the general field. They are concentrated to the galactic disk, with colour-magnitude diagrams typical for the stellar population I of the normal stars of the solar neighbourhood.

The first table includes all well-defined open clusters with diameters greater than 40^{\prime} or integrated magnitudes brighter than 5.0 , as well as the richest clusters and some of special interest. $N G C$ indicates the serial number of the cluster in Dreyer's New General Catalogue of Clusters and Nebulae, M, its number in Messier's catalogue, α and δ denote right ascension and declination, P, the apparent integrated photographic magnitude according to Collinder (1931), D, the apparent diameter in minutes of arc according to Trumpler (1930) when possible, in one case from Collinder; m, the photographic magnitude of the fifth-brightest star according to Shapley (1933) when possible or from new data, in italics; r, the distance of the cluster in kpcs ($1 \mathrm{kpc}=3263$ light-years), as a mean from the values given by Johnson, Hoag et al. (1961), and by Becker (1963/64), in a few cases from other sources, with values in italics from Trumpler; $S p$, the earliest spectral type of cluster stars as determined from three-colour photometry, or from spectral types in italics. The spectral type also indicates the age of the cluster, expressed in millions of years, thus: $05=0.5 ; \mathrm{b} 0=5 ; \mathrm{b} 5=50 ; \mathrm{a} 0=300$; $\mathrm{a} 5=1000 ; \mathrm{f} 0=3000 ; \mathrm{f} 5=10,000$.

The second table includes all globular clusters with a total apparent photographic magnitude brighter than 7.6. The first three columns are as in the first table, followed by B, the total photographic magnitude; D, the apparent diameter in minutes of arc containing 90 per cent of the stars, and in italics, total diameters from miscellaneous sources; $S p$, the integrated spectral type; m, the mean blue magnitude of the 25 brightest stars (excluding the five brightest); N, the number of known variables; r, the distance in kpcs (absolute magnitude of RR Lyrae variables taken as $M_{B}=+0.5$); V, the radial velocity in $\mathrm{km} / \mathrm{sec}$. The data are taken from a compilation by Arp (1965); in case no data were available there, various other sources have been used, especially H. S. Hogg's Bibliography (1963).

Open Clusters

NGC	< 1970 \%		P	D	m	r	Sp	Remarks
	h m	- ,						
188	0041.0	+85 11	9.3	14	14.6	1.55	f5	oldest known
752	0156.0	+37 32	6.6	45	9.6	0.38	f0	
869	0216.9	+5701	4.3	30	9.5	2.26	b0	h Per
884	0220.3	+5659	4.4	30	9.5	2.41	b0	χ Per, M supergiants
Perseus	0320	+4830	2.3	240	5	0.17	b3	moving cl., α Per
Pleiades	0345.3	+2402	1.6	120	4.2	0.125	b7	
Hyades	0418	+15 34	0.8	400	1.5	0.040	a2	moving cl. in Tau*
1912	0526.6	+35 49	7.0	18	9.7	1.37	b8	
1976/80	0533.9	-05 24	2.5	50	5.5	0.40	O5	Trapezium, very young
2099	0550.4	$+3232$	6.2	24	9.7	1.28	b8	M37
2168	0607.0	+24 21	5.6	29	9.0	0.87	b5	M35
2232	0625.0	-04 44	4.1	20	7	0.49	b3	
2244	0630.8	+04 53	5.2	27	8.0	1.65	O5	Rosette, very young
2264	0639.4	+0955	4.1	30	8.0	0.73	09	S Mon
2287	0645.8	-20 42	5.0	32	8.8	0.67	b3	M41
2362	0717.6	-24 53	3.8	7	9.4	1.53	b0	$\tau \mathrm{CMa}$

[^5]| NGC | < 1970 d | | P | D | m | r | Sp | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | h m | - , | | | | | | |
| 2422 | 0734.2 | -14 26 | 4.3 | 30 | 9.8 | 0.48 | b4 | |
| 2437 | 0740.4 | -14 45 | 6.6 | 27 | 10.8 | 1.66 | b3 | M46 |
| 2451 | 0744.3 | -37 54 | 3.7 | 37 | 6 | 0.30 | b5 | |
| 2516 | 0757.8 | -60 49 | 3.3 | 50 | 10.1 | 0.37 | b9 | |
| 2546 | 0811.4 | -37 33 | 5.0 | 45 | 7 | 0.74 | b0 | |
| 2632 | 0838.4 | +2006 | 3.9 | 90 | 7.5 | 0.158 | a5 | Praesepe, M44 |
| IC2391 | 0839.4 | -52 57 | 2.6 | 45 | 3.5 | 0.15 | b3 | |
| IC2395 | 0840.1 | -48.05 | 4.6 | 20 | 10.1 | 0.90 | b2 | |
| 2682 | 0848.8 | +1156 | 7.4 | 18 | 10.8 | 0.83 | f 2 | M67, old cl. |
| 3114 | 1001.7 | -59 58 | 4.5 | 37 | 7 | 0.85 | b6 | |
| IC2602 | 1042.2 | -64 14 | 1.6 | 65 | 6 | 0.16 | b2 | $\theta \mathrm{Car}$ |
| Tr 16 | 1044.0 | -59 33 | 6.7 | 10 | 10 | 1.95 | b0 | ${ }_{\eta}$ Car and nebula |
| 3532 | 1105.1 | -58 30 | 3.4 | 55 | 8.1 | 0.42 | b9 | |
| 3766 | 1134.7 | -61 27 | 4.4 | 12 | 8.1 | 1.63 | b0 | |
| Coma | 1223.6 | +26 16 | 2.9 | 300 | 5.5 | 0.08 | a2 | Very sparse cl. |
| 4755 | 1251.8 | -60 10 | 5.2 | 12 | 7 | 1.34 | b3 | κ Cru, "jewel box" |
| 6067 | 1610.9 | -54 08 | 6.5 | 16 | 10.9 | 2.10 | b3 | G and K supergiants |
| 6231 | 1651.9 | -41 45 | 8.5 | 16 | 7.5 | 1.82 | O5 | Osupergiants, WR-stars |
| Tr24 | 1654.9 | -40 37 | 8.5 | 60 | 7.8 | 0.58 | 05 | |
| 6405 | 1738.1 | -32 12 | 4.6 | 26 | 8.3 | 0.57 | b4 | M6 |
| IC4665 | 1745.2 | +05 44 | 5.4 | 50 | 7 | 0.33 | b5 | |
| 6475 | 1751.9 | -34 48 | 3.3 | 50 | 7.4 | 0.24 | b8 | M7 |
| 6494 | 1755.1 | -19 01 | 5.9 | 27 | 10.2 | 0.55 | b9 | M23 |
| 6523 | 1801.3 | -24 23 | 5.2 | 45 | 7 | 1.47 | 05 | M8, Lagoon neb. and very young cl. NGC6530 |
| 6611 | 1817.2 | -13 48 | 6.6 | 8 | 10.6 | 1.90 | O5 | M16, nebula |
| IC4725 | 1829.9 | -19 16 | 6.2 | 35 | 9.3 | 0.60 | b3 | M25, Cepheid, U Sgr |
| IC4756 | 1837.8 | +05 25 | 5.4 | 50 | 8.5 | 0.44 | a3 | |
| 6705 | 1849.5 | -06 19 | 6.8 | 12.5 | 12 | 1.72 | b8 | M11, very rich cl. |
| Mel 227 | 2006.7 | -7925 | 5.2 | 60 | 9 | 0.24 | b9 | |
| 1 C 1396 | 2138.0 | +5722 | 5.1 | 60 | | 0.73 | 06 | Tr 37 |
| 7790 | 2356.9 | +61 | 7.1 | 4.5 | 11.7 | 3.39 | b4 | 3 Ceph: CEa, CEb, CF Cas |

Globular Clusters

NGC	M	$\boldsymbol{\alpha} 1970$ ס		B	D	Sp	m	N	r	V
		h m	\bigcirc							
104	47 Tuc	0022.6	-72 14	4.35	44	G3	13.54	11	5	-24
1851		0513.0	-40 03	7.72:	11.5	F7		3	14.0	+309
2808		0911.3	-64 44	7.4	18.8	F8	15.09	4	9.1	+101
5139	ω Cen	1325.0	-4709	4.5	65.4	F7	13.01	165	5.2	+230
5272	3	1340.8	+28 32	6.86	9.3	F7	14.35	189	10.6	-153
5904	5	1517.0	+02 12	6.69	10.7	F6	14.07	97	8.1	+49
6121	4	1621.8	-26 27	7.05	22.6	GO	13.21	43	4.3	+65
6205	13	1640.6	+36 31	6.43	12.9	F6	13.85	10	6.3	-241
6218	12	1645.6	-0154	7.58	21.5	F8	14.07	1	7.4	-16
6254	10	1655.5	-04 04	7.26	16.2	G1	14.17	3	6.2	+71
6341	92	1716.2	+4311	6.94	12.3	F1	13.96	16	7.9	-118
6397		1738.4	-5340	6.9	19	F5	12.71	3	2.9	+11
6541		1805.8	-43 45	7.5	23.2	F6	13.45	1	4.0	-148
6656	22	1834.5	-23 57	6.15	26.2	F7	13.73	24	3.0	-144
6723		1857.6	-36 40	7.37	11.7	G4	14.32	19	7.4	-3
6752		1908.2	-60 02	6.8	41.9	F6	13.36	1	5.3	-39
6809	55	1938.2	-3100	6.72	21.1	F5	13.68	6	6.0	+170
7078	15	2128.6	+1202	6.96	9.4	F2	14.44	103	10.5	-107
7089	2	2131.9	-00 58	6.94	6.8	F4	14.77	22	12.3	-5

GALACTIC NEBULAE

By René Racine

The following objects were selected from the brightest and largest of the various classes to illustrate the different types of interactions between stars and interstellar matter in our galaxy. Emission regions (HII) are excited by the strong ultraviolet flux of young, hot stars and are characterized by the lines of hydrogen in their spectra. Reflection nebulae (Ref) result from the diffusion of starlight by clouds of interstellar dust. At certain stages of their evolution stars become unstable and explode, shedding their outer layers into what becomes a planetary nebula (P1) or a supernova remnant (SN). Protostellar nebulae (PrS) are objects still poorly understood; they are somewhat similar to the reflection nebulae, but their associated stars, of ten variable, are very luminous infrared stars which may be in the earliest stages of stellar evolution. Also included in the selection are four extended complexes (Compl) of special interest for their rich population of dark and bright nebulosities of various types. In the table S is the optical surface brightness in magnitude per square second of arc of representative regions of the nebula, and m^{*} is the magnitude of the associated star.

NGC	M	Con	< 1970 \%		Type	Size	$\underset{\underset{\mathrm{sq}}{ }}{\mathrm{~s}} \underset{\mathrm{sqg}}{ }$	m	$\begin{gathered} \text { Dist. } \\ 10^{3} \\ 1 . \mathrm{y} . \end{gathered}$	Remarks
			h m	- 1						
650/1	76	Per	0140.3	$+5125$	P1	1.5	20	17	15	
IC348		Per	0342.6	+3205	Ref	3.	21	8	0.5	Nebular cluster
1435		Tau	0345.7	+23 59 +1249	Ref	15	20	4		Merope nebula
1535	1	Eri	0412.8 05 05	-1249 +2205	$\stackrel{\text { Pl }}{\text { S }}$	0.5	17	12 v	4	"Crab" + pulsar
1976	42	Ori	0533.8	-05 25	HII	30	18	4	1.5	Orion nebula
1999		Ori	0535.0	-06 45	PrS	1		10v	1.5	
ζ Ori		Ori	0539.3	-01 57	Comp	2°			1.5	Incl. "Horsehead"
2068 IC443	78	Ori	$\begin{array}{lll}05 & 45.3 \\ 06 & 15.8\end{array}$	+00 02	Ref	5	20		1.5	
2244		Mon	0630.8	+04 53	HII	50	21	7	3	Rosette neb.
2247		Mon	0631.5	+10 20	PrS	2	20	9	3	Rosette neb.
2261		Mon	0637.5	+0845	PrS	2		12v	4	Hubble's var. neb.
2392 3587	97	Gem	07 11 11 13.4	+20 58 +5511	$\stackrel{\mathrm{Pl}}{\mathrm{Pl}}$	${ }_{3}^{0.3}$	18 21	13	10	Clown face neb.
$\rho \mathrm{Oph}$		Oph	1623.8	-23 23	Comp	4°			0.5	Bright + dark neb.
$\theta \mathrm{Oph}$		Oph	1720.1	-24 58	Comp	5°				Incl. "S', neb.
6514	20	Sgr	1800.6	-23 02	HII	15	19		3.5	Trifid nebula
6523	8	$\mathrm{Sgr}^{\text {S }}$	1801.8	-2423	HII	40	18		4.5	Lagoon nebula
6543		Dra	1758.6	+66 37	Pl	0.4	15	11	3.5	
6611	16	Ser	1817.2	-13 48	HII	15	19	10	6	
6618	17	Sgr	1819.1	-16 12	HII	20	19		3	Horseshoe neb.
6720	57	Lyr	1852.5	$+3300$	$\stackrel{\text { P1 }}{ }$	1.2	18	15		Ring nebula
6826 6853	27	Cyg	19 19 19 58.1	+5027 +2238	$\mathrm{Pl}_{\mathrm{Pl}}$	0.7	16	10	3.5 3.5	Dumb-bell neb.
6888		Cyg	2011.2	+38 19	SN					
$\gamma \mathrm{Cyg}$		Cyg	2021.1	+40 10	Comp	6°				HII + dark neb.
6960/95		Cyg	2044.4	+30 36	SN	150			2.5	Cygnus loop
7000		Cyg	2057.8	+4412	HII	100	22		3.5	N. America neb.
7009		Aqr	2102.5	-11 30	Pl	0.5	16	12		Saturn nebula
7023		Cep	2101.3	+68 03			21	7	1.3	
7027		Cyg	2106.0	+4207	Pl	0.2	15	13		
7129 7293		Cep	21 22 28.3 28.0	$\begin{array}{r} +6557 \\ -2057 \end{array}$	Ref	3 13	21 22	10	2.5	Small cluster Helix nebula
7662		And	22288.0 23 24.5	$+4222$	${ }_{\text {Pl }}$	${ }^{1} 0$	16	12	4	

EXTERNAL GALAXIES

By S. van den Bergh

Among the hundreds of thousands of systems far beyond our own Galaxy relatively few are readily seen in small telescopes. The first list contains the brightest galaxies. The first four columns give the catalogue numbers and position. In the column Type, E ind icates elliptical, I, irregular, and $S a, S b, S c$, spiral galaxies. in which the arms are more open going from a to c. Roman numerals I, II, III, IV, and V refer to supergiant, bright giant, giant, subgiant and dwarf galaxies respectively; p means "peculiar". The remaining columns give the apparent photographic magnitude, the angular dimensions and the distance in millions of light-years.

The second list contains the nearest galaxies and includes the photographic distance modulus ($m-M)_{p p}$, and the absolute photographic magnitude, $M_{p p}$.

The Brightest Galaxies

NGC or name	M	$\alpha 1970$ ס		Type	$m_{p g}$	Dimensions,	Distance millions of $1 . \mathrm{y}$.
		h m	- ,				
55		0013.5	-3923	Sc or Ir	7.9	30×5	7.5
205		0038.7	+4132	E6p	8.89	12×6	2.1
221	32	0041.1	$+4043$	E2	9.06	3.4×2.9	2.1
224	31	0041.1	+4107	Sb I-II	4.33	163×42	2.1
247		0045.6	-20 54	S IV	9.47	21×8.4	7.5
253		0046.1	-25 27	Scp	7.0:	22×4.6	7.5
SMC		0051.7	-72 59	Ir IV or IV-V	2.86	216×216	0.2
300		0053.5	-3751	Sc III-IV	8.66	22×16.5	7.5
598	33	0132.2	+30 30	Sc II-III	6.19	61×42	2.4
Fornax		0238.3	-34 39	dE	9.1:	50×35	0.4
LMC		0523.8	-69 47	Ir or Sc III-IV	0.86	432×432	0.2
2403		0733.9	+65 40	Sc III	8.80	22×12	6.5
2903		0930.4	+2139	Sb I-II	9.48	16×6.8	19.0
3031	81	0953.1	$+6912$	Sb I-II	7.85	25×12	6.5
3034	82	0953.6	+6950	Scp:	9.20	10×1.5	6.5
4258		1217.5	+4728	Sbp	8.90	19×7	14.0
4472	49	1228.3	+08 09	E4	9.33	9.8×6.6	37.0
4594	104	1238.3	-1128	Sb	9.18	7.9×4.7	37.0
4736	94	1249.5	+4116	Sbp II:	8.91	13×12	14.0
4826	64	1255.3	+2151	?	9.27	10×3.8	12.0:
4945		1303.5	-49 19	Sb III	8.0	20×4	-
5055	63	1314.4	+42 11	Sb II	9.26	8.0×3.0	14.0
5128		1323.6	-4251	E0p	7.87	23×20	
5194	51	1328.6	+4721	Sc I	8.88	11×6.5	14.0
5236	83	1335.4	-29 43	Sc I-II	7.0:	13×12	8.0:
5457	101	1402.1	+5429	Sc I	8.20	23×21	14.0
6822		1943.2	-14 50	Ir IV-V	9.21	20×10	1.7

The Nearest Galaxies

Name	NGC	$\alpha 1970$ \%		$m_{p g}$	$(m-M)_{p q}$	$M_{p g}$	Type	Dist. thous. of $1 . \mathrm{y}$.
		h m	\bigcirc					
M31	224	0041.1	+4107	4.33	24.65	-20.3	Sb I-II	2,100
Galaxy			- 20			?	Sb or Sc	
M33	598	10132.2	+30 30	6.19	24.70	-18.5	ScII-III	2,400
LMC		0523.8	-69 47	0.86	18.65	-17.8	$\left\|\begin{array}{r} \text { Ir or SBc } \\ \text { III-IV } \end{array}\right\|$	160
SMC		0051.7	-72 59	2.86	19.05	-16.2	Ir IV or	190
NGC	205	0038.7	+4132	8.89	24.65	-15.8	E6p	2,100
M32	221	0041.1	+40 43	9.06	24.65	-15.6	E2	2,100
NGC	6822	1943.2	-14 50	9.21	24.55	-15.3	Ir IV-V	1,700
NGC	185	10037.2	+48 11	10.29	24.65	-14.4	E0	2,100
IC1613		0103.5	+0158	10.00	24.40	-14.4	Ir V	2,400
NGC	147	0031.5	+48 11	10.57	24.65	-14.1	dE4	2,100
Fornax		0238.3	-34 39	9.1:	20.6:	-12:	dE	430
Leo I		1006.9	+12 27	11.27	21.8:	-10:	dE	750:
Sculptor		0058.4	-33 52	10.5	19.70	-9.2	dE	280:
Leo II		1111.9	+22 19	12.85	21.8:	-9:	dE	750 :
Draco		1719.7	+5757	.	19.50	?	dE	260
Ursa Minor		1508.4	+67 13	-	19.40	?	dE	250

$1 \leqslant(k-1)!c_{9}\left\{\left(c_{4}{ }^{k} \mu^{-1}\right)^{r(\log r)^{k}}+\left(c_{4}{ }^{k} c_{5}\right)^{r(\log r)^{t}} \sum_{i=2}^{k}\left|u_{i}\right|\left(r_{i}!\right)^{-1}\right\}$,

Do you know...

- That the University of Toronto Press is one of only four printing plants in the world using the four-line system of typesetting mathematical formulas mechanically?
- That this system has been developed to its highest degree of mechanization and efficiency right here at University of Toronto Press?
- That printing experts and scholars from the United States, Great Britain, and other parts of the world regularly visit our plant to see this system in operation?
- That this research and experimentation has been made possible only by the co-operation of Canadian scholars, scientific societies and non-profit scientific journals?
for mathematical and scientific printing UNIVERSITY OF TORONTO PRESS

$h_{2}(z)=\exp \left(\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{e^{i t}+z}{e^{i t}-z} k(t) d t\right) \cdot \exp \left(-\frac{1}{2 \pi} \int_{K^{\prime \prime}} \frac{e^{i t}+z}{e^{i t}-z} d \nu(t)\right)$

RADIO SOURCES

By John Galt

Although several thousand radio sources have been catalogued most of them are only observable with the largest radio telescopes. This list contains the few strong sources which could be detected with amateur radio telescopes as well as representative examples of astronomical objects which emit radio waves.

Name	α (1970) δ		Remarks
	h m		
Tycho's s'nova	0024.0	+63 58	Remnant of supernova of 1572
Andromeda gal.	0041.0	+4106	Closest normal spiral galaxy.
IC 1795, W3	0223.1	+6158	Multiple HII region, OH emission
PKS 0237-23	0238.7	-2317	Quasar with large red shift, $Z=2.2$
NGC 1275, 3C 84	0317.8	+4124	Seyfert galaxy, radio variable
Fornax A	0321.2	-37 17	10th mag. SO galaxy
CP 0328	0330.5	+54 27	Pulsar, period $=0.7145$ sec., H abs'n.
Crab neb, M1	0532.6	+2200	Remnant of supernova of 1054
NP 0527	0532.6	+2200	Radio, optical \& X-ray pulsar
V 371 Orionis	0532.2	+0154	Red dwarf, radio \& optical flare star
Orion neb, M42	0533.8	-05 24	HII region, OH emission, IR source
IC 443	0615.5	+22 36	Supernova remnant (date unknown)
Rosette neb	0630.4	+04 53	HII region
YV CMa	0721.8	-2041	Optical var. IR source, $\mathrm{OH}, \mathrm{H}_{2} \mathrm{O}$ emission
3C 273	1227.5	+02 13	Nearest, strongest quasar
Virgo A, M87	1229.3	+1233	EO galaxy with jet
Centaurus A	1323.6	-42 52	NGC 5128 peculiar galaxy
3C 295	1410.3	+52 21	21st mag. galaxy, 4,500,000 light years
Scorpio X-1	1618.2	-15 34	X-ray, radio optical variable
3C 353	1719.0	-00 57	Double source, probably galaxy
Kepler's s'nova	1727.0	-21 16	Remnant of supernova of 1604
Galactic nucleus	1743.7	-28 56	Complex region $\mathrm{OH}, \mathrm{NH}_{3}$ em., $\mathrm{H}_{2} \mathrm{CO}$ abs'n.
Omega neb, M17	1818.7	-1610	HII region, double structure
W 49	1908.9	+09 04	HII region s'nova remnant, OH emission
CP 1919	1920.4	+2149	First pulsar discovered, $\mathrm{P}=1.337 \mathrm{sec}$.
Cygnus A	1958.4	+40 39	Strong radio galaxy, double source
Cygnus X	2021.5	+40 17	Complex region
NML Cygnus	2045.4	+40 00	Infrared source, OH emission
Cygnus loop	2051.0	+29 34	S'nova remnant (Network nebula)
N. America	2054.0	$+4357$	Radio shape resembles photographs
3C 446	2224.2	-0507	Quasar, optical mag. \& spectrum var.
Cassiopeia A	2322.0	+58 39	Strongest source, s'nova remnant
Sun			Continuous emission \& bursts
Moon			Thermal source only
Jupiter			Radio bursts controlled by Io

MESSIER'S CATALOGUE OF DIFFUSE OBJECTS

This table lists the 103 objects in Messier's original catalogue. The columns contain: Messier's number (M), the number in Dreyer's New General Catalogue (NGC), the constellation, the 1970 position, the integrated visual magnitude (m_{v}), and the class of object. OC means open cluster, GC, globular cluster, PN, planetary nebula, DN, diffuse nebula, and G, galaxy. The type of galaxy is also indicated, as explained in the table of external galaxies. An asterisk indicates that additional information about the object may be found elsewhere in the Handbook, in the appropriate table.

M NGC	Con	a 197	0	V	Type	M NGC	Con	\& 1970	0	v	Type
11952	Tau	532.7	+2201	11.3	DN^{*}	566779	Lyr	1915.4	+3007	8.33	GC
27089	Aqr	2131.9	-00 57	6.27	GC*	576720	Lyr	1852.5	+3300	9.0	PN*
35272	CVn	1340.8	+2832	6.22	GC*	584579	Vir	1236.2	+1159	9.9	G-SBb
46121	Sco	1621.8	-2626	6.07	GC^{*}	594621	Vir	1240.5	+1150	10.3	G-E
55904	Ser	1517.0	+02 13	5.99	GC*	604649	Vir	1242.1	+1144	9.3	G-E
66405	Sco	1738.1	-3211	5	OC^{*}	614303	Vir	1220.3	+0439	9.7	G-Sc
76475	Sco	1751.9	-34 48	5	OC*	626266	Sco	1659.3	-30 04	7.2	
86523	Sgr	1801.8	-24 23		DN*	635055	CV	1314.4	+42 11	8.8	G-Sb*
96333	Oph	1717.5	-1829	7.58	GC	644826	Com	1255.2	+2151	8.7	G-Sb*
106254	Oph	1655.5	-04 04	6.40	GC*	653623	Leo	1117.3	+13 16	9.6	G-Sa
116705	Sct	1849.5	-06 19		OC*	663627	Leo	1118.6	+13 10	9.2	G-Sb
126218	Oph	1645.6	-0154	6.74	GC*	672682	Cnc	849.5	+1156		
136205	Her	1640.6	+3631	5.78	GC*	684590	Hya	1237.8	-2635	8.04	GC
146402	Oph	1736.0	-0314	7.82	GC	696637	Sgr	1829.4	-32 23	7.7	GC
157078	Peg	2128.6	+1202	6.29	GC*	706681	Sgr	1841.3	-32 19	8.2	GC
166611	Ser	1817.2	-1348	7	OC*	716838	Sge	1952.4	+18 42	6.9	GC
176618	Sgr	1819.1	-1612	7	DN*	726981	Aqr	2051.8	-12 41	9.15	GC
186613	Sgr	1818.2	-1709		OC	736994	Aqr	2057.3	-1246		OC
196273	Oph	1700.7	-26 13	6.94	GC	74628	Psc	135.1	+1538	9.5	G-Sc
206514	Sgr	1800.6	-23 02		DN*	756864	Sgr	2004.3	-2201	8.31	GC
216531	Sgr	1802.8	-2230		OC	$\begin{array}{ll}76 & 650\end{array}$	Per	140.3	+5125	11.4	PN*
226656	Sgr	1834.6	-23 56	5.22	GC*	771068	Cet	241.1	-0007	9.1	G-Sb
236494	Sgr	1755.1	-1900		OC*	782068	Ori	545.3	+00 02		DN
246603	Sgr	1816.7	-18 27	6	OC	791904	Lep	522.9	-2433	7.3	GC
$254725 \dagger$	Sgr	1829.9	-19 16	6	OC*	806093	Sco	1615.2	-22 55	7.17	GC
266694	Sct	1843.6	-0926	9	OC	813031	UMa	953.4	+69 12	6.9	G-Sb*
276853	Vul	1958.4	+2238	8.2	PN*	823034	UMa	953.6	+69 50	8.7	G-Irr*
286626	Sgr	1822.6	-24 52	7.07	GC	835236	Hya	1335.3	-29 43	7.5	G-Sc*
296913	Cyg	2022.9	+3825		OC	844374	Vir	1223.6	+13 03	9.8	G-E
307099	Cap	2138.6	-2318	7.63	GC	854382	Com	1223.8	+1821	9.5	G-SO
$\begin{array}{ll}31 & 224\end{array}$	And	041.1	+4106	3.7	G-Sb*	864406	Vir	1224.6	$+1306$	9.8	G-E
$32 \quad 221$	And	041.1	+40 42	8.5	G-E*	874486	Vir	1229.2	+1233	9.3	G-Ep
33	Tri	132.2		5.9	G-Sc*	884501	Com	1230.4	+1435	9.7	G-Sb
341039	Per	240.1	+4240	6		894552	Vir	1234.1	+1243	10.3	G-E
352168	Gem	607.0	+2421	6	OC*	904569	Vir	1235.3	+13 19	9.7	G-Sb
361960	Aur	534.3	+3405	6		91 -	-	-	-		M58?
372099	Aur	550.4	+3233	6	OC^{*}	926341	Her	1716.2	+4311	6.33	GC*
${ }_{39} 1912$	Aur	5 26.6	+3548	6		932447	Pup	743.2	-23 48		
39 40	Cyg	2131.1	+48 18	6	OC_{2}	944736	CVń	1249.6	+41 17	8.1	G-Sb*
	UMa				2 stars	953351	Leo	1042.3	+1152	9.9	G-SBb
412287	CMa	645.8	-2042	6	OC*	963368	Leo	1045.1	+1159	9.4	G-Sa
421976	Ori	533.9	-05 24			973587	UMa	1113.1	+55 11	11.1	PN*
431982	Ori	534.1	-05 18		DN	984192	Com	1212.2	+1504	10.4	G-Sb
442632	Cnc	838.2	+20 06	4	OC^{*}	994254	Com	1217.3	+1435	9.9	G-Sc
45	Tau	345.7	+2401	2	OC*	1004321	Com	1221.4	+15 59	9.6	G-Sc
462437	Pup	740.4	-14 45	7	OC^{*}	1015457	UMa	1402.1	+54 30	8.1	G-Sc*
472422 482548	Pup Hya	735.1 812.0	1426 -14 -051	5	OC	102	Cas	$1 \overline{31.2}$	+60 32		M101?
494472	Vir	1228.3	-08 10	8.9	G-E		Cas	131.2	+60 32	7	

\dagger Index Catalogue Number.

The above map represents the evening sky at

Midnig 11 p.m	$\begin{aligned} & \text { Feb. } \quad 6 \\ & \text { " } \end{aligned}$
10	Mar.
9	22
8	Apr.
7	21

The centre of the map is the zenith, the circumference the horizon. To identify the stars hold the map so that the part of the horizon you are facing is down. A set of four 8 -inch horizon maps may be obtained by writing to the National Office.

The above map represents the evening sky at

Midnight	May 8
11 p.m.	24
10 "	June 7
9	" 22
8	. July 6

The centre of the map is the zenith, the circumference the horizon. To identify the stars hold the map so that the part of the horizon you are facing is down.

The above map represents the evening sky at

Midnight.	Aug	5
11 p.m.	"	21
10 "	.Sept	7
9	"	23
8	.Oct	10
7 "	"	26
6	.Nov	6
5 "	"	21

The centre of the map is the zenith, the circumference the horizon. To identify the stars hold the map so that the part of the horizon you are facing is down.

The above map represents the evening sky at

Midnigh	Nov. 6
11 p.m.	" 21
10 "	Dec. 6
9 "	21
8 "	. Jan. 5
7 "	20
6 "	.Feb. 6

The centre of the map is the zenith, the circumference the horizon. To identify the stars hold the map so that the part of the horizon you are facing is down.

PRECISION TELESCOPE PRODUCTION

MAIN ASSEMBLY BAY AT BOLLER \& CHIVENS

In this shop, the critical final assembly operations are performed on Boller \& Chivens telescopes. In the background is a 40 -inch Cassegrain/Coudé reflector, flanked by 16 and 24 -inch Cassegrains. In front are a group of precision telescope drives and a nearlycompleted 36 -inch Cassegrain reflector. These are typical of the wide variety of instruments normally nearing completion in the Boller \& Chivens plant - one of the world's leading producers of precision astronomical equipment.

Boller \& Chivens has installed more than forty complete stellar telescopes of 16 -inch or larger aperture. Two-thirds of these are in university observatories, with the remainder in government-sponsored facilities. Included in current production are four larger telescopes ranging from 48 to 90 -inches in size.

Write for detailed information on any of our telescopes or other astronomical instruments. Existing designs can be modified or new designs created to meet your particular requirements. Remember, you'll find that at Boller \& Chivens, precision is a way of life.

Presenting-UNITRON'S New 2.4" Equatorial with Setting Circles and Optional Motor Drive

New features have been added to UNITRON'S popular, portable 2.4" Equatorial. Setting circles are now standard equipment. An optional synchronous motor clock drive may be obtained with the telescope or added later. In addition to the hand drive, a supplementary R.A. slow motion has been included to facilitate changes in this coordinate without the need to stop or disengage the motor.

If this sounds like what you have been waiting for in a telescope, we have some good news indeed. These new feature-the circles and supplementary slow motion-are included at no extra charge. The price of $\$ 225$ includes view finder, 5 eyepieces, UNIHEX Rotary Eyepiece Selector Achromatic Amplifier, sunglass, cabinets, etc. The accessory drive is priced at $\$ 50$ extra. Write for complete details.

NEW UNITRON CLOCK DRIVE MODELS

Synchronous motor clock drives are now available for all UNITRON Equatorial Models. The new drive, pictured on the back cover of this issue, is priced at $\$ 50$ for the $2.4^{\prime \prime}$ and at $\$ 60$ for the $3^{\prime \prime}$ and $4^{\prime \prime}$ models. The $4^{\prime \prime}$ refractors are also available with our popular weight-driven clock drive which operates independently of a source of electricity.
2.4" ALTAZIMUTH \$125
with eyepieces for 100x, 72x, 50x, 35x
2.4" EQUATORIAL \$225
with eyepieces for 129x, 100x, 72x, 50x, 35x
3" ALTAZIMUTH \$265
with eyepieces for 171x, 131x, 96x, 67x, 48x
$3^{\prime \prime}$ EQUATORIAL $\$ 435$
with eyepieces for 200x, 131x, 96x, 67x, 48x
$3^{\prime \prime}$ PHOTO-EQUATORIAL \$550
with eyepieces for 200x, 171x, 131x, 96x67x, 48x

4" ALTAZIMUTH \$465 with eyepieces for 250x, 214x, 167x, 120x, 83x, 60x
$4^{\prime \prime}$ EQUATORIAL $\$ 785$ with eyepieces for 250x, 214x, 167x, 120x, 83x, 60x, 38x
$4^{\prime \prime}$ PHOTO-EQUATORIAL $\$ 890$ with eyepieces for 250x, 214x, 167x, 120x, 83x, 60x, 38x
4" EQUATORIAL with weight-driven \$985 clock drive, eyepieces as above
4" EQUATORIAL with weight-driven \$1075 clock drive, metal pier, eyepieces as above
4" PHOTO-EQUATORIAL with weight- \$1175 driven clock drive and ASTRO-CAMERA, with eyepieces for 250x, 214x, 167x, 120x, 83x, 60x, 38x, 25x
4" PHOTO-EQUATORIAL with weight- \$1280 driven clock drive, pier, ASTRO-CAMERA, eyepieces for $375 \mathrm{x}, 300 \mathrm{x}, 250 \mathrm{x}, 214 \mathrm{x}, ~ 167 \mathrm{x}$, 120x, 83x, 60x, 38x, 25x
5" PHOTO-EQUATORIAL with clock \$2275 drive and ASTRO-CAMERA with eyepieces for 500x, 400x, 333x, 286x, 222x, 160x, 111x, 80x, 50x, 33x
6" EQUATORIAL with clock drive,
\$5125 pier, 2.4" view finder, with 10 eyepieces
$6^{\prime \prime}$ PHOTO-EQUATORIAL as above but $\$ 5660$ with 4" guide telescope, illuminated diagonal, UNIBALANCE, ASTRO-CAMERA Model 330
6" PHOTO-EQUATORIAL as above with \$6075 addition of $3^{\prime \prime}$ Astrographic Camera Model 80

Each UNITRON comes complete with an assortment of eyepieces and accessories as standard equipment. In addition, our barlow-type Achromatic Amplifier is now included at no extra cost. A proven reputation for optical and mechanical quality plus unique features and extra value make a UNITRON Refractor the logical telescope for you to choose.

Get UNITRON's FREE

Observer's Guide and Catalog on

ASTRONOMICAL TELESCOPES

This valuable 38-page book is yours for the asking!

With artificial satellites already launched and space travel almost a reality, astronomy has become today's fastest growing hobby. Exploring the skies with a telescope is a relaxing diversion for father and son alike. UNITRON's handbook contains full-page illustrated articles on astronomy, observing, telescopes and accessories. It is of interest to both beginners and advanced amateurs.
Confents include-

- Observing the sun, moon, planets and wonders of the sky
- Constellation map
- Hints for observers
- Glossary of telescope terms
- How to choose a telescope
- Amateur clubs and research programs

66 NEEDHAM STREET, NEWION HIGHLANDS, MASS. 02161

HOW TO ORDER

Send check or money order in full. Shipments made express collect. Send 20% deposit for C.O.D. shipment. UNITRON instruments are fully guaranteed for quality workmanship, and performance.

BERKELEY SCIENTIFIC CO. LTD.

Is pleased to announce that at last Canadians have a place of their own.

NO MORE CUSTOMS!

NO MORE DELAYS!
No freight, brokerage, duty, and meaningless guarantees!
We have everything in TELESCOPES, PARTS, MIRROR KITS, ACCESSORIES AND FINISHED OPTICS. There are hundreds of science books, as well as displays of items which until now could be seen only in catalogs.
Berkeley can finish your mirror, attach your camera, and do everything for you but point your scope in the right direction. There are science kits and items for all ages and degrees of proficiency: from telescopes, binoculars and microscopes, to hand magnifiers, soma puzzles, and crystal growing outfits. We are dealers for edmund, Criterion, carl zeiss jena, tasco, UNIVERSITY OPTICS, RODENSTEIN, BAUSCH AND LOMB, ACCUSTAR, sky publishing, astro murals, and perfect scientific, to mention just a few, and more suppliers are being added all the time.

IF IT'S SCIENTIFIC
Come to BERKELEY SCIENTIFIC CO. LTD.

540 Yonge St.
Toronto 284
921-8226
OUR BUSINESS IS SCIENCE
Special Prices For Card-Holding Members of R.A.S.C.

A WINDOW ON THE UNIVERSE

STAR FLITE INTRODUCES

No. SP-16 $0.97^{\prime \prime}$ diam.

No. EL-16
$1.25^{\prime \prime}$ diam.

THE NEW GALOC OCULAR

$16.3-\mathrm{mm}$. focal length

A MECHANICAL MASTERPIECE
 IN TWO TUBE DIAMETERS

We offer the GALOC to those discriminating observers who require an eyepiece with an exceptionally wide field. By utilizing special glass and curves, an aspheric combination has been developed that provides an extremely wide field of about 90 degrees at $f / 8$ and about 80 degrees at $f / 15$. It has all the characteristics of the orthoscopic ocular. These features will be found particularly desirable when the ocular is used in conjunction with a Barlow lens or a compound telescope for which the GALOC has been expressly designed.
The bodies of these oculars are machined from brass to 0.97 inch and to $11 / 4$ inch O.D., and are chromium plated. Their interiors are nonreflecting. Optical alignment is secured by machining all critical surfaces of the body in one operation. The stop is individually machined from hard oxidized brass to give a clear, sharp edge to the field, and the space rings between the optical elements have been similarly treated to insure that all optical components are accurately centered and spaced in the cell in relation to each other.
The optical components of the GALOC are made from the best quality optical glass obtainable. They are free from pits and scratches and are carefully edged, centered, and all air-to-glass surfaces are fully hard coated with magnesium fluoride prior to assembly.
Workmanship unconditionally guaranteed. Warranted to equal or surpass any oculars known or your money refunded.

Residents outside the U.S., add $\$ 1.00$ for postage and handling
No. SP-16... $\$ 25.00$ ppd. No. EL-16 . . $\$ 21.50$ ppd.
We are the only company in the United States with the $0.97^{\prime \prime}$ SP-16 GALOC Oculars.

STAR FLITE instrument company, Dept. o

P. O. Box 118, Bath Beach Station Brooklyn, New York 11214

Telophone 212-256-2134

The simplicity of a Nova Planetarium makes it easy to operate, invites student involvement, results in more years of trouble free operation, costs less-as low as $\$ 8,000$ and, above all, fulfills all the needs of students engaged in Earth/Space Science Programs. Send for our literature or better yet, ask for our representative to explain in greater detail how you can get the best planetarium for less.

A Division of Harmonic Reed Corporation Union Hill Road, West Conshohocken, Pa. 19428 215-825-0925

OPTIGS OF GANADA
 P. O. BOX 3004 , POSTAL STATION C, HAMILTON, ONTARIO

4.5" REFLECTING TELESCOPE

SEE the craters and mountain ranges on the moon, rings of Saturn, Great Nebula in Orion, the Moons of Jupiter and countless other fascinating sights with this low priced astronomical telescope.

5 X FINDER

EYEPIECES

BARREL

- Attractively finished in white baked enamel on steel with chrome and black trim
- 35 inches long
- Diagonal mirror held firmly with adjustable spider
- Fully adjustable smooth working eyepiece holder
- Comes complete with two coated eyepieces and Barlow
- 1-20 M.M. Huygens eyepiece (gives 45 power)
- 1-6 M.M. Huygens eyepiece (gives 150 power)
- 1-2X Barlow (doubles eyepiece power)

MOUNT

- Altazimuth mount
- Black crackle finish
- Smooth working tension controls

TRIPOD

- Folding hardwood tripod
- 29 inches long extends to 53 inches

Shipped Collect to nearest Express Office anywhere in Canada. Additional eyepiece available PRICE COMPLETE AS ABOVE ONLY
\$68.85
FREE CATALOGUE AVAILABLE ON REQUEST
Send money order or cheque with order please. Ontario residents add 5\% provincial sales tax (except on books)

Prices subject to change without notice.

Keep Informed on Astronomy and Space

THE WORLD'S LARGEST MONTHLY MAGAZINE
 ON ASTRONOMY

Join the leading astronomers and thousands of amateurs throughout the world who look to SKY AND TELESCOPE as a welcome monthly package of pleasingly illustrated informative articles, up-to-date news items, observing material, telescope making notes, and the latest advances in space.

SUBSCRIPTION:

In Canada and Pan American Postal Union Countries (U.S. funds)

In the United States and possessions

One year, \$8.00; two years, \$15.00; three years, $\$ 22.00$.

One year, $\$ 7.00$; two years, $\$ 13.00$; three years, $\$ 19.00$.

STAR ATLASES

We publish the largest selection of sky atlases to fit your observing needs. Whether you're a beginning amateur or an advanced astronomer, write for our free 32-page booklet "C" describing these celestial maps and other Sky Publications.

Please enclose check or money order (U.S. funds) payable to

'state of the art' Telescopes

24" Cassegrainian Telescope Scale Profile

The Ealing-Competition Associates $16^{\prime \prime}, 24^{\prime \prime}$ and $30^{\prime \prime}$ 'state of the art' telescopes offer exceptional versatility.

- 1500 lbs. of auxiliary equipment may be accommodated at the Cassegrainian focus; the first 500 lbs. without counterweights.
- Provisions are made for Coudé optics; the optics may be retrofitted or furnished as original equipment.
- Extreme care in design and construction of the mount results in excellent tracking stability. 30 inch bronze worm wheels, preloaded to avoid backlash, are employed on both axes. Ground and polished certified driving worms are of ultra-stable heat treated steel.

Ealing Scientific Limited
719 Lajoie Avenue
Dorval 760, Province of Québec
Telephone (514)631-5171

Announcing New 12" and $16^{\prime \prime}$ Educator Telescopes

The new Educator Telescopes are designed for use in colleges and secondary schools, and retain the optical and mechanical excellence found in the Ealing-Competition Associates professional instrumentation.

They incorporate the same rigid and accurate mounting used for the Ealing $12^{\prime \prime}$ Cassegrain Research Telescopes, but are priced within an educational budget.

UNITRON'S $6^{\prime \prime}$ Refractor on left, $4^{\prime \prime}$ on right

Amateur and professional astronomers alike continue to proclaim their enthusiasm and high praise for UNITRON's new 6 -inch Refractor. And little wonder-for this latest and largest UNITRON offers features, precision, and performance usually associated only with custombuilt) observatory telescopes of much larger aperture. Here, indeed, is the ideal telescope for the serious observer and for the school and college observatory.

Imagine yourself at the controls of this $6^{\prime \prime}$ UNITRON-searching the skies, seeing more than you have ever seen before, photographically recording your observations-truly, the intellectual adventure of a lifetime.
Full specifications are given in the UNITRON Telescope Catalog available on request. There are three massive $6^{\prime \prime}$ models from which to choose with prices starting at $\$ 5125$.

SEE OUR ADVERTISEMENTS ON THE INSIDE PAGES

[^0]: *Note: According to the Saskatchewan Time Act 1966, the time zone boundary between C.S.T. and M.S.T. is defined by the 106th meridian of west longitude. Communities to the west of this boundary may elect to adopt C.S.T., and except for Lloydminster the cities have done so.

[^1]: Explanation of abbreviations on p. 4, of time on p. 10, of colongitude on p. 62.
 ${ }^{l}$ May $7,+4.93^{\circ}$; May $19,-5.75^{\circ} . \quad{ }^{6}$ May $7,-6.56^{\circ}$; May 22, $+6.52^{\circ}$.

[^2]: *During 1970 the south face of the rings is turned earthward at the inclinations indicated.

[^3]: *There is a marked colour difference between the components.

[^4]: *Minimum

[^5]: *Basic for distance determination.

