THE
 OBSERVER'S
 HANDBOOK
 1961

Fifty-third Year of Publication
THE ROYAL ASTRONOMICAL SOCIETY OF CANADA

Price One Dollar

THE ROYAL ASTRONOMICAL SOCIETY OF CANADA

Incorporated 1890 - Royal Charter 1903

The National Headquarters of the Royal Astronomical Society of Canada is located at 252 College Street, Toronto 2B, Ontario. The business office of the Society, reading rooms and astronomical library, are housed here, as well as a large room for the accommodation of telescope making groups.

Membership in the Society is open to anyone interested in astronomy. Applicants may affiliate with one of the Society's fourteen centres across Canada, or may join the National Society. Centres of the Society are established in Halifax, Quebec, Montreal, Ottawa, Hamilton, London, Windsor, Winnipeg, Edmonton, Calgary, Vancouver, Victoria, and Toronto. Addresses of the Centres' secretaries may be obtained from the National Office.

Publications of the Society are free to members, and include the Journal (6 issues per year) and the Observer's Handboor (published annually in November). Annual fees of $\$ 5.00$ are payable October 1 and include the publications for the following year.

Requests for additional information regarding the Society or its publications may be sent to the address above. Communications to the Editor should be sent to Miss Ruth J. Northcott, David Dunlap Observatory, Richmond Hill, Ontario.

THEOBSERVER'S HANDBOOK

1961

Editor
Ruth J. Northcott

Fifty-third Year of Publication
THE ROYAL ASTRONOMICAL SOCIETY OF CANADA

252 College Street, Toronto 2B, Ontario

CONTENTS

PAGE
Acknowledgements 3
Anniversaries and Festivals 3
Symbols and Abbreviations 4
The Constellations 5
Miscellaneous Astronomical Data 6
Ephemeris of the Sun 7
Principal Elements of the Solar System 8
Satellites of the Solar System 9
Solar and Sidereal Time 10
Map of Standard Time Zones 11
Julian Day Calendar 11
Times of Rising and Setting of the Sun and Moon 12
Sunrise and Sunset 13
Beginning and Ending of Twilight 19
Moonrise and Moonset 20
The Planets for 1961 26
The Sky and Astronomical Phenomena Month by Month 32
The Observation of the Moon 56
Opposition Ephemerides of the Brightest Asteroids 57
Phenomena of Jupiter's Satellites 58
Ephemeris for the Physical Observation of the Sun 59
Eclipses, 1961 60
Planetary Appulses and Occultations 61
Lunar Occultations, 1961 61
Meteors, Fireballs and Meteorites 64
Finding List of Named Stars 65
The Brightest Stars, their magnitudes, types, proper motions, distances and radial velocities and navigation stars 66
Table of Precession for 50 Years 77
The Nearest Stars 78
Variable Stars 80
Representative Double Stars 82
Clusters and Nebulae:
Star Clusters 83
Galactic Nebulae 84
External Galaxies 85
Four Circular Star Maps 86
Map of the Moon 90
Calendar Cover p. iii

THE OBSERVER'S HANDBOOK for 1961 is the 53rd issue. Several additions have been made: the pronunciations of the names of the constellations, a finding list of named stars, a small map of the moon and the maximum and minimum values of the moon's libration in longitude and latitude. Additional explanations are given for sidereal time and for the correction for longitude in changing from local mean to standard time. Opposition ephemerides are given for the four brightest asteroids, together with a map of the path of Vesta near the time of opposition.

Cordial thanks are offered to those who assisted in the preparation of this volume, to those who are named and to Judith Bancroft, Barbara Gaizauskas, William Greig, Richard Henry, Külli Millës, Susan Priddle, Isabel Williamson and Dorothy Yane. Special thanks are due to Gordon E. Taylor and the British Astronomical Association for the data on planetary appulses and occultations and to Margaret W. Mayall, Director of the A.A.V.S.O., for the predictions of the times of maxima of the long-period variables.
Our deep indebtedness to the British Nautical Almanac Office and to the American Ephemeris is thankfully acknowledged.

Ruth J. Northcott

ANNIVERSARIES AND FESTIVALS, 1961

New Year's D	Jan.	Victoria Day.......... . Mon.	22
Epiphany.............Fri.	Jan.	Trinity Sunday	May 28
Septuagesima Sunday	Jan. 29	Corpus Christi.Thu.	June 1
Accession of Queen Elizabeth (1952).... . Mon.	Feb.	St. John Baptist (midSummer Day)....... Sat.	June 24
Quinquagesima (Shrove		Dominion Day........ Sat.	July
Sunday).	.Feb. 12	Birthday of Queen Mother	
Ash Wednes	Feb. 15	Elizabeth (1900).... . Fri.	Aug.
St. David. Wed.	Mar. 1	Labour Day.......... . Mon.	Sept.
St. Patrick	Mar. 17	Hebrew New Year	
Palm Sunday	. Mar. 26	(Rosh Hashanah).... Mon.	Sept. 11
Good Friday.	. Mar. 31	St. Michael (Michael-	
Easter Sunday	Apr. 2	mas Day).......... . Fri.	Sept. 29
Birthday of Queen		Thanksgiving. Mon.	Oct. 9
Elizabeth (1926).... .Fri.	Apr. 21	All Saints' Day. Wed.	Nov.
St. George. Sun.	Apr. 23	Remembrance Day. . . . Sat.	Nov. 11
Rogation Sunday	. May 7	St. Andrew. Thu.	Nov. 30
Ascension Day........ Thu.	May 11	First Sunday in Advent.	Dec.
Pentecost (Whit Sunday)	. May 21	Christmas Day. Mon.	Dec. 25

SYMBOLS AND ABBREVIATIONS

SUN, MOON AND PLANETS

The Sun
New Moon
(2) Full Moon

First Quarter
Last Quarter

ASPECTS AND ABBRFVIATIONS

σ Conjunction, or having the same Longitude or Right Ascension. \circ° Opposition, or differing 180° in Longitude or Right Ascension. Quadrature, or differing 90° in Longitude or Right Ascension. \AA Ascending Node; ϑ Descending Node. α or R.A., Right Ascension; δ or Dec., Declination. h, m, s, Hours, Minutes, Seconds of Time. $\circ^{\circ} \prime \prime \prime$, Degrees, Minutes, Seconds of Arc.

SIGNS OF THE ZODIAC

\uparrow	Aries	0°		Leo	120°	자	Sagittarius	240°
\bigcirc	Taurus	30°	m	Virgo	. 150°	ठ	Capricornus	270°
I	Gemini	. 60°	\sim	Libra	180 ${ }^{\circ}$	\%	Aquarius.	300°
(3)	Cancer	$.90^{\circ}$	m	Scorp	210°	H	Pisces.	330°

THE GREEK ALPHABET

A, $\boldsymbol{\alpha}$	Alpha
B, $\boldsymbol{\beta}$	Beta
$\Gamma, \boldsymbol{\gamma}$	Gamma
$\Delta, \boldsymbol{\delta}$	Delta
E, $\boldsymbol{\epsilon}$	Epsilon
Z, $\boldsymbol{\zeta}$	Zeta
$\mathbf{H}, \boldsymbol{\eta}$	Eta
$\boldsymbol{\theta}, \boldsymbol{\theta}, \vartheta$	Theta

I,	Iota
K, κ	Kappa
Λ, λ	Lambda
$\mathbf{M}, \boldsymbol{\mu}$	Mu
$\mathbf{N}, \boldsymbol{\nu}$	Nu
$\boldsymbol{\Xi}, \boldsymbol{\xi}$	Xi
$\mathbf{O}, \boldsymbol{o}$	Omicron
$\mathrm{II}, \boldsymbol{\pi}$	Pi

$\mathbf{P}, \boldsymbol{\rho}$	Rho
Σ, σ	Sigma
$\mathrm{T}, \boldsymbol{\tau}$	Tau
Υ, v	Upsilon
$\boldsymbol{\Phi}, \boldsymbol{\phi}$	Phi
$\mathbf{X}, \boldsymbol{\chi}$	Chi
Ψ, ψ	Psi
Ω, ω	Omega

THE CONFIGURATIONS OF JUPITER'S SATELLITES

In the Configurations of Jupiter's Satellites (pages 33,35 , etc.), O represents the disk of the planet, d signifies that the satellite is on the disk, * signifies that the satellite is behind the disk or in the shadow. Configurations are for an inverting telescope.

CALCULATIONS FOR ALGOL

The calculations for the minima of Algol are based on the epoch J.D. 2434576.5110 and period 2.86731 days as published in the 1954 International Supplement, Kracow Observatory.

CELESTIAL DISTANCES

Celestial distances given herein are based on the standard value of $8.80^{\prime \prime}$ for the sun's parallax, not the more recent value $8.790^{\prime \prime}$ determined by Sir Harold Spencer Jones.

THE CONSTELLATIONS

Latin Names with Pronunciations and Abbreviations

Andromeda, ăn-drǒm'è-d \dot{a}	And Andr
Antlia, ănt'lil- $\dot{\text { a }}$.	.Ant Antl
Apus, ${ }^{\text {a }}$ 'pǔs.	.Aps Apus
Aquarius, \dot{d}-kwâr'1-ǔs	.Aqr Aqar
Aquila, ăk'wĭ-l	.Aql Aqil
Ara, à'rí	Ara Arae
Aries, à'rǐlèz	.Ari Arie
Auriga, ô-ri'g $\dot{1}$. Aur Auri
Boötes, bō-ō'tēz	. Boo Boot
Caelum, sēl ${ }^{\text {unm }}$	Cae Cael
Camelopardalis, k \dot{d}-mèl'ód-pär'd d-lĭs	. Cam Caml
Cancer, kăn'sẽr	. Cnc Canc
Canes Venatici, kā'nēz vè̀-năt'í1-sī	CVn CVen
Canis Major, kā'nĭs mā'jẽr.	
Canis Minor, kā'nǐs mi'nẽr.	CM
Capricornus,	
kăp'rí-kôr'nŭs.	Cap Capr
Carina, $\mathrm{k} \dot{d}$-ri'ndí	Car Cari
	.Cas Cass
Centaurus, sěn-tô'r	. Cen Cent
Cepheus, sē'fūs	. Cep Ceph
Cetus, sē'tǔs	Cet Ceti
Chamaeleon, $\mathrm{k} \dot{d}$-mē'lè-	Cham
Circinus, sûr'sǐnu	Cir Circ
Columba, kò-lŭm'b ${ }^{\text {a }}$	Col Colm
Coma Berenices, kō'm $\mathrm{a} \dot{\text { be }}$ bèr'è-nin'sēz	. Com Coma
Corona Australis, kō-rō'n $\dot{\text { on ôs-trā'lís. }}$. CrA CorA
Corona Borealis, 	. CrB CorB
Corvus, kôr'vưs.	Crv Corv
Crater, krā'tẽr	. Crt Crat
Crux, krŭks.	Cru Cruc
Cygnus, sig'nüs	Cyg Cygn
Delphinus, děl-fín u ¢	. Del Dlph
Dorado, dò-rä'dō	Dor Dora
Draco, drā'kō.	Dra Drac
Equuleus, è-kwō' 1 è-us	Equ Equl
	Eri Erid
Fornax, fôr'năks.	For Forn
Gemini, jěm'î-ni	Gem Gemi
Grus, grŭs	Gru Grus
Hercules, hûr'kü-lēz	.Her Herc
Horologium, hobr'ó-lō'jī-ŭm	.Hor Horo
Hydra, hi' ${ }^{\text {dra }}$ d	Hya Hyda
Hydrus, hi'drǔs	.Hyi Hydi

s , in' ${ }^{\prime}$ dus	. Ind	In
Lacerta, la -sûr't ${ }^{\text {a }}$.	.Lac	Lacr
Leo, le'ō	.Leo	Leon
Leo Minor, lē'ō	LMi	LMin
Lepus, le'pus.	Lep	Leps
Libra, li'brà	.Lib	Libr
Lupus, lū'pŭs	.Lup	Lupi
Lynx, lingks	.Lyn	Lync
Lyra, lī'r ${ }^{\text {d }}$	Lyr	Lyra
Mensa, měn's $\dot{\text { d }}$. Men	Mens
Microscopium, mi'krō-skō' p ĭ- u m		Micr
Monoceros, mò-nŏs'	Mon	
Musca, mưs'k \dot{d}.	. Mus	Musc
Norma, nôr'má.	Nor	Norm
Octans, ǒk'tănzz.	Oct	Octn
Ophiuchus, off ${ }^{\prime}$ '1-u'	Oph	Ophi
	Ori	Orio
Pavo, Pā'vō	. Pav	Pavo
Pegasus, pěg' ${ }^{\prime}$-sus	Peg	Pegs
Perseus, purr'sūs	.Per	Pers
Phoenix, fē'nĭks	Phe	Phoe
Pictor, pik'tẽr.	.Pic	Pict
Pisces, pis'ēz	. Psc	Pisc
Piscis Austrinus, pis'ins ôs-tri'nŭs		PscA
Puppis, pŭp'is	. Pup	Pupp
Pyxis, pik'sis.	Pyx	Pyxi
Reticulum, rè-tik' $\mathrm{u}-1 \mathrm{u} \mathrm{m}$		Reti
Sagitta, sid-ji'it ${ }^{\text {d }} \dot{d}$	Sge	Sgte
Sagittarius, săj ${ }^{\text {jointā}}$ 'ri	Sgr	Sgtr
Scorpius, skôr'pǐ-ŭs	Sco	Scor
Sculptor, skǔlp'tẽr	Scl	Scul
Scutum, skū'tŭm	Sct	Scut
Serpens, sûr'pĕnz	Ser	Serp
Sextans, sěks'tănz	Sex	Sext
Taurus, tô'rǔs.	Tau	Taur
Telescopium, těl'è-skō'pì-ŭm	Tel	Tele
Triangulum, trī-ăng'gù-lüm.	Tri	Tria
Triangulum Australe, trī-ằng'gù-lŭm ôs-trā		TrAu
Tucana, tü-kā'ná.		Tucn
Ursa Major, ûr'sá mā'jẽ̃r.	UM	Maj
Ursa Minor,		
	Vel	Velr
Virgo, vûr'gō	Vir	Virg
Volans, vō'lănz	Vol	Voln
Vulpecula, vŭl-pĕk'ùtlà	.Vul	Vulp

ā fāte; à chàotic; ă tăp; ă finăl; á ásk; \dot{a} ide \dot{a}; â câre; ä älms; au aught; è bē; è crēate; ě ěnd; ě angĕl; ẽ makẽr; ī tīme; ǐ bĭt; 乞̌ anı̆mal; ō nōte; ơ anatoòmy; ŏ hŏt; ǒ ŏccur; ô ôrb; ōo mōn; ơ book; ou out; ū tūbe; û ûnite; ŭ sŭn; \mathfrak{u} sǔbmit; û hûrl.

MISCELLANEOUS ASTRONOMICAL DATA

Units*OF LENGTH

1 Angstrom unit	$=10^{-8} \mathrm{~cm}$.
1 micron	$=10^{-4} \mathrm{~cm}$.
1 meter	$=10^{2} \mathrm{~cm} .=3.28084$ feet
1 kilometer	$=10^{5} \mathrm{~cm} .=0.62137$ miles
1 mile	$=1.60935 \times 10^{5} \mathrm{~cm} .=1.60935 \mathrm{~km}$.
1 astronomical unit	$=1.49504 \times 10^{13} \mathrm{~cm} .=92,897,416$ miles
1 light year	$=9.463 \times 10^{17} \mathrm{~cm} . \quad=5.880 \times 10^{12}$ miles $=0.3069$ parsecs
1 parsec	$=30.84 \times 10^{17} \mathrm{~cm} . \quad=19.16 \times 10^{12}$ miles $=3.2591 . y$.
1 megaparsec	$=30.84 \times 10^{23} \mathrm{~cm} . \quad=19.16 \times 10^{18}$ miles $=3.259 \times 10^{6} 1 . y$.

Units of Time
Sidereal day $\quad=23 h 56 m 04.09 \mathrm{~s}$ of mean solar time
Mean solar day $=24 h 03 m 56.56 s$ of mean sidereal time
Synodical month $=29 d 12 h 44 m$; sidereal month $=27 d 07 h 43 m$
Tropical year (ordinary) $=365 d 05 h 48 \mathrm{~m} 46 \mathrm{~s}$
Sidereal year $\quad=365 d 06 h 09 \mathrm{~m} 10 \mathrm{~s}$
Eclipse year $=346 d 14 h 53 m$

The Earth

Equatorial radius, $a=3963.35$ miles; flattening, $c=(\mathrm{a}-\mathrm{b}) / \mathrm{a}=1 / 297.0$
Polar radius, $\quad b=3950.01$ miles
1° of latitude $=69.057-0.349 \cos 2 \phi$ miles (at latitude ϕ)
1° of longitude $=69.232 \cos \phi-0.0584 \cos 3 \phi$ miles
Mass of earth $=6.6 \times 10^{21}$ tons; velocity of escape from $\oplus=6.94 \mathrm{miles} / \mathrm{sec}$.

Earth's Orbital Motion

Solar parallax $=8 .^{\prime \prime} 80$; constant of aberration $=20 .^{\prime \prime} 47$
Annual general precession $=50 .^{\prime \prime} 26$; obliquity of ecliptic $=23^{\circ} 26^{\prime} 40^{\prime \prime}$ (1960)
Orbital velocity $=18.5 \mathrm{miles} / \mathrm{sec}$.; parabolic velocity at $\oplus=26.2 \mathrm{miles} / \mathrm{sec}$.

Solar Motion

Solar apex, R.A. $18 h 04 m$; Dec. $+31^{\circ}$
Solar velocity $=12.2$ miles $/ \mathrm{sec}$.
The Galactic System
North pole of galactic plane R.A. $12 h 49 m$, Dec. $+27 .{ }^{\circ} 4$ (1959)
Centre of galaxy R.A. $17 h 42 m$, Dec. -29° (1950)
Distance to centre $\sim 10,000$ parsecs; diameter $\sim 30,000$ parsecs
Rotational velocity (at sun) $\sim 262 \mathrm{~km}$. $/ \mathrm{sec}$.
Rotational period (at sun) $\sim 2.2 \times 10^{8}$ years
Mass $\sim 2 \times 10^{11}$ solar masses

Extra-Galactic Nebulae

Red shift $\sim+100 \mathrm{~km} . / \mathrm{sec} . /$ megaparsec $\sim 19 \mathrm{miles} / \mathrm{sec} . /$ million $1 . \mathrm{y}$.

Radiation Constants

Velocity of light $=299,860 \mathrm{~km} . / \mathrm{sec} .=186,324 \mathrm{miles} / \mathrm{sec}$.
Solar constant $=1.93$ gram calories/square cm. $/$ minute
Light ratio for one magnitude $=2.512 ; \log$ ratio $=0.4000$
Radiation from a star of zero apparent magnitude $=3 \times 10^{-6}$ meter candles
Total energy emitted by a star of zero absolute magnitude $=5 \times 10^{25}$ horsepower

Miscellaneous

Constant of gravitction, $G=6.670 \times 10^{-8}$ c.g.s. units
Mass of the electron, $m=9.1083 \times 10^{-28} \mathrm{gm}$; mass of the proton $=1.6724 \times 10^{-24} \mathrm{gm}$.
Planck's constant, $h=6.6234 \times 10^{-27} \mathrm{erg}$. sec.
Loschmidt's number $=2.6872 \times 10^{19}$ molecules $/ \mathrm{cu} . \mathrm{cm}$. of gas at N.T.P.
Absolute temperature $=T^{\circ} \mathrm{K}=T^{\circ} \mathrm{C}+273^{\circ}=5 / 9\left(T^{\circ} \mathrm{F}+459^{\circ}\right)$
1 radian $=57^{\circ} .2958 \quad \pi=3.141,592,653,6$

$$
\begin{array}{rr}
=3437^{\prime} .75 & \text { No. of square degrees in the sky } \\
=206,265^{\prime \prime} & =41,253
\end{array}
$$

1961 EPHEMERIS OF THE SUN AT 0h U.T.

$\begin{aligned} & \text { Date } \\ & 1961 \end{aligned}$	$\begin{aligned} & \text { Apparent } \\ & \text { R.A. } \end{aligned}$	Corr. to Sun-dial	Apparent Dec.	$\begin{aligned} & \text { Date } \\ & 1961 \end{aligned}$	Apparent R.A.	Corr. to Sun-dial	Apparent Dec.
	h m s	m	$\bigcirc 1$		h m s	m s	-
Jan. 1	184500	+ 322	-23 02.3	July 3	6 47	+ 359	$+2300.0$
Jan. 4	185813	+ 446	-22 46.0		65927	+ 431	+22 44.3
7	191123	+ 606	-2225.7	9	71146	+ 500	+2225.0
10	192429	+ 722	-22 01.3	12	72401	+ 526	+2202.3
13	193729	+ 834	-21 33.1	15	$\begin{array}{llll}7 & 36 & 13\end{array}$	+ 547	+2136.1
16	195025	+ 939	-21 01.2	18	74819	+604	+2106.6
19	200314	+1039	-2025.6	21	80021	+617	+2033.9
22	201557	+1132	-19 46.5	24	81218	+624	+1958.1
25	202832	+1218	-1904.2	27	82409	+625	+19 19.3
28	204100	+1256	-1818.7	30	83555	+ 622	+1837.7
31	205321	+13 27	-1730.2	Aug. 2	84736	$+612$	+1753.2
Feb. 3	210535	+1351	-16 39.0	Aug. $\quad 5$	85911	+612 +558	+1753.2 +1706.2
Feb. 6	211741	+1408	-1545.1	8	91041	+538	+1616.6
9	212940	+1417	-14 48.8	11	92206	+ 513	+15 24.7
12	214132	+1419	-1350.3	14	93326	+ 444	+1430.6
15	215317	+1415	-12 49.7	17	94440	+ 409	+13 34.4
18	220456	+1404	-1147.2	20	95550	+ 329	+1236.2
21	221629	+13 47	-10 43.1	23	100656	+ 245	+1136.3
24	22 22 27	+1324	- 937.4	26	$\begin{array}{lll}10 & 17 & 57\end{array}$	+156	+1034.7
27	223916	+1255	-830.5	29	102855	$+105$	+ 931.6
Mar. 2	225032	$+1221$	- 722.5	Sept. 1	103950	+ 010	+ 827.2
Mar. 5	230143	+1143	- 613.5	Sept. 4	105042	- 048	+ 721.5
8	231251	+1101	- 503.7	7	110132	- 148	+ 614.7
11	$23 \quad 2355$	+10 15	- 353.4	10	111220	- 249	+ 507.0
14	233456	+ 927	- 242.6	13	112307	-352	+ 358.5
17	234555	+ 837	- 131.5	16	113353	- 456	+ 249.4
20	235653	+ 744	- 020.3	19	114438	- 559	+ 139.8
23	$\begin{array}{llll}0 & 07 & 49\end{array}$	+ 651	+ 050.8	22	115524	- 703	+ 029.9
26	01844	+ 556	+ 201.6	25	120611	-806	- 040.2
29	02938	+ 501	+ 312.0	28	121659	-908	-150.3
Apr. 1	04033	+ 406	+ 421.9	Oct. 1	$12 \quad 2749$	-1008	-300.3
Apr. 4	05129	+ 313	+ 531.1	4	123842	-1105	- 410.0
7	10227	+ 220	+ 639.3	7	124938	-1158	- 519.3
10	11326	+ 130	+ 746.6	10	130037	-1248	- 628.0
13	12428	+ 042	+ 852.7	13	$\begin{array}{llll}13 & 11 & 41\end{array}$	-1334	- 736.0
16	13533	- 002	+ 957.5	16	$\begin{array}{llll}13 & 22 & 49\end{array}$	-1416	- 842.9
19	14641	- 044	+1100.8	19	133402	-14 52	- 948.8
22	15753	- 122	+1202.5	22	$\begin{array}{llll}13 & 45 & 21 \\ 13 & 56\end{array}$	-15 23	-10 53.3
25	$\begin{array}{llll}2 & 09 & 08\end{array}$	- 156	+1302.4	25	$\begin{array}{llll}13 & 56 \\ 145\end{array}$	-15 49	-1156.4 -12579
28	22028	- 226	+1400.3	28	14 08 14 19	-1607 -1619	-1257.9 -1357.5
May 1							
May 4	2 2 1321	- 313	+15 49.8	Nov. 3		-16 24	-14 55.2
7	25455	- 328	+16 41.1	6	144332	-1621	-15 50.6
10	30634	- 339	+1729.9	9	145532	-16 11	-16 43.7
13	$\begin{array}{llll}3 & 18 & 19\end{array}$	- 344	+1816.1	12	$\begin{array}{llll}15 & 07 & 39\end{array}$	-15 53	-17 34.3
16	318008	- 344	+18 59.5	15	15 19 54	-15 27	-18 22.1
19	$\begin{array}{llll}3 & 42 & 03\end{array}$	- 338	+19 40.0	18	$\begin{array}{llll}15 & 3217\end{array}$	-14 54	-19 07.0
22	35403	- 328	+20 17.5	21	$\begin{array}{llll}15 & 44 & 47\end{array}$	-14 14	-19 48.9
25	400607 4	- 314	+20 51.9	24	$\begin{array}{ll}15 & 57 \\ 16 & 24\end{array}$	-13 27	-20 27.4
28	41816	- 255	+2123.1	27 30	$\begin{array}{lll}16 & 10 \\ 16 & 22 & 59\end{array}$	-1232 -1131	-2102.6 -2134
31	43029	-232	+2150.9	30	162259	-1131	-21 34.2
June 3	44245	- 205	+22 15.3	Dec. 3		-1024	-22 02.2
June 6	45505	- 134	+22 36.2	6	164858	- 911	-22 26.3
9	50728	- 101	+22 53.6	9	170206	- 753	-22 46.5
12	$\begin{array}{llll}5 & 19 & 54\end{array}$	- 025	+23 07.3	12	$\begin{array}{llll}17 & 15 & 18 \\ 17 & 28 & 32\end{array}$	-631	-23 02.7
15	53221	- 013	+23 17.4	15	172832	- 506	-23 14.7
18	54450	+ 052	+23 23.8	18	174149	- 339	-23 22.6
21	55719	+131 +1310	+23 26.4	21	17 55 17 08	- 210	-23 26.2
24	$\begin{array}{llll}6 & 09 & 47\end{array}$	+210	+23 25.4	24	18 08 18 27 18	a $-\quad 040$ $+\quad 049$	-2325.7 -23
27	6 6 2215	a +248 +324	+23 20.6	27	$\begin{array}{llll}18 & 21 & 46 \\ 18 & 35 & 03\end{array}$	a +049 $+\quad 217$	-23 -23
30	63441	+ 324	+23 12.2	30	183503	+ 217	-23 11.8

PRINCIPAL ELEMENTS OF THE SOLAR SYSTEM

ORBITAL ELEMENTS（1954，Dec．31， $12^{\text {h }}$ U．T．）

Planet	Mean Distance from Sun （a）		Period of Revolution		Eccen－ tri－ city （e）	In－ clina－ tion （i）	Long． of Node （ठ）	Long． of Peri－ helion （ π ）	Mean Long of Planet
			Sidereal （P）	Mean Syn－ odic					
	$\oplus=1$	millions of miles							
				days		。	。	。	
Mercury	0.387	36.0	88．0d．	116	． 206	7.0	47.8	76.8	305.8
Venus	0.723	67.2	224.7	584	． 007	3.4	76.3	130.9	127.1
Earth	1.000	92.9	365.3		． 017	．．		102.2	99.4
Mars	1.524	141.5	687.0	780	． 093	1.8	49.2	335.2	21.3
Jupiter	5.203	483.3	11．86y．	399	． 048	1.3	100.0	13.6	108.0
Saturn	9.539	886.	29.46	378	． 056	2.5	113.3	92.2	219.5
Uranus	19.18	1783.	84.01	370	． 047	0.8	73.8	169.9	119.8
Neptune	30.06	2791.	164.8	367	． 009	1.8	131.3	44.2	205.9
Pluto	39.52	3671.	248.4	367	． 249	17.1	109.6	223.2	137.6

PHYSICAL ELEMENTS

Object	Symbol	Mean Di－ ameter＊ miles	Mass＊ $\oplus=1$	Mean Density＊ water $=1$	Axial Rotation	Mean Sur－ face Grav－ ity＊ $\oplus=1$	Albedo＊	Magni－ tude at Greates Brillian－ cy
Sun	\bigcirc	864，000	332，000	1.41	$\begin{array}{\|l\|} 24^{\mathrm{d}} .7 \text { (equa- } \\ \text { torial) } \end{array}$	27.9		－26．8
Moon	（1）	2，160	0.0123	3.33	$27^{\text {d }} 7.7^{\text {b }}$	0.16	0.072	－12．6
Mercury	8	3，010	0.0543	5.46	$88^{\text {d }}$	0.38	0.058	－ 1.9
Venus	\％	7，610	0.8136	5.06	？	0.88	0.76	－ 4.4
Earth	\oplus	7，918	1.0000	5.52	$23^{\mathrm{h}} 56^{\mathrm{m}} .1$	1.00	0.39	
Mars	0^{7}	4，140	0.1069	4.12	$24^{\mathrm{h}} 37^{\mathrm{m}} .4$	0.39	0.148	－ 2.8
Jupiter	2	86，900	318.35	1.35	$9^{\text {h }} 50^{\mathrm{m}} \pm$	2.65	0.51	－ 2.5
Saturn	b	71，500	95.3	0.71	$10^{\mathrm{h}} 02^{\mathrm{m}} \pm$	1.17	0.50	－ 0.4
Uranus	¢	29，500	14.54	1.56	$10^{\text {b }} .8 \pm$	1.05	0.66	＋ 5.7
Neptune	Ψ	26，800	17.2	2.47	$15^{\mathrm{b}} .8 \pm$	1.23	0.62	＋ 7.6
Pluto	E	3，600	0.033 ？	2 ？	$6^{\text {d }} .390$	0.16 ？	0.16	＋14

＊Kuiper，＂The Atmospheres of the Earth and Planets，＂ 1952.

SATELLITES OF THE SOLAR SYSTEM

| Name | Stellar
 Mag. | Mean Dist. from
 Planet | Revolution
 Period
 P | Miles | \mathbf{d} | Diameter
 Miles |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |\quad Discoverer

Satellite of the Earth
Moon $\quad|-12.6| \quad 530|238,857| 27 \quad 07$ 43| $2160 \mid$
Satellites of Mars

Phobos	12	8	5,800	0	07	39			
Deimos	13	21	14,600	1	06	18	\quad	10?	
---:	:---								
$5 ?$	Hall, 1877								
Hall, 1877									

Satellites of Jupiter

V	13	48	112,600	0	11	57	100?	\|Barnard, 1892
Io	5	112	261,800	1	18	28	2300	Galileo, 1610
Europa	6	178	416,600	3	13	14	2000	Galileo, 1610
Ganymede	5	284	664,200	7	03	43	3200	Galileo, 1610
Callisto	6	499	1,169,000	16	16	32	3200	Galileo, 1610
VI	14	3037	7,114,000	250	16		100?	Perrine, 1904
VII	16	3113	7,292,000	260	01		40?	Perrine, 1905
X	18	3116	7,300,000	260			15?	Nicholson, 1938
XI	18	5990	14,000,000	692			15?	Nicholson, 1938
VIII	16	6240	14,600,000	739			40 ?	Melotte, 1908
[X	17	6360	14,900,000	758			20?	Nicholson, 1914
XII	18	-	,	631			15?	Nicholson, 1951

Satellites of Saturn

Mimas	12	27	115,000	0	22	37	$400 ?$	W. Herschel, 1789
Enceladus	12	34	148,000	1	08	53	$500 ?$	W. Herschel, 1789
Tethys	11	43	183,000	1	21	18	$800 ?$	G. Cassini, 1684
Dione	11	55	234,000	2	17	41	$700 ?$	G. Cassini, 1684
Rhea	10	76	327,000	4	12	25	$1100 ?$	G. Cassini, 1672
Titan	8	177	759,000	15	22	41	$2600 ?$	Huygens, 1655
Hyperion	13	214	920,000	21	06	38	300 ?	G.
Gond, 1848								
Iapetus	11	515	$2,210,000$	79	07	56	$1000 ?$	G. Cassini, 1671
Phoebe	14	1870	$8,034,000$	550			$200 ?$	W. Cickering, 1898

Satellites of Uranus

Miranda	17	9	81,000	1	09	56		Kuiper, 19
Ariel	16	14	119,000	2	12	29	600?	Lassell, 1851
Umbriel	16	19	166,000	4	03	28	400?	Lassell, 1851
Titania	14	32	272,000	8	16	56	1000?	W. Herschel, 1787
Oberon	14	42	364,000	13	11	07	900?	W. Herschel, 1787

Satellites of Neptune

Triton	13	16	220,000	5	21	03	$3000 ?$			
Nereid	19	260	$3,460,000 \mid 359$			Lassell, 1846				
$200 ?$								$	$	Kuiper, 1949
:---	:---									

*As seen from the sun.

Satellites Io, Europa, Ganymede, Callisto are usually denoted I, II, III, IV respectively, in order of distance from the planet.

SOLAR, SIDEREAL AND EPHEMERIS TIME

Any recurring event may be used to measure time. The various times commonly used are defined by the daily passages of the sun or stars caused by the rotation of the earth on its axis. The more uniform revolution of the earth about the sun, causing the return of the seasons, defines ephemeris time.

A sun-dial indicates apparent solar time, but this is far from uniform because of the earth's elliptical orbit and the inclination of the ecliptic. If the real sun is replaced by a fictitious mean sun moving uniformly in the equator, we have mean (solar) time. Apparent time-mean time $=$ equation of time. This is the same as correction to sun-dial on page 7 , with reversed sign.

If instead of the sun we use stars, we have sidereal time. The sidereal time is zero when the vernal equinox or first of Aries is on the meridian. As the earth makes one more revolution with respect to the stars than it does with respect to the sun, sidereal time gains on mean time $3^{m} 56^{s}$ per day or 2 hours per month. Right Ascension (R.A.) is measured east from the vernal equinox, so that the R.A. of a body on the meridian is equal to the sidereal time.

Sidereal time is equal to mean time plus 12 hours plus the R.A. of the fictitious mean sun, so that by observation of one kind of time we can calculate the other. Sidereal time $=$ Standard time $(0 \mathrm{~h}$ at midnight) - correction for longtitude (p. 12) $+12 \mathrm{~h}+\mathrm{R}$. A. sun (p. 7) - correction to sun-dial (p. 7). (Note that it is necessary to obtain R. A. of the sun at the standard time involved.)

The foregoing refers to local time, in general different in different places on the earth. The local mean time of Greenwich, now known as Universal Time (UT) is used as a common basis for timekeeping. Navigation and surveying tables are generally prepared in terms of UT. When great precision is required, UT 1 and UT 2 are used differing from UT by polar variation and by the combined effects of polar variation and annual fluctuation respectively.

To avoid the inconveniences to travellers of a changing, local time, standard time is used. The earth is divided into 24 zones, each ideally 15 degrees wide, the zero zone being centered on the Greenwich meridian. All clocks within the same zone will read the same time.

In Canada and the United States there are 8 standard time zones as follows: Newfoundland (N), $3^{\mathrm{h}} 30^{\mathrm{m}}$ slower than Greenwich; 60th meridian or Atlantic (A), 4 hours; 75th meridian or Eastern (E), 5 hours; 90th meridian or Central (C), 6 hours; 105th meridian or Mountain (M), 7 hours; 120th meridian or Pacific (P), 8 hours; 135th meridian or Yukon (Y), 9 hours; and 150th meridian or Alaska (AL), 10 hours slower than Greenwich.

Universal time, even after the corrections mentioned have been applied, is still somewhat variable, as shown by atomic clocks or the orbital motion of the moon. Ephemeris Time (ET) is used when these irregularities must be avoided. The second, formerly defined as $1 / 86,400$ of the mean solar day, is now defined as $1 / 31,556,925.9747$ of the tropical year Jan. 0 at 12 hours E.T. The difference, $\Delta \mathrm{T}$, between UT and ET is measured as a small error in the observed longitude of the moon, in the sense $\Delta T=E T-U T$. The moon's position is tabulated in ET, but observed in UT. Δ T was zero near the beginning of the century, but in 1960 will be about 35 seconds.

JULIAN DAY CALENDAR, 1961
J.D. 2,430,000 plus the following:

Jan. 1........... . 7,301
Feb. 1............ 7,332
Mar. 1. 7,360
Apr. 1............ . 7,391

May 1. 7,421
June 1. 7,452
July 1.......... . 7,482
Aug. 1.7,513

Sept. 1. 7,544
Oct. 1.......... . 7,574
Nov. 1. 7,605
Dec. 1..........7,635

The Julian Day commences at noon.
Thus J.D. 2,437,301.0 $=$ Jan. 1.5 U.T.

TIMES OF RISING AND SETTING OF THE SUN AND MOON

The times of sunrise and sunset for places in latitudes ranging from 32° to 54° are given on pages 13 to 18 , and of twilight on page 19. The times of moonrise and moonset for the 5 h meridian are given on pages 20 to 25 . The times are given in Local Mean Time, and in the table below are given corrections to change from Local Mean Time to Standard Time for the cities and towns named.

The tabulated values are computed for the sea horizon for the rising and setting of the upper limb of the sun and moon, and are corrected for refraction. Because variations from the sea horizon usually exist on land, the tabulated times can rarely be observed.

The sun's declination, apparent diameter and the equation of time do not have precisely the same values on corresponding days from year to year. As the times of sunrise and sunset depend upon these factors, these tables for the solar phenomena can give only average values which may be in error by one or two minutes.

The Standard Times for Any Station

To derive the Standard Time of rising and setting phenomena for the places named, from the list below find the approximate latitude of the place and the correction in minutes which follows the name. Then find in the monthly table the Local Mean Time of the phenomenon for the proper latitude on the desired day. Finally apply the correction to get the Standard Time. The correction is the number of minutes of time that the place is west (plus) or east (minus) of the standard meridian. The corrections for places not listed may be obtained by converting the longitude found from an atlas into time ($360^{\circ}=24 \mathrm{~h}$).

CANADIAN CITIES AND TOWNS						AMERICAN CITIES		
	Lat.	Corr.		Lat.	Corr.		Lat.	Corr.
Athabaska	55°	+33M	Penticton	49°	-02P	Atlanta	34°	$+37 \mathrm{E}$
Baker Lake	64	+24C	Peterborough	44	$+13 \mathrm{E}$	Baltimore	39	$+06 \mathrm{E}$
Brandon	50	+40C	Port Harrison	59	$+13 \mathrm{E}$	Birmingham	33	$-13 \mathrm{C}$
${ }^{\text {Brantiord }}$	51	+21 E +36 M	Port Arthur	53	+57 E +03 M	Boston	43	+15E
Charlottetown	46	$+12 \mathrm{~A}$	Prince Rupert	54	$+41 \mathrm{P}$	Chicago	42	$-10 \mathrm{C}$
Churchill	60	$+17 \mathrm{C}$	Quebec	47	$-15 \mathrm{E}$	Cincinnati	39	$+38 \mathrm{E}$
Cornwall	45	$-1 \mathrm{E}$	Regina	50	-02M	Cleveland	42	$+26 \mathrm{E}$
Edmonton	54	$+31 \mathrm{M}$	St. Catharines	43	$+17 \mathrm{E}$	Dallas	33	$+27 \mathrm{C}$
Fort William	48	$+57 \mathrm{E}$	St. Hyacinthe	46	$-08 \mathrm{E}$	Denver	40	00M
Fredericton	46	$+27 \mathrm{~A}$	St. John, N.B.	45	$+24 \mathrm{~A}$	Detroit	42	$+32 \mathrm{E}$
Gander	49	$+8 \mathrm{~N}$	St. John's, Nfld.	48	+01N	Fairbanks	65	-10AL
Glace Bay	46	00A	Sarnia	43	$+29 \mathrm{E}$	Flagstaff	35	$+27 \mathrm{M}$
Goose Bay	53	+ 2A	Saskatoon	52	+07M	Indianapolis	40	$-15 \mathrm{C}$
Granby	45	$-09 \mathrm{E}$	Sault Ste. Marie		$\pm 37 \mathrm{E}$			
Guelph	44 45	+21 E +14 A	俍 ${ }^{\text {Shawinigan Falls }}$ Sherbrooke	47 45	-09 E -12 E	Kansas City	39 34	+18 C -07 P
Halifax Hamilton	45 43	+14 A +20 E	Sherbrooke	45	-12E	Los Angeles	34 38	-07 P -17 C
Hull	45	+03E	Sudbury	47	$+24 \mathrm{E}$	Memphis	35	00C
Kapuskasing	49	$+30 \mathrm{E}$	Sydney	46	+01A	Miami	26	$+21 \mathrm{E}$
Kingston	44	$+06 \mathrm{E}$	The Pas	54	+45C	Milwaukee	43	-09C
Kitchener	43	$+22 \mathrm{E}$	Timmins	48	+26E	Minneapolis	45	$+13 \mathrm{C}$
London	43	$+25 \mathrm{E}$	Toronto	44	$+18 \mathrm{E}$	New Orleans	30	00C
Medicine Hat	50	$+23 \mathrm{M}$	Three Rivers	46	$-10 \mathrm{E}$	New York	41	-04E
Moncton	46	$+19 \mathrm{~A}$	Trail	49	-09P	Omaha	41	$+24 \mathrm{C}$
Montreal	46	$-06 \mathrm{E}$	Truro	45	$+13 \mathrm{~A}$	Philadelphia	40	$+01 \mathrm{E}$
Moosonee	51	$+23 \mathrm{E}$	Vancouver	49	+12P	Phoenix	33	$+28 \mathrm{M}$
Moose Jaw	50	$+02 \mathrm{M}$	Victoria	48	+13P	Pittsburgh	40	$+20 \mathrm{E}$
Niagara Falls	43	$+16 \mathrm{E}$	Whitehorse	61	00Y	St. Louis	39	+01C
North Bay	46	$+18 \mathrm{E}$	Windsor	42	$+32 \mathrm{E}$	San Francisco	38	+10P
Ottawa	45	$+03 \mathrm{E}$	Winnipeg	50	+29 C +38 M		40	+09 P +08 E
Owen Sound	45	$+24 \mathrm{E}$	Yellowknife	62	$+38 \mathrm{M}$	Washington	39	$+08 \mathrm{E}$

Example-Find the time of sunrise at Owen Sound, on February 12.
In the above list Owen Sound is under " 45° ", and the correction is +24 \min On page 13 the time of sunrise on February 12 for latitude 45° is 7.07 ; add 24 min . and we get 7.31 (Eastern Standard Time).

	Latitu Sunrise	Se 32°	Latitu Sunrise	de 36° Sunset	Latitu Sunrise	de 40°	Latitu Sunrise	Se 44°	Latitu Sunrise	46 6° Sunset	Latitu Sunrise	de 48°	Latitud Sunrise	de 50°	Latitud Sunrise	Se 54°
		h		h m		$h \mathrm{~m}$				h m					h m	h m
1	701	507	711	457	722				742	425	750	417	759	4	819	
	70	508	711	458	723	447	735	434	742	426	750	419	759	410	819	350
5	70	510	712	500	723	449	735	436	742	429	750	421	758	413	818	353
7	702	511	711	502	722	450	735	438	742	431	749	423	758	415	818	355
9	702	513	711	504	722	452	734	440	741	433	749	426	757	418	816	358
11	702	515	$7 \begin{array}{ll}7 & 11\end{array}$	506	722	454	734	442	740	436	748	428	756	420	815	401
13	701	516	711	508	721	456	733	445	739	439	747	431	755	423	814	404
15	701	518	710	510	720	458	732	448	738	441	745	434	754	426	812	408
17	701	520	710	512	720	500	730	450	737	444	744	437	752	429	810	411
19	700	522	709	514	719	502	729	453	735	446	742	439	750	432	807	415
21	659	524	708	515	718	505	728	455	734	448	740	442	748	435	805	418
23	659	526	707	517	715	508	726	457	732	451	739	445	746	438	802	422
25	658	527	706	519	714	510	725	500	731	454	737	448	744	441	800	426
27	657	529	705	521	712	513	724	502	729 7	457	735	451	742	445	757	430
29	656	531	704	523	711	515	722	505	727	500	733	454	739	448	754	434
31	655	533	702	525	710	$\begin{array}{ll}5 & 17\end{array}$	719	508	724	503	730	457	736	451	750	438
	653	535	700	527	708	520	$\begin{array}{ll}7 & 17\end{array}$	5111	722	506	$\begin{array}{ll}7 & 27\end{array}$	500	733	455	747	442
4	652	537	659	529	706	522	715	513	720	509	725	504	730	458	744	446
6	650	538	657	532	704	525	713	516	718	511	722	507	727	502	740	450
8	649	540	655	534	702	527	710	519	715	514	720	510	724	505	736	454
10	647	542	653	536	700	529	708	522	713	517	717	513	721	508	732	458
12	645	544	651	538	659	531	705	524	709	520	714	516	717	512	728	502
14	644	545	649	540	655	534	703	527	706	523	710	519	714	515	724	506
16	642	547	647	542	653	536	700	5 5	702	526	706	523	710	$\begin{array}{ll}5 & 19\end{array}$	720	510
18	640	549	645	544	650	539	657	533	659	5.29	703	526	707	522	716	514
20	638	550	643	546	648	541	654	535	656	532	659	529	703	526	711	518
22	636	552	640	548	645	543	650	538	653	535	656	532	659	529	$\begin{array}{ll}7 & 07\end{array}$	522
24	633	554	638	550	642	545	647	540	649	538	652	535	655	532	702	526
26	631	555	635	552	639	547	644	543	646	541	649	538	651	536	658	530
28	629	557	633	554	636	549	640	546	643	544	645	541	647	539	653	534

0ε	L	$9 Z$
\boldsymbol{u}	प	\mathbf{u}

anNNNN

日 ヨホNON N
＝NNNNN

ェザザホ

aNNNNN

コガッザか

日
＝ 00000
a
مد
a ONMな゚N
acoooco

مـ
－ruルの

719

サ80 On＝
NNNNN

H0NOM
∞
が心10
H
N
－
－
－
N
N
N
－

10

－NNN
かNTMNT
ザがな

NNNNN
Mーか心N心N
みみがな
$\pm \infty \rightarrow \infty$
MNNNN

みみがか
N
み
みザザサ

M10世 $\rightarrow 0$
$N N N N N$

ザザザみ

－ 0 ON
ON～N
स H N H H

か 毋
๑ 0 o
8명ㄲㅇㅇㅇㅇ
1 2 2

ザザない
雬
ज以NMNOM

正
 ∞

NWWCO $\infty \infty \infty \infty$

๗๓๓๓
जس M M M $\infty \infty \infty \infty$
 ๗๙ ๗ฺ ๓

$\infty \infty \infty \infty$
OOKNM M N M
ハッツ๗ை

\％

NNNNN
者
4OーNM
NNNNN
$\bigcirc \infty \sigma^{\infty} \sigma^{\infty} 0^{\infty}$
$\infty_{0}^{\infty} 00=$
ザザが

$\rightarrow N N N N$
$\mathrm{N}=\infty \infty \infty$
サみみがな
$N \infty$
$N O M N$

$\rightarrow N N N N$
जึ WM M M ボザざか

WONGWN
6
NNNNN
क स स स 2

08000
$\rightarrow N \mathrm{NN}$

なれれみれ

Ken
aun \boldsymbol{r}

上

ョ
م2 م2 02 مL
a HON゚かN
\＆ 0 ococo
घ Hon NoN
م1
0101010

No No

ค
مـ

م10 NOM م1 02 م2 مL م2
¢
مـ مـ مـ

ما مـ مע ما مـ

みツがN

NONTN
10

مـ مـ مـ
© 0 ON
o

丸궁N M
مレ ما مـ مـ
10600%
oc مـ ما مـ ما

مـ مـ مـ
NONONO
oc مـ مـ مـ وـ
๗がNだ
م2
No90 MN

－ 0 o

๗ึ๗ึNึ
م2
NOMNO
10 ecoco
－M Now
مـ مـ

1
－NoN － 0 OO Nかられ゙ － 0 O 0
※サーN ハ 10 ロ ザ

NiNNMM － 0 o 0

No® 9 م2 NonNM － 0 o 0

NサNON مـ مـ NサCNO － 0 O
© مـ 엉NNN N19

$\mathrm{N}+\infty \infty$	N玉	N※゚ NNNNM
	1290700	

 DATE Sunrise Sunset Sunrise Sunset
 ュ

co Nin Oio
Hस स स

\bigcirc－ 0

－ 0 － 0

m
10
10
6
0

№ーが心

NNNN

が역쑤 ットゥッ๗ை

सNO OO O
$N \sim \infty \infty \infty$

C

OP \＆\＆\＆
NNNNN

ロローローッ

$N N N N N$

み゙みみみみ
HNNO
NOWOMN
NNNNN

ササザザ
－9020
$N N N N N$
ONぱN
$N \perp N N N$
$\cdots \rightarrow 6 \rightarrow$
NNNNN

みみみがが，
ONHEN
－ $0 \lll<$
12
ONNNN
NNNNN

ONN以

ONM NL
せowew N
－NIDNO NNMNNAN
ェəquәวəด

		Latitude 35°		Latitude 40°		Latitude 45°		Latitude 50°		Latitude $54{ }^{\circ}$	
		Morn.	Eve.								
Jan.	,	538	629	545	622	552	615	600	607	607	600
	11	539	637	545	631	552	624	559	617	605	612
	21	538	645	543	640	548	635	554	630	558	625
	31	534	654	538	650	541	647	545	644	547	641
Feb.	10	527	703	529	701	531	700	532	659	532	658
	20	517	712	517	712	518	712	515	714	513	717
Mar.	2	506	720	504	722	502	726	456	730	451	736
	12	452	729	448	733	443	739	435	747	426	756
	22	438	738	431	745	423	754	411	806	359	818
Apr.	1	423	747	413	757	401	809	346	825	329	842
	11	407	757	355	809	339	825	319	846	256	910
	21	351	807	336	823	317	843	250	910	220	942
May	1	337	819	318	837	254	902	220	937	136	1022
	11	323	830	302	852	233	922	148	1008	030	1137
	21	312	841	247	907	213	942	113	1044		
	31	304	851	236	920	156	1001	023	1142		
June	10	259	859	229	930 9	143	1016				
	20	$\begin{array}{ll}3 & 02 \\ 3 & \end{array}$	9 9	2 2 2	935 935	1 1 49	1023				
July	30 10	$\begin{array}{ll}3 & 02 \\ 3 & 09\end{array}$	$\begin{array}{ll}9 & 04 \\ 901\end{array}$	2 2	935 930	144 1 56	$\begin{array}{ll}10 & 22 \\ 10 & 13\end{array}$				
	20	318	854	251	920	214	957 9	104	1104		
	30	328	843	305	906	233	938	143	1026		
Aug.	9	339	830	320	850	252	916	215	953	120	045
	19	350	816	334	832	312	853	242	923	207	957
	29	400	800	347	814	329	831	306	853	240	919
Sept.	8	410	744	359	755	346	808	328	826	308	845
	18	419	728	411	736	401	746	347	800	333	813
	28	428	713	422	718	415	725	405	735	355	745
Oct.	8	435	659	432	702	428	706	422	712	415	719
	18	443	646	442	647	440	649	437	651	434	655
Nov.	28	451	636	452	634	453	634	453	634	452	635
	7	500	627	502	624	505	621	507	619	509	617
	17	508	621	512	617	517	612	521	607	525	604
	27	516	618	522	613	528	606	534	600	539	555
Dec.	7	524	618	531	612	538	604	545	557	551	551
	17	531	621	538	614	545	606	553	558	601	551
	27	536	626	543	619	551	611	559	603	606	556
Jan.	1	538	629	545	622	552	615	600	607	607	600

The above table gives the local mean time of the beginning of morning twilight, and of the ending of evening twilight, for various latitudes. To obtain the corresponding standard time, the method used is the same as for correcting the sunrise and sunset tables, as described on page 12. The entry - in the above table indicates that at such dates and latitudes, twilight lasts all night. This table, taken from the American Ephemeris, is computed for astronomical twilight, i.e. for the time at which the sun is 108° from the zenith (or 18° below the horizon).

TIME OF MOONRISE AND MOONSET, 1961 (Local Mean Time)

DATE	Latitude 35° Moon Rise Set		Latitude 40° Moon Rise Set		Latitude 45° Moon Rise Set		Latitude 50° Moon Rise Set		Latitude 54° Moon			
Mar.	h m	h m			h m	h m	h m	h m	h m	h m	h m	h m
1	1718	0557	1713	0604	1706	0611	1658	0620	1650	0629		
2 (3)	1814	0631	1810	0635	1806	0641	1801	0647	1756	0653		
3	1910	0705	1908	0706	1907	0710	1906	0712	1903	0716		
4	2006	0737	2008	0737	$20 \quad 09$	0737	2011	0737	2012	0737		
5	2104	0810	2108	0809	2112	0805	2117	0802	2122	0759		
6	2204	0846	2209	0841	$\begin{array}{lll}22 & 17\end{array}$	0836	2224	0829	2233	0822		
7	$23 \quad 04$	0923	2312	0916	$23 \quad 22$	0908	2332	0859	2344	0849		
8		1004		0955		0945		0932		0920		
9 C	0005	1050	0014	1039	0026	1027	0040	1013	0054	0958		
10	0106	1142	0117	1130	0130	1117	0146	1100	0202	1044		
11	0205	1239	0217	1227	0230	1214	0247	1157	0304	1141		
12	0301	1342	0313	1331	0326	1318	0341	1303	0358	1247		
13	0354	1448	$04 \quad 04$	1439	0415	1428	0430	1415	0443	1402		
14	0443	1556	0451	1550	0459	1542	0511	1531	0521	1522		
15	0528	1705	0532	1701	0539	1656	0547	1650	0554	1644		
16 (i)	0609	1813	0612	1812	0615	1810	0618	1808	0622	1806		
17	0648	1920	0648	1921	0648	1923	0648	1925	0648	1926		
18	0726	2024	0723	$20 \quad 29$	0721	2033	0717	2039	0713	2044		
19	0805	2127	0800	2133	0754	2141	0746	2150	0740	2159		
20	0844	2227	0837	2236	0828	2246	0818	2257	0808	2310		
21	0925	$23 \quad 24$	0916	2335	0905	2346	0852		0839			
22	1008		0957		0945		0930	0000	0915	0015		
23 ?	1053	$\begin{array}{ll}00 & 19\end{array}$	1042	0030	1029	0043	1013	0058	0956	0114		
24	1141	0109	1129	0121	1116	0134	1100	0151	1043	0207		
25	1231	0156	1220	0207	1207	0220	1151	0237	1136	0252		
26	1322	0239	1312	0249	1301	0302	1246	0316	1233	0330		
27	1415	0319	1407	0327	1357	0338	1346	0351	1333	0403		
28	1509	0355	1503	0403	1456	0411	1446	0422	1438	0431		
29	1605	0431	1600	0436	1556	0442	1549	0449	1543	0457		
30	1701	0505	1659	0507	1657	0511	1654	0515	1650	0520		
31	1758	, 0538	1759	0538	1759	0539	1800	0540	1800	0542		
Apr. 1 (바)	1857	0611	1900	0610	1903	0608	1907	0605	1911	0604		
2	1957	0646	2002	0642	2008	0637	2015	0632	2022	0626		
3	2058	0723	2105	0717	2114	0709	2124	0701	2135	0652		
4	2159	0803	2208	0755	2220	0745	2233	0734	2247	0722		
5	2301	0848	2311	0838	2324	0826	2339	0812	2356	0758		
6		0937		0926		0913		0857		0841		
7	0000	1032	0012	1021	0025	1007	0042	0951	0059	0934		
8 d	0056	1132	0108	1121	0122	1108	0138 1	1052	0154	1035		
9	0149	1236	0200	1226	0212	1214	0227	1200	0242	1146		
10	0237	1342	0246	1333	0256	1324	0309	1314	0321	1302		
11	0322	1448	0328	1443	0336	1436	0345	1429	0354	1421		
12	0403	1555	0407	1552	0412	1549	0417	1545	0422	1541		
13	0442	1701	0443	1700	0445	1701	0447	1701	0448	1700		
14	0520	1805	0518	1808	0517	1811	0515	1815	0513	1819		
15 준	0558	1909	0553	1915	0549	1920	0544	1928	0539	1935		
16	0636	2011	0630	2019	0623	2028	0614	2038	0606	2049		
17	0717	2111	0708	2120	0659	2132	0647	2145	0636	2159		
18	0759	2207	0749	$\begin{array}{lll}22 & 18\end{array}$	0738	2231	0723	2247	0710	2302		
19	0845	2300	0834	2312	$08 \quad 21$	2325	0804	2342	0748	2359		
20	0932	2350	0920		0907		0850		0833			
21	1022		1011	0001	0957	0014	0940	0031	$\begin{array}{ll}09 & 24\end{array}$	0048		
22	1113	0035	1102	0046	1050	0058	1035	$\begin{array}{lll}01 & 14\end{array}$	1020	0129		
23	1206	0116	1156	0126	1146	0137	1133	0151	1120	0204		
24	1259	0154	1252	0202	1243	0212	1233	0223	1223	0234		
25	1354	0229	1349	0236	1343	0243	1335	0252	1328	0300		
26	1450	0303	1446	$\begin{array}{ll}03 & 07\end{array}$	1443	0312	1439	0318	1434	0324		
27	1546	$03 \quad 36$	1546	0338	1545	0340	1544	$\begin{array}{ll}03 & 43 \\ 04 & \\ \end{array}$	1543	0345		
28	1645	0409	1646	0409	1649	$\begin{array}{ll}04 & 08 \\ 04\end{array}$	1651	$\begin{array}{ll}04 & 07 \\ 04 & 33\end{array}$	1653	0407		
29	1745	0443	1748	0441	$17 \quad 54$	0437	1800	0433	1805	0429		
30 (6)	1846	0520	1853	0514	1901	0508	1911	0501	1919	0454		

DATE	Latitude 35° Moon Rise Set	Latitude 40° Moon Rise Set	Latitude 45° Moon	Latitude 50° Moon	Latitude. 54° Moon
Sept.	$\mathrm{h} \mathrm{m} \quad \mathrm{h} \mathrm{m}$	h m h m	hm h m	h m h m	h m h m
1 d	$\begin{array}{lllll}23 & 11 & 12 & 25\end{array}$	$\begin{array}{llll}23 & 01 & 12 & 34\end{array}$	$\begin{array}{lllll}22 & 49 & 12 & 46\end{array}$	$\begin{array}{lllll}22 & 34 & 13 & 00\end{array}$	$\begin{array}{lllll}22 & 20 & 13 & 14\end{array}$
2	$23 \quad 5613131$	$23 \quad 45 \quad 1332$	$\begin{array}{lllll}23 & 31 & 13 & 45\end{array}$	$\begin{array}{lllll}23 & 15 & 14 & 01\end{array}$	$\begin{array}{lllll}22 & 59 & 14 & 17\end{array}$
3	1413	1425	1439	1456	$\begin{array}{lllllllllllllllll}23 & 43 & 15 & 12\end{array}$
4	$\begin{array}{llll}00 & 43 & 15 & 02\end{array}$	$\begin{array}{lllll}00 & 31 & 15 & 14\end{array}$	$\begin{array}{llll}00 & 17 & 15 & 27\end{array}$	00001544	1601
5	$\begin{array}{llll}01 & 33 & 15 & 47\end{array}$	$\begin{array}{llll}01 & 22 & 15 & 58\end{array}$	$\begin{array}{lllll}01 & 08 & 1611\end{array}$	0051	$\begin{array}{llll}00 & 34 & 16 & 42\end{array}$
6	$\begin{array}{lllll}02 & 25 & 16 & 28\end{array}$	$\begin{array}{llll}02 & 14 & 16 & 38\end{array}$	$\begin{array}{lllll}02 & 01 & 16 & 49\end{array}$	$\begin{array}{lllll}01 & 46 & 17 & 04\end{array}$	
7	$\begin{array}{llll}03 & 17 & 17 & 05\end{array}$	$\begin{array}{lllll}03 & 08 & 17 & 14\end{array}$	$\begin{array}{llllll}02 & 57 & 17 & 23\end{array}$	$\begin{array}{lllll}02 & 44 & 17 & 35\end{array}$	$\begin{array}{lllllllllllll}02 & 31 & 17 & 46\end{array}$
8	$\begin{array}{lllll}04 & 11 & 17 & 41\end{array}$	04 $04 \begin{array}{lll}17 & 17\end{array}$	$\begin{array}{llllll}03 & 55 & 17 & 54\end{array}$	$\begin{array}{lllll}03 & 44 & 18 & 03\end{array}$	$\begin{array}{llllll}03 & 34 & 18 & 11\end{array}$
9 -	05 05051814	$\begin{array}{lllll}05 & 00 & 18 & 18 \\ 05 & 56 & 18 & 47\end{array}$	$\begin{array}{lllll}04 & 53 & 18 & 23 \\ 05 & 53 & 18 & 49\end{array}$	$\begin{array}{lllll}04 & 46 & 18 & 28 \\ 05 & 48 & 18 & 5\end{array}$	$\begin{array}{lllll}04 & 39 & 18 & 33\end{array}$
10	$\begin{array}{lllll}05 & 59 & 18 & 45\end{array}$	$\begin{array}{llll}05 & 56 & 18 & 47\end{array}$	$\begin{array}{lllll}05 & 53 & 18 & 49\end{array}$	$\begin{array}{llllll}05 & 48 & 18 & 52\end{array}$	$\begin{array}{llll}05 & 44 & 18 & 54\end{array}$
11	$\begin{array}{llll}06 & 54 & 19 & 17\end{array}$	06531916	$\begin{array}{lllll}06 & 53 & 19 & 16\end{array}$	$\begin{array}{lllll}06 & 51 & 19 & 15\end{array}$	$\begin{array}{llllll}06 & 50 & 19 & 15\end{array}$
12	$\begin{array}{llll}07 & 50 & 19 & 49 \\ 08 & 46 & 29\end{array}$	$\begin{array}{llll}07 & 51 & 19 & 46 \\ 08 & 50 & \end{array}$	$\begin{array}{llll}07 & 53 & 19 & 43\end{array}$	$\begin{array}{llll}07 & 55 & 19 & 39\end{array}$	$\begin{array}{llll}07 & 57 & 19 & 36\end{array}$
13	$\begin{array}{llll}08 & 46 & 20 & 22 \\ 09\end{array}$	$\begin{array}{lllll}08 & 50 & 20 & 17\end{array}$	$\begin{array}{lllll}08 & 54 & 20 & 11\end{array}$	$0900 \quad 2005$	09051958
14	$\begin{array}{llll}09 & 43 & 20 & 58 \\ 10 & 42 & 21 & 38\end{array}$	$\begin{array}{llll}09 & 50 & 20 & 51 \\ 10 & 50 & \end{array}$	$\begin{array}{llll}09 & 57 & 20 & 42 \\ 11 & 00 & 21\end{array}$	$\begin{array}{llll}10 & 06 & 20 & 32\end{array}$	$\begin{array}{llll}10 & 14 & 20 & 23\end{array}$
15	$\begin{array}{llll}10 & 42 & 21 & 38\end{array}$	$1050 \quad 2129$	$\begin{array}{llll}11 & 00 & 21 & 18\end{array}$	$\begin{array}{llll}11 & 12 & 21 & 05\end{array}$	$\begin{array}{llll}11 & 24 & 20 & 52\end{array}$
16	$11 \begin{array}{llll}11 & 22 & 22\end{array}$	$\begin{array}{llll}11 & 52 & 22 & 12\end{array}$	12032159	$\begin{array}{lllll}12 & 18 & 21 & 43\end{array}$	$1233 \quad 2129$
17 1	$\begin{array}{lllll}12 & 40 & 23 & 13\end{array}$	$12 \begin{array}{llll}12 & 52 & 23 & 01\end{array}$	$\begin{array}{llll}13 & 06 & 22 & 47\end{array}$	$\begin{array}{lllll}13 & 22 & 22 & 30\end{array}$	$\begin{array}{lllll}13 & 39 & 22 & 13\end{array}$
18	1339	$\begin{array}{lllll}13 & 51 & 23 & 58\end{array}$	$\begin{array}{lllll}14 & 05 & 23 & 43\end{array}$	$\begin{array}{lllll}14 & 22 & 23 & 26\end{array}$	$\begin{array}{llll}14 & 39 & 2309\end{array}$
19	$\begin{array}{llll}14 & 35 & 00 & 10\end{array}$	1447	1500	1516	1533
20	$\begin{array}{lll}15 & 27 & 01 \\ 12\end{array}$	$15 \quad 38 \quad 0100$	$\begin{array}{lllll}15 & 49 & 00 & 47\end{array}$	$\begin{array}{llll}16 & 04 & 00 & 3 i\end{array}$	1618 00 15
21	$\begin{array}{llll}16 & 16 & 02 & 18\end{array}$	$\begin{array}{llll}16 & 24 & 02 & 09\end{array}$	$\begin{array}{lllll}16 & 33 & 01 & 57\end{array}$	16450143	$\begin{array}{lllll}16 & 56 & 01 & 30\end{array}$
22	$\begin{array}{llll}17 & 01 & 03 & 28 \\ 17 & 42 & 04\end{array}$	$\begin{array}{llll}17 & 06 & 03 & 20 \\ 17 & 46 & 04\end{array}$	$\begin{array}{llll}17 & 13 & 03 & 12 \\ 17 & \end{array}$	$\begin{array}{llll}17 & 21 & 03 & 02 \\ 17 & 52 & 04 & \end{array}$	$\begin{array}{llll}17 & 28 & 02 & 52\end{array}$
23	17420438	$17 \quad 460433$	17490428	$\begin{array}{llll}17 & 52 & 04 & 22\end{array}$	$\begin{array}{llll}17 & 56 & 04 & 16\end{array}$
24 (3)	$\begin{array}{lll}18 & 22 & 0547\end{array}$	$18 \quad 220546$	$\begin{array}{llll}18 & 23 & 05 & 44\end{array}$	$\begin{array}{llll}18 & 22 & 05 & 42\end{array}$	$\begin{array}{llll}18 & 22 & 0541\end{array}$
25	$\begin{array}{llll}19 & 02 & 06 & 56\end{array}$	$\begin{array}{llll}18 & 59 & 06 & 58\end{array}$	$\begin{array}{llll}18 & 56 & 06 & 59\end{array}$	18 52	$\begin{array}{llll}18 & 48 & 07 & 04\end{array}$
26	19410804	19360808	$\begin{array}{llll}19 & 29 & 08 & 13\end{array}$	$\begin{array}{llll}19 & 22 & 08 & 19\end{array}$	$\begin{array}{llll}19 & 15 & 08 & 25\end{array}$
27	$\begin{array}{llll}20 & 22 & 09 & 09\end{array}$	20140916	20050924	19540934	$1944 \quad 0943$
28	$\begin{array}{llll}21 & 05 & 10 & 12\end{array}$	$\begin{array}{lllll}20 & 55 & 10 & 21\end{array}$	$\begin{array}{lllll}20 & 44 & 10 & 31\end{array}$	$\begin{array}{llll}20 & 30 & 10 & 44\end{array}$	$\begin{array}{lllll}20 & 16 & 10 & 57\end{array}$
29	$\begin{array}{llll}21 & 50 & 11 & 11 \\ 22 & \end{array}$	$\begin{array}{llll}21 & 39 & 11 & 22\end{array}$	$\begin{array}{lllll}21 & 25 & 11 & 34\end{array}$	$\begin{array}{llll}21 & 10 & 11 & 50\end{array}$	$\begin{array}{llll}20 & 54 & 12 & 05\end{array}$
30	$\begin{array}{llll}22 & 37 & 12 & 07\end{array}$	$\begin{array}{llll}22 & 25 & 1218\end{array}$	$2211 \quad 1232$	$\begin{array}{llll}21 & 54 & 1248\end{array}$	$2137 \quad 1305$
Oct.					
1 a	$\begin{array}{llll}23 & 27 & 12 & 58 \\ & 13 & 44\end{array}$	$\begin{array}{lllll}23 & 15 & 13 & 10\end{array}$	$\begin{array}{llll}23 & 01 & 13 & 24 \\ 23 & 54 & 14 & 10\end{array}$	$\begin{array}{llll}22 & 44 & 13 & 41\end{array}$	$\begin{array}{llll}22 & 27 & 13 & 58\end{array}$
2	 00 i8 13 14 14	$\cdots{ }^{\circ} \mathrm{O}$	$\begin{array}{llll}23 & 54 & 14 & 10\end{array}$	$23 \begin{array}{llll}238 & 14 & 25\end{array}$	$\begin{array}{llll}23 & 22 & 14 & 42\end{array}$
3	$\begin{array}{lllll}00 & 18 & 14 & 27 \\ 01 & 11 & 15\end{array}$	$\begin{array}{llll}00 & 07 & 14 & 37\end{array}$		1504	1519
4	$\begin{array}{llll}01 & 11 & 15 & 05 \\ 02 & 04 & 15\end{array}$	$\begin{array}{llll}01 & 01 & 15 & 14\end{array}$	00050	$\stackrel{00}{00} 3 \dot{3} 515047$	$\begin{array}{lllll}\ddot{0} & \ddot{2} 2 & 15 & 150\end{array}$
5	$\begin{array}{llll}02 & 04 & 15 & 41\end{array}$	$\begin{array}{llll}01 & 56 & 15 & 48\end{array}$	$\begin{array}{llll}01 & 46 & 15 & 56\end{array}$	$\begin{array}{lllll}01 & 35 & 16 & 06\end{array}$	$\begin{array}{llll}01 & 23 & 1616\end{array}$
6	$\begin{array}{llll}02 & 58 & 16 & 15\end{array}$	$\begin{array}{lllll}02 & 52 & 16 & 19\end{array}$	$\begin{array}{llllll}02 & 45 & 16 & 26\end{array}$	$\begin{array}{lllll}02 & 36 & 16 & 32\end{array}$	$\begin{array}{lllll}02 & 28 & 16 & 39\end{array}$
7	$\begin{array}{llll}03 & 52 & 16 & 47 \\ 04 & 47\end{array}$	$\begin{array}{lllll}03 & 49 & 16 & 50\end{array}$	$\begin{array}{lllll}03 & 44 & 16 & 53\end{array}$	$\begin{array}{lllll}03 & 38 & 16 & 57\end{array}$	$\begin{array}{lllll}03 & 33 & 17 & 00\end{array}$
8	$\begin{array}{lllll}04 & 47 & 17 & 19\end{array}$	$\begin{array}{llllll}04 & 46 & 17 & 19\end{array}$	$\begin{array}{lllll}04 & 44 & 17 & 19\end{array}$	$\begin{array}{lllll}04 & 41 & 17 & 20\end{array}$	
9 -	$\begin{array}{lllll}05 & 43 & 17 & 51 \\ 05 & 40 & 18 & 23\end{array}$	05 44 17 48 0 43 18 19	$\begin{array}{llllll}05 & 45 & 17 & 46\end{array}$	$\begin{array}{lllll}05 & 46 & 17 & 43\end{array}$	$\begin{array}{llll}05 & 47 & 17 & 41\end{array}$
10	$\begin{array}{llll}06 & 40 & 18 & 23\end{array}$	$\begin{array}{llll}06 & 43 & 18 & 19\end{array}$	$\begin{array}{lllll}06 & 47 & 18 & 14\end{array}$	06521808	$\begin{array}{llll}06 & 56 & 18 & 03\end{array}$
11	$\begin{array}{lllll}07 & 37 & 18 & 59\end{array}$	$\begin{array}{llllll}07 & 43 & 18 & 52\end{array}$	$\begin{array}{lllll}07 & 50 & 18 & 45\end{array}$	$\begin{array}{lllll}07 & 58 & 18 & 35\end{array}$	$\begin{array}{lllll}08 & 06 & 18 & 27\end{array}$
12	08 37 19 38 0 36	$\begin{array}{llll}08 & 45 & 19 & 29\end{array}$	$\begin{array}{llllll}08 & 53 & 19 & 19\end{array}$	$\begin{array}{lllll}09 & 05 & 19 & 06\end{array}$	$\begin{array}{llll}09 & 16 & 18 & 55\end{array}$
13	$\begin{array}{llll}09 & 36 & 20 & 21 \\ 10 & 35 & 21 & 09\end{array}$	$\begin{array}{llll}09 & 46 & 20 & 10 \\ 10\end{array}$	$\begin{array}{llllll}09 & 57 & 19 & 58\end{array}$	$\begin{array}{lllll}10 & 12 & 19 & 43\end{array}$	$\begin{array}{lllll}10 & 26 & 19 & 28\end{array}$
14	$\begin{array}{llll}10 & 35 & 21 & 09\end{array}$	$1047 \quad 2057$	$\begin{array}{llll}11 & 01 & 20 & 44\end{array}$	$\begin{array}{llll}11 & 17 & 20 & 26\end{array}$	$\begin{array}{lllllllllllllllll}11 & 33 & 20 & 10\end{array}$
15	$\begin{array}{llll}11 & 34 & 22 & 02\end{array}$	$\begin{array}{lllll}11 & 46 & 21 & 50\end{array}$	$\begin{array}{lllll}12 & 00 & 21 & 36\end{array}$	$\begin{array}{lllll}12 & 18 & 21 & 18\end{array}$	
16 D	$\begin{array}{lllll}12 & 29 & 23 & 01\end{array}$	$\begin{array}{llll}12 & 42 & 22 & 49\end{array}$	$\begin{array}{llll}12 & 56 & 22 & 36\end{array}$	$\begin{array}{lllll}13 & 12 & 22 & 19\end{array}$	$\begin{array}{lllll}13 & 30 & 22 & 02\end{array}$
17	1322	$\begin{array}{lllll}13 & 33 & 23 & 54\end{array}$	$\begin{array}{llll}13 & 45 & 23 & 42\end{array}$	$\begin{array}{llll}14 & 01 & 23 & 27\end{array}$	$\begin{array}{llll}14 & 16 & 23 & 13\end{array}$
18	$\begin{array}{llll}14 & 10 & 00 & 05\end{array}$	1419	1430	1443	1455
19	14550110	150100102	$\begin{array}{llll}15 & 09 & 00 & 52 \\ 15 & 45\end{array}$	$\begin{array}{llll}15 & 19 & 00 & 40\end{array}$	$\begin{array}{lllll}15 & 28 & 00 & \ddot{2} 9\end{array}$
20	$\begin{array}{llll}15 & 36 & 02 & 18\end{array}$	$\begin{array}{lllll}15 & 40 & 02 & 12\end{array}$	15450205	$\begin{array}{lllll}15 & 50 & 01 & 57\end{array}$	$15 \quad 560149$
21	$\begin{array}{lllll}16 & 15 & 03 & 26\end{array}$	$\begin{array}{lllll}16 & 16 & 03 & 23\end{array}$	$\begin{array}{llll}16 & 19 & 03 & 20\end{array}$	$\begin{array}{lllll}16 & 20 & 03 & 15\end{array}$	$\begin{array}{lllll}16 & 22 & 03 & 11\end{array}$
22	$\begin{array}{lllll}16 & 54 & 04 & 34\end{array}$	16520434	$\begin{array}{llll}16 & 51 & 04 & 34\end{array}$	16490434	16470434
23 (1)	$\begin{array}{llll}17 & 33 & 0542\end{array}$	$17 \quad 29 \quad 0545$	$\begin{array}{llll}17 & 24 & 05 & 48\end{array}$	$\begin{array}{llll}17 & 18 & 05 & 52\end{array}$	$\begin{array}{llll}17 & 13 & 05 & 56\end{array}$
24	$\begin{array}{llll}18 & 13 & 06 & 48 \\ 18 & 55 & 07 & 53\end{array}$	188060654	$\begin{array}{llll}17 & 58 & 07 & 01 \\ 18 & 35 & 08 & 11\end{array}$	$\begin{array}{llll}17 & 49 & 07 & 09\end{array}$	$\begin{array}{llll}17 & 40 & 07 & 16\end{array}$
25	$\begin{array}{llll}18 & 55 & 07 & 53\end{array}$	$18 \quad 46 \quad 0802$	$\begin{array}{lllll}18 & 35 & 08 & 11\end{array}$	$\begin{array}{llll}18 & 23 & 08 & 23\end{array}$	$\begin{array}{llll}18 & 11 & 08 & 33\end{array}$
26	$\begin{array}{lllll}19 & 40 & 08 & 56\end{array}$	$\begin{array}{lllll}19 & 29 & 09 & 06\end{array}$	$\begin{array}{lllll}19 & 16 & 09 & 17\end{array}$	$\begin{array}{llll}19 & 02 & 09 & 32\end{array}$	$\begin{array}{llll}18 & 46 & 09 & 46\end{array}$
27	$2027 \quad 0954$	$\begin{array}{llll}20 & 15 & 10 & 06\end{array}$	$\begin{array}{lllll}20 & 02 & 10 & 19\end{array}$	$1945 \quad 1036$	$19 \begin{array}{llll}18 & 28 & 10 & 52\end{array}$
28	$2117 \quad 1049$	21051101	$\begin{array}{lllll}20 & 51 & 11 & 15\end{array}$	$\begin{array}{llll}20 & 33 & 11 & 32\end{array}$	201611150
29 30	$\begin{array}{llll}22 & 09 & 11 & 39 \\ 23 & 02 & 12\end{array}$	$\begin{array}{llll}21 & 57 & 11 & 50 \\ 22 & 51 & 12\end{array}$	$\begin{array}{lllll}21 & 43 & 12 & 04 \\ 22 & 39 & 12 & 47\end{array}$	$1 \begin{array}{llll}21 & 27 & 12 & 21 \\ 22 & 23 & 13 & \end{array}$	$\begin{array}{lllll}21 & 10 & 12 & 39\end{array}$
30	$\begin{array}{llll}23 & 02 & 12 & 24\end{array}$	$2251 \quad 1234$	$\begin{array}{llll}22 & 39 & 12 & 47\end{array}$	$\begin{array}{lllll}22 & 23 & 13 & 03\end{array}$	
31 ©	$\begin{array}{llll}23 & 55 & 13 & 04\end{array}$	$\begin{array}{llll}23 & 46 & 13 & 13\end{array}$	$\begin{array}{lllll}23 & 36 & 13 & 25\end{array}$	$\begin{array}{llll}23 & 23 & 13 & 38\end{array}$	$\begin{array}{llllll}23 & 10 & 13 & 52\end{array}$

DATE	Latitude 35° Moon	Latitude 40° Moon	Latitude 45° Moon	Latitude 50° Moon	Latitude 54° Moon
	Rise Set				
Nov.	h m h m	$\mathrm{h} \mathrm{~m} \mathrm{~h} \mathrm{~m}$	h m h m	$\mathrm{h} \mathrm{~m} \quad \mathrm{~h} \quad \mathrm{~m}$	$\begin{array}{llll} \mathrm{h} & \mathrm{~m} & \mathrm{~h} & \mathrm{~m} \\ 14 \end{array}$
	$\dot{0} 0$ $\ddot{4} 9$ 13 14 41	$\begin{array}{ccc} \ddot{0} 0 & 13 & 13 \\ 4 & 49 \\ 24 \end{array}$	$\begin{array}{lll} \ddot{0} \dot{3} \dot{3} & 13 & 14 \\ \hline 148 \\ \hline 18 \end{array}$	$\begin{array}{lll} \ddot{0} \dot{2} \dot{24} & 14 & 14 \\ \hline 0 \end{array}$	$\begin{array}{lll} 00 & 14 & 14 \\ \hline 0 & 14 & 44 \end{array}$
3	$\begin{array}{llll}01 & 43 & 14 & 47\end{array}$	$\begin{array}{lllll}01 & 39 & 14 & 51\end{array}$	$\begin{array}{llllll}01 & 33 & 14 & 55\end{array}$	$\begin{array}{llll}01 & 26 & 15 & 15 \\ 00\end{array}$	$\begin{array}{llllll}01 & 19 & 15 & 05\end{array}$
4	$\begin{array}{llllllllll}02 & 38 & 15 & 19\end{array}$	$\begin{array}{llll}02 & 35 & 15 & 20\end{array}$	$\begin{array}{lllll}02 & 33 & 15 & 22\end{array}$	$\begin{array}{lllll}02 & 28 & 15 & 24 \\ 03 & 38 & 15\end{array}$	
5	$\begin{array}{llll}03 & 34 & 15 & 51\end{array}$	$\begin{array}{llll}03 & 33 & 15 & 49\end{array}$	$\begin{array}{llll}03 & 33 & 15 & 49\end{array}$	$\begin{array}{llll}03 & 33 & 15 & 47\end{array}$	$\begin{array}{llll}03 & 32 & 1545\end{array}$
6	$\begin{array}{lllll}04 & 30 & 16 & 23\end{array}$	$\begin{array}{lllll}04 & 33 & 16 & 20\end{array}$	$\begin{array}{lllll}04 & 35 & 16 & 16\end{array}$	$\begin{array}{lllll}04 & 38 & 16 & 10\end{array}$	$\begin{array}{llll}04 & 42 & 16 & 07\end{array}$
7	$\begin{array}{llll}05 & 28 & 16 & 58\end{array}$	0533165	$\begin{array}{llll}05 & 38 & 16 & 45 \\ 06 & 48\end{array}$	$\begin{array}{llll}05 & 45 & 16 & 37\end{array}$	$\begin{array}{lllll}05 & 52 & 16 & 29 \\ 07 & 53 & 16 & 55\end{array}$
8 산	$\begin{array}{llll}06 & 28 & 17 & 36 \\ 07 & 28 & 178\end{array}$	$\begin{array}{lllll}06 & 35 & 17 & 27\end{array}$	$\begin{array}{lllll}06 & 43 & 17 & 18 \\ 07 & 49 & 17 & 56\end{array}$	$\begin{array}{llll}06 & 53 & 17 & 07 \\ 08 & 02 & 17 & 41\end{array}$	$\begin{array}{lllll}07 & 03 & 16 & 55 \\ 08 & 15 & 17 & 28\end{array}$
9 10	$\begin{array}{llll}07 & 28 & 18 & 18 \\ 08 & 30 & 19 & 05\end{array}$	$\begin{array}{llll}07 & 37 & 18 & 07 \\ 08 & 40 & 18 & 53\end{array}$	$\begin{array}{llll}07 & 49 & 17 & 56 \\ 08 & 53 & 18 & 39\end{array}$	$\begin{array}{llll}08 & 02 & 17 & 41 \\ 09 & 10 & 18 & 23\end{array}$	$\begin{array}{lllll}08 & 15 & 17 & 28 \\ 09 & 25 & 18 & 07\end{array}$
11	$\begin{array}{lllll}09 & 29 & 19 & 58\end{array}$	$0941 \quad 1945$	$09 \begin{array}{llll}55 & 19 & 31\end{array}$	$\begin{array}{llll}10 & 13 & 19 & 13\end{array}$	$\begin{array}{llllllllllllllll}10 & 31 & 18 & 56\end{array}$
12	$\begin{array}{llll}10 & 26 & 20 & 55\end{array}$	$1039 \quad 2043$	$10 \begin{array}{llll}10 & 53 & 20 & 29\end{array}$	11111 112012	$\begin{array}{lllll}11 & 29 & 19 & 54\end{array}$
13	$\begin{array}{llll}11 & 20 & 21 & 57\end{array}$	$\begin{array}{llll}11 & 32 & 21 & 46\end{array}$	$\begin{array}{llll}11 & 45 & 21 & 33\end{array}$	$\begin{array}{lllll}12 & 01 & 21 & 18\end{array}$	$\begin{array}{lllll}12 & 18 & 21 & 01\end{array}$
14	$1209 \quad 2302$	$\begin{array}{llll}12 & 19 & 22 & 52\end{array}$	$\begin{array}{lll}12 & 31 & 22\end{array}$	$\begin{array}{llll}12 & 45 & 22 & 28\end{array}$	$\begin{array}{lllll}12 & 58 & 22 & 16\end{array}$
15 ?	1254	1302	$\begin{array}{llll}13 & 10 & 23 & 53\end{array}$	$\begin{array}{llll}13 & 22 & 23 & 43\end{array}$	$\begin{array}{llll}13 & 32 & 23 & 34\end{array}$
16	$\begin{array}{llll}13 & 35 & 00 & 08\end{array}$	13400000	1346	1353	$\begin{array}{llll}14 & 00 \\ 14 & 0 \\ 0\end{array}$
17	$\begin{array}{llll}14 & 14 & 01 & 14\end{array}$	$\begin{array}{lllll}14 & 16 & 01 & 09\end{array}$	$\begin{array}{lllll}14 & 19 & 01 & 05\end{array}$	$\begin{array}{lllll}14 & 23 & 00 & 59\end{array}$	$\begin{array}{llll}14 & 26 & 00 & 54\end{array}$
18	$\begin{array}{llll}14 & 51 & 02 & 20\end{array}$	1451	$\begin{array}{lllll}14 & 50 & 02 & 17 \\ 15\end{array}$	$\begin{array}{lllll}14 & 50 & 02 & 15 \\ 15 & 18 & 03\end{array}$	$\begin{array}{lllll}14 & 50 & 02 & 14 \\ 15 & 13 & 03 & 33\end{array}$
19	$\begin{array}{llll}15 & 28 & 03 & 25\end{array}$	$\begin{array}{lllll}15 & 25 & 03 & 26 \\ 16 & 01 & 04\end{array}$	$\begin{array}{lllll}15 & 22 & 03 & 29 \\ 15 & 54 & 04 & 40\end{array}$	$\begin{array}{llll}15 & 18 & 03 & 31 \\ 15 & 46 & 04 & 46\end{array}$	$\begin{array}{llll}15 & 13 & 03 & 33 \\ 15 & 39 & 04 & 52\end{array}$
20	16060431	16010435	$15 \quad 54$	15460446	$15 \begin{array}{llll}159 & 04 & 52\end{array}$
21	$\begin{array}{llll}16 & 47 & 05 & 35\end{array}$	$\begin{array}{llll}16 & 39 & 05 & 42\end{array}$	$\begin{array}{lllll}16 & 30 & 05 & 50\end{array}$	$\begin{array}{lllll}16 & 18 & 06 & 00\end{array}$	$\begin{array}{llll}16 & 07 & 06 & 11\end{array}$
22 (3)	$\begin{array}{lllll}17 & 30 & 06 & 39 \\ 18 & 16 & 07 & 39\end{array}$	$\begin{array}{llll}17 & 20 & 06 & 47 \\ 18\end{array}$	$\begin{array}{llll}17 & 08 & 06 & 59 \\ 17 & 52 & 08 & 04\end{array}$	$\begin{array}{lllll}16 & 54 & 07 & 12 \\ 17 & 35 & 08 & 19\end{array}$	$\begin{array}{lllll}16 & 40 & 07 & 25 \\ 17 & 19 & 08 & 35\end{array}$
23	$\begin{array}{llll}18 & 16 & 07 & 39 \\ 19 & 06 & 08 & 37\end{array}$	$\begin{array}{llll}18 & 05 & 07 & 51 \\ 18 & 54 & 08 & 49\end{array}$		$\begin{array}{lllll}17 & 35 & 08 & 19 \\ 18 & 22 & 09 & 20\end{array}$	$\begin{array}{lllll}17 & 19 & 08 & 35 \\ 18 & 09 & 38\end{array}$
24 25	$\begin{array}{llll}19 & 06 & 08 & 37 \\ 19 & 57 & 09 & 30\end{array}$	$\begin{array}{llll}18 & 54 & 08 & 49 \\ 19 & 45 & 09 & 42\end{array}$		$\begin{array}{lllll}18 & 22 & 09 & 20 \\ 19 & 14 & 10 & 14\end{array}$	$\begin{array}{lllll}18 & 56 & 10 & 32\end{array}$
26	$\begin{array}{lllll}20 & 50 & 10 & 18\end{array}$	$\begin{array}{lllll}20 & 39 & 10 & 29\end{array}$	$\begin{array}{lllll}20 & 26 & 10 & 43\end{array}$	$\begin{array}{lllll}20 & 10 & 10 & 59\end{array}$	$\begin{array}{lllll}19 & 54 & 11 & 16\end{array}$
27	$\begin{array}{lllll}21 & 44 & 11 & 01\end{array}$	213511111	$\begin{array}{lllll}21 & 23 & 11 & 23\end{array}$	$\begin{array}{lllll}21 & 09 & 11 & 38\end{array}$	$20 \begin{array}{lllllllll}105 & 11 & 52\end{array}$
28	223811139	$2231 \quad 1148$	$22.21{ }^{2} 21158$	$\begin{array}{lllll}22 & 10 & 12 & 11\end{array}$	
29	$\begin{array}{llll}23 & 32 & 1215\end{array}$	$\begin{array}{llll}23 & 27 & 12 & 21\end{array}$	$\begin{array}{llll}23 & 20 & 12 & 29\end{array}$	$\begin{array}{llll}23 & 11 & 12 & 39\end{array}$	$\begin{array}{llll}23 & 04 & 12 & 49\end{array}$
30 ©	1247	1252	1258	1304	1310
Dec.					
1					$\begin{array}{lllll}00 & 09 & 13 & 31 \\ 01 & 15 & 13 & 50\end{array}$
2	$\begin{array}{lllll}01 & 21 & 13 & 49 \\ 02 & 17 & 14 & 21\end{array}$	$\begin{array}{lllll}01 & 20 & 13 & 50 \\ 02 & 18 & 14 & 19\end{array}$	$\begin{array}{lllll}01 & 19 & 13 & 50 \\ 02 & 20 & 14 & 17\end{array}$	$\begin{array}{llll}01 & 16 & 13 & 14 \\ 02 & 21 & 14 \\ 13\end{array}$	$\begin{array}{llll}02 & 15 & 14 & 10 \\ 02 & 22 & 10\end{array}$
4	$\begin{array}{llll}03 & 14 & 14 & 54\end{array}$	$\begin{array}{lllll}03 & 18 & 14 & 50\end{array}$	$\begin{array}{lllll}03 & 22 & 14 & 44\end{array}$	$\begin{array}{llll}03 & 27 & 14 & 38\end{array}$	$\begin{array}{lllll}03 & 32 & 14 & 32\end{array}$
5	$\begin{array}{lllll}04 & 13 & 15 & 31\end{array}$	$\begin{array}{lllll}04 & 19 & 15 & 24\end{array}$	$\begin{array}{lllll}04 & 26 & 15 & 15\end{array}$	$\begin{array}{lllll}04 & 34 & 15 & 05\end{array}$	$\begin{array}{llll}04 & 43 & 1456\end{array}$
6	$\begin{array}{llll}05 & 14 & 16 & 11\end{array}$	$\begin{array}{llll}05 & 22 & 16 & 02\end{array}$	$\begin{array}{lllll}05 & 32 & 15 & 51\end{array}$	$\begin{array}{lllll}05 & 44 & 15 & 38\end{array}$	$\begin{array}{lllll}05 & 56 & 15 & 25\end{array}$
7 .	$\begin{array}{lllll}06 & 16 & 16 & 56\end{array}$	$\begin{array}{lllll}06 & 26 & 16 & 45\end{array}$	$\begin{array}{lllll}06 & 39 & 16 & 33\end{array}$	$\begin{array}{llll}06 & 53 & 16 & 17\end{array}$	$\begin{array}{llll}07 & 09 & 16 & 02\end{array}$
8	$\begin{array}{llll}07 & 18 & 17 & 48 \\ 08 & 19 & 18\end{array}$	$\begin{array}{lllll}07 & 30 & 17 & 36\end{array}$	$\begin{array}{lllll}07 & 44 & 17 & 22 \\ 08 & 46 & 18 & 19\end{array}$	$\begin{array}{llll}08 & 01 & 17 & 04 \\ 09\end{array}$	$\begin{array}{lllll}08 & 19 & 16 & 47 \\ 09 & 2 & 17 & 43\end{array}$
9	$\begin{array}{llll}08 & 19 & 18 & 46\end{array}$	$\begin{array}{lllll}08 & 31 & 18 & 33\end{array}$	$\begin{array}{lllll}08 & 46 & 18 & 19\end{array}$	$\begin{array}{llll}09 & 04 & 18 & 00\end{array}$	$\begin{array}{llll}09 & 22 & 17 & 43 \\ 10 & 16 & 18\end{array}$
10	$\begin{array}{llll}09 & 15 & 19 & 48\end{array}$	$09 \quad 28 \quad 1936$	$\begin{array}{lllll}09 & 42 & 19 & 22\end{array}$	095951906	$\begin{array}{llll}10 & 16 & 18 & 49\end{array}$
11	$\begin{array}{llll}10 & 08 & 20 & 53\end{array}$	$\begin{array}{llll}10 & 19 & 20 & 43\end{array}$	$\begin{array}{lllll}10 & 31 & 20 & 32\end{array}$	$\begin{array}{lllll}10 & 46 & 20 & 17\end{array}$	$\begin{array}{llll}11 & 01 & 20 & 03 \\ 11 & 37 & 21 & \end{array}$
12	$\begin{array}{llll}10 & 55 & 22 & 00\end{array}$	$\begin{array}{lllll}11 & 03 & 21 & 52 \\ 11 & \end{array}$	$\begin{array}{llll}11 & 13 & 21 & 43 \\ 11 & 50 & 22 & 55\end{array}$	$1 \begin{array}{lllll}11 & 25 & 21 & 32 \\ 11 & 59 & 22 & 48\end{array}$	$\begin{array}{lllll}11 & 37 & 21 & 21 \\ 12 & 07 & 22 & 41\end{array}$
13	1137	$\begin{array}{lllll}11 & 43 & 23 & 01\end{array}$	$\begin{array}{lllll}11 & 50 \\ 12 & 23 & 22 & 55 \\ 12 & 5\end{array}$	$\begin{array}{llllll}11 & 59 & 22 & 48 \\ 12 & 28 & .\end{array}$	$\begin{array}{llll}12 & 07 \\ 12 & 32 & 41\end{array}$
14	$\begin{array}{llll}12 & 16 & \ddot{0} \\ 12 & 52 & 00 \\ 12\end{array}$	$\begin{array}{lllll}12 & 19 & \square 9 & \ddot{0} & \ddot{0} 9\end{array}$	12 23 0 0 12 54 00 0 7	$\begin{array}{lllll}12 & 55 & 0 & 00 & 0 \\ 12\end{array}$	$\begin{array}{llll}12 & 57 & 000 & \ddot{0} 0\end{array}$
16	$\begin{array}{lllll}13 & 29 & 01 & 16\end{array}$	$\begin{array}{llll}13 & 27 & 01 & 17\end{array}$	$\begin{array}{llll}13 & 24 & 01 & 18\end{array}$	$\begin{array}{llll}13 & 22 & 01 & 18\end{array}$	$\begin{array}{llll}13 & 20 & 01 & 19\end{array}$
17	$\begin{array}{lllll}14 & 06 & 02 & 20\end{array}$	$\begin{array}{llll}14 & 01 & 02 & 24\end{array}$	$\begin{array}{llll}13 & 56 & 02 & 27\end{array}$	$\begin{array}{lllll}13 & 49 & 02 & 32\end{array}$	$\begin{array}{llll}13 & 43 & 02 & 37\end{array}$
18	14440323	$\begin{array}{lllll}14 & 37 & 03 & 30 \\ 15\end{array}$	$\begin{array}{lllll}14 & 28 & 03 & 36\end{array}$	$\begin{array}{lllll}14 & 19 & 03 & 45 \\ 14 & 5 & 04\end{array}$	$\begin{array}{lllll}14 & 09 & 03 & 54 \\ 14 & 39 & 05 & 08\end{array}$
19	$\begin{array}{llll}15 & 25 & 04 & 26 \\ 16 & 09 & 05 & 27\end{array}$	$\begin{array}{lllll}15 & 16 & 04 & 34 \\ 15 & 58 & 05 & 38\end{array}$	$\begin{array}{lllll}15 & 05 & 04 & 45 \\ 15 & 45 & 05 & 49\end{array}$		
20	16 09 05	$\begin{array}{lllll}15 & 58 & 05 & 38\end{array}$	$\begin{array}{llll}15 & 45 & 05 & 49\end{array}$	$15 \quad 30 \quad 0605$	$\begin{array}{llll}15 & 14 & 06 & 19\end{array}$
21 (3)	$\begin{array}{llll}16 & 56 & 06 & 25\end{array}$	$\begin{array}{lllll}16 & 44 & 06 & 37\end{array}$	$\begin{array}{llll}16 & 30 & 06 & 51 \\ 17 & \end{array}$	$\begin{array}{lllll}16 & 13 & 07 & 08\end{array}$	$\begin{array}{lllll}15 & 56 & 07 & 24\end{array}$
22	$\begin{array}{llll}17 & 47 & 07 & 20\end{array}$	$\begin{array}{lllll}17 & 34 & 07 & 33 \\ 18 & 27 & 08 & 23\end{array}$	$\begin{array}{lllll}17 & 20 & 07 & 47 \\ 18 & 14 & 08 & 36\end{array}$	$\begin{array}{lllll}17 & 02 & 08 & 05 \\ 17 & 57 & 08 & 54\end{array}$	$\begin{array}{lllll}16 & 44 & 08 & 22 \\ 17 & 40 & 09 & 11\end{array}$
23	$\begin{array}{lllll}18 & 39 & 08 & 11 \\ 19 & 33 & 08 & 56\end{array}$	$\begin{array}{llll}18 & 27 & 08 \\ 19 & 23 & 23 \\ 09 & 07\end{array}$	$\begin{array}{lllll}18 & 14 & 08 & 36 \\ 19 & 10 & 09 & 20\end{array}$	$\begin{array}{llll}17 & 57 & 08 & 54 \\ 18 & 55 & 09 & 36\end{array}$	$\begin{array}{lllll}17 & 40 & 09 & 11 \\ 18 & 40 & 51\end{array}$
24	19 20 3308080856	$\begin{array}{lllll}19 & 23 & 09 & 07 \\ 20 & 19 & 09 & 46\end{array}$	$\begin{array}{lllll}19 & 10 & 09 & 20 \\ 20 & 08 & 58\end{array}$	$\begin{array}{llll}19 & 56 & 10 & 11\end{array}$	
26	$\begin{array}{lllll}21 & 22 & 10 & 13\end{array}$	$\begin{array}{lllll}21 & 16 & 10 & 22\end{array}$	$\begin{array}{llll}21 & 07 & 10 & 30\end{array}$	$\begin{array}{lllll}20 & 57 & 10 & 42\end{array}$	$2048 \quad 1052$
27	$\begin{array}{llll}22 & 16 & 10 & 48\end{array}$	$\begin{array}{lllll}22 & 12 & 10 & 53\end{array}$	220611100	$\begin{array}{lllll}21 & 59 & 11 & 08\end{array}$	$\begin{array}{lllll}21 & 53 & 11 & 15\end{array}$
28	$\begin{array}{lllll}23 & 10 & 11 & 19\end{array}$	$\begin{array}{lllll}23 & 08 & 11 & 23\end{array}$	23 05 11 26	$\begin{array}{lllll}23 & 02 & 11 & 32\end{array}$	$\begin{array}{llll}22 & 59 & 11 & 36\end{array}$
29 ©	1149	$\begin{array}{lllll}\square 00 & \ddot{0} 5 & 11 & 11 & 19\end{array}$	$\square 00$ $\dot{0} 5$ 112 18	$\dot{0} 0$ 0 04 11 11 54	
30	$\begin{array}{llll}00 & 05 & 12 & 20\end{array}$	$\begin{array}{llll}00 & 05 & 12 & 19\end{array}$	00051218	$0064 \quad 12 \quad 17$	
31	$\begin{array}{llll}01 & 01 \quad 12 \quad 52\end{array}$	01021248	$\begin{array}{llll}01 & 06 & 1245\end{array}$	$\begin{array}{llll}01 & 09 & 12 & 39\end{array}$	$01 \quad 12 \quad 12 \quad 35$

THE PLANETS FOR 1961

THE SUN

The diagram represents the sun-spot activity of the current 19th cycle, as far as the final numbers are available. The present cycle began at the minimum in April 1954. For comparison, cycle 18 which began February 1944 (solid curve), and the mean of cycles 8 to 18 (dashed curve), are placed with their minima on April 1954.

The present cycle reached its maximum in January 1958 and since then has been declining slowly.

The observations for sun-spot numbers may be performed by devoted amateur astronomers with small-sized telescopes (suitably protected). Here is a field for amateurs who wish to make a valuable contribution to solar astronomy.

Mercury is exceptional in many ways. It is the planet nearest the sun and travels fastest in its orbit, its speed varying from 23 mi . per sec. at aphelion to 35 mi. per sec . at perihelion. The amount of heat and light from the sun received by it per square mile is, on the average, 6.7 times the amount received by the earth. Its period of rotation on its axis is believed to be the same as its period of revolution about the sun, which is 88 days.

Mercury's orbit is well within that of the earth, and the planet, as seen from the earth, appears to move quickly from one side of the sun to the other several times in the year. Its quick motion earned for it the name it bears. Its greatest elongation (i.e., its maximum angular distance from the sun) varies between 18° and 28°, and on such occasions it is visible to the naked eye for about two weeks.

When the elongation of Mercury is east of the sun it is an evening star, setting soon after the sun. When the elongation is west, it is a morning star and rises shortly before the sun. Its brightness when it is treated as a star is considerable but it is always viewed in the twilight sky and one must look sharply to see it.

The most suitable times to observe Mercury are at an eastern elongation in the spring and at a western elongation in the autumn. The dates of greatest elongation this year, together with the planet's separation from the sun and its stellar magnitude, are given in the following table:

Maximum Elongations of Mercury during 1961

Elong. East - Evening Star			Elong. West - Morning Star			
Date	Dist.	Mag.	Date		Dist.	Mag.
Feb. 6	18°	-0.4	Mar.		28°	+0.5
May 31	23°	+0.6	July		20°	+0.5
Sept. 28	26°	+0.3	Nov.	7	19°	-0.3

The most favourable elongations to observe are: in the evening, May 31 ; in the morning, Nov. 7. At these times Mercury looks like a half-moon in a telescope. On May 31 and Nov. 7 it is respectively about $8^{\prime \prime}$ and $7^{\prime \prime}$ in apparent diameter and about 77 and 92 million miles from the earth.

Venus is the next planet in order from the sun. In size and mass it is almost a twin of the earth. Venus being within the earth's orbit, its apparent motion is similar to Mercury's but much slower and more stately. The orbit of Venus is almost circular with radius of 67 million miles, and its orbital speed is 22 miles per sec.

On Jan. 1, 1961, Venus is in the evening sky and crosses the meridian about 3 hours after the sun. Its declination is -15° and it appears in the south-southwestern sky at sunset. It is brilliant, its stellar magnitude being -3.8. It reaches greatest elongation east, 47°, on Jan. 29 ; its declination is -1° and it transits
the meridian 3 hours after the sun. Greatest brilliancy, mag. -4.3 , is attained on Mar. 5. By Apr. 10 it is in inferior conjunction with the sun, and becomes a morning star. It again attains greatest brilliancy, mag. -4.2, on May 16. It reaches greatest elongation west, 46°, on June 19 ; its declination is $+13^{\circ}$, and it transits about 3 hours before the sun. It remains in the morning sky for the rest of the year, getting close to the sun by Dec. 31.

With the exception of the sun and moon, Venus is the brightest object in the sky. Its brilliance is largely due to the dense clouds which cover the surface of the planet. They reflect well the sun's light; but they also prevent the astronomer from detecting any solid object on the surface of the body. If such could be observed it would enable him to determine the planet's rotation period.

MARS

The orbit of Mars is outside that of the earth and consequently its planetary phenomena are quite different from those of the two inferior planets discussed above. Its mean distance from the sun is 141 million miles and the eccentricity of its orbit is 0.093 , and a simple computation shows that its distance from the sun ranges between 128 and 154 million miles. Its distance from the earth varies from 35 to 235 million miles and its brightness changes accordingly. When Mars is nearest it is conspicuous in its fiery red, but when farthest away it is no brighter than Polaris. Unlike Venus, its atmosphere is very thin, and features on the solid surface are distinctly visible. Utilizing them its rotation period of 24 h .37 m . has been accurately determined.

The sidereal, or true mechanical, period of revolution of Mars is 687 days; and the synodic period (for example, the interval from one opposition to the next one) is 780 days. This is the average value; it may vary from 764 to 810 days. At the opposition on Sept. 10, 1956, the planet was closer to the earth than it will be for some years. The last opposition was on Dec. 30, 1960; the next on Feb. 4, 1963

On Jan. 1, 1961 Mars is in Gemini and is just rising in the north-eastern sky at sunset; its stellar magnitude is -1.3 . It remains in the evening sky until it comes into conjunction with the sun on Dec. 14. On Dec. 31 it is in the morning sky but is too close to the sun for observation. For its position throughout the year see the map.

JUPITER

Jupiter is the giant of the family of the sun. Its mean diameter is 87,000 miles and its mass is $2 \frac{1}{2}$ times that of all the rest of the planets combined! Its mean distance is 483 million miles and the revolution period is 11.9 years. This planet is known to possess 12 satellites, the last discovered in 1951 (see p. 9). Not so long ago it was generally believed that the planet was still cooling down from its original high temperature, but from actual measurements of the radiation from it to the earth it has been deduced that the surface is at about $-200^{\circ} \mathrm{F}$. The spectroscope shows that its atmosphere contains ammonia and methane.

Jupiter is a fine object for the telescope. Many details of the cloud belts as well as the flattening of the planet, due to its short rotation period, are visible, and the phenomena of its satellites provide a continual interest.

On Jan. 1, 1961, Jupiter is close to the sun in the evening sky in the constellation Sagittarius; by Jan. 5 it is in conjunction with the sun and then emerges in the

morning sky. It comes into opposition with the sun on July 25, when it moves into the evening sky and is visible all night. It is then in Capricornus, with magnitude -2.3. It retrogrades from May 25 to Sept. 23 (see map). On Dec. 31 it is in Capricornus, and is low in the south-western sky at sunset; its magnitude has faded to -1.6 . During 1961 Jupiter overtakes Saturn, conjunction occurring on Feb. 18. Note: on the map, circles with vertical lines denote retrograde motion.

SATURN

Saturn was the outermost planet known until modern times. In size it is a good second to Jupiter. In addition to its family of nine satellites, this planet has a unique system of rings, and it is one of the finest of celestial objects in a good telescope. The plane of the rings makes an angle of 27° with the plane of the planet's orbit, and twice during the planet's revolution period of $29 \frac{1}{2}$ years the rings appear to open out widest; then they slowly close in until, midway between the maxima, the rings are presented edgewise to the sun or the earth, at which times they are invisible. The rings were edgewise in 1950 , and will be again in 1966; the northern face of the rings was at maximum in 1958 and the southern will be in 1973.
On Jan. 1, 1961, Saturn is close to the sun in the evening sky, and by Jan. 11 is in conjunction with the sun. On Feb. 18 Saturn is overtaken by Jupiter. It reaches opposition with the sun on July 19, when its stellar magnitude is +0.3 . It retrogrades from May 9 to Sept. 27 (see map). On Dec. 31 it is near the western edge of Capricornus, and is low in the south-western sky at sunset (mag. +0.8). Jupiter is higher in the sky, about ten degrees away. Note: on the map, circles with vertical lines denote retrograde motion.

Uranus was discovered in 1781 by Sir William Herschel by means of a $6 \frac{1}{4}$-in. mirror-telescope made by himself. The object did not look just like a star and he observed it again four days later. It had moved amongst the stars, and he assumed it to be a comet. He could not believe that it was a new planet. However, computation later showed that it was a planet nearly twice as far from the sun as Saturn. Its period of revolution is 84 years and it rotates on its axis in about 11 hours. Its five satellites are visible only in a large telescope.
During 1961 Uranus is in Leo (see map). At the beginning of the year it is in the morning sky and is retrograding (direct motion is resumed on Apr. 29). On

Feb. 12 it is in opposition to the sun and is above the horizon all night; its apparent diameter is $3.9^{\prime \prime}$ and its stellar magnitude is +5.7 . By the time of conjunction on Aug. 19 its magnitude has faded to +5.9 . It is in the morning sky for the rest of the year, passing close to Regulus in October. It is to be noted that Mars passes close to the planet on June 15.

Neptune was discovered in 1846 after its existence in the sky had been predicted from independent calculations by Leverrier in France and Adams in England. It caused a sensation at the time. Its distance from the sun is 2791 million miles and its period of revolution is 165 years. A satellite was discovered in 1846 soon after the planet. A second satellite was discovered by G. P. Kuiper at the McDonald Observatory on May 1, 1949. Its magnitude is about 19.5, its period about a year, and diameter about 200 miles. It is named Nereid.

During 1961 Neptune is in Libra (see map). It is in opposition to the sun on Apr. 30, when it is above the horizon all night. Its stellar magnitude is then +7.70 , and during the year it fades slightly to +7.84 . Thus it is too faint to be seen with the naked eye. In the telescope it shows a greenish tint and an apparent diameter of from $2.5^{\prime \prime}$ to $2.3^{\prime \prime}$. It is in conjunction with the sun on Nov. 3 and moves into the morning sky for the rest of the year.

PLUTO

Pluto, the most distant known planet, was discovered at the Lowell Observatory in 1930 as a result of an extended search started two decades earlier by Percival Lowell. The faint star-like image was first detected by Clyde Tombaugh by comparing photographs taken on different dates. Further observations confirmed that the object was a distant planet. Its mean distance from the sun is 3671 million miles and its revolution period is 248 years. It appears as a 15 th mag. star in the constellation Leo. It is in opposition to the sun on Feb. 25, at which time its astrometric position is R.A. $10^{\mathrm{h}} 54^{\mathrm{m}}$, Dec. $+21^{\circ} 11^{\prime}$.

THE SKY MONTH BY MONTH

By J. F. Heard

THE SKY FOR JANUARY, 1961
Positions of the sun and planets are given for 0 h Universal Time.
The times of transit at the 75 th meridian are given in local mean time, 0 h at midnight; to change to Standard Time, see p. 10. Estimates of altitude are for an observer in latitude $45^{\circ} \mathrm{N}$.

The Sun-During January the sun's R.A. increases from 18h 45 m to 20 h 57 m and its Decl. changes from $23^{\circ} 02^{\prime} \mathrm{S}$. to $17^{\circ} 13^{\prime} \mathrm{S}$. The equation of time changes from -3 m 22 s to -13 m 36 s . The earth is in perihelion or closest to the sun on the 2 nd .

For changes in the length of the day, see p. 13.
The Moon-For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page. Times of moonrise and moonset are given on p. 20.

Mercury on the 15 th is in R.A. 20 h 12 m , Decl. $22^{\circ} 08^{\prime}$ S., and transits at 12 h 38 m . It is too close to the sun for observation, being in superior conjunction on the 5 th.

Venus on the 15 th is in R.A. 22 h 51 m , Decl. $8^{\circ} 11^{\prime}$ S., mag. -3.9 , and transits at 15 h 14 m . It is a brilliant evening star, dominating the south-western sky for about three hours after sunset. On the evening of the 19th it is very close to the moon. Greatest eastern elongation is on the 29th.

Mars on the 15 th is in R.A. 6 h 14 m , Decl. $27^{\circ} 13^{\prime}$ N., mag. -1.0 , and transits at 22 h 32 m . In Gemini, it has risen before sunset and is visible all night.

Jupiter on the 15 th is in R.A. 19 h 15 m , Decl. $22^{\circ} 26^{\prime}$ S., and transits at 11 h 36 m . It is in conjunction on the 5 th , and is too close to the sun for observation.

Saturn on the 15 th is in R.A. 19 h 32 m , Decl. $21^{\circ} 40^{\prime}$ S., and transits at 11 h 53 m . It is in conjunction on the 11 th and is too close to the sun for observation.

Uranus on the 15 th is in R.A. 9 h 50 m , Decl. $13^{\circ} 56^{\prime}$ N., and transits at 2 h 12 m . It rises about 3 hours after sunset.

Neptune on the 15 th is in R.A. 14 h 37 m , Decl. $13^{\circ} 29^{\prime}$ S. and transits at 6 h 58 m . It rises about two hours after midnight.

Pluto-For information in regard to this planet, see p. 31.

ASTRONOMICAL PHENOMENA MONTH BY MONTH

Explanation of symbols and abbreviations on p. 4, of time on p. 10, of colongitude on p. 56
${ }^{l}$ Jan. 11, -7.96°; Jan. 23, $+7.52^{\circ}$. $\quad{ }^{b}$ Jan. 14, -6.64°; Jan. $26,+6.75^{\circ}$.

THE SKY FOR FEBRUARY, 1961

Positions of the sun and planets are given for 0 h Universal Time.
The times of transit at the 75 th meridian are given in local mean time, 0 h at midnight; to change to Standard Time, see p. 10. Estimates of altitude are for an observer in latitude $45^{\circ} \mathrm{N}$.

The Sun-During February the sun's R.A. increases from 20 h 57 m to 22 h 47 m and its Decl. changes from $17^{\circ} 13^{\prime} \mathrm{S}$. to $7^{\circ} 45^{\prime} \mathrm{S}$. The equation of time changes from -13 m 36 s to a minimum of -14 m 19 s on the 12 th and then to -12 m 33 s at the end of the month. There is a total eclipse of the sun on the 15th.

For changes in the length of the day, see p. 13.
The Moon-For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page. Times of moonrise and moonset are given on p. 20.

Mercury on the 15 th is in R.A. 22 h 37 m , Decl. $5^{\circ} 39^{\prime}$ S., and transits at 12 h 54 m . It is at greatest eastern elongation on the 6th, and for a few evenings about this time may be seen low in the south-west just after sunset; this is a reasonably favourable elongation. By the 21st it is in inferior conjunction.

Venus on the 15 th is in R.A. 0h 40 m , Decl. $6^{\circ} 58^{\prime} \mathrm{N}$, mag. -4.2 , and transits at 15 h 00 m . It is a brilliant evening star, dominating the western sky for nearly four hours after sunset.

Mars on the 15 th is in R.A. 6 h 02 m , Decl. $26^{\circ} 46^{\prime}$ N., mag. - 0.1 , and transits at 20 h 19 m . In Gemini, it is well up at sunset and may be observed most of the night. On the 5th it is stationary in right ascension and resumes direct, or eastward, motion among the stars.

Jupiter on the 15 th is in R.A. 19 h 45 m , Decl. $21^{\circ} 25^{\prime}$ S., mag. -1.5 , and transits at 10 h 04 m . It is in Sagittarius, very low in the south-east at sunrise. On the 18th there is a very close conjunction with Saturn.

Saturn on the 15 th is in R.A. 19 h 47 m , Decl. $21^{\circ} 07^{\prime}$ S., mag. +0.8 , and transits at 10 h 06 m . It is very close to Jupiter (q.v.).

Uranus on the 15 th is in R.A. 9 h 45 m , Decl. $14^{\circ} 22^{\prime}$ N., and transits at 0 h 05 m . It rises about at sunset. Opposition is on the 12th.

Neptune on the 15 th is in R.A. 14 h 38 m , Decl. $13^{\circ} 32^{\prime}$ S., and transits at 4 h 57 m . It rises about at midnight.

Pluto-For information in regard to this planet, see p. 31.

* 9 pr π^{3} onon sury rumch bry 1 to

Explanation of symbols and abbreviations on p. 4, of time on p. 10, of colongitude on p. 56
${ }^{l}$ Feb. $8,-7.53^{\circ}$; Feb. 20, +7.12 ${ }^{\circ}$.
${ }^{b}$ Feb. $10,-6.79^{\circ}$; Feb. 23, $+6.83^{\circ}$.

Positions of the sun and planets are given for 0h Universal Time.
The times of transit at the 75 th meridian are given in local mean time, 0 h at midnight; to change to Standard Time, see p. 10. Estimates of altitude are for an observer in latitude $45^{\circ} \mathrm{N}$.

The Sun-During March the sun's R.A. increases from 22 h 47 m to 0 h 41 m and its Decl. changes from $7^{\circ} 45^{\prime}$ S. to $4^{\circ} 22^{\prime}$ N. The equation of time changes from -12 m 33 s to -4 m 06 s . On the 20 th at 15 h 32 m E.S.T. the sun crosses the equator on its way north, enters the sign of Aries and spring commences. This is the vernal equinox. For changes in the length of the day, see p. 14.

The Moon-For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page. Times of moonrise and moonset are given on p. 21. On the 21st at 23 h E.S.T. there is an occultation of Aldebaran visible in parts of America. There is a partial eclipse of the moon on the morning of the 2 nd .

Mercury on the 15 th is in R.A. 21 h 58 m , Decl. $12^{\circ} 31^{\prime}$ S., and transits at 10 h 28 m . It is at greatest western elongation on the 20 th , and for a few mornings at this time it may be seen low in the east before sunrise. This is not a favourable elongation.

Venus on the 15 th is in R.A. 1 h 36 m , Decl. $16^{\circ} 55^{\prime}$ N., mag. -4.2 , and transits at 14 h 04 m . It is a brilliant evening star seen low in the western sky for about three hours after sunset, though it is rapidly approaching the sun during the month. Greatest brilliancy is on the 5th.

Mars on the 15 th is in R.A. 6 h 31 m , Decl. $25^{\circ} 58^{\prime}$ N., mag. +0.6 , and transits at 18 h 59 m . In Gemini, now fading perceptibly, it is nearly to the meridian at sunset and sets about two hours after midnight.

Jupiter on the 15 th is in R.A. 20 h 09 m , Decl. $20^{\circ} 23^{\prime}$ S., mag. -1.6 , and transits at 8 h 37 m . Moving into Capricornus, it may be seen very low in the south-east just before sunrise. For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 58.

Saturn on the 15 th is in R.A. 19 h 58 m , Decl. $20^{\circ} 39^{\prime}$ S., mag. +0.9 , and transits at 8 h 27 m . It is just a few degrees west of Jupiter (q.v.).

Uranus on the 15 th is in R.A. $9 \mathrm{~h} \mathrm{41m}$, Decl. $14^{\circ} 44^{\prime}$ N., and transits at 22 h 06 m . It is well up in the east at sunset.

Neptune on the 15 th is in R.A. 14 h 37 m , Decl. $13^{\circ} 25^{\prime}$ S., and transits at 3 h 06 m . It rises in the late evening.

Pluto-For information in regard to this planet, see p. 31.

MARCH E.S.T.				$\underset{\substack{\text { Min. } \\ \text { of } \\ \text { Algol }}}{ }$	Config. of Jupiter's 5h 15m	Sun's Colong. 0h U.T
d	h	m		h m		-
Wed. 1				2305	01234	74.43
Thu. 2	8	35	(2) Full Moon. Eclipse, see p. $60 \ldots$.		12043	86.58
Fri. 3					42 O 13	98.72
Sat. 4				1955	41302	110.87
Sun. 5	12		ㅇ. greatest brilliancy, mag. $-4.3 \ldots$		43012	123.01
Mon. 6	0		\% stationary in R.A.		4320 *	135.17
Tue. 7	0		$\sigma \Psi \mathbb{C}$	1644	d430*	147.32
Wed. 8					40132	$159.48^{\text {l }}$
Thu. 9	21	58	(8) Last Quarter.		412 O 3	$171.65^{\text {b }}$
Fri. 10				1333	24013	183.82
Sat. 11					d1O42	196.00
Sun. 12	15		Ob da b $3^{\circ} \mathrm{S}$		3 O 124	208.19
	19		く4『 2 $3^{\circ} \mathrm{S}$.			
Mon. 13				1023	32104	220.39
Tue. 14			8 at ४.		d3204	232.59
	13		© at perigee. Dist. from $\oplus, 225,300 \mathrm{mi}$.			
	15		O¢ ¢ ¢ \% $0.9^{\circ} \mathrm{S} \ldots \ldots \ldots \ldots$.			
Wed. 15					01324	244.80
Thu. 16	13	51	(17) New Moo	712	d1O34	257.01
	14		б' Vesta \odot			
Fri. 17					2 O 134	269.23
Sat. 18	14		O우 (6) ¢ $12^{\circ} \mathrm{N}$		10324	281.44
Sun. 19	13		ㅇ stationary in R.A.	401	d3012	293.65
Mon. 20			\bigcirc greatest hel. lat. N.............		34210	305.86
	15		¢ greatest elongation W., $28^{\circ} \ldots .$.			
	15	32	\bigcirc enters \uparrow. Spring commences....			
Tue. 21					432 O 1	318.07^{2}
Wed. 22				050	4032*	$330.27^{\text {b }}$
Thu. 23	21	49	(1) First Quarter		41 O 23	342.46
Fri. 24			.8 at aphelion.	2140	42 O 13	354.66
	8		\bigcirc Ceres \odot.			
	13					
Sat. 25					41 O 23	6.84
Sun. 26	10		© at apogee. Dist. from $\oplus, 251,600 \mathrm{mi}$.		43 O 12	19.02
Mon. 27				1829	3120^{*}	31.19
Tue. 28	2		σ° © ${ }^{\text {c }} 2^{\circ} \mathrm{N}$.		32 O 41	43.37
Wed. 29			σ^{7} greatest hel. lat. N............. .		O324*	55.53
Thu. 30				1518	dO234	67.69
Fri. 31					20134	79.86

Explanation of symbols and abbreviations on p. 4, of time on p. 10, of colongitude on p. 56

$$
{ }^{l} \text { Mar. 8, }-6.35^{\circ} ; \text { Mar. 21, }+6.21^{\circ} . \quad{ }^{b} \text { Mar. 9, }-6.79^{\circ} ; \text { Mar. 22, }+6.80^{\circ} .
$$

Positions of the sun and planets are given for 0h Universal Time.
The times of transit at the 75 th meridian are given in local mean time, 0 h at midnight; to change to Standard Time, see p. 10. Estimates of altitude are for an observer in latitude $45^{\circ} \mathrm{N}$.

The Sun-During April the sun's R.A. increases from 0h 41m to 2 h 32 m and its Decl. changes from $4^{\circ} 22^{\prime} \mathrm{N}$. to $14^{\circ} 56^{\prime} \mathrm{N}$. The equation of time changes from -4 m 06 s to +2 m 52 s , being zero on the 15 th . For changes in the length of the day, see p. 14.

The Moon-For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page. Times of moonrise and moonset are given on p. 21.

Mercury on the 15 th is in R.A. 0 h 32 m , Decl. $1^{\circ} 00^{\prime}$ N., and transits at 11 h 02 m . It is too close to the sun for observation.

Venus on the 15 th is in R.A. 0h 58 m , Decl. $13^{\circ} 11^{\prime}$ N., mag. -3.3 , and transits at 11 h 22 m . Although still visible at the beginning of the month as an evening star low in the west at sunset, it reaches inferior conjunction by the 10th and thereafter becomes a morning star, though not easy to observe.

Mars on the 15 th is in R.A. 7 h 26 m , Decl. $24^{\circ} 08^{\prime}$ N., mag. +1.1 , and transits at 17 h 53 m . In Gemini, it is past the meridian at sunset and sets soon after midnight.

Jupiter on the 15 th is in R.A. 20 h 28 m , Decl. $19^{\circ} 24^{\prime}$ S., mag. -1.8 , and transits at 6 h 55 m . In Capricornus, it rises almost four hours before the sun, but remains low in the south-east because of its low declination. For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 58.

Saturn on the 15 th is in R.A. 20 h 06 m , Decl. $20^{\circ} 18^{\prime}$ S., mag. +0.8 , and transits at 6 h 33 m . It is in Capricornus, preceding Jupiter by about 5 degrees and visible for about four hours before sunrise.

Uranus on the 15 th is in R.A. 9 h 37 m , Decl. $14^{\circ} 58^{\prime}$ N., and transits at 20 h 02 m . It is approaching the meridian at sunset.

Neptune on the 15 th is in R.A. 14 h 34 m , Decl. $13^{\circ} 12^{\prime}$ S., and transits at 1 h 02 m . It rises soon after sunset. Opposition is on the 30th.

Pluto-For information in regard to this planet, see p. 31.

APRIL E.S.T.				$\begin{gathered} \text { Min. } \\ \text { Mig } \\ \text { Algol } \end{gathered}$	Config. of Jupiter's $4 \mathrm{~h} \mathrm{00m}$	Sun's Selen. Colong Oh U.T
d	h	m	(3) Full Moon	h m	1034*	
Sat. 1	0	48				92.02
Sun. 2				1207	30124	104.18
Mon. 3	5		O世 (6) $\quad \Psi 3^{\circ} \mathrm{S}$.		31204	$116.34^{\text {l }}$
Tue. 4			$\square \delta^{\top} \odot$ East.		32014	128.50
Wed. 5			b at ϑ	856	d1302	$140.67^{\text {b }}$
Thu. 6					40123	152.84
Fri. 7					4203*	165.02
Sat. 8	5	16	(16) Last Quarter.	546	$\begin{array}{\|l\|} 4103 * \\ 43012 \end{array}$	189.40
Sun. 9	1		oba b $3^{\circ} \mathrm{S}$.			
	9		O4® $43^{\circ} \mathrm{S}$.			
Mon. 10	19		$\bigcirc ¢ \odot{ }^{\circ} \odot$ inferior.		43120	201.61
Tue. 11	3		$\mathbb{\circledR}$ at perigee. Dist. from $\oplus, 228,600 \mathrm{mi}$.	235	43201	213.82
Wed. 12					4102*	226.03
Thu. 13	16		O¢¢ $¢ 0.3{ }^{\circ}$	2324	40132	238.25
Fri. 14			\% greatest hel. lat. S.		2043*	250.48
Sat. 15	0	38	(1) New Moon		d2O34	262.71
Sun. 16				2013	30124	274.94
Mon. 17	20		ర ¢¢ ¢ ¢ ¢ 9 ${ }^{\circ} \mathrm{S}$		d3104	287.16
Tue. 18					32 O 4	$299.39^{\text {l,b }}$
Wed. 19			$\square \mathrm{b} \odot \mathrm{P}^{\text {West.}}$	1702	31024	311.61
Thu. 20					01324	323.84
Fri. 21			Lyrid meteors (see p. 64).		21043	336.05
Sat. 22	0		$\sigma^{\circ} 0^{7}$ dr $0^{7} 5^{\circ} \mathrm{N}$.	1351	d2403	348.26
	16	50	```ii First Quarter................... \| at apogee. Dist. from }\Theta,251,100 mi```			
Sun. 23	5				d4O12	0.47
Mon. 24	9				43102	12.67
Tue. 25				1040	43201	24.86
Wed. 26			$\square 4 \odot$		43102	37.05
Thu. 27					40312	49.23
Fri. 28				729	41203	61.41
Sat. 29	8		\bigcirc stationary in R.A.		42013	73.59
	12		¢ stationary in R.A.			
Sun. 30	8		\bigcirc - $\Psi \odot$ Dist. from $\oplus, 2,724,000,000 \mathrm{mi}$.		4032*	$85.76{ }^{1}$
	12		ठ $\Psi \mathbb{(1)}$ ($3^{\circ} \mathrm{S}$.			
	13	41	(3) Full Moon..................			

Explanation of symbols and abbreviations on p. 4, of time on p. 10, of colongitude on p. 56
${ }^{l}$ Apr. 3, -5.41°; Apr. $18,+5.19^{\circ}$; Apr. 30, $-5.46^{\circ} .{ }^{\circ} \mathrm{Apr} .5,-6.67^{\circ}$; Apr. 18, +6.66 ${ }^{\circ}$.

Positions of the sun and planets are given for 0 h Universal Time.
The times of transit at the 75 th meridian are given in local mean time, 0 h at midnight; to change to Standard Time, see p. 10. Estimates of altitude are for an observer in latitude $45^{\circ} \mathrm{N}$.

The Sun-During May the sun's R.A. increases from 2 h 32 m to 4 h 35 m and its Decl. changes from $14^{\circ} 56^{\prime} \mathrm{N}$. to $21^{\circ} 59^{\prime} \mathrm{N}$. The equation of time changes from +2 m 52 s to a maximum of +3 m 44 s on the 14 th and then to +2 m 23 s at the end of the month. For changes in the length of the day, see p. 15.

The Moon-For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page. Times of moonrise and moonset are given on p. 22.

Mercury on the 15 th is in R.A. 4 h 26 m , Decl. $23^{\circ} 34^{\prime}$ N., and transits at 12 h 59 m . It is in superior conjunction on the 1st, and is too close to the sun for observation except for the last few days of the month, being at greatest eastern elongation on the 31 st. Thus for the last few days of the month it may easily be seen low in the west after sunset.

Venus on the 15 th is in R.A. 0 h 58 m , Decl. $6^{\circ} 17^{\prime}$ N., mag. -4.2 , and transits at 9 h 26 m . It is a morning star visible low in the eastern sky for an hour or so before sunrise. Greatest brilliancy is on the 16th.

Mars on the 15 th is in R.A. 8 h 30 m , Decl. $20^{\circ} 45^{\prime}$ N., mag. +1.5 , and transits at 16 h 58 m . In Cancer, no longer very prominent, it is well past the meridian at sunset and sets about at midnight.

Jupiter on the 15 th is in R.A. 20 h 38 m , Decl. $18^{\circ} 55^{\prime}$ S., mag. -2.0 , and transits at 5 h 06 m . In Capricornus, it rises about at midnight and reaches the meridian about at sunrise. On the 25th it is stationary in right ascension and begins to retrograde, i.e. move westward among the stars. For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 58.

Saturn on the 15 th is in R.A. 20 h 08 m , Decl. $20^{\circ} 15^{\prime}$ S., mag. +0.7 , and transits at 4 h 37 m . In Capricornus, it precedes Jupiter by about 7 degrees, rising a little before midnight. On the 9th it is stationary in right ascension and begins to retrograde, i.e. move westward among the stars.

Uranus on the 15 th is in R.A. 9 h 38 m . Decl. $14^{\circ} 57^{\prime}$ N., and transits at 18 h 04 m . It is a little past the meridian at sunset.

Neptune on the 15 th is in R.A. 14 h 31 m , Decl. $12^{\circ} 56^{\prime}$ S., and transits at 22 h 56 m . It is low in the south-east at sunset.

Pluto-For information in regard to this planet, see p. 31.

Explanation of symbols and abbreviations on p.4, of time on p. 10, of colongitude on p. 56
${ }^{l}$ May $15,+4.72^{\circ}$; May $27,-6.23^{\circ} .{ }^{6}$ May $2,-6.52^{\circ}$; May $15,+6.54^{\circ}$; May $30,-6.52^{\circ}$.

Positions of the sun and planets are given for 0h Universal Time.
The times of transit at the 75 th meridian are given in local mean time, 0 h at midnight; to change to Standard Time, see p. 10. Estimates of altitude are for an observer in latitude $45^{\circ} \mathrm{N}$.

The Sun-During June the sun's R.A. increases from 4 h 35 m to 6 h 39 m and its Decl. changes from $21^{\circ} 59^{\prime} \mathrm{N}$. to $23^{\circ} 09^{\prime} \mathrm{N}$. The equation of time changes from +2 m 23 s to -3 m 36 s , being zero on the 14th. The summer solstice is on the 21st at 10 h 30 m E.S.T. For changes in the length of the day, see p. 15.

The Moon-For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page. Times of moonrise and moonset are given on p. 22.

Mercury on the 15 th is in R.A. 6 h 45 m , Decl. $21^{\circ} 50^{\prime}$ N., and transits at 13 h 10 m . It is near greatest eastern elongation as the month begins, and at that time may be easily seen for a few evenings low in the west after sunset. It is in inferior conjunction on the 27 th.

Venus on the 15 th is in R.A. 2 h 26 m , Decl. $11^{\circ} 34^{\prime}$ N., mag. -4.0 , and transits at 8 h 54 m . It is a morning star seen low in the east for an hour or so before sunrise. Greatest western elongation is on the 19th.

Mars on the 15 th is in R.A. 9 h 39 m , Decl. $15^{\circ} 27^{\prime}$ N., mag. +1.7 , and transits at 16 h 05 m . In Leo, it is well down in the west at sunset and sets before midnight.

Jupiter on the 15 th is in R.A. 20 h 36 m , Decl. $19^{\circ} 08^{\prime}$ S., mag. -2.2 , and transits at 3 h 03 m . In Capricornus, it rises before midnight and is west of the meridian by sunrise. For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 58.

Saturn on the 15 th is in R.A. 20 h 04 m , Decl. $20^{\circ} 30^{\prime}$ S., mag. +0.5 , and transits at 2 h 31 m . Moving from Capricornus into Sagittarius, it precedes Jupiter by about 7 degrees and so rises about half-an-hour earlier.

Uranus on the 15 th is in R.A. 9 h 41 m , Decl. $14^{\circ} 39^{\prime}$ N., and transits at 16 h 05 m . It is well past the meridian at sunset.

Neptune on the 15 th is in R.A. 14 h 28 m , Decl. $12^{\circ} 44^{\prime}$ S., and transits at 20 h 52 m . It is approaching the meridian at sunset.

Pluto-For information in regard to this planet, see p. 31.

Explanation of symbols and abbreviations on p. 4, of time on p. 10, of colongitude on p. 56
${ }^{l}$ June $10,+5.27^{\circ}$; June 24, -7.10°. ${ }^{b}$ June $11,12,+6.54^{\circ}$; June $26,-6.63^{\circ}$.

Positions of the sun and planets are given for 0h Universal Time.
The times of transit at the 75th meridian are given in local mean time, 0 h at midnight; to change to Standard Time, see p. 10. Estimates of altitude are for an observer in latitude $45^{\circ} \mathrm{N}$.

The Sun-During July the sun's R.A. increases from 6 h 39 m to 8 h 44 m and its Decl. changes from $23^{\circ} 09^{\prime} \mathrm{N}$. to $18^{\circ} 08^{\prime} \mathrm{N}$. The equation of time changes from -3 m 36 s to a minimum of -6 m 25 s on the 26 th and then to -6 m 16 s at the end of the month. On the 5th the earth is in aphelion or farthest from the sun. For changes in the length of the day, see p. 16.

The Moon-For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page. Times of moonrise and moonset are given on p. 23.

Mercury on the 15 th is in R.A. 6 h 13 m , Decl. $19^{\circ} 58^{\prime}$ N., and transits at 10 h 41 m . It is at greatest western elongation on the 19th, and for a few mornings at that time may be seen low in the east before sunrise.

Venus on the 15 th is in R.A. 4 h 28 m , Decl. $19^{\circ} 00^{\prime}$ N., mag. -3.7 , and transits at 8 h 58 m . It is a morning star which rises about two hours before the sun.

Mars on the 15 th is in R.A. 10 h 46 m , Decl. $8^{\circ} 53^{\prime}$ N., mag. +1.8 , and transits at 15 h 14 m . In Leo, it is well down in the west at sunset and sets about two hours later.

Jupiter on the 15 th is in R.A. 20 h 24 m , Decl. $19^{\circ} 56^{\prime}$ S., mag. -2.3 , and transits at 0 h 53 m . In Capricornus it rises soon after sunset, reaches the meridian about at midnight and sets before sunrise. Opposition is on the 25th. For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 58.

Saturn on the 15 th is in R.A. 19 h 56 m , Decl. $20^{\circ} 56^{\prime}$ S., mag. +0.3 , and transits at 0 h 24 m . In Sagittarius, it precedes Jupiter by about 7 degrees, rising at about sunset. Opposition is on the 19th.

Uranus on the 15 th is in R.A. 9 h 46 m , Decl. $14^{\circ} 11^{\prime}$ N., and transits at 14 h 13 m . It is low in the west at sunset.

Neptune on the 15 th is in R.A. 14 h 27 m , Decl. $12^{\circ} 39^{\prime}$ S., and transits at 18 h 53 m . It is past the meridian at sunset.

Pluto-For information in regard to this planet, see p. 31.

Explanation of symbols and abbreviations on p. 4, of time on p. 10, of colongitude on p. 56
${ }^{\imath}$ July $7,+6.52^{\circ}$; July $22,-7.59^{\circ}$. $\quad{ }^{b}$ July $9,+6.68^{\circ}$; July $23,-6.76^{\circ}$.

Positions of the sun and planets are given for 0h Universal Time.
The times of transit at the 75 th meridian are given in local mean time, 0 h at midnight; to change to Standard Time; see p. 10. Estimates of altitude are for an observer in latitude $45^{\circ} \mathrm{N}$.

The Sun-During August the sun's R.A. increases from 8 h 44 m to 10 h 40 m and its Decl. changes from $18^{\circ} 08^{\prime} \mathrm{N}$. to $8^{\circ} 27^{\prime} \mathrm{N}$. The equation of time changes from -6 m 16 s to -0 m 10 s . There is an annular eclipse of the sun on the 11 th. For changes in the length of the day, see p. 16.

The Moon-For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page. Times of moonrise and moonset are given on p . 23 . There is a partial eclipse of the moon on the night of the 25 th.

Mercury on the 15 th is in R.A. 9 h 41 m , Decl. $15^{\circ} 44^{\prime}$ N., and transits at 12 h 11 m . It is in superior conjunction on the 14th, and is too close to the sun for observation all month.

Venus on the 15 th is in R.A. 6 h 56 m , Decl. $21^{\circ} 34^{\prime}$ N., mag. -3.5 , and transits at 9 h 24 m . It is a morning star dominating the eastern sky for about three hours before sunrise.

Mars on the 15 th is in R.A. 11 h 56 m , Decl. $1^{\circ} 05^{\prime}$ N., mag. +1.9 , and transits at 14 h 22 m . Moving into Virgo, it is too low on the western horizon at sunset to be observed easily.

Jupiter on the 15 th is in R.A. 20 h 08 m , Decl. $20^{\circ} 51^{\prime}$ S., mag. -2.3 , and transits at 22 h 30 m . Moving from Capricornus into Sagittarius, it is risen at sunset, past the meridian at midnight and set before sunrise. For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 58.
Saturn on the 15 th is in R.A. 19 h 47 m , Decl. $21^{\circ} 23^{\prime}$ S., mag. +0.4 , and transits at 22 h 09 m . In Sagittarius, it precedes Jupiter by about 5 degrees.

Uranus on the 15th is in R.A. 9h 53 m , Decl. $13^{\circ} 33^{\prime}$ N., and transits at 12 h 18 m . It is too close to the sun for observation. Conjunction is on the 19th.

Neptune on the 15 th is in R.A. 14 h 28 m , Decl. $12^{\circ} 44^{\prime}$ S., and transits at 16 h 51 m . It is well down in the south-west at sunset.

Pluto-For information in regard to this planet, see p. 31.

Explanation of symbols and abbrevations on p. 4, of time on p. 10, of colongitude on p. 56
${ }^{l}$ Aug. $4,+7.51^{\circ}$; Aug. 19, $-7.43^{\circ} . \quad{ }^{6}$ Aug. $5,+6.81^{\circ}$; Aug. 20, -6.79°.

THE SKY FOR SEPTEMBER, 1961

Positions of the sun and planets are given for 0h Universal Time.
The times of transit at the 75th meridian are given in local mean time, 0h at midnight; to change to Standard Time, see p. 10. Estimates of altitude are for an observer in latitude $45^{\circ} \mathrm{N}$.

The Sun-During September the sun's R.A. increases from 10 h 40 m to 12 h 28 m and its Decl. changes from $8^{\circ} 27^{\prime} \mathrm{N}$. to $3^{\circ} 00^{\prime}$ S. The equation of time changes from $-0 \mathrm{~m} \mathrm{10s} \mathrm{to}+10 \mathrm{~m} 08 \mathrm{~s}$, being zero during the first day of the month. On the 23 rd at 1 h 43 m E.S.T. the sun crosses the equator moving southward, enters the sign of Libra, and Autumn commences. For changes in the length of the day, see p. 17.

The Moon-For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page. Times of moonrise and moonset are given on p. 24. During the night of the 29th-30th there is an occultation of Aldebaran visible in parts of North America.

Mercury on the 15th is in R.A. 12h 53m, Decl. $6^{\circ} 54^{\prime}$ S., and transits at 13 h 19 m . It is at greatest eastern elongation on the 28th, and for a few evenings at that time might be glimpsed low in the south-west after sunset. This is not a favourable elongation.

Venus on the 15th is in R.A. 9h 28 m , Decl. $15^{\circ} 24^{\prime}$ N., mag. -3.4 , and transits at 9 h 54 m . It is a morning star visible in the east for about two hours before sunrise.

Mars on the 15 th is in R.A. 13 h 10 m , Decl. $7^{\circ} 05^{\prime}$ S., mag. +1.9 , and transits at 13 h 34 m . In Virgo, it is too low on the western horizon at sunset to be observed easily.

Jupiter on the 15 th is in R.A. 19 h 59 m , Decl. $21^{\circ} 20^{\prime}$ S., mag. -2.2 , and transits at 20 h 19 m . In Sagittarius, it is well up in the south-east at sunset and visible until about an hour after midnight. On the 23rd it is stationary in right ascension and resumes direct, or eastward, motion among the stars. For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 58.

Saturn on the 15 th is in R.A. $19 \mathrm{~h} \mathrm{41m}, \mathrm{Decl}. 21^{\circ} 39^{\prime}$ S., mag. +0.6 , and transits at 20 h 02 m . In Sagittarius, it precedes Jupiter by about 5 degrees. On the 27 th it is stationary in right ascension and resumes direct, or eastward, motion among the stars.

Uranus on the 15 th is in R.A. 10 h 01 m , Decl. $12^{\circ} 54^{\prime}$ N., and transits at 10 h 24 m . It rises an hour or two before the sun.

Neptune on the 15 th is in R.A. 14 h 30 m , Decl. $12^{\circ} 58^{\prime}$ S., and transits at 14 h 52 m . It is low in the south-west at sunset.

Pluto-For information in regard to this planet, see p. 31.

Explanation of symbols and abbreviations on p. 4 , of time on p. 10 , of colongitude on p. 56
${ }^{2}$ Sept. 1, $+7.82^{\circ}$; Sept. 16, -6.57°; Sept. 29, $+7.36^{\circ}$.
${ }^{\mathrm{b}}$ Sept. $1,+6.83^{\circ}$; Sept. $16,-6.76^{\circ}$; Sept. 28, $+6.70^{\circ}$.

Positions of the sun and planets are given for 0 h Universal Time.
The times of transit at the 75 th meridian are given in local mean time, 0 h at midnight; to change to Standard Time, see p. 10. Estimates of altitude are for an observer in latitude $45^{\circ} \mathrm{N}$.

The Sun-During October the sun's R.A. increases from 12 h 28 m to 14 h 24 m and its Decl. changes from $3^{\circ} 00^{\prime}$ S. to $14^{\circ} 17^{\prime}$ S. The equation of time changes from +10 m 08 s to +16 m 21 s . For changes in the length of the day, see p. 17 .

The Moon-For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page. Times of moonrise and moonset are given on p. 24.

Mercury on the 15 th is in R.A. 14h 14 m , Decl. $16^{\circ} 43^{\prime}$ S., and transits at 12 h 37 m . It is at inferior conjunction on the 22 nd and is too close to the sun for observation.

Venus on the 15 th is in R.A. 11 h 48 m , Decl. $2^{\circ} 53^{\prime}$ N., mag. -3.4 , and transits at 10 h 15 m . It is a morning star, rising in the east about two hours before the sun.

Mars on the 15 th is in R.A. 14 h 26 m , Decl. $14^{\circ} 31^{\prime}$ S., and transits at 12 h 52 m . It is too close to the sun for easy observation.

Jupiter on the 15 th is in R.A. 20h 01 m , Decl. $21^{\circ} 12^{\prime}$ S., mag. -2.0 , and transits at 18 h 24 m . In Sagittarius, moving back into Capricornus, it is approaching the meridian at sunset and visible until about midnight. For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 58.

Saturn on the 15 th is in R.A. 19 h 42 m , Decl. $21^{\circ} 39^{\prime}$ S., mag. +0.7 , and transits at 18 h 05 m . In Sagittarius, it precedes Jupiter by about 5 degrees.

Uranus on the 15 th is in R.A. 10 h 07 m , Decl. $12^{\circ} 23^{\prime}$ N., and transits at 8 h 32 m . It is well up in the east at sunrise.

Neptune on the 15 th is in R.A. 14 h 34 m , Decl. $13^{\circ} 17^{\prime}$ S., and transits at 12 h 58 m . It is too close to the sun for easy observation.

Pluto-For information in regard to this planet, see p. 31.

			OCTOBER E.S.T.	$\begin{gathered} \text { Min. } \\ \text { of } \\ \text { Algol } \end{gathered}$	Config. of Jupiter's 19h 45m	Sun's Colong. Oh U.T.
	h	m		h m		-
Sun. 1	6		Vesta stationary in R.A.		20134	166.57
	9	10	(1) Last Quarter....			
Mon. 2					O34**	178.76
Tue. 3				008	10324	190.95
Wed. 4					23014	203.15
Thu. 5	3		(f) at apogee. Dist. from $\oplus, 251,900 \mathrm{mi}$.	2056	32140	215.36
	16		σ ¢ © ${ }_{\text {d }}$ ¢ $0.5^{\circ} \mathrm{N} \ldots \ldots$.			
Fri. 6			\% greatest hel. lat. S.		34012	227.57
Sat. 7	3				41302	239.79
Sun. 8				1745	42 O 13	252.00
Mon. 9			ㅇ. at perihelion		41203	264.22
	13	53	- New Moon.			
Tue. 10	20		¢ stationary in R.A.		d4023	276.44
Wed. 11	1		Oo'd $\sigma^{81} 5^{\circ} \mathrm{S}$.	1434	d4201	288.66
	2		\bigcirc ¢ \% \% 9 ${ }^{\circ} \mathrm{S}$.			
	10		OW® $43^{\circ} \mathrm{S}$.			
	15					
Thu. 12					34210	300.87
			$0^{\pi} \quad$ at 8		3021*	$313.08^{\text {l }}$
Sat. 14				1122	31024	$325.29^{\text {l }}$
Sun. 15					20134	337.49
Mon. 16			$\square b \odot{ }^{\circ} \mathrm{Cast}$		12 O 34	349.69
	23	35	(id First Quarter			
Tue. 17	0		Ob © b b $3^{\circ} \mathrm{S}$.	811	dO234	1.87
	9		O24 $43^{\circ} \mathrm{S}$.			
	17		ठ $0^{\top} \Psi \quad \sigma^{\top} 1.9^{\circ} \mathrm{S}$.			
Wed. 18					dO34*	14.05
Thu. 19					32104	26.23
Fri. 20			Orionid meteors (see p. 64).	500	30214	38.39
	2		© at perigee. Dist. from $\oplus, 226,600 \mathrm{mi}$.		31042	50.55
Sun. 22			$\square 4 \odot{ }^{\circ} \mathrm{C}$ -		24031	62.70
	14		\bigcirc ¢ \odot - inferior			
Mon. 23	16	31	(3) Full Moon.	148	41203	74.85
Tue. 24					40123	87.00
			¢ at δ.	2237	4023*	99.15
Wed. 25 Thu. 26					43210	$111.29^{\text {b }}$
	13		Juno stationary in R.A.		4301*	$123.45{ }^{\text {l }}$
$\begin{array}{ll} \text { Fri. } & 27 \\ \text { Sat. } & 28 \end{array}$				1926	43102	135.60
Sun. 29					42 O 31	147.76
Mon. 30			O at perihelion		21043	159.93
	7		Pallas stationary in R.A.			
Tue. 31			O greatest hel. lat. N.	1615	01243	172.10
	3		\% stationary in R.A.			
	3	59	(1) Last Quarter....			

Positions of the sun and planets are given for 0h Universal Time.
The times of transit at the 75th meridian are given in local mean time, 0h at midnight; to change to Standard Time, see p. 10. Estimates of altitude are for an observer in latitude $45^{\circ} \mathrm{N}$.

The Sun-During November the sun's R.A. increases from 14h 24m to 16 h 27 m and its Decl. changes from $14^{\circ} 17^{\prime} \mathrm{S}$. to $21^{\circ} 44^{\prime} \mathrm{S}$. The equation of time changes from +16 m 21 s to a maximum of +16 m 24 s on the 3 rd and then to +11 m 09 s at the end of the month. For changes in the length of the day, see p. 18.

The Moon-For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page. Times of moonrise and moonset are given on p. 25 . During the evening of the 22 nd there is an occultation of Aldebaran visible in North America.

Mercury on the 15 th is in R.A. 14 h 15 m , Decl. $11^{\circ} 28^{\prime} \mathrm{S}$., and transits at 10 h 41 m . It is at greatest western elongation on the 7 th and for a few mornings at that time may be seen low in the south-east before sunrise very close to Venus. This is a favourable elongation.

Venus on the 15 th is in R.A. 14 h 12 m , Decl. $11^{\circ} 46^{\prime}$ S., mag. -3.4 , and transits at 10 h 37 m . It is a morning star seen low in the south-east for about an hour before sunrise.

Mars on the 15 th is in R.A. 15 h 54 m , Decl. $20^{\circ} 38^{\prime}$ S., and transits at 12 h 18 m . It is too close to the sun for observation.

Jupiter on the 15 th is in R.A. 20 h 16 m , Decl. $20^{\circ} 28^{\prime}$ S., mag. -1.8 , and transits at 16 h 37 m . In Capricornus, it is about on the meridian at sunset and sets before midnight. For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 58.

Saturn on the 15 th is in R.A. 19 h 48 m , Decl. $21^{\circ} 24^{\prime}$ S., mag. +0.8 , and transits at 16 h 10 m . In Sagittarius, it precedes Jupiter by about 5 degrees.

Uranus on the 15 th is in R.A. 10 h 11 m , Decl. $12^{\circ} 03^{\prime}$ N., and transits at 6 h 33 m . It rises about at midnight.

Neptune on the 15 th is in R.A. 14 h 38 m , Decl. $13^{\circ} 38^{\prime}$ S., and transits at 11 h 00 m . It is too close to the sun for observation, being in conjunction on the 3rd.

Pluto-For information in regard to this planet, see p. 31.

NOVEMBER E.S.T.				$\begin{gathered} \text { Min. } \\ \text { Mifgol } \\ \text { Algol } \end{gathered}$	Config. of Jupiter's $18 \mathrm{~h} \mathrm{30m}$	Sun's Colong. Oh U.T.
	h	m		h m		-
Wed. 1	21		(d) at apogee. Dist. from $\oplus, 251,300 \mathrm{mi}$.		10234	184.27
Thu. 2	1				d2304	196.46
Fri. 3	12		б $\Psi \odot$	1304	304**	208.64
Sat. 4					31024	220.83
Sun. 5			Taurid meteors (see p. 64)		23014	233.03
Mon. 6	11		\bigcirc ¢ © ㅇ. $3^{\circ} \mathrm{S}$.	953	21034	245.23
	13		$\bigcirc ¢ \mathbb{4}$ (1)			
Tue. 7	10		¢\% greatest elongation W., 19°		04123	257.43
Wed. 8	4	59	(10. New Moon. .		41023	269.64
Thu. 9			\% greatest hel. lat. N.	641	42301	$281.84{ }^{\text {l,b }}$
Fri. 10					43210	294.04
Sat. 11					43102	306.24
Sun. 12	5		\bigcirc° Ceres \odot	330	43201	318.43
Mon. 13	$\begin{array}{r} 8 \\ 19 \end{array}$		ob © b $3^{\circ} \mathrm{S}$.		42103	330.62
			-4『 $43^{\circ} \mathrm{S}$.			
Tue. 14					40213	342.80
Wed. 15	7	13	(id First Quarter	019	14023	354.98
Thu. 15			Leonid meteors (see p. 64)		23014	7.15
Fri. 17	0		© at perigee. Dist from $\oplus, 229,700 \mathrm{mi}$.	2108	32104	19.31
Sat. 18	$\begin{aligned} & 21 \\ & 23 \end{aligned}$		\bigcirc - Vesta \odot		d3024	31.46
Sun. 19					d3O14	43.60
Mon. 20	11		б¢ 4 ¢	1757	21034	55.75
Tue. 21					02134	67.88
Wed. 22			$\square \hat{\odot} \odot{ }^{\circ}$ West		10234	80.02^{b}
	4	44	(2) Full Moon...			
Thu. 23				1446	d2O14	92.15
Fri. 24					d3210	104.29^{1}
Sat. 25					d3402	116.42
Sun. 26				1135	4302*	128.56
Mon. 27					42103	140.71
Tue. 28					4013*	152.86
Wed. 29	10		$\sigma \widehat{¢}$ © ${ }^{\text {c }} 0.1^{\circ} \mathrm{S}$.	824	41023	165.01
	17		© at apogee. Dist. from $\oplus, 251,200 \mathrm{mi}$.			
Thu. 30	1	19	(1) Last Quarter.................		42 O 31	177.17

Explanation of symbols and abbreviations on p.4, of time on p. 10, of colongitude on p. 56
${ }^{l}$ Nov. $9,-4.72^{\circ}$; Nov. $24,+5.42^{\circ} . \quad{ }^{\circ}$ Nov. $9,-6.55^{\circ}$; Nov. $22,+6.53^{\circ}$.

THE SKY FOR DECEMBER, 1961

Positions of the sun and planets are given for 0 h Universal Time.
The times of transit at the 75th meridian are given in local mean time, 0 h at midnight; to change to Standard Time, see p. 10. Estimates of altitude are for an observer in latitude $45^{\circ} \mathrm{N}$.

The Sun-During December the sun's R.A. increases from 16h 27 m to 18 h 44 m and its Decl. changes from $21^{\circ} 44^{\prime} \mathrm{S}$. to $23^{\circ} 04^{\prime} \mathrm{S}$. The equation of time changes from +11 m 09 s to -3 m 14 s , being zero on the 25 th . The winter solstice is on the 21 st at 21 h 20 m E.S.T. For changes in the length of the day, see p. 18.

The Moon-For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page. Times of moonrise and moonset are given on p. 25. On the morning of the 20th there is an occultation of Aldebaran visible in parts of North America.

Mercury on the 15 th is in R.A. 17 h 25 m , Decl. $24^{\circ} 25^{\prime}$ S., and transits at 11 h 53 m . It is in superior conjunction on the 16th and is too close to the sun for observation during the whole month.

Venus on the 15 th is in R.A. 16 h 44 m , Decl. $21^{\circ} 50^{\prime}$ S., mag. -3.4 , and transits at 11 h 11 m . It is a morning star, but (especially later in the month) it is too close to the sun for easy observation.

Mars on the 15 th is in R.A. 17 h 28 m , Decl. $23^{\circ} 51^{\prime}$ S., and transits at 11 h 54 m . It is in conjunction on the 14th, and becomes thereafter a morning star, but it is too close to the sun all month for observation.

Jupiter on the 15 th is in R.A. 20h 38 m , Decl. $19^{\circ} 12^{\prime}$ S., mag. -1.6 , and transits at 15 h 01 m . In Capricornus, it is well past the meridian at sunset and sets about three hours later. For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 58.

Saturn on the 15 th is in R.A. 20 h 00 m , Decl. $20^{\circ} 54^{\prime}$ S., mag. +0.8 , and transits at 14 h 23 m . In Sagittarius, it precedes Jupiter by about 5 degrees, setting about half-an-hour earlier.

Uranus on the 15 th is in R.A. 10 h 11 m , Decl. $12^{\circ} 00^{\prime}$ N., and transits at 4 h 36 m . It rises in the late evening.

Neptune on the 15 th is in R.A. 14 h 42 m , Decl. $13^{\circ} 56^{\prime}$ S., and transits at 9 h 06 m . It rises several hours before the sun.

Pluto-For information in regard to this planet, see p. 31.

			$\begin{gathered} \text { DECEMBER } \\ \text { E.S.T. } \end{gathered}$	$\begin{gathered} \text { Min. } \\ \text { of } \\ \text { Algol } \end{gathered}$	Config. of Jupiter's 17 h 45 m	Sun's Colong. 0h U.T.
d	h	m		h m		-
Fri. 1					43210	189.33
Sat. 2				513	34012	201.51
Sun. 3			8 at 8		3024*	213.68
Mon. 4					2104*	225.86
Tue. 5	5		ठ $\Psi \mathbb{C}$	202	20134	238.05
Wed. 6	7		人 stationary in R.A.		10234	$250.24{ }^{\text {l }}$
	18		రㅇ¢ (18) $+4^{\circ} \mathrm{S}$.			
Thu. 7	18	52	(11) New Moon.	2251	20134	262.43
Fri. 8					23104	274.62
Sat. 9					30124	286.81
Sun. 10	19		Obed b $2^{\circ} \mathrm{S}$	1940	31024	299.01
Mon. 11	9		ठ2『 $42^{\circ} \mathrm{S}$.		d240*	311.19
	19		(1) at perigee. Dist. from $\oplus, 228,900 \mathrm{mi}$.			
Tue. 12					42 O 13	323.37
Wed. 13			Geminid meteors (see p. 64). ϑ \qquad at aphelion.	1629	41023	335.55
Thu. 14	13		$\sigma \sigma^{T} \odot$.		d4O13	347.72
	15	06	1i First Quarter			
Fri. 15					42130	359.88
Sat. 16	3		σ ¢ $\odot \bigcirc$ superior	1318	43 O 12	12.03
Sun. 17					43102	24.18
Mon. 18	17		P stationary in R.A.		42301	36.32
Tue. 19			$\Psi \quad$ greatest hel. lat. N.	1007	2403*	$48.46{ }^{\text {b }}$
Wed. 20					10423	60.59
Thu. 21	19	42	(2) Full Moon.		O2134	$72.72^{\text {l }}$
	21	20	\odot enters $\begin{array}{r} \\ \text {. Winter commences. }\end{array}$			
Fri. 22			Ursid meteors (see p. 64)	657	21304	84.84
Sat. 23					3014*	96.97
Sun. 24					31024	109.10
Mon. 25				346	32014	121.23
Tue. 26			\% at ϑ		21034	133.37
	18					
Wed. 27	14		(1) at apogee. Dist. from $\oplus, 251,500 \mathrm{mi}$.		10423	145.51
Thu. 28				035	40123	157.65
Fri. 29	22	57	(6) Last Quarter.		d4210	169.80
Sat. 30				2124	4301*	181.96
Sun. 31					43102	194.12

Explanation of symbols and abbreviations on p. 4, of time on p. 10 , of colongitude on p. 56
${ }^{l}$ Dec. $6,-5.31^{\circ}$; Dec. 21, $+5.11^{\circ} . \quad{ }^{6}$ Dec. $6,-6.59^{\circ}$; Dec. $19,+6.63^{\circ}$.

THE OBSERVATION OF THE MOON

During 1961 the ascending node of the moon's orbit occurs in the constellation Leo (δ from 159° to 140°). Every month the moon will pass within a degree of the bright stars Aldebaran and Regulus.

The sun's selenographic colongitude is essentially a convenient way of indicating the position of the sunrise terminator as it moves across the face of the moon. It provides an accurate method of recording the exact conditions of illumination (angle of illumination), and makes it possible to observe the moon under exactly the same lighting conditions at a later date.

The sun's selenographic colongitude is numerically equal to the selenographic longitude of the sunrise terminator reckoned eastward from the mean centre of the disk. Its value increases at the rate of nearly 12.2° per day or about $\frac{1}{2}^{\circ}$ per hour; it is approximately $270^{\circ}, 0^{\circ}, 90^{\circ}$ and 180° at New Moon, First Quarter, Full Moon and Last Quarter respectively. (See the tabulated values for 0h U.T. starting on p. 33.)

Sunrise will occur at a given point east of the central meridian of the moon when the sun's selenographic colongitude is equal to the eastern selenographic longitude of the point; at a point west of the central meridian when the sun's selenographic colongitude is equal to 360° minus the western selenographic longitude of the point. The longitude of the sunset terminator differs by 180° from that of the sunrise terminator.

The sun's selenographic latitude varies between $+1 \frac{1}{2}^{\circ}$ and $-1 \frac{1}{2}^{\circ}$ during the year.

By the moon's libration is meant the shifting, or rather apparent shifting, of the visible disk. Sometimes the observer sees features farther around the eastern or the western limb (libration in longitude), or the northern or southern limb (libration in latitude). The quantities called the earth's selenographic longitude and latitude are a convenient way of indicating the two librations. When the libration in longitude, that is the selenographic longitude of the earth, is positive, the mean central point of the disk of the moon is displaced eastward on the celestial sphere, exposing to view a region on the west limb. When the libration in latitude, or the selenographic latitude of the earth, is positive, the mean central point of the disk of the moon is displaced towards the south, and a region on the north limb is exposed to view.

In the Astronomical Phenomena Month by Month the dates of the greatest positive and negative values of the libration in longitude are indicated by ${ }^{2}$ in the column headed "Sun's Selenographic Colongitude," and their values are given in the footnotes. Similarly the extreme values of the libration in latitude are indicated by ${ }^{b}$.
A map of the moon, with identifications of some of the markings, appears on p. 90 .

OPPOSITION EPHEMERIDES OF THE BRIGHTEST ASTEROIDS, 1961

The asteroids are many small objects revolving around the sun mainly between the orbits of Mars and Jupiter. The largest, Ceres, is only 480 miles in diameter. Vesta, though half the diameter of Ceres, is brighter. The next brightest asteroids, Juno and Pallas, are 120 and 300 miles in diameter, respectively. Unlike the planets the asteroids move in orbits which are appreciably elongated. Thus the distance of an asteroid from the earth (and consequently its magnitude) varies greatly at different oppositions.

Ephemerides for the four brightest asteroids are given when the asteroids are near opposition. Right ascensions and declinations are for 0 h E.T. and equinox of 1950.0.

Pallas (No. 2)				
Opp. Sept. 9 in Psc				Mag. 8.7
Aug.	20	$23^{\text {b }}$	$15.6{ }^{\text {m }}$	$+4^{\circ} 43^{\prime}$
	25	23	12.4	+348
	30	23	08.9	+249
Sept.	4	23	05.2	+147
	9	23	01.4	+0 42
	14	22	57.7	-0 25
	19	22	54.0	-133
	24	22	50.5	-2 40
	29	22	47.2	-346
Ceres (No. 1)				
Opp. Nov. 12 in Cet				Mag. 7.5
Oct.	23	$3^{\text {h }}$	$35.7{ }^{\text {m }}$	$+9^{\circ} 53^{\prime}$
	28	3	31.9	+946
Nov.	2	3	27.7	+939
	7	3	23.2	+933
	12	3	18.4	+929
	17	3	13.6	+926
	22	3	08.9	+926
	27	3	04.4	+927
Dec.	2	3	00.2	+931

Juno (No. 3)				
Opp. Sept. 17 in Psc				Mag. 7.7
Aug. 28 Sept.		$23^{\text {h }}$	$53.9{ }^{\text {m }}$	$+0^{\circ} 10^{\prime}$
	2	23	51.6	-0 43
	7	23	48.8	-141
Oct.	12	23	45.6	-2 42
	17	23	42.2	-3 46
	22	23	38.7	-450
	27	23	35.2	-5 54
	2	23	32.0	-6 55
	7	23	29.1	-752
Vesta (No. 4)Opp. Nov. 19 in Tau Mag. 7.0				
		$4^{\text {h }}$	03.7m	$+11^{\circ} 44^{\prime}$
		3	59.4	+1132
,	9	3	54.6	+1120
	14	3	49.5	+1110
	19	3	44.2	+1101
Dec.	24	3	38.9	+1054
	29	3	33.8	+1050
	4	3	28.9	+1048
	9	3	24.5	+1049

PHENOMENA OF JUPITER'S SATELLITES, E.S.T. 1961

[^0]EPHEMERIS FOR THE PHYSICAL OBSERVATIONS OF THE SUN, 1961 For 0h U.T.

Date	P	B_{0}	L_{0}	Date	P	B_{0}	L_{0}
		-			-		
Jan. 1	+ 2.12	-3.07	91.61	July 5	-0.98	+3.34	169.87
	- 0.31	-3.64	25.76	Ju 10	+ 1.29	+3.86	103.70
11	- 2.72	-4.18	319.92	15	+ 3.53	+4.36	37.53
16	- 5.09	-4.69	254.08	20	+ 5.74	+4.83	331.37
21	- 7.39	-5.16	188.25	25	+ 7.88	+5.26	265.22
26	-9.62	-5.60	122.42	30	+9.95	$+5.66$	199.08
31	-11.74	-5.98	56.58	Aug. 4	$+11.94$	+6.02	132.95
Feb. 5	-13.75	-6.32	350.75	9	+13.83	$+6.33$	66.84
10	-15.64	-6.61	284.92	14	+15.62	$+6.61$	0.74
15	-17.40	-6.85	219.08	19	$+17.30$	$+6.83$	294.66
20	-19.02	-7.03	153.24	24	$+18.85$	$+7.01$	228.58
25	-20.49	-7.16	87.39	29	+20.28	$+7.14$	162.52
Mar. 2	-21.80	-7.23	21.52	Sept. 3	$+21.57$	$+7.22$	96.47
	-22.96	-7.25	315.65	- 8	+22.72	+7.25	30.44
12	-23.95	-7.21	249.77	13	+23.72	+7.23	324.42
17	-24.78	-7.12	183.87	18	+24.58	+7.15	258.41
22	-25.44	-6.97	117.95	23	+25.27	+7.02	192.41
27	-25.92	-6.77	52.01	28	+25.79	+6.84	126.42
Apr. 1	-26.23	-6.52	346.06	Oct. 3	+26.15	+6.60	60.44
6	-26.35	-6.23	280.08	8	+26.33	+6.32	354.47
11	-26.30	-5.89	214.09	13	+26.33	+5.99	288.51
16	-26.06	-5.50	148.08	18	+26.14	+5.62	222.56
21	-25.64	-5.08	82.04	23	+25.77	+5.20	156.61
26	-25.03	-4.62	15.99	28	+25.19	+4.74	90.67
May 1	-24.24	-4.13	309.91	Nov. 2	+24.43	+4.24	24.74
May	-23.27	-3.62	243.82		$+23.46$	+3.71	318.82
11	-22.12	-3.08	177.71	12	+22.30	+3.16	252.90
16	-20.81	-2.51	111.59	17	+20.95	+2.57	186.98
21	-19.33	-1.93	45.45	22	+19.41	+1.97	121.07
26	-17.70	-1.34	339.30	27	+17.70	+1.35	55.17
31	-15.92	-0.75	273.13		$+15.82$	+0.71	349.27
June 5	-14.03	-0.14	206.96	7	+13.80	+0.07	283.39
10	-12.02	+0.46	140.78	12	+11.65	-0.57	217.51
15	-9.92	+1.06	74.60	17	+ 9.40	-1.20	151.63
20	- 7.74	+1.65	8.42	22	+ 7.06	-1.83	85.76
25	-5.51	+2.23	302.24	27	+ 4.67	-2.45	19.90
30	- 3.25	+2.80	236.05				

P -The position angle of the axis of rotation, measured eastward from the north point of the disk.
B_{0}-The heliographic latitude of the centre of the disk.
L_{0} - The heliographic longitude of the centre of the disk, from Carrington's solar meridian.

Carrington's Rotation Numbers-Greenwich Date of Commencement of Synodic Rotations, 1961

No.	Commences	No.	Commences	No.	Commences	
1436	Jan. 7.96	1441	May 24.44	1446	Oct. 7.58	
1437	Feb.	4.30	1442	June 20.64	1447	Nov. 3.88
1438	Mar. 3.63	1443	July 17.84	1448	Dec. 1.19	
1439	Mar. 30.94	1444	Aug. 14.06	1449	Dec. 28.51	

In 1961 there will be four eclipses, two of the sun and two of the moon.
I. A Total Eclipse of the Sun on February 15. This eclipse will be visible partially in all of Europe and North Africa and most of Asia; the path of totality begins off the east coast of France and sweeps across Southern Europe and Russia and ends in Siberia.
II. A Partial Eclipse of the Moon in the morning of March 2, visible generally in the Pacific Ocean, Australasia, and Asia. The beginning will be visible in North America except the extreme eastern part, but the ending will be visible only in the extreme north-western corner of North America. Generally speaking, over the eastern part of the continent the moon will have set and the sun risen before the moon is well into the umbra.

$$
\begin{aligned}
& \text { moon enters umbra. 06h } 52 \mathrm{~m} \text { E.S.T. } \\
& \text { middle of eclipse..................... } 29 \mathrm{~m} \text { E.S. } \\
& \text { moon leaves umbra............. } 10 \mathrm{~h} 05 \mathrm{~m} \text { E.S.T. } \\
& \text { magnitude of eclipse } 0.806
\end{aligned}
$$

III. An Annular Eclipse of the Sun on August 11. The central line commences in Brazil and sweeps across the South Atlantic and Antarctica and ends in the Indian Ocean. The partial phase will be visible generally in the South Atlantic and South Indian Oceans and in South Africa.
IV. A Partial Eclipse (nearly total) of the Moon on the night of August 25, visible generally in North and South America.
moon enters umbra. 20 h 36 h 36 m E.S.T.
middle of eclipse. 23 h 42 m E.S.T.
moon leaves umbra. 0.992

Photographic Lunar Atlas

A magnificent portfolio of photographs of the near side of the moon

GERARD P. KUIPER

Expertly assembled under the direction of Dr. Gerard P. Kuiper, director of Yerkes Observatory, this atlas contains two hundred of the best photographs of the moon in existence, culled chiefly from the Pease-Cassegrain series taken at Mount Wilson and the Moore-Chappell series at Lick. Each plate measures $15 \frac{12}{2}$ by 19 inches, gathered loose-leaf in a sturdy box, thumbindexed and numbered to permit easy location of strips of the moon's surfaces. A landmark in science, this atlas will be of invaluable use to astronomers and geophysicists.

One set: $\$ 30.00$
Two or more sets: $\$ 25.00$ each

For descriptive circular write:

in canada-
Promotion Department,
University of Toronto Press,
Toronto 5, Ontario.

IN U.S.A.-
University of Chicago Press, 5750 Ellis Ave., Chicago 37, Illinois.

PLANETARY APPULSES AND OCCULTATIONS

The close approach of a planet to a star is of interest to observers. Surprisingly few observable appulses of planets and stars of 9th magnitude or brighter occur during a year. An even rarer occurrence is the observable occultation of a star by a planet.

The following details have been kindly supplied by Mr. Gordon E. Taylor and the British Astronomical Association. The data include the E.S.T. of conjunction of the planet and star, the magnitude of the star, the angular separation of the star and planet as seen from the centre of the earth (geocentric separation), and the horizontal parallax of the planet. The geocentric separation is in the sense dec. of planet minus dec. of star.

Planet	Date	$\begin{aligned} & \text { Conj. } \\ & \text { E.S.T. } \end{aligned}$	Star	Mag.	Geoc. Sepn.	Hor. Par.
		h m			"	"
Venus	May 14	2133	Z.C. 136	6.3	+20	21
Mars	Jan. 13*	2329	B.D. $+27^{\circ} 1049$	8.8	+19	14
	Jan. 21	1018	B.D. $+27^{\circ} 1006$	8.0	+20	13
	Feb. 19*	458	B.D. $+26^{\circ} 1079$	7.5	-27	10
	Apr. 25	1109	B.D. $+23^{\circ} 1825$	8.7	+23	6
	June 21*	2051	B.D. $+14^{\circ} 2166$	8.6	-10	4
	July $28{ }^{*}$	1310 18	B.D. $+6^{\circ} 2429$	8.9	-2	4
	Aug. 14^{*}	1834	B.D. $+1^{\circ} 2633$	7.7	-11	4
	Sept. 4*	2001	B.D. $-3^{\circ} 3360$	8.0	+10	4
Jupiter	Feb. 6	1128	B.D. $-21^{\circ} 5471$	8.8	-52	1
	Feb. 8	1449	B.D. $-21^{\circ} 5482$	8.7	+38	1
	Feb. 9	2217	B.D. $-21^{\circ} 5494$	8.6	-50	1
	Feb. 19	239	B.D. $-21^{\circ} 5546$	8.8	-38	
	Mar. 15	212	B.D. $-20^{\circ} 5836$	7.3	+25	2
	Mar. 15	2216	B.D. $-20^{\circ} 5844$	8.5	+12	2
	Mar. 23	1225	B.D. $-20^{\circ} 5880$	7.8	+15	2
	June 27	1537	B.D. $-19^{\circ} 5850$	8.7	-12	2
	Dec. 8	351	B.D. $-19^{\circ} 5852$	7.9	+14	2

[^1]
LUNAR OCCULTATIONS

When the moon passes between the observer and a star that star is said to be occulted by the moon and the phenomenon is known as a lunar occultation. The passage of the star behind the east limb of the moon is called the immersion and its re-appearance from behind the west limb the emersion. As in the case of eclipses, the times of immersion and emersion and the duration of the occultation
are different for different places on the earth's surface. The tables given below, adapted from data supplied by the British Nautical Almanac Office and give the times of immersion or emersion or both for occultations visible at Toronto, Montreal, Edmonton and Vancouver. Stars of magnitude 5.3 or brighter are included as well as daytime occultations of very bright stars and planets. Since an occultation at the bright limb of the moon is difficult to observe the predictions are limited to phenomena occurring at the dark limb.

The terms a and b are for determining corrections to the times of the phenomena for stations within 300 miles of the standard stations. Thus if λ_{0}, ϕ_{0}, be the longitude and latitude of the standard station and λ, ϕ, the longitude and latitude of the neighbouring station then for the neighbouring station we have:

Standard Time of phenomenon $=$ Standard Time of phenomenon at the standard station $+a\left(\lambda-\lambda_{0}\right)+b\left(\phi-\phi_{0}\right)$
where $\lambda-\lambda_{0}$ and $\phi-\phi_{0}$ are expressed in degrees. The quantity P is the position angle of the point of contact on the moon's disk reckoned from the north point towards the east.

LUNAR OCCULTATIONS VISIBLE AT TORONTO AND MONTREAL, 1961

Date	Star	Mag.	$\begin{gathered} \text { I } \\ \text { or } \\ \text { E } \end{gathered}$	$\begin{aligned} & \text { Age } \\ & \text { of } \\ & \text { Moon } \end{aligned}$	Toronto				Montreal			
					E.S.T.	a	b	P	E.S.T.	a	b	P
			F	${ }^{\text {d }} 9$	$\begin{array}{cc}\mathrm{h} & \mathrm{m} \\ 3 & 30\end{array}$	1	${ }_{+}^{\text {m }}$	\bigcirc	$\mathrm{h} \mathrm{m}_{3}$	m^{m}	m	$\stackrel{\circ}{8}$
Jan. 26	${ }_{\gamma}{ }^{\text {Tau }}$	4.8 3.9	E	22.9 9.3	1305.0	-1.3	+1.1	101	$\begin{array}{ll}3 & 39.8 \\ 1 & 04.1\end{array}$	-1.3	+0.5	287 92
Feb. 18	89 Psc	5.3	I	3.6	1835.2		1.7	130	1837.7	-1.4	-3.4	124
Mar. 8	γ Lib	4.0	I	21.0	Low				044.6	-0.3	-0.3	144
Mar. 8	$\gamma \mathrm{Lib}$	4.0	E	21.0	129.5	-1.6	+2.5	241	142.3	-1.5	+1.6	256
Mar. 21	${ }^{1}{ }^{1} \mathrm{Tau}$	4.0	I	5.2	2010.3	-1.0	-1.8	104	2012.7	-0.8	-1.5	95
Mar. 21	$\theta^{2} \mathrm{Tau}$	3.6	I	5.2	2020.5	-0.8	-3.1	128	20 19.6	-0.7	-2.5	118
Mar. 21	264 B.Tau	4.8	I	5.3	2120.1	-0.8	-0.4	61	2123.7	-0.7	-0.2	51
Mar. 22	111 Tau	5.1	I	6.3	${ }_{22} 2240.4$			156	2231.8	+0.2	-3.1	139
Apr. 21	74 Gem	5.2	I	6.9	${ }^{22} 4343.2$			30	No occ.			
May 15	$\boldsymbol{\alpha}$ Tau	1.1	I	1.2	1732.6	-0.7	-1.5	96	1733.5	-0.5	-1.3	87
May 15	α Tau	1.1	E	1.2	18186.4	-0.4	-0.9	255	1835.8	-0.1	-1.2	265
June 4	42 Cap	5.3	E	20.6	${ }_{2}^{2} 111.0$	-1.2	+1.4	254	221.0	-1.3	+1.2	257
July 9	α Tau	1.1	$\stackrel{\text { I }}{ }$	26.2	$\begin{array}{llll}4 & 50.7\end{array}$			5	453.8			9
July July 23	α Tau	1.1	E	26.2	${ }_{5}^{5} 13.4$	-	-	323	522.3			318
July 23 July 29	24 Sco	5.0	I	11.4	23188.5	-1.1	+0.1	48	2343.7	-0.8	-0.1	47
July 29	$\mu \mathrm{Cap}$	5.2	E	16.4	$\begin{array}{ll}0 & 10.4\end{array}$	-1.6	+0.8	262	021.1	-1.6	+0.6	261
Aug. Aug. 5	5 Tau	4.3	I	22.6	${ }_{3} 359.3$	-1.2	+1.4	84	Sun			
Aug. 5	γ Tau	3.9	,	23.6	${ }_{2}^{2} 37.4$	+0.1	+2.4	36	241.8	0.0	+2.5	38
Aug. 5 Aug. 5	γ Tau	3.9	E	23.6	(3) 29.0	-1.0	+0.9	289	336.9	-1.2	0.9	287
Aug. Aug. 5	$\boldsymbol{\alpha}$ Tau	1.1	$\begin{aligned} & \mathrm{I} \\ & \mathrm{E} \end{aligned}$	23.9 23.9	$\begin{array}{ll}12 & 32.2 \\ 13 & 25.0\end{array}$	-0.8 0.0	0.0 -2.3	51 300	$\begin{array}{llll}12 & 37.1 \\ 13 & 19.4\end{array}$	-0.8 +0.3	+0.4	39 312
Aug. ${ }^{5}$	$\boldsymbol{\alpha}$ Tau	1.1	E	23.9	$1 \begin{array}{ll}13 & 25.0 \\ 20 & 37.1\end{array}$	0.0 -1.5	-2.3	300	${ }_{13}^{13} 19.4$	+0.3	-2.8	312
Sept. 21 Sept. 27		5.2 4.4	$\begin{aligned} & \text { I } \\ & \hline \end{aligned}$	12.0	20 1 0 08.1	- 1.5	+1.1	64	$\begin{array}{rr}20 & 47.8 \\ 0 & 18.2\end{array}$	-1.5	+0.9 +1.8	65 54
Sept. 27	${ }_{\mu}^{\mu}$ Cet	4.4	E	17.1	120.3	-1.7	+0.9	260	$\begin{array}{ll}1 & 318.7\end{array}$	- 1.7	+0.8	258
Sept. 28	${ }_{\theta^{1}} \mathrm{Tau}$	4.0	E	19.1	2219.4	-0.1	+1.2	278	2222.7	-0.2	+1.3	276
Sept. 28	$\theta^{2} \mathrm{Tau}$	3.6	E	19.1	2221.3	+0.1	+1.5	256	2224.4	-0.1	+1.6	255
Sept. 28	264B. Tau	4.8	E	19.1	2310.0	-0.8	+0.4	304	23 15.8	-0.9	+0.5	302
Sept. 29	$\boldsymbol{\alpha}$ Tau	1.1	I	19.2	107.7	-0.5	+2.6	41	$1 \begin{array}{ll}16.3\end{array}$	-0.7	+2.5	43
Sept. 29	α Tau	1.1	E	19.2	211.1	-1.8	+0.4	284	222.5	-1.9	+0.2	283
Sept. 30	115 Tau	5.3	E	20.1	041.6	-0.6	+1.4	270	048.4	-0.8	+1.4	269
Oct. 4	${ }^{1} \mathrm{Cnc}$	5.2	E	24.3	340.5	-0.4	+2.0	253	347.5	-0.7	+2.0	255
Oct. 7	σ Leo	4.1	E	27.4	5	-0.4	-0.8	329	$\begin{array}{lll}5 & 12.7\end{array}$	-0.5	-1.2	336
Oct. 17	ρ - ${ }^{\text {Cap }}$	5.0	,	8.2	1833.3	-	-	9	1844.0	-		9
Nov. 30	${ }_{\boldsymbol{\chi}}^{\chi} \mathrm{L}$ Leo	4.7 4.4	E	24.6	${ }_{1}^{4} 339.2$	-0.9	+0.8	287	446.1	-1.1	+0.4	295
Nov. 20 Nov. 22	μ Cet	4.4	I	12.7	1932.5	-0.7	+1.9	57	1940.4	-0.9	+1.8	60
Nov. 22 Nov. 22	α Tau	1.1	$\stackrel{\mathrm{I}}{\mathrm{E}}$	14.7	$1 \begin{aligned} & 19 \\ & 20\end{aligned} 59.9$	-0.4	+1.5	84	2002.5	-0.6	+1.4	86
Nov. 22	$\stackrel{\alpha}{115}{ }_{1}^{\text {Tau }}$	1.1	$\stackrel{\mathrm{E}}{\mathrm{E}}$	14.7 15.6	${ }_{\text {Low }}{ }^{20} 59.6$	-0.6	+1.9	242	$\left\lvert\, \begin{array}{ll}21 & 07.1 \\ 18 & 59.3\end{array}\right.$	-0.7	+2.0	240
Nov. 23	119 Tau	4.7	E	15.7	2125.4	-1.2	+0.1	305	2133.4	-1.4	+0.2	303
Nov. 26	ζ Cnc	5.1	E	18.7	Low				2136.5	-0.1	+1.1	283
Nov. 29	ν Leo	5.2	E	20.9	$\begin{array}{ll}1 & 57.5 \\ 3\end{array}$	-1.0	+1.6	264	206.8	-1.2	+1.4	270
Dec. 20	75 Tau	5.3	I	12.3	304.5	-0.6	-1.6	98	305.2	-0.5	-1.3	89
Dec. 20	264B. Tau	4.8	I	12.4	No occ.				$\begin{array}{llll}4 & 20.7\end{array}$	+0.7	-4.3	151
Dec. 28	$\boldsymbol{\sigma}$ Leo	4.1	E	20.5	No occ.				${ }_{6}^{6} 15.5$	-	-	180
Dec. 28	σ Leo	4.1	E	20.5	No occ.				653.4	-		235

Date	Star	Mag.	$\begin{gathered} \text { I } \\ \text { or } \\ \mathrm{E} \end{gathered}$	$\begin{gathered} \text { Age } \\ \text { of } \\ \text { Moon } \end{gathered}$	Edmonton				Vancouver			
					M.S.T.	a	b	P	P.S.T.	a	b	P
				d	h m	m	m		h m	m	m	-
Jan. 22	${ }^{2} \mathrm{Psc}$	4.7	I	6.2	1732.0	-1.7	+0.1	96	Sun			
Jan. 25	γ Tau	3.9	I	9.3	2219.3	-1.3	-0.6	80	2106.1	-1.7	-0.5	90
Jan. 26	71 Tau	4.6	I	9.5	$2 \quad 10.9$	+0.2	-2.9	134	No occ.			
Jan. 26	θ^{1} Tau	4.0	I	9.5	Low				2 2 13.9	-0.1	-1.1	76
Jan. 26	θ^{2} Tau	3.6	I	9.5	Low				$2{ }_{2} 15.8$	0.0	-1.6	97
Feb. 3	59 Leo	5.1	E	17.5	354.3	-2.1	+0.4	241	No occ.			
Mar. 9	24 Sco	5.0	E	22.2	502.5	-1.3	+0.2	289	347.4	-1.3	+0.8	275
Mar. 14	Mercury	0.7	I	27.5	$\begin{array}{lll}13 & 37.1\end{array}$	-1.3	-1.8	109	1228.1	-1.7	-1.4	107
Mar. 14	Mercury	0.7	E	27.5	1428.3	-0.2	+0.3	209	$13 \quad 23.0$	-0.4	+0.7	208
Mar. 22	111 Tau	5.1	1	6.3	1946.8	-1.2	-3.2	137	No occ.			
Apr. 4	$\gamma \mathrm{Lib}$	4.0	I	18.7	Sun				4 4 0 0 1.71 .7	-1.6	0.0	53 179
Apr. 26	59 Leo	5.1	I	11.1	$\begin{array}{rrr}1 & 22.2 \\ 14 & 44\end{array}$	-0.2	-2.6	158	0 34.3	-1.7		179
May 15	$\boldsymbol{\alpha}$ Tau	1.1	I	1.2	1444.1	-1.4	0.0	72	11328.2	-1.7	+0.2	81
May 15	$\boldsymbol{\alpha}$ Tau	1.1	E	1.2	$15 \quad 59.3$	-1.2	-1.1	269	1448.9	-1.5	-0.3	257
June 21	${ }_{\gamma} \boldsymbol{V} \mathrm{Vir}$	2.9	E	8.9	No occ.				12029.2	-0.5	-2.8	348
June 22	74 Vir	4.8	I	10.0	12235.9	-0.8	-2.0	145	2136.1	-0.8	-2.3	160
June 30	π Cap	5.2	E	17.2	239.7	-0.8	+1.3	198	123.9	-	-	196
June 30	ρ Cap	5.0	E	17.2	Sun				240.1	-1.5	-0.3	271
July 23	24 Sco	5.0	I	11.4	$20 \quad 51.5$	+0.1	-2.	31 37	Sun			
Aug. 4	5 Tau	4.3	I	22.6	${ }_{2}^{2} 02.6$	+0.1	+2.3	37 285	$\begin{array}{lll}0 & 55.1 \\ 1 & 43\end{array}$	+0.2 +0.4	+2.1	37 287
Aug. 4	5 Tau	4.3	E	22.6	253.8	-0.7	+1.3	285	$\begin{array}{ll}1 & 43.0 \\ 3 & 35\end{array}$	-0.4	+1.2 +2.2	287
Aug. 5	71 Tau	4.6	E	23.7	Sun				3 3	-0.3	+2.2	233
Aug. 5	θ^{2} Tau	3.6	I	23.8	Sun				$\begin{array}{lll}3 & 50.4 \\ 3 & 53\end{array}$	-0.6	+1.8	74 53
Aug. 5	θ^{1} Tau	4.0	I	23.8 23	${ }_{10}^{\text {Sun } 01.0}$				$\begin{array}{lll}3 & 53.3 \\ 8 & 38.3\end{array}$	-0.4	+2.2 +2.0	53 37
Aug. 5 Aug. 5	${ }_{\boldsymbol{\alpha}}^{\boldsymbol{\alpha}} \mathrm{Tau}$	1.1 1.1	E	23.9 23.9	$\begin{array}{ll}10 & 01.0 \\ 10 & 39.9\end{array}$	-	-	21 320	$\begin{array}{lll}8 & 38.3 \\ 9 & 39.5\end{array}$	-1.4	+2.0 -2.4	37 300
Aug. 23	π Cap	5.2	I	12.8	$23 \quad 26.3$	-	-	140	2212.1	-		140
Aug. 23/ 24	ρ Cap	5.0	I	12.9	004.0	-1.1	-0.2	65	2251.5	-1.4	$+0.3$	64
Sept. 5	74 Gem	5.2	E	25.1	Sun				356.1	+0.4	+4.3	208
Oct. 26	γ Tau	3.9	I	16.6	$\begin{array}{lll}2 & 37.7\end{array}$	-1.9	-2.0	128	125.3	-	-	137
Oct. 26	γ Tau	3.9	E	16.6	323.9	-1.1	+2.6	203	$\begin{array}{lll}2 & 00.4\end{array}$	-	-	191
Oct. 28	71 Ori	5.2	E	18.7	Graze				527.1	-1.3	-3.0	316
Nov. 16	χ Aqr	5.1	I	8.8	2155.8	-1.2	-0.8	85	2044.2	-1.5	-0.3	84
Nov. 20	μ Cet	4.4	I	12.7	1750.6	$+0.3$	+2.7	9	Low			
Nov. 22	$\boldsymbol{\alpha}$ Tau	1.1	I	14.7	1816.6	$+0.4$	+1.9	43	${ }_{17}$ Low			
Nov. 22	$\boldsymbol{\alpha}$ Tau	1.1	E	14.7	1901.9	-0.1	+1.2	289	1757.1	+0.1	+1.0	290
Nov. 29	$\boldsymbol{\alpha}$ Leo	1.3	E	21.1	No occ.				$\begin{array}{lll}3 & 46.1 \\ 4 & 29 .\end{array}$	-	-	51 348
Nov. 29	α Leo	1.3	E	21.1	No occ.				429.7 Sun	-	-	348
Dec. 17	ξ^{2} Cet	4.3	I	10.1 10.4	16 53.2	-0.4 -0.3	+1.7 -0.9	77 67	$\begin{aligned} & \text { Sun } \\ & 132.9 \end{aligned}$		-1.2	81
Dec. 18 Dec. 18	${ }_{5}^{\mu}$ Cet	4.4 4.3	I	10.4	2 22 23 12	-0.3	-0.9	67 140	132.9 Graze	-0.6	-1.2	81
Dec. 19	${ }_{\gamma}{ }^{\text {T Tau }}$	3.9	I	12.2	1914.0	-0.8	+1.2	101	1801.7	-0.6	$+1.3$	99
Dec. 19 / 20	75 Tau	5.3	1	12.3	016.8	-1.3	0.0	71	2301.2	-1.6	+0.3	79
Dec. 20	264B. Tau	4.8	I	12.4	140.9	-1.0	-3.9	138	No occ.			
Dec. 20	$\boldsymbol{\alpha}$ Tau	1.1	I	12.5	415.8	-0.2	-1.8	99	321.1	-0.4	-2.4	118
Dec. 20	$\boldsymbol{\alpha}$ Tau	1.1	E	12.5	512.7	-0.1	-1.0	248	413.0	-0.5	-0.3	230
Dec. 24	ζ Cnc	5.1	E	16.5	605.9	-0.8	$\mid-1.5$	272	500.0	-1.	-0.7	253

Mathematical Snapshots
 by

H. STEINHAUS

Here is a new edition, revised and enlarged, of this popular and unusual book which makes mathematical phenomena visual by means of photographs and diagrams.
$\$ 7.50$
OXFORD UNIVERSITY PRESS

METEORS, FIREBALLS AND METEORITES

By Peter M. Millman

Meteoroids are small solid particles moving in orbits about the sun. On entering the earth's atmosphere at velocities ranging from 10 to 45 miles per second they become luminous and appear as meteors or fireballs and, if large enough to avoid complete vapourization, in rare cases they may fall to the earth as meteorites.

Meteors are visible on any night of the year. At certain times of the year the earth encounters large numbers of meteors all moving together along the same orbit. Such a group is known as a meteor shower and the accompanying list gives the most important showers visible in 1961.

On the average an observer sees 7 meteors per hour which are not associated with any recognized shower. These have been included in the hourly rates listed in the table. The radiant is the position among the stars from which the meteors of a given shower seem to radiate. The appearance of any very bright fireball should be reported immediately to the nearest astronomical group or organization. If sounds are heard accompanying such a phenomenon there is a possibility that a meteorite may have fallen and the astronomers must rely on observations made by the general public to track it down.

Meteor Showers for 1961

Shower	Shower Maximum			Radiant			Single Observer Hourly Rate	Normal Duration to $\frac{1}{4}$ strength of Max.
	Date	E.S.T.	Moon	$\begin{array}{cc} \text { Position } \\ \text { at Max. } \\ \alpha & \delta \delta \end{array}$				
				$\bigcirc{ }^{\circ}$	-	。		(days)
Quadrantids	Jan. 3	$06^{\text {b }}$	F.M.	${ }^{232}+50$			40	0.6
Lyrids	Apr. 21	23	F.Q.	$274+34$	+1.1	0.0	15	2.3
η Aquarids	May 4	23	L.Q.	$\begin{array}{ll}336 & 00\end{array}$	+0.9	$+0.4$	20	18
δ Aquarids	July 29	08	F.M.	339-17	+0.85	+0.17	20	20
Perseids	Aug. 12	03	N.M.	$046+58$	+1.35	+0.12	50	5.0
Orionids	Oct. 20	14	F.M.	$095+15$	+1.23	+0.13	25	8
Taurids	Nov. 5	15	N.M.	$053+14$	+0.67	+0.13	15	(30)
Leonids	Nov. 16	13	F.Q.	$152+22$	+0.70	-0.42	15	
Geminids	Dec. 13	08	F.Q.	${ }^{113}+32$	+1.05	-0.07	50	6.0
Ursids	Dec. 22	13	F.M.	$217+76$			15	2.2

TELESCOPE MIRRORS
$6^{\prime \prime}$ @ \$52.50 8" @ \$79.90 10" @ \$165.00
Better than $1 / 8$ wave
Guaranteed to resolve to Dawes limit
H. HUNTER LARGE-OPTICS

995 North Franklin Street
Pottstown, Penna., U.S.A.

FINDING LIST OF NAMED STARS

Name		R.A.	Name		R.A.
Acamar	θ Eri	02	Fomalhaut	α PsA	22
Achernar	α Eri	01	Gacrux	$\gamma \mathrm{Cru}$	12
Acrux	α Cru	12	Gienah	${ }_{\gamma} \mathrm{Crv}$	12
Adhara	ϵ СМa	06	Hadar	β Cen	14
Al Na'ir	$\alpha \mathrm{Gru}$	22	Hamal	α Ari	02
Albireo	β Cyg	19	Kaus Australis	$\epsilon \mathrm{Sgr}$	18
Alcyone	η Tau	03	Kochab	β UMi	14
Aldebaran	$\alpha \mathrm{Tau}$	04	Markab	$\alpha \mathrm{Peg}$	23
Alderamin	${ }_{\alpha}$ Cep	21	Megrez	δ UMa	12
Algenib	$\gamma \mathrm{Peg}$	00	Menkar	α Cet	03
Algol	β Per	03	Menkent	θ Cen	14
Alioth	$\epsilon \mathrm{UMa}$	12	Merak	$\beta \mathrm{UMa}$	10
Alkaid	η UMa	13	Miaplacidus	β Car	09
Almach	γ And	02	Mira	${ }^{\circ} \mathrm{Cet}$	02
Alnilam	ϵ Ori	05	Mirach	β And	01
Alphard	$\alpha \mathrm{Hya}$	09	Mirfak	α Per	03
Alphecca	$\alpha \mathrm{CrB}$	15	Mizar	$\zeta \mathrm{UMa}$	13
Alpheratz	α And	00	Nunki	σ Sgr	18
Altair	$\alpha \mathrm{Aql}$	19	Peacock	α Pav	20
Ankaa	α Phe	00	Phecda	$\gamma \mathrm{UMa}$	11
Antares	α Sco	16	Polaris	$\alpha \mathrm{UMi}$	01
Arcturus	α Boo	14	Pollux	β Gem	07
Atria	α TrA	16	Procyon	α CMi	07
Avior	$\epsilon \mathrm{Car}$	08	Ras-Algethi	α Her	17
Bellatrix	$\gamma \mathrm{Ori}$	05	Rasalhague	α Oph	17
Betelgeuse	α Ori	05	Regulus	${ }^{\alpha}$ Leo	10
Canopus	$\alpha \mathrm{Car}$	06	Rigel	β Ori	05
Capella	α Aur	05	Rigil Kentaurus	${ }^{\alpha} \mathrm{Cen}$	14
Caph	β Cas α Gem	00 07	$\xrightarrow[\text { Sabik }]{\text { Scheat }}$	${ }_{\beta}^{\eta} \mathrm{OPpg}^{\text {Open }}$	${ }_{23}^{17}$
Castor	α Gem	07			
Deneb	$\alpha \mathrm{Cyg}$	20	Schedar	α Cas	00
Denebola	β Leo	11	Shaula	λ Sco	17
Diphda	β Cet	00	Sirius	$\alpha \mathrm{CMa}$	06
Dubhe	$\alpha \mathrm{UMa}$	11	Spica	${ }^{\alpha} \mathrm{Vir}$	${ }_{09}^{13}$
Elnath	β Tau	05	Suhail	$\lambda \mathrm{Vel}$	09
Eltanin	γ Dra	17	Vega Zubenelgenubi	${ }_{\alpha}^{\alpha} \mathrm{Lyr}$ Lib	18
Enif	$\epsilon \mathrm{Peg}$	21	Zubenelgenubi	α Lib	14

THE BRIGHTEST STARS

By Donald A. MacRae

The 286 stars brighter than apparent magnitude 3.55.
Star. If the star is a visual double the letter A indicates that the data are for the brighter component. The brightness and separation of the second component B are given in the last column. Sometimes the double is too close to be conveniently resolved and the data refer to the combined light, $A B$; in interpreting such data the magnitudes of the two components must be considered.

Visual Magnitude (V). These magnitudes are based on photoelectric observations, with a few exceptions, which have been adjusted to match the yellow colour-sensitivity of the eye. The photometric system is that of Johnson and Morgan in $A p$. J., vol. 117, p. 313, 1953. It is as likely as not that the true magnitude is within 0.03 mag. of the quoted figure, on the average. Variable stars are indicated with a " v ". The type of variability, range, R, in magnitudes, and period in days are given.

Colour index $(B-V)$. The blue magnitude, B, is the brightness of a star as observed photoelectrically through a blue filter. The difference $B-V$ is therefore a measure of the colour of a star. The table reveals a close relaton between $B-V$ and spectral type. Some of the stars are slightly reddened by interstellar dust. The probable error of a value of $B-V$ is only 0.01 or 0.02 mag .

Type. The customary spectral (temperature) classification is given first. The Roman numerals are indicators of luminosity class. They are to be interpreted as follows: Ia-most luminous supergiants; Ib-less luminous supergiants; II—bright giants; III—normal giants; IV—subgiants; V—main sequence stars. Intermediate classes are sometimes used, e.g. Iab. Approximate absolute magnitudes can be assigned to the various spectral and luminosity class combinations. Other symbols used in this column are: p-a peculiarity; e-emission lines; v -the spectrum is variable; m -lines due to metallic elements are abnormally strong; f-the O-type spectrum has several broad emission lines; n or nn-unusually wide or diffuse lines. A composite spectrum, e.g. M1 Ib+B, shows up when a star is composed of two nearly equal but unresolved components. In the far southern sky, spectral types in italics were provided through the kindness of Prof. R. v. d. R. Woolley, Australian Commonwealth Observatory. Types in parentheses are less accurately defined (g-giant, d-dwarf, c-exceptionally high luminosity). All other types were very kindly provided especially for this table by Dr. W. W. Morgan, Yerkes Observatory.

Parallax (π). From "General Catalogue of Trigonometric Stellar Parallaxes" by Louise F. Jenkins, Yale Univ. Obs., 1952.

Absolute visual magnitude (M_{V}), and distance in light-years (D). If π is greater than $0.030^{\prime \prime}$ the distance corresponds to this trigonometric parallax and the absolute magnitude was computed from the formula $\mathrm{M}_{V}=V+5+5 \log \pi$. Otherwise a generally more accurate absolute magnitude was obtained from the luminosity class. In this case the formula was used to compute π and the distance corresponds to this "spectroscopic" parallax. The formula is an expression of the inverse square law for decrease in light intensity with increasing distance. The effect of absorption of light by interstellar dust was neglected, except for three stars, ζ Per, σ Sco and ζ Oph, which are significantly reddened and would therefore be about a magnitude brighter if they were in the clear.

Annual proper motion (μ), and radial velocity (R). From "General Catalogue of Stellar Radial Velocities" by R. E. Wilson, Carnegie Inst. Pub. 601, 1953. Italics indicate an average value of a variable radial velocity.

The star names are given for all the officially designated navigation stars and a few others. Throughout the table, a colon (:) indicates an uncertainty.

We are indebted to Dr. Daniel L. Harris, Yerkes Observatory, particularly for his compilation of the photometric data from numerous sources.

		$\stackrel{E}{5}$				Achernar
Radial Velocity	a	¢				$\begin{aligned} & \stackrel{\oplus}{0} \\ & +1 \\ & +1 \end{aligned}$
Proper Motion	$₹$	$=$			Re	여영
Distance light－years	Q	$\stackrel{i}{i}$	இ			bo룰
Absolute Magnitude	\sum	+ + + +				
Parallax	k	$=$	$00^{\circ} 1000000$		$$	
Spectral Classification	$\stackrel{\otimes}{\stackrel{\circ}{\sim}}$	$>$ ヘ			32020	$\begin{aligned} & \ddot{\rightarrow} \stackrel{n}{p} \\ & 20 \infty \\ & 0 \sim 0 \end{aligned}$
Colour Index	$\begin{aligned} & \text { A } \\ & \infty \end{aligned}$	0 0 + +	ooonnoroo $1+1++++++1$			$\begin{array}{r} 0 N \\ -1+ \\ -1+ \end{array}$
Visual Magnitude	λ		 		$\begin{aligned} & \text { No } \\ & \text { مi } \end{aligned}$	$\begin{aligned} & H 20 \\ & \text { Non } \\ & \hline 0 \end{aligned}$
Declination			 $+++11++1++$			$\begin{aligned} & 508 \\ & 208 \\ & 120 \\ & 11 \end{aligned}$
Right Ascension	花	E －	 8	$\begin{aligned} & \infty \\ & \dot{0} \\ & -\quad \end{aligned}$	\mathfrak{N}	
	$\begin{gathered} \text { 苟 } \\ \text { N } \end{gathered}$	$\begin{aligned} & z \\ & \vdots \\ & \stackrel{y}{2} \end{aligned}$		$\begin{aligned} & \infty \\ & \underset{\sim}{\alpha} \\ & \frac{1}{\infty} \\ & \infty \end{aligned}$	On ∞	「芯 エリ と

Star	R.A. 19	60 Dec.	V	$B-V$	Type	π	M_{V}	D	μ	R	
	h m	-				'		1.y.	'"	km./sec.	
$\boldsymbol{\alpha}$ Tri	0150.8	+29 23	3.45	+0.46	F6 IV	0.050	+2.0	65	0.230	-12.6	
ϵ Cas	51.5	+63 28	3.33	-0.15	B3 IV: p	0.007	-2.7	520	0.038	-08.1	
β Ari	52.4	+20 37	2.68	+0.14	A5 V	0.063	+1.7	52	0.147	-01.9	
$\boldsymbol{\alpha}$ UMi A	55.5	+89 05	1.99v	$+0.60 \mathrm{v}$	F8 Ib	0.003	-4.6	680	0.046	-17.4	Cep., R 0.11 ${ }^{\mathrm{m}} 4.0^{\mathrm{d}}, \mathrm{B} 8.9 \mathrm{9}^{\mathrm{m}} 18^{\prime \prime}$ Polaris
$\boldsymbol{\alpha}$ Hyi	57.5	-61 46	2.84	+0.28	FO V		+2.9	31	0.265	+07	d $=$ Almach
γ And A	0201.4	+4208	2.14:	+1.16:	K3 II	0.005	-2.4	260	0.068	-11.7	$B 5.4^{\mathrm{m}} C 6.2^{\mathrm{m}} A-B C 10^{\prime \prime} B-C 0.7^{\prime \prime}$
$\boldsymbol{\alpha}$ Ari	04.9	+23 16	2.00	+1.15	K2 III	0.043	+0.2	76	0.241	-14.3	Hamal
β Tri	07.2	+34 48	3.00	+0.13	A5 III	0.012	-0.1	140	0.156	+09.9	
- Cet A	17.3	-03 09	2.0 v	+0.13	(gM6e)	0.013	-0.5	103	0.232	+63.8	LP, $R 2.0-10.1,332^{\text {d }}, B 10^{\mathrm{m}} 1^{\prime \prime}$ Mira
γ Cet $A B$	41.2	+03 04	3.48	+0.11	A2 V	0.048	+2.0	68	0.203	-05.1	$A 3.57^{\mathrm{m}}$ B $6.23^{\mathrm{m}} 3^{\prime \prime}$
$\boldsymbol{\theta}$ Eri $A B$	56.7	-4028	2.92	+0.13	$A 3 \quad V$	0.028	+1.7	65	0.061	+11.9	$A 3.25{ }^{\mathrm{m}}$ B $4.36{ }^{\mathrm{m}} 8^{\prime \prime} \quad$ Acamar
α Cet	0300.2	+03 56	2.54	+1.63	M2 III	0.003	-0.5	130	0.075	-25.9	Menkar
$\boldsymbol{\gamma}$ Per	01.9	+53 21	2.91:	+0.72:	G8III: + A3:	0.011	$+0.3$	113	0.004	+02.5	
$\boldsymbol{\rho}$ Per	02.6	+38 41	3.5 v		M4 II-III	0.008	-1.0	260	0.172	+28.2	Irr. R 3.2-3.8
β Per	05.6	+40 48	2.06 v	-0.07	B8 V	0.031	-0.5	105	0.006	+04.0	Ecl. R 2.06-3.28, $2.87{ }^{\text {d }}$ Algol
α Per	21.5	+49 43	1.80	+0.48	F5 Ib	0.029	-4.4	570	0.035	-02.4	Mirfak
$\boldsymbol{\delta}$ Per	40.1	+4740	3.03	-0.14	B5 III	0.007	-3.3	590	0.046	-09	
η Tau	45.1	$+2359$	2.86	-0.09	B7 III	0.005	-3.2	541	0.050	+10.1	in Pleiades Alcyone
$\gamma \mathrm{Hyi}$	47.8	-7422	3.30	+1.61	M2 II-III	-. 0.001	-1.5	300	0.125	$+16.0$	
ζ Per A	51.6	+31 46	2.83	+0.13	B1 Ib	0.007	-6.1	1000	0.015	$+20.6$	B $9.36{ }^{\mathrm{m}} 13^{\prime \prime}$
ϵ Per A	55.2	+39 54	2.88	-0.17	B0.5 V	-. 0001	-3.7	680	0.036	-01	B $7.99{ }^{\text {m }} 9^{\prime \prime}$
$\gamma \mathrm{Eri}$	56.2	$\begin{array}{\|cc\|}-13 & 37\end{array}$	3.01	+1.58	M0 III	0.003	-0.5	160	0.126	+61.7	
$\boldsymbol{\alpha}$ Ret A	0413.9	-62 34	3.33	+0.91	G6 II	0.008	-2.1	390	0.064	+35.6	$B 12^{\mathrm{m}} 49^{\prime \prime}$
ϵ Tau	26.3	+19 06	3.54	+1.02	K0 III	0.018	$+0.1$	160	0.118	+38.6	
$\boldsymbol{\theta}^{\mathbf{2}}$ Tau	26.4	+15 47	3.42	+0.17	A7 III	0.025	$+0.2$	140	0.108	$+39.5$	
α Dor	33.1	-5508	3.28	-0.08	AO IIIp	0.011	-1.2	260	0.051	$+25.6$	Silicon star
α Tau A	33.6	+1626	0.86 v	+1.52	K5 III	0.048	-0.7	68	0.202	$+54.1$	Irr.? R0.78-0.93, $1213^{\mathrm{m}} 31^{\prime \prime}$ Aldebaran
π^{3} Ori	47.7	+06 54	3.17	+0.45	F6 V	0.125	$+3.65$	26	0.468	$+24.3$	
، Aur	54.4	+33 06	2.64:	+1.49	K3 II	0.015	-2.4	330	0.021	+17.5	

Star	R.A. 19	60 Dec.	V	$B-V$	Type	π	M_{V}	D	μ	R	
	h m	$\bigcirc 1$				\%		$1 . y$.	${ }^{\prime \prime}$	km./sec.	
ν Pup	0636.5	-43 10	3.19	-0.10	B7 III		-3.2	620	0.010	$+28.2$	
ϵ Gem	41.5	+25 10	3.00	+1.39	G8 Ib	0.009	-4.6	1080	0.016	$+09.9$	
$\boldsymbol{\xi}$ Gem	43.0	+1256	3.38	+0.43	F5 IV	0.051	+1.9	64	0.224	$+25.3$	
$\boldsymbol{\alpha}$ CMa A	43.4	-16 40	-1.42	+0.01	A1 V	0.375	$+1.45$	8.7	1.324	-07.6	$B 8.66^{\mathrm{m}} 1960: 9^{\prime \prime}, \theta=90^{\circ} \quad$ Sirius
$\boldsymbol{\alpha}$ Pic	47.8	-6154	3.27	+0.21	A5 V		$+2.1$	57	0.272	$+20.6$	
τ Pup	48.9	-50 34	2.97	+1.17	K0 III		+0.1	124	0.079	$+36.4$	
$\epsilon \mathrm{CMa} A$	57.1	-2855	1.48:	-0.18:	B2 II		-5.1	680	0.004	+27.4	$B 7.5{ }^{\text {m }} 8^{\prime \prime} \quad$ Adhara
$\boldsymbol{o}^{\mathbf{2}} \mathrm{CMa}$	0701.4	-23 46	3.02	-0.09	B3 Ia		-7.1	3400	0.000	+48.4	
$\delta \mathrm{CMa}$	06.8	-26 20	1.85	+0.65	F8 Ia	$-.018$	-7.1	2100	0.005	+34.3	
$\mathrm{L}_{2} \mathrm{Pup}$	12.3	-44 34			(gM5e)	0.016	-3.1	650	0.342	$+53.0$	LP, R 3.4-6.2, $141{ }^{\text {d }}$
π Pup	15.7	-37 01	2.81	+1.56:	(gK4)	0.023	-0.3	140	0.008	$+15.8$	
η CMa	22.5	-29 13	2.46	-0.08	B5 Ia		-7.1	2700	0.008	+41.1	
$\boldsymbol{\beta} \mathrm{CMi}$	25.0	+08 22	2.91	-0.09	B7 V	0.020	-1.1	210	0.065	$+22$	
$\sigma \operatorname{Pup} A$	28.0	$\begin{array}{lll}-43 & 13\end{array}$	3.28	+1.49	(gK5)	0.013	-0.4	180	0.195	$+88.1$	$B 9.4{ }^{\mathrm{m}} 22^{\prime \prime}$
$\boldsymbol{\alpha}$ Gem A	32.0	+3159	1.97	+0.00:	A1 V	0.072	+1.3	45	0.199 0.199	+06.0 -01.2	5 $5^{\prime \prime}, B-V+0.02, C 9.08 \mathrm{v}^{\mathrm{m}} 73^{\prime \prime}$ Castor
$\boldsymbol{\alpha}$ Gem B	32.0	+3159	2.95	+0.07:	A5m	0.072	$+2.3$	45	0.199	-01.2	$)^{5}, B-V+0.02, C 9.08 \mathrm{v}$ (${ }^{\prime \prime}$
$\boldsymbol{\alpha} \mathrm{CMi} A$	37.2	+05 20	0.37	+0.41	F5 IV-V	0.288	$+2.7$	11.3	1.250	-03.2	$B 10.7^{\mathrm{m}} 5^{\prime \prime} \quad$ Procyon
β Gem	42.9	+28 07	1.16	+1.02	K0 III	0.093	$+1.0$	35	0.625	+03.3	Pollux
$\boldsymbol{\xi}$ Pup	47.6	-24 45	3.34	+1.23	G3 Ib	$-.003$	-4.6	1240	0.005	+02.7	
χ Car	55.8	-5252	3.48	-0.18	(B3)		-2.1	430	0.039	+19.1	
ζ Pup	0802.2	-3953	2.23	-0.26	O5f		-7.1	2400	0.033	-24	
ρ Pup	05.8	-24 11	2.80 v	+0.42	F6 IIp	0.031	+0.3:	105:	0.098	$+46.6$	Var. R 2.72-2.87
$\boldsymbol{\gamma}$ Vel A	08.3	-47 14	1.88	-0.26	WC7		-4.1	520	0.011	+35	$B 4.31^{\mathrm{m}} 41^{\prime \prime}$
$\epsilon \mathrm{Car}$	21.7	-5923	1.97	+1.14:	$(\mathrm{K} 0+\mathrm{B})$		-3.1:	340	0.030	$+11.5$	Avior
- UMa A	27.0	+6051	3.37	+0.83	G5 III	0.004	+0.1	150	0.171	+19.8	$B 15^{\mathrm{m}} 7^{\prime \prime}$
$\delta \mathrm{Vel} A B$	43.6	-5434	1.95	+0.05	$A 0 \quad V$	0.043	+0.2	76	0.086	+02.2	$A 2.0^{\mathrm{m}} B 5.1^{\mathrm{m}} 3^{\prime \prime} C D 10^{\mathrm{m}} 69^{\prime \prime}$
ϵ Hya $A B C$	44.7	+0634	3.39	+0.68	G0 comp.	0.010	$+0.6$	140	0.198	$+36.4$	$A 3.7^{\mathrm{m}} B 5.2^{\mathrm{m}} 0.2^{\prime \prime} 15^{\mathrm{y}}, C 6.8^{\mathrm{m}} 3^{\prime \prime} D 12^{\mathrm{m}} 20^{\prime \prime}$
ζ Hya	53.3	+06 06	3.11	+1.00	K0 II-III	0.029	-1.1	220	0.101	+22.8	
${ }^{\text {c UMa }} A$	56.5	+48 12	3.12	+0.19	A7 V	0.066	+2.2	49	0.505	+12.2	$B C 10.8^{\mathrm{m}} 7^{\prime \prime}$

Star	R.A. 19	60 Dec.	V	$B-V$	Type	π	$\mathrm{M}_{\boldsymbol{V}}$	D	μ	R	
	h m	- 1				"		1.y.	' 1	km./sec.	
$\boldsymbol{\lambda}$ Vel	0906.5	-4316	2.24	+1.64:	$K 5 \quad I b$	0.015	-4.6	750	0.026	+18.4	Suhail
a Car	09.9	-5848	3.43	-0.17	B3 IV		-2.9	590	0.028	+23.3	
β Car	12.8	-6933	1.67	+0.01	AO III	0.038	-0.4	86	0.183	-05	Miaplacidus
¢ Car	16.0	-5906	2.25	$+0.17$	FO Ib		-4.6	750	0.019	$+13.3$	
$\boldsymbol{\alpha}$ Lyn	18.6	$+3434$	3.17	$+1.54$	M0 III	0.021	-0.5	180	0.217	$+37.6$	
$\boldsymbol{\kappa}$ Vel	20.9	-5450	2.45	-0.15	B2 IV	0.007	-3.4	470	0.012	+21.9	
α Hya	25.6	-08129	1.98	+1.44	K4 III	0.017	-0.3	94	0.034	-04.3	Alphard
N Vel	30.0	-5651	3.19	+1.56	(gK5)	0.015	-0.4	170	0.036	-13.9	
θ UMa A	30.2	+51 52	3.19	$+0.46$	F6 IV	0.052	$+1.8$	63	1.094	$+15.4$	$B 14{ }^{\text {m }} 5^{\prime \prime}$
є Leo	43.6	+23 58	2.99	$+0.81$	G0 II	0.002	-2.1	340	0.048	$+05.0$	
1 Car	44.1	-6219	4.1		(cG0)	0.019	-5.5	2700	0.016	$+04.0$	Cep. max. $3.4{ }^{\mathrm{m}} \min .4 .8^{\mathrm{m}}, 35.52^{\mathrm{d}}$
v Car $A B$	46.1	-6453	2.95	$+0.26$	$A 7 \quad I I$	0.020	-2.1	340	0.012	$+13.6$	$A 3.02^{\mathrm{m}} B 6.03^{\mathrm{m}} 5^{\prime \prime}$
$\boldsymbol{\alpha}$ Leo A	1006.2	+12 10	1.36	-0.11	B7 V	0.039	-0.7	84	0.248	+03.5	B $8.1^{\mathrm{m}} 177^{\prime \prime}$ Regulus
ω Car	12.8	-6950	3.33	-0.08	$B 8.5$ IV		-1.5	300	0.029	+04	
ζ Leo	14.5	$+2337$	3.46	$+0.30$	F 0 III	0.009	+0.5	130	0.023	-15.0	
$\lambda \mathrm{UMa}$	14.7	+43 07	3.45	$+0.03$	A2 IV	$-.010$	$+0.1$	150	0.170	+18.3	
q Car	15.8	-6108	3.41 v	$+1.55$	$K 5 \quad I b$	0.018	-4.6	1300	0.023	+08.6	Var. R 3.38-3.44
γ Leo $A B$	17.8	$+2003$	1.99	$+1.13$	K0 IIIp	0.019	$+0.1$	90	0.350	-36.6	$A 2.29{ }^{\text {m }}$ B $3.54{ }^{\text {m }} 4^{\prime \prime}$
$\boldsymbol{\mu}$ UMa	20.0	+41 42	3.05	+1.55	M0 III	0.031	+0.5	105	0.086	-20.5	
p Car	30.6	-6129	3.30 v	-0.11	B5 IVpe		-2.3	430	0.021	$+26.0$	Var. R 3.22-3.39
θ Car	41.5	-6411	2.74	-0.22	B0 Vp		-4.0	710	0.018	+24	
μ Vel $A B$	45.0	$\begin{array}{ll}-49 & 12\end{array}$	2.67	$+0.89$	G5 III		+0.1	108	0.085	+06.9	$A 2.7^{\mathrm{m}} B 7.2^{\mathrm{m}} 2^{\prime \prime}$
ν Hya	47.6	-1559	3.12	$+1.25$	K3 III	0.022	-0.2	150	0.221	-01.0	
β UMa	59.4	$+5636$	2.37	-0.03	A1 V	0.042	+0.5	78	0.087	-12.0	Merak
α UMa $A B$	1101.3	+6158	1.81	$+1.06$	K0 III	0.031	-0.7	105	0.138	-08.9	$A 1.88{ }^{\mathrm{m}}$ B 4.82 ${ }^{\mathrm{m}} 1^{\prime \prime}$ Dubhe
ψ UMa	07.4	+44 43	3.00	$+1.14$	K1 III		+0.0	130	0.072	-03.8	
δ Leo	12.0	+20 45	2.57	$+0.13$	A4 V	0.040	$+0.6$	82	0.201	-20.6	
$\boldsymbol{\theta}$ Leo	12.1	+1539	3.34	0.00	A2 V	0.019	$+1.1$	90	0.104	+07.8	
λ Cen	33.9	-62 48	3.15	-0.05	$B 9$ III		-2.1	370	0.039	+07.9	
β Leo	47.0	$+1448$	2.14	$+0.09$	A3 V	0.076	$+1.5$	43	0.511	-00.1	Denebola

Star	R.A. 196	60 Dec.	V	$B-V$	Type	π	M_{V}	D	μ	R	
$\boldsymbol{\gamma}$ UMa	$\begin{array}{cc} \mathrm{h} & \mathrm{~m} \\ 11 & 51.7 \end{array}$	\circ +53	2.44	0.00	A0 V	$\prime \prime$ 0.020	$+0.2$	1.9 90	" ${ }^{\prime \prime}$	$\begin{gathered} \mathrm{km} . / \mathrm{sec} . \\ -12.9 \end{gathered}$	Phecda
$\boldsymbol{\delta}$ Cen	1206.3	-5030	2.59 v	-0.15:	B2 Ve		-2.7	370	0.042	$+09$	Var. R 2.56-2.62
є Crv	08.1	-22 24	3.04	+1.33	K3 III		-0.2	140	0.069	+04.9	
$\delta \mathrm{Cru}$	13.0	-5832	2.81 v	-0.23	B2 IV		-3.4	570	0.041	$+26.4$	Var. R 2.78-2.84
$\boldsymbol{\delta}$ UMa	13.5	+57 15	3.30	$+0.07$	A3 V	0.052	$+1.9$	63	0.106	-12.9	Mar.R Megrez
$\boldsymbol{\gamma} \mathrm{Crv}$	13.7	-1719	2.59	-0.10	B8 III		-3.1	450	0.163	-04.2	Gienah
$\boldsymbol{\alpha}$ Cru A	24.4	-6253	1.39	-0.25	B1 IV		-3.9	370	0.042	-11.2	\} ${ }^{\prime \prime}$ C $4900^{\mathrm{m} ~ 89}$ '' Acrus
$\boldsymbol{\alpha}$ Cru B	24.4	-6253	1.86	-0.25	(B3)		-3.4	370	0.042	-00.6	$\} 5^{\prime}$, C $4.90^{\text {m }} 89^{\prime}$ Acrus
$\delta \operatorname{Crv} A$	27.8	-1618	2.97	-0.04	$\mathrm{B} 9.5 \quad \mathrm{~V}: \mathrm{n}$	0.018	+0.1	124	0.255	+09	B $8.26^{\mathrm{m}} 24^{\prime \prime}$
$\gamma \mathrm{Cru}$	28.9	-56153	1.69	$+1.55$	M3 II		-2.5	220	0.274	$+21.3$	Gacrux
$\boldsymbol{\beta} \mathrm{Crv}$	32.3	-2311	2.66	+0.89	G5 III	0.027	$+0.1$	108	0.059	-07.7	
$\boldsymbol{\alpha}$ Mus	34.8	-6855	2.70 v	-0.20	$B 3$ IV		-2.9	430	0.037	+18	Var. R 2.66-2.73
γ Cen $A B$	39.3	-4844	2.17	+0.00	A0 IV:	0.006	-0.5	160	0.197	-07.5	$A 2.9{ }^{\mathrm{m}}$ B $2.9{ }^{\mathrm{m}} 1^{\prime \prime}$
$\gamma \operatorname{Vir} A B$	39.6	-01 14	2.76	+0.34	F 0 V	0.101	$+3.5$	32	0.567	-19.7	$A 3.50^{\mathrm{m}} B 3.52^{\mathrm{m}} 4^{\prime \prime}$
β Mus $A B$	43.8	-6753	3.06	-0.17:	B3 V		-2.1	470	0.041	$+42$	$A 3.7^{\text {m }}$ B $4.0^{\mathrm{m}} 1^{\prime \prime}$
$\boldsymbol{\beta}$ Cru	45.4	-59128	1.28	-0.25	B0 III		-4.6	490	0.049	$+20.0$	Beta Crucis
$\boldsymbol{\epsilon}$ UMa	52.3	+56111	1.79	-0.03	A0py	0.008	$+0.2$	68	0.113	-09.3	Chromium-europium star Alioth
$\boldsymbol{\alpha} \mathrm{CVn} A$	54.2	+38 32	2.90	-0.10	B9.5pv	0.023	$+0.1$	118	0.238	-03.3	Silicon-europium star. $B 5.61{ }^{\mathrm{m}} 20^{\prime \prime}$
ϵ Vir	1300.2	+1110	2.86	+0.93	G9 II-III	0.036	$+0.6$	90	0.274	-14.0	
γ Hya	16.7	-2258	2.98	+0.92	G8 III	0.021	$+0.3$	113	0.086	-05.4	
¢ Cen	18.3	-3630	2.76	+0.05	A2 V	0.046	$+1.1$	71	0.351	+00.1	
$\zeta \mathrm{UMa} A$	22.3	$+5508$	2.26	+0.02	A2 V	0.037	$+0.1$	88	0.127	-09.0	B $3.94^{\mathrm{m}} 14^{\prime \prime}$ Mizar
$\boldsymbol{\alpha}$ Vir	23.1	-1057	0.91 v	-0.24	B1 V	0.021	-3.3	220	0.054	$+01.0$	Ecl. R 0.91-1.01, 4.0 ${ }^{\text {d }}$ Spica
$\zeta \mathrm{Vir}$	32.7	-0024	3.40	+0.10	A3 Vn	0.035	$+1.1$	93	0.287	-13.2	
ϵ Cen	37.3	-5316	2.33	-0.23	$B 1 \quad I V$		-3.9	570	0.033	$+05.6$	
$\boldsymbol{\eta}$ UMa	46.0	$+4931$	1.87	-0.20	B3 V	0.004	-2.1	210	0.123	-10.9	Alkaid
ν Cen	47.1	-4129	3.42	-0.22	B2 IV		-3.4	750	0.037	$+09.0$	
μ Cen	47.2	-4217	3.12 V	-0.13:	B2 V:pne		-2.7	470	0.032	+12.6	Var. R 3.08-3.17
$\eta \text { Boo }$	52.8	+1836	2.69	$+0.59$	G0 IV	0.102	$+2.7$	32	0.370	-00.1	
ζ Cen	53.0	$\begin{array}{lll}-47 & 06\end{array}$	2.56	-0.23:	B2 IV		-3.4	520	0.076	+06.5	

Star	R.A. 19	60 Dec.	V	$B-V$	Type	π	M_{V}	D	μ	R	
	h m	- '				"		1.y.	'"	km./sec.	
β Cen $A B$	1401.0	-6011	0.63	-0.23:	B1 II:	0.016	-5.2	490	0.035	-12	$A 0.7^{\text {m }}$ B 3.9 ${ }^{\mathrm{m}} 1^{\prime \prime} \quad$ Hadar
π Hya	04.1	-26 29	3.25	+1.13	K2 III	0.039	+1.2	84	0.156	$+27.2$	
θ Cen	04.3	-36 10	2.04	+1.03	K0 III-IV	0.059	$+0.9$	55	0.738	+01.3	Menkent
$\boldsymbol{\alpha}$ Boo	13.8	+19 23	-0.06	+1.23	K2 IIIp	0.090	-0.3	36	2.284	-05.2	Arcturus
γ Boo	30.5	+38 29	3.05	+0.19	A7 III	0.016	+0.2	118	0.186	-35.5	
η Cen	33.0	-4159	2.39 v	-0.21	B1.5 V:ne		-3.0	390	0.049	-00.2	Var. R 2.33-2.45
$\boldsymbol{\alpha}$ Cen A	36.9	-60 40	0.01	+0.68	G2 V V	\}. 751	+4.39	4.3	3.676	-24.6	\} 18' ${ }^{\prime \prime}$ Rigil Kentaurus
$\boldsymbol{\alpha}$ Cen B	36.9	-60 40	1.40:	+0.73:	(dK1)	$\} .751$	+5.8	4.3	3.676	-20.7	\} $18^{\prime \prime}$ Rigil Kentaurus
$\alpha \operatorname{Cir} A B$	39.2	-64 48	3.18	+0.25	FO Vp	0.049	+1.6	66	0.308	+07.4	Strontium star. $A 3.19^{\mathrm{m}} B 8.61{ }^{\mathrm{m}} 16^{\prime \prime}$
$\boldsymbol{\alpha}$ Lup	39.3	-47 13	2.32	-0.22	B1 V		-3.3	430	0.033	+07.3	
ϵ Boo AB	43.2	+2714	2.37	+0.96	K1: III: +A	0.013	$+0.0$	103	0.051	-16.5	$A 2.47{ }^{\text {m }} B 5.04^{\mathrm{m}} 3^{\prime \prime}$
$\boldsymbol{\alpha} \operatorname{Lib} A$	48.5	-15 50	2.76	+0.15	A3m	0.049	+1.2	66	0.130	-10	$B 5.15{ }^{\mathrm{m}} 231{ }^{\prime \prime} \quad$ Zubenelgenubi
β UMi	50.8	+74 19	2.04	+1.47	K4 III	0.031	-0.5	105	0.033	+16.9	Kochab
β Lup	55.9	-4258	2.69	-0.23	B2 IV		-3.4	540	0.066	-00.3	
κ Cen	56.5	-4157	3.15	-0.21	B2 V		-2.7	470	0.033	+09.1	
β Boo	1500.4	$+4033$	3.48	+0.95	G8 III	0.022	$+0.3$	140	0.059	-19.9	
$\boldsymbol{\sigma} \mathrm{Lib}$	01.7	-25 08	3.31	+1.65	M4 III	0.056	+2.0:	$58:$	0.089	-04.3	
$\zeta \operatorname{Lup} A$	09.4	-5157	3.42	+0.90:	K0 III	0.036	+1.2	90	0.135	-09.7	B 7.8 ${ }^{\text {m }} 71^{\prime \prime}$
δ Boo A	13.9	+33 28	3.47	+0.95	G8 III	0.028	$+0.3$	140	0.148	-12.2	$B 7.84{ }^{\mathrm{m}} 105^{\prime \prime}$
$\beta \mathrm{Lib}$	14.8	-09 14	2.61	-0.11	B8 V	-. 012	-0.6	140	0.101	-35.2	
$\gamma \operatorname{Tr} \mathrm{A}$	15.1	-68 32	2.94	-0.01	A0 Vp	0.005	+0.2	113	0.067	00	Europium star
$\delta \operatorname{Lup}$	18.7	-4030	3.24	-0.23	B2 IV		-3.4	680	0.032	+02	
$\gamma \mathrm{UMi}$	20.8	+7159	3.08	+0.06	A3 II-III	$-.005$	-1.5	270	0.026	-03.9	
\checkmark Dra	24.0	+59 06	3.28	+1.18	K2 III	0.032	+0.8	102	0.012	-11.0	
$\gamma \operatorname{Lup} A B$	32.5	-41	2.80	-0.22	$\mathrm{B2} \quad \mathrm{Vn}$		-2.7	570	0.037	+06	$A 3.5{ }^{\mathrm{m}}$ B 3.7 ${ }^{\mathrm{m}} 1^{\prime \prime}$
$\alpha \mathrm{CrB}$	33.0	+26 51	2.23 v	-0.02	A0 V	0.043	+0.4	76	0.154	+01.7	Ecl. R $0.11^{\mathrm{m}}, 17.4^{\mathrm{d}}$ Alphecca
$\boldsymbol{\alpha}$ Ser	42.3	+0633	2.65	+1.17	K2 III	0.046	+1.0	71	0.139	+02.9	
β TrA	51.6	-63 19	2.87	+0.28:	F2 V	0.078	+2.3	42	0.448	-00.3	
$\boldsymbol{\pi}$ Sco	56.4	-26 00	2.92	-0.19	B1 V	0.005	-3.3	570	0.034	-03	
$\eta \operatorname{Lup} A B$	57.5	$\begin{array}{lll}-38 & 17\end{array}$	3.45	-0.23	B2 V		-2.7	570	0.042	+07	$A 3.47{ }^{\text {m }}$ B $7.70{ }^{\text {m }} 15^{\prime \prime}$
δ Sco	58.0	-22 51	2.34	-0.13	B0 V		-4.0	590	0.032	-14	

Star	R.A. 19	60 Dec.	V	$B-V$		Type	π	MV	D	μ	R	
	h m	- '					"		1.y.	"	km./sec.	
β Sco $A B$	1603.1	-19 42	2.65	-0.09	B0.5	V	0.004	-3.7	650	0.027	-06.6	$A 2.78{ }^{\mathrm{m}} B 5.04^{\mathrm{m}} 1^{\prime \prime}, C 4.93^{\mathrm{m}} 14^{\prime \prime}$
$\delta \mathrm{Oph}$	12.2	-03 36	2.72	+1.59	M1	III	0.029	-0.5	140	0.156	-19.9	
$\epsilon \mathrm{Oph}$	16.2	-04 36	3.22	+0.97	G9	III	0.036	+1.0	90	0.089	-10.3	
σ Sco A	18.8	-25 30	2.86 v	+0.14	B1	III		-4.4	570	0.030	-00.4	β CMa R 2.82-2.90, $0.25^{\text {d }}, B 8.49 \mathrm{~m} 20^{\prime \prime}$
η Dra A	23.4	+6136	2.71	+0.92	G8	III	0.043	+0.9	76	0.062	-14.3	$B 8.7^{\mathrm{m}} 6^{\prime \prime}$
α Sco A	26.9	-2621	0.92v	+1.84	M1	$\mathrm{Ib}+\mathrm{B}$	0.019	-5.1	520	0.029	-03.2	$A 0.86{ }^{\mathrm{m}}-1.02^{\mathrm{m}}$ B $5.07^{\mathrm{m}} 3^{\prime \prime}$ Antares
β Her	28.5	+2135	2.78	+0.92	G8	III	0.017	+0.3	103	0.105	-25.5	
τ Sco	33.4	-28 08	2.85	-0.25	B0	V		-4.0	750	0.030	-00.7	
$\zeta \mathrm{Oph}$	35.0	-10 29	2.57	$+0.00$	O9.5	V	$-.007$	-4.3	520	0.022	-19	
ζ Her $A B$	39.8	+31 40	2.81	+0.64	G0	IV	0.110	+3.1	30	0.608	-69.9	$A 2.91{ }^{\text {m }} B 5.46{ }^{\text {m }} 1^{\prime \prime}$
η Her	41.5	+39 00	3.46	+0.92	G7	III-IV	0.053	+2.1	62	0.097	+08.3	
$\boldsymbol{\alpha}$ TrA	44.4	-68 57	1.93	+1.43	K2	III	0.024	-0.1	82	0.044	-03.6	Atria
ϵ Sco	47.6	-34 13	2.28	+1.16	K2	III-IV	0.049	+0.7	66	0.664	-02.5	
μ^{1} Sco	49.2	-37 59	2.99 v	-0.20	B1.5	V		-3.0	520	0.033	-25	Ecl. $R 2.99-3.09,1.4{ }^{\text {d }}$
ζ Ara	55.3	-55 56	3.16	+1.61		K5)	0.036	+0.9	90	0.042	-06.0	
κ \% Oph	55.8	+09 26	3.18	$+1.15$	K2	III	0.026	-0.1	150	0.293	-55.6	
η Oph $A B$	1708.1	-15 41	2.46	+0.06	A2.5	V	0.047	+1.4	69	0.097	-00.9	$A 3.0^{\mathrm{m}}$ B $3.4^{\mathrm{m}} 1^{\prime \prime} \quad$ Sabik
ζ Dra	08.7	+65 46	3.20	-0.12	B6	III	0.017	-3.2	620	0.026	-14.1	
η Sco	09.3	-4311	3.33	+0.38	F2	III	0.063	+2.3	52	0.293	-28.4	
α Her $A B$	12.8	+14 26	3.10 v	+1.41	M5	II	-. 0007	-2.3	410	0.032	-33.1	A $3.2^{\mathrm{m}} \pm 0.3 B 5.4^{\mathrm{m}} 5^{\prime \prime} \quad$ Ras-Algethi
δ Her	13.4	+24 53	3.14	+0.09	A3	IV	0.034	+0.8	96	0.164	-41	
π Her	13.7	+36 51	3.13	+1.43	K3	II	0.020	-2.4	410	0.029	-25.7	
$\theta \mathrm{Oph}$	19.6	-24 58	3.29	-0.22	B2	IV		-3.4	710	0.025	-03.6	
β Ara	22.0	-5530	2.90	+1.45:	K3	Ib	0.026	-4.6	1030	0.035	-00.4	
γ Ara A	22.0	-56 21	3.32	-0.16	B1	V		-3.3	680	0.017	-04	$B 10^{\mathrm{m}} 18^{\prime \prime}$
v Sco	28.0	-37 16	2.71	-0.22	B2	IV		-3.4	540	0.039	+18	
α Ara	28.7	-49 51	2.95	-0.18:	B2.5	V		-2.4	390	0.083	-02	
β Dra A	29.5	+52 20	2.77	+0.96	G2	II	0.009	-2.1	310	0.019	-20.0	$B 11.49^{\mathrm{m}} 4^{\prime \prime} \quad$ Shaula
λ Sco	30.9	-37 05	1.60	-0.24	B1	V		-3.3	310	0.031	00	Shaula
$\boldsymbol{\alpha}$ Oph	33.1	+1235	2.09	+0.16	A5	III	0.056	+0.8	58	0.260	$+12.7$	Rasalhague
θ Sco	34.4	-42 58	1.86	+0.39	FO	Ib	0.020	-4.6	650	0.012	+01.4	

Star	R.A. 196	60 Dec.	V	$B-V$	Type	π	M_{V}	D	μ	R	
	h m					/		1.y.	"	km./sec.	
κ Sco	1739.7	-3901	2.39	-0.21	B2 IV		-3.4	470	0.031	-10	
$\boldsymbol{\beta}$ Oph	41.5	$+0435$	2.77	$+1.16$	K 2 III	0.023	-0.1	124	0.160	-12.0	
${ }^{1}$ Sco	44.8	-4007	2.99	$+0.49$	F2 Ia	0.013	-7.1	3400	0.004	-27. 6	
$\boldsymbol{\mu}$ Her A	44.9	+27 45	3.42	$+0.75$	G5 IV	0.108	$+3.6$	30	0.811	-15.6	$B C 9.78{ }^{\text {m }} 33^{\prime \prime}$
G Sco	47.1	$\begin{array}{ll}-37 & 02\end{array}$	3.21	+1.18	(gK1)	0.032	$+0.7$	102	0.064	+24.7	
$\boldsymbol{\gamma}$ Dra	55.7	+5130	2.21	+1.52	K5 III	0.017	-0.4	108	0.026	-27.6	Eltanin
v Oph	56.8	-0946	3.32	$+1.00$	G 9 III	0.015	$+0.2$	140	0.118	+12.4	
γ Sgr	1803.2	-3026	2.97	$+1.00$	$K 0 \quad I I I$	0.018	$+0.1$	124	0.200	+22.1	
η Sgr A	14.9	-36 47	3.17	$+1.55$	M3 II	0.038	+1.1:	86:	0.218	+00.5	$B 10^{\mathrm{m}} 4^{\prime \prime}$
δ Sgr	18.4	-2951	2.71	+1.39	K2 III	0.039	$+0.7$	84	0.050	-20.0	
$\boldsymbol{\eta}$ Ser	19.2	-02 55	3.23	+0.94	K0 III-IV	0.054	$+1.9$	60	0.894	+08.9	
$\epsilon \mathrm{Sgr}$	21.5	-34 24	1.81	-0.02	$B 9$ IV	0.015	-1.1	124	0.135	-11	Kaus Australis
λ Sgr	25.5	-25 27	2.80	+1.05	K2 III	0.046	$+1.1$	71	0.194	-43.3	
$\alpha \mathrm{Lyr}$	35.6	+38 45	0.04	0.00	A0 V	0.123	$+0.5$	26.5	0.345	-13.9	Vega
$\boldsymbol{\phi}$ Sgr	43.2	-27 02	3.20	-0.11	$B 8 \quad I I I$		-3.1	590	0.052	+21.5	Vega
β Lyr A	48.6	+33 19	3.38 v	$-0.05:$	Bpe	$-.011$	-4.6	1300	0.007	-19.2	$\text { Ecl. } R 3.38-4.36,12.9^{\mathrm{d}}, B 7.8^{\mathrm{m}} 46^{\prime \prime}$
σ Sgr	52.8	-26121	2.12	-0.21	B2 V		-2.7	300	0.059	-11	Nunki
$\xi^{2} \mathrm{Sgr}$	55.3	-2110	3.51	+1.18:	(gK1)	0.006	$+0.0$	160	0.035	-19.9	
γ Lyr	57.4	$+3238$	3.25	-0.05	B9 III	0.011	-2.1	370	0.007	-21.5	
$\zeta \operatorname{Sgr} A B$	1900.1	-29 56	2.61	+0.08	A2 $\quad I V$	0.020	$+0.1$	140	0.020	$+22$	$A 3.3{ }^{\mathrm{m}}$ B 3.5 ${ }^{\mathrm{m}} 1^{\prime \prime}$
ζ Aql A	03.6	+13 48	2.99	+0.01	$\mathrm{A0}$ V:nn	0.036	$+0.8$	90	0.101	-26.3	$B 12^{\mathrm{m}} 5^{\prime \prime}$
λ Aql	04.1	-04 57	3.44	-0.07	B9: V:n	0.025	-0.1	160	0.092	-14	
$\tau \mathrm{Sgr}$	04.4	-27 44	3.30	+1.18	(gK1)	0.038	+1.2	86	0.261	$+45.4$	
π Sgr $A B C$	07.4	-2105	2.89	$+0.35$	F2 II-III	0.016	-0.7	250	0.040	-09.8	$A 3.7^{\mathrm{m}} B 3.8^{\mathrm{m}} C 6.0^{\mathrm{m}}<1^{\prime \prime}$
δ Dra	12.6	$+6735$	3.06	$+1.00$	G9 III	0.028	+0.2	124	0.130	+24.8	
δ Aql	23.5	+03 02	3.38	$+0.31$	F0 IV	0.062	$+2.3$	53	0.267	-29.9	
β Cyg A	29.1	+2752	3.07	+1.12	K3 II: +B :	0.004	-2.4	410	0.009	-24.0	$B 5.11^{\mathrm{m}} 35^{\prime \prime} \quad$ Albireo
δ Cyg $A B$	43.7	+45 02	2.87	-0.03	B9.5 III	0.021	-1.7	270	0.060	-21	$A 2.91{ }^{\text {m }}$ B $6.44{ }^{\text {m }} 2^{\prime \prime}$
$\boldsymbol{\gamma}$ Aql	44.4	+1031	2.67	+1.48	K3 II	0.006	-2.4	340	0.012	-02.1	
$\boldsymbol{\alpha}$ Aql	48.8	+08 46	0.77	+0.22	A7 IV, V	0.198	+2.2	16.5	0.658	-26.3	Altair

Star	R.A. 19	60 Dec.	V	$B-V$	Type	π	M_{V}	D	μ	R	
	h m	- ,				\%		1.y.	$1 \prime$	km./sec.	
θ Aql	2009.2	-0056	3.31	-0.07	B9.5 III	0.008	-1.7	330	0.034	-27.3	
β Cap A	18.8	-1455	3.06	+0.76	comp.	0.005	$+0.1$	130	0.039	-18.9	Type gK0: + late B; $55.97 \mathrm{~m} 205^{\prime \prime}$
$\boldsymbol{\gamma}$ Cyg	20.8	$+4008$	2.22	+0.66	F8 Ib	$-.006$	-4.6	750	0.001	-07.5	
α Pav	22.5	-5652	1.95	-0.20	B3 IV		-2.9	310	0.087	+02.0	eacock
α Ind	34.8	-4726	3.11	$+1.00$	K0 III	0.039	$+1.1$	84	0.082	-01.1	
α Cyg	40.1	$+4508$	1.26	+0.09	A2 Ia	$-.013$	-7.1	1600	0.003	-04.6	Deneb
β Pav	41.4	-6621	3.45	$+0.16$	A5 III	0.026	-0.1	160	0.046	+09.8	
$\boldsymbol{\eta}$ Cep	44.5	$+6141$	3.41	+0.92	K0 IV	0.071	$+2.7$	46	0.825	-87.3	
ϵ Cyg	44.6	$+3349$	2.46	+1.03	K0 III	0.044	$+0.7$	74	0.481	-10.3	
ζ Cyg	2111.2	$+3004$	3.25 :		G8 II	0.021	-2.2	390	0.056	$+17.4$	
α Cep	17.6	+62 25	2.44	+0.24	A7 IV, V	0.063	$+1.4$	52	0.156	-10	Alderamin
β Cep	28.2	$+7023$	3.15 v	$-0.22 \mathrm{v}$	B2 III	0.005	-4.2	980	0.014	-08.2	β CMa R 3.14-3.16, $0.19{ }^{\text {d }}$
β Aqr	29.5	-0545	2.86	$+0.82$	G0 Ib	0.000	-4.6	1030	0.017	+06.5	
ϵ Peg A	42.2	$+0941$	2.31	$+1.55$	K 2 Ib	$-.005$	-4.6	780	0.025	+04.7	$B 11^{\mathrm{m}} 82^{\prime \prime} \quad$ Enif
$\delta \mathrm{Cap}$	44.8	-1619	2.92 v	+0.29	A6m	0.065	$+2.0$	50	0.392	-06.3	Var. $R 2.88-2.95$
γ Gru	51.5	-3733	3.03	-0.10	B8 III:	0.008	-3.1	540	0.102	-02.1	
$\boldsymbol{\alpha}$ Aqr	2203.7	-00 31	2.96	$+0.96$	G2 Ib	0.003	-4.6	1080	0.016	+07.5	
α Gru	05.7	-4709	1.76	-0.14	B5 V	0.051	+0.3:	64:	0.194	$+11.8$	Al Na'ir
ζ Cep	09.5	$+5800$	3.31	$+1.55$	$\mathrm{K} 1 \quad \mathrm{Ib}$	0.019	-4.6	1240	0.015	-18.4	
$\boldsymbol{\alpha}$ Tuc	15.8	-6028	2.87	$+1.40$	K3 III-IV	0.019	$+1.5$	62	0.079	+42.2	
δ Cep A	27.7	$+5813$	3.96 v	+0.66v	F5-G2 Ib	0.005	-4.0	1300	0.012	-16.8	Cep. R 3.51-4.42, $5.4{ }^{\text {d }}, B 6.19{ }^{\text {m }} 41^{\prime \prime}$
$\zeta \mathrm{Peg}$	39.5	$+1037$	3.40 :	-0.08:	B8 V	$-.004$	-0.6	210	0.077	+07	Var R 2.11 2.23
β Gru	40.3	-4706	2.17 v	$+1.59$	M3 II	0.003	-2.5	280	0.134	+01.6	Var. R 2.11-2.23
$\eta \mathrm{Peg}$	41.1	$+3001$	2.95	$+0.85$	G8 II: + F?	$-.002$	-2.2	360	0.027	$+04.3$	
$\delta \mathrm{Aqr}$	52.5	-1602	3.28	+0.08	A3 V	0.039	$+1.2$	84	0.047	$+18.0$	
$\alpha \operatorname{PsA}$	55.4	-2950	- 19	$+0.10$	A3 V	0.144	$+2.0$	22.6	0.367	+06.5	Fomalhaut
β Peg	2301.8	+2752	2.5 v	+1.67	M2 II-III	0.015	-1.5	210	0.234	+08.7	Var. R 2.4-2.7 Scheat
$\alpha \mathrm{Peg}$	02.8	$+1459$	2.50	-0.03	B9.5 III	0.030	-0.1	109	0.071	-03.5	Markab
$\boldsymbol{\gamma}$ Cep	37.7	$+7725$	3.20	$+1.02$	K1 IV	0.064	$+2.2$	51	0.168	-42.4	

TABLE OF PRECESSION FOR 50 YEARS

$\stackrel{4}{4}$		$\begin{aligned} & 8_{0} 88 \\ & 000 \\ & 0,0 \end{aligned}$	$\begin{aligned} & 8.88 \\ & 0 \infty \infty \infty \\ & 0 \infty \end{aligned}$	$\begin{aligned} & \text { O888 } \\ & \mathrm{N} 00 \end{aligned}$				
运：			$\stackrel{\infty}{\infty}$	ザッ～～～웅 111				$++++$
			Fůg ix				N్ల్ల్ల్ల్	
						Ni No	${ }_{\text {Bi }}^{\substack{\infty \\ \infty \\ \text { © } \\ \hline \\ \hline}}$	
				Now				
	E						88.8	$\begin{aligned} & \text { BٌB B B B B B } \\ & \text { Ni } \end{aligned}$
			PN			Sis ig it	giv gix	かêêen on © N o N
		Nị	我					
			Cobio			N్		
							$\stackrel{\text { ¢ }}{\sim}$	
			$\begin{aligned} & \text { Bo } \\ & \text { ion } \\ & \text { on } \end{aligned}$			迢宫	－	¢
		O్ల గ్ల గ్		＋i + i		$\underset{\sim}{\infty} \underset{\sim}{\circ}$	-i Hiou	
		¢	¢			¢		$\begin{aligned} & \text { 덩영융 } \\ & \text { iOiO } \end{aligned}$
	E	号筞发		Of		$\begin{gathered} 0 \\ 0 \\ + \\ + \\ \hline \end{gathered}$	007	
	E	－${ }_{\sim}^{\infty}$ N		$\begin{aligned} & \text { 아 © } \mathbb{O} \\ & \infty \infty \infty \\ & \infty \end{aligned}$		$\begin{aligned} & 780 \\ & 0 \\ & 0 \\ & +1 \\ & +1 \\ & \hline \end{aligned}$		A Hit R 웅 inio
		$\begin{aligned} & \text { 筑 } \underset{\infty}{\circ} \mathrm{O} \\ & ++7 \end{aligned}$				111	111	이우웅
边的茄				$++++$		$\mathfrak{H 1}$		 1 1 1｜
$\dot{\alpha}$	$\begin{aligned} & \text { E888 } \\ & =00 \mathrm{~F} \end{aligned}$		$\begin{aligned} & 8088 \\ & \infty \end{aligned}$	$\begin{aligned} & \text { Oi8 } 88 \\ & \text { tin } \end{aligned}$			$\begin{aligned} & 8 \% 8 \\ & 10 \% \\ & 1090 \end{aligned}$	

THE NEAREST STARS

By R. M. Petrie and Jean K. McDonald

Perhaps the most difficult problem in observational astronomy is the determination of the distances to the stars. The reason, of course, is that the distances are so enormous as to require the measurement of vanishingly small angular displacements. As the earth goes in its orbit around the sun the stars show a small change in their positions and it is this small apparent movement which is called the annual parallax. If we can measure the parallax we can at once calculate the distance to the star concerned.

Astronomers speak of stellar distances in terms of light-years or, alternatively, parsecs. A light-year is the distance light travels in one year with its speed of 186,000 miles per second. If we know the parallax in seconds of arc we obtain the distance in light-years by dividing 3.26 by the parallax. Thus the star Sirius, which has an annual parallax of $0 .{ }^{\prime \prime} 375$, is 8.7 light-years distant. The reciprocal of the parallax gives the distance in parsecs; Sirius is 2.7 parsecs from the sun.

The apparent motion, per year, of a star across the sky, called proper motion, is a good indication of a star's distance. Obviously, the nearer stars will appear to move more rapidly than their more distant fellows and this fact has many times been instrumental in the discovery of nearby stars.

The table accompanying this note lists, in order of distance, all known stars within sixteen light-years. Including the sun it contains fifty-five stars, but it does not contain the unseen companions of double and multiple stars entered in the table. The table is taken from a paper by Professor van de Kamp, published in 1953. In addition to the name and position for each star, the table gives spectral type, Sp.; parallax, π; distance in light-years, D; proper motion in second of arc per year, μ; total velocity with respect to the sun in $\mathrm{km} . / \mathrm{sec}$., R; apparent visual magnitude, m; and finally, luminosity in terms of the sun, L. In column four, wd indicates a white dwarf, and e indicates an emission-line star.

The stars within sixteen light-years form an important astronomical table because the annual parallaxes are large enough to be well determined. This means that we have accurate knowledge of the distances, speeds, and luminosities of these stars. Furthermore this sample is probably quite representative of the stellar population in our part of the galaxy, and as such is well worth our study.

It is interesting to note that most of the stars are cool red dwarfs, of type M. This must be the most populous of all the stellar varieties. Only ten of these nearby stars are bright enough to be seen with the unaided eye (magnitude less than five). Only three stars, Sirius, Altair, and Procyon, are brighter than the sun while the great majority are exceedingly faint. Not one giant star is contained in the list nor is there a B-type star. This is a consequence of the extreme rarity of very hot and very bright stars. One may conclude that stars brighter than the sun are very scarce.

Another striking fact is the prevalence of double and multiple stars, there being sixteen such systems if we count unseen components. Obviously double and multiple stars are quite common in the stellar population, and must be explained by any acceptable theory of stellar formation and evolution.

THE NEAREST STARS

Star	1950		Sp.	π	D	μ	R	m	L
	α	δ							
		\bigcirc -		"	1.y.	"	km./sec.		
Sun			G0					-26.9	1.0
$\boldsymbol{\alpha}$ Cen A	$14 \quad 36$	$-60 \quad 38$	G0	0.760	4.3	3.68	34	0.3 1.7	1.0 0.28
	1426	-62 28	${ }_{\text {M }}^{\text {K }}$ e					11.7	0.28 0.000052
Barnard's *	17	+ 433	M5	. 545	6.0	10.30	141	9.5	0.00040
Wolf 359	$10 \quad 54$	+ 720	M6e	. 421	7.7	4.84	56	13.5	0.000017
Luy. 726-8A	136	-1813	M6e	. 410	7.9	3.35	48	12.5	0.00004
			M6e					13.0	0.00003
Lal. 21185*	11	+36 18	M2	. 398	8.2	4.78	103	7.5	0.0048
Sirius A	$6 \quad 43$	-1639	A0	. 375	8.7	1.32	18	-1.6 7.1	${ }^{23} 0.0$
Ross 154	$18 \quad 47$	-2353	M5e	. 351	9.3	0.67	10	10.6	0.00036
Ross 248	$23 \quad 39$	+43 55	M6e	. 316	10.3	1.58	84	12.2	0.00010
ϵ Eri	$3 \quad 31$	- 938	K2	. 303	10.8	0.97	21	3.8	0.25
Ross 128	$11 \quad 45$	+ 107	M5	. 298	10.9	1.40	26	11.1	0.00030
61 Cyg* A	2105	+38 30	K6	. 293	11.1	5.22	106	5.6	0.052
			M0					6.3	0.028
Luy. 789-6	$22 \quad 36$	-15 37	M6	. 292	11.2	3.27	80	12.2	0.00012
Procyon A		+ 521	F5	. 288	11.3	1.25	20	0.5 10.8	$\begin{aligned} & 5.8 \\ & 0.00044 \end{aligned}$
	2200	-5700	K5	285	11.4	4.67	87	4.7	0.12
$\Sigma 2398$ A	$18 \quad 42$	+59 33	M4	. 280	11.6	2.29	38	8.9	0.0028
			M4					9.7	0.0013
Groom. $34 \underset{\text { B }}{\text { A }}$	016	+43 44	M2e M4e	. 278	11.7	2.91	51	8.1 10.9	$\begin{aligned} & 0.0058 \\ & 0 \\ & 0 \end{aligned}$
τ Ceti	142	-16 12	G4	. 275	11.8	1.92	37	3.6	0.36
Lac. 9352	$23 \quad 03$	-36 09	M2	. 273	11.9	6.87	118	7.2	0.013
$\mathrm{BD}+50^{\circ} 1668$	${ }^{7} \quad 25$	+ 529	M4	. 263	12.4	3.73	72	10.1	0.0010
Lacaille 8760	2114	-39 04	M1	. 255	12.8	3.46	68	6.6	0.028
Kapteyn's	510	-4500	M0	251	13.0	8.79	275	9.2	0.0025
Kruger 60 B	$22 \quad 26$	+57 27	$\begin{aligned} & \text { M4 } \\ & \text { M5e } \end{aligned}$. 249	13.1	0.87	29	9.9 11.4	$\begin{aligned} & 0.0013 \\ & 0.00033 \end{aligned}$
Ross 614 A	$\begin{array}{ll}6 & 27\end{array}$	- 247	M5e	. 248	13.1	0.97	30	10.9	0.00052
${ }^{\text {BD }}$-120 ${ }^{\text {B }}$?					14.8	0.000016
BD-12 ${ }^{\circ} 4523$	$16 \quad 28$	$\begin{array}{ll}-12 & 32\end{array}$	M5	. 244	13.4	1.24	27	10.0	0.0013
van Mannen's	0 ${ }^{16}$	a +510 +818	$w d F$. 236	13.8	2.98	64	12.3	0.00016
Wolf 424 A	$12 \quad 31$	+ 918	M6e	. 223	14.6	1.87	40	12.6	0.00014
$\text { Groom. }{ }_{1618}^{\text {B }}$	$10 \quad 08$	+49 42	M6e	. 222	14.7	1.45		12.6	0.00014 0.030
CD-37 ${ }^{\circ} 15492$	${ }^{10} 008$	+39 -36	M3	. 212	14.9	6.09	134	6.8 8.6	0.030
CD-46 ${ }^{\circ} 11540$	$17 \quad 25$	-46 51	M4	. 213	15.3	1.15		8.8 9.7	0.0058
$\mathrm{BD}+20^{\circ} 2465^{*}$	$10 \quad 17$	+20 07	M4e	. 211	15.4	0.49	15	9.5	0.0023 0.0028
CD-44 ${ }^{\circ} 11909$	$17 \quad 34$	-44 16	M5	. 209	15.6	1.14		11.2	0.00058
CD- $49^{\circ} 13515$	2130	-4913	M3	. 209	15.6	0.78		9	0.0044
AOe 17415-6	$\begin{array}{ll}17 & 37\end{array}$	+68 23	M3	. 206	15.8	1.31	34	9.1	0.0040
Ross 780	$22 \quad 50$	-14 31	M5	. 206	15.8	1.12	28	10.2	0.0014
Lal. 25372	1343	+15 10	M2	. 205	15.9	2.30	55	8.6	0.0063
CC 658	$\begin{array}{rr}11 & 43 \\ 4\end{array}$	-6433	wd	. 203	16.0	2.69		11	0.0008
$0^{2} \mathrm{Eri}$ A	$4 \quad 13$	-744	K0	. 200	16.3	4.08	105	4.5	0.30
			${ }_{\text {wdi }}^{\text {M }}$					9.2	0.0040
70 Oph A	$18 \quad 03$	$+231$	K1	. 199	16.4	1.13	28	11.0 4.2	0.0008 0.40
, B			K5					5.9	0.083
Altair	1948	+844	A5	. 198	16.5	0.66	31	0.9	8.3
$\mathrm{BD}+43^{\circ} 4305$	2245	+44 05	M5e	. 198	16.5	0.84	20	10.2	0.0016
AC $79{ }^{\circ} 3888$	1144	+78 57	M4	0.196	16.6	0.87	121	11.0	0.0008

*Star has an unseen component.

high QUality materials for the discriminating amateur "PYREX" MIRROR KITS

41/4" \$8.00 • $6^{\prime \prime} \$ 12.50$ • 8" $\$ 19.50$
Prices F.O.B. Waterloo
PRICE LIST MAILED ON REQUEST ASTROPTIC SUPPLY COMPANY P.O. BOX 22, WATERLOO, ONTARIO

VARIABLE STARS

Maps of the fields of four bright variable stars are given below. In each case the magnitudes of several suitable comparison stars are given. Note that the decimal points are omitted: a star 362 is of mag. 3.62. Use two comparison stars, one brighter and one fainter than the variable, and estimate the brightness of the variable in terms of these two stars. Record the date and time of observation. When a number of observations have been made, a graph may be plotted showing the magnitude estimate as ordinates against the date (days and tenths of a day) as abscissae. Each type of variable has a distinctive shape of light curve.

In the tables the first column, the Harvard designation of the star, gives the 1900 position: the first four figures give the hours and minutes of R.A., the last two figures give the Dec. in degrees, italicised for southern declinations. The column headed Max. gives the mean maximum magnitude. The Period is in days. The Epoch gives the predicted date of the earliest maximum occurring this year; by adding the period to this epoch other dates of maximum may be found. The list of long-period variables has been prepared by the American Association of Variable Star Observers and includes the variables with maxima brighter than mag. 8.0, and north of Dec. -20°. These variables may reach maximum two or three weeks before or after the listed epoch and may remain at maximum for several weeks. The second table contains stars which are representative of other types of variable. The data are taken from "The General Catalogue of Variable Stars"' by Kukarkin and Parenago and for eclipsing binaries from Rocznik Astronomiczny Obserwatorium Krakowskiego, 1959, International Supplement.

LONG-PERIOD VARIABLE STARS

Variable	$\underset{\mathrm{m}}{\operatorname{Max}} .$	$\underset{\mathrm{d}}{\mathrm{Per} .}$	Epoch 1961	Variable		$\underset{\mathrm{m}}{\operatorname{Max} .}$	$\underset{\mathrm{d}}{\mathrm{Per}}$	Epoch 1961
001755 T Cas	7.8	445	May 9	143227	R Boo	7.2	223	Mar. 12
001838 R And	7.0	409	Mar. 30	151731	SCrB	7.3	361	May 2
021143 W And	7.4	397	Nov. 11	154639	V CrB	7.5	358	Feb. 9
021403 o Cet	3.4	332	June 12	154615	R Ser	6.9	357	Feb. 27
022813 U Cet	7.5	235	May 21	160625	RU Her	8.0	484	Nov. 29
023133 R Tri	6.2	266	June 18	162119	U Her	7.5	406	Oct. 30
043065 T Cam	8.0	374	Sept. 17	162112	V Oph	7.5	298	Feb. 15
045514 R Lep	6.8	432	Mar. 4	163266	R Dra	7.6	245	Apr. 9
050953 R Aur	7.7	459		164715	S Her	7.6	307	Apr. 5
054920a U Ori	6.3	372	May 28	170215	R Oph	7.9	302	Jan.
061702 V Mon	7.0	335	Oct. 9	171723	RS Her	7.9	219	June 8
065355 R Lyn	7.9	379	Oct. 29	180531	T Her	8.0	165	Mar. 29
070122a R Gem	7.1	370	Apr. 10	181136	W Lyr	7.9	196	Mar. 20
070310 R CMi	8.0	338	Nov. 19	183308	X Oph	6.8	334	June 24
072708 S CMi	7.5	332	Aug. 13	190108	R Aql	6.1	300	Apr. 25
081112 R Cnc	6.8	362	Mar. 20	191017	T Sgr	8.0	392	Mar. 11
081617 V Cnc	7.9	272	July 11	191019	R Sgr	7.3	269	May 7
084803 S Hya	7.8	257	May 22	193449	R Cyg	7.5	426	Feb. 7
085008 T Hya	7.8	288	July 9	194048	RT Cyg	7.3	190	Feb. 22
093934 R LMi	7.1	372		194632	χ^{Cyg}	5.2	407	Nov. 21
094211 R Leo	5.8	313	Feb. 4	200938	RS Cyg	7.2	418	
103769 R UMa	7.5	302	June 9	201647	U Cyg	7.2	465	Dec. 14
121418 R Cry	7.5	317	Mar. 9	204405	T Aqr	7.7	202	Jan. 7
122001 SS Vir	6.8	355	June 29	210868	T Cep	6.0	390	Dec.
123160 T UMa	7.7	257	June 9	213753	RU Cyg	8.0	234	July 4
123307 R Vir	6.9	146	Mar. 20	230110	R Peg	7.8	378	July 29
123961 S UMa	7.8	226	Apr. 23	230759	V Cas	7.9	228	May 7
131546 V CVn	6.8	192	May 1	231508	S Peg	8.0	319	Jan. 3
132706 S Vir	7.0	378	Sept. 5	233815	R Aqr	6.5	387	Feb. 27
134440 R CVn	7.7	328	Jan. 26	235350	R Cas	7.0	431	Dec. 2
142584 R Cam	7.9	270	June 9	235715	W Cet	7.6	351	July 29
142539 V Boo	7.9	258	Jan. 17					

OTHER TYPES OF VARIABLE STARS

Variable		$\underset{\mathrm{m}}{\operatorname{Max}}$	Min. m	Type	Sp. Cl.	Period d	Epoch 1961 E.S.T.
005381	U Cep	6.8	9.8	Ecl	B8+gG2	2.49295	Jan. 2.01*
025838	$\rho \mathrm{Per}$	3.2	3.8	SemiR	M4	33-55	
035512	λ Tau	3.5	4.0	Ecl	B3	3.952952	Jan. 3.15*
060822	η Gem	3.1	3.9	SemiR	M3	233.4	Jan. 4*
061907	T Mon	5.8	6.8	δ Cep	F7-K1	27.0205	Jan. 25.51
065820	$\zeta^{\text {G Gem }}$	3.7	4.1	${ }_{8}{ }^{\text {Cep }}$	F7-G3	10.15172	Jan. 10.03
154428	R CrB	5.8	14	R CrB	cG0ep		
171014	α Her	3.0	4.0	SemiR	M5		
184205	R Sct	5.0	8.4	RVTau	G0-M5	144	
184633	$\beta \mathrm{Lyr}$	3.4	4.3	Ecl	B8p	12.931163	Jan. 10.97*
192242	RR Lyr	7.3	8.1	RR Lyr	A2-F0	0.56683735	Jan. 1.19
194700	$\eta \mathrm{Aql}$	3.7	4.4	$\delta \mathrm{Cep}$	F6-G4	7.176641	Jan. 4.79
222557	δ Cep	3.8	4.6	δ Cep	F5-G2	5.366341	Jan. 4.66

[^2]REPRESENTATIVE DOUBLE STARS

	Star	a 1950 ס		Mag. and Spect.	d	D	Remarks
		h m			"	L.Y.	
π	And	0034.2	+33 27	$74.4 \mathrm{B3} 38.5$	36	470	
η	Cas	0046.0	+57 33	3.6F8; 7.2M0	8	18	526y; 66AU
a	UMi	0148.8	+89 02	2 var. F8; 8.8	19	407	Polaris
γ	Ari	0150.8	+1903	34.8 A 0 ; 4.8A0	8.3	150	
a	Pis	0159.4	+02 31	15.2A2; 4.3A2	2.4	130	$\dagger \dagger$
γ	And	0200.8	+4205	5 2.3K0; 5.4A0; 6.6	10, 0.7	410	56y; 23AU
6	Tri	0209.5	+30 04	45.4G4; 7.0F3	3.6	330	$\dagger \dagger$
	Per	0247.0	+55 41	$13.9 \mathrm{~K} 0 ; 8.5$	28	540	
32	Eri	0351.8	-03 06	6 5.0G5; 6.3A	6.7	300	
β	Ori	0512.1	-08 15	50.3B8; 7.0	9	540	\dagger
θ	Ori	0532.8	-05 25	5 5.4;6.8; 6.8; 7.9; 0	13, 17	540	Trapezium
β	Mon	0626.4	-07 00	0.7B2; 5.2; 5.6	7, 25	470	
12	Lyn	0641.8	+59 30	0 5.3A2; 6.2; 7.4	1.7, 8	180	
a	CMa	0643.0	-16 39	-1.6A0; 8.5F	11		50y; 20AU
δ	Gem	0717.1	+22 05	3.5F0; 8.0M0	6.8	58	\dagger
$\stackrel{a}{ }$	Gem	0731.4	+3200	2.0A0; 2.8A0; 9M10	4, 70	47	340 y ; 79AU
ζ	Cnc	0809.3	+1748	5.6G0; 6.0;6.2	1,5	78	60 y ; 21AU
$\boldsymbol{\gamma}$	Leo	1017.2	+20 06	2.6K0; 3.8G5	4	160	400y
ξ	UMa	1115.5	+3148	4.4G0; 4.9G0	2	25	$\dagger \dagger 60 \mathrm{y}$; 20AU
ι	Leo	1121.3	+10 48	84.1F3; 6.8F3	2	69	
γ	Vir	1239.1	-01 10	3.6F0; 3.7F0	6		171y; 42AU
a	CVn	1253.7	+38 35	2.9A0; 5.4A0	20	140	$\dagger \dagger$
ζ	UMa	1321.9	+55 11	12.4 A 2 ; 4.0A2	14	78	
π	Boo	1438.4	+16 38	4.9A0; 5.1A0	6	360	
ϵ	Boo	1442.8	+2717	2.7K0; 5.1A0	3	220	
	Boo	1449.1	+1918	4.8G5; 6.7	3	22	151y; 31AU
	Ser	1532.4	+10 42	4.2F0; 5.2 F 0	4	170	
ξ	Sco	1601.6	-11 14	5.1F3; 4.8; 7G7	1, 7	84	44.7 y ; 19AU
$\stackrel{\rightharpoonup}{a}$	Her	1712.4	+1427	var.M5; 5.4G	5	540	\dagger
δ	Her	1713.0	+24 54	3.2A0; 8.1G2	11	100	\dagger Optical
	Lyr	1842.7	+39 37	5.1, 6.0A3; 5.1, 5.4A5	3, 2	200	Pairs 207"
	Cyg	1928.7	+2751	$13.2 \mathrm{K0} 05.4 \mathrm{~B} 9{ }^{\text {a }}$	34	410	
	Cap	2014.9	-12 40	3.8G5; 4.6G0	376		Optical
	Del	2044.3	+15 57	4.5G5; 5.5F8	10	110	Optical
	Cyg	2104.6	+38 30	5.6K5; 6.3K5	23	11	
β	Cep	2128.1	+70 20	var.B1; 8.0A3	14	540	\dagger
	Aqr	2226.2	-00 17	4.4F2; 4.6F1	3	140	
	Cep	2227.3	+58 10	var.G0; 7.5A0	41	650	
	Lac	2233.6	+39 23	5.8B3; 6.5B5	22	1100	\dagger
	Cas	2356.5	+55 29	5.1B2; 7.2B3	3	820	

\dagger or $\dagger \dagger$, one, or two of the components are themselves very close visual double or more generally, spectroscopic binaries.

STAR CLUSTERS

The star clusters for this observing list have been selected to include the more conspicuous members of the two main classes-open clusters and globular clusters. Most of the data are from Shapley's Star Clusters and from Trumpler's catalogue in Lick Bulletin No. 420. In the following table N.G.C. indicates the serial number of the cluster in the New General Catalogue of Clusters and Nebulae; M, its number in Messier's catalogue; Con., the constellation in which it is located; α and δ, its right ascension and declination; Cl., the kind of cluster, $O p$ for open or galactic and $G l$ for globular; Diam., the apparent diameter in minutes of arc; Mag. B.S., the magnitude of the fifth brightest star in the case of open clusters, the mean of the 25 brightest for globulars; No., the number of stars in the open clusters down to the limiting magnitudes of the photographs on which the particular clusters were studied; Int. mag., the total apparent magnitude of the globular clusters; and Dist., the distance in light years.

N.G.C.	M	Con.	$\mathrm{h}^{\boldsymbol{a}} \mathrm{m}^{19}$	60 \% ,	Cl .	Diam.	Mag. B.S.	No.	Int. mag	$\begin{aligned} & \text { Dist } \\ & \text { 1.y. } \end{aligned}$
869		h Per	0216.2	+56 58	Op	30	7			4,300
884		$\chi \mathrm{Per}$	0219.6	+5656	Op	30	7			4,300
1039	34	Per	0239.4	+4237	Op	30	9	80		1,500
Pleiades	45	Tau	0345.1	+23 59	Op	120	4.2	250		490
Hyades		Tau	0418	+1531	Op	400	4.0	100		120
1912	38	Aur	0526.0	+35 48	Op	18	9.7	100		2,800
2099	37	Aur	0549.7	+32 33	Op	24	9.7	150		2,700
2168	35	Gem	0606.4	+2421	Op	29	9.0	120		2,700
2287	41	C Ma	0645.3	-20 42	Op	32	9	50		1,300
2632	44	Cnc	0837.8	+2007	Op	90	6.5	350		490
5139		$\omega \mathrm{Cen}$	1324.3	-47 16	Gl	23	12.9		3	22,000
5272	3	CV	1340.4	+28 35	Gl	10	14.2		4.5	40,000
5904	5	Ser	1516.5	+02 13	Gl	13	14.0		3.6	35,000
6121	4	Sco	1621.2	-2626	G1	14	13.9		5.2	24,000
6205	13	Her	1640.2	+36 32	G1	10	13.8		4.0	34,000
6218	12	Oph	1645.2	-01 53	G1	9	14.0		6.0	36,000
6254	10	Oph	1655.0	-04 03	G1	8	14.1		5.4	36,000
6341	92	Her	1715.9	+4311	Gl	8	13.9		5.1	36,000
6494	23	Sgr	1754.6	-19 01	Op	27	10.2	120		2,200
6611	16	Ser	1816.6	-13 48	Op	8	10.6	55		6,700
6656	22	Sgr	1834.0	-23 57	Gl	17	12.9		36	22,000
7078	15	Peg	2128.0	+1159	Gl	7	14.3		5.2	43,000
7089	2	Aqr	2131.4	-01 00	Gl	8	14.6		5.0	45,000
7092	39	Cyg	2130.8	+48 15	Op	32	6.5	25		1,000
7654	52	Cas	2322.4	+6123	Op	13	11.0	120		4,400

GALACTIC NEBULAE

The galactic nebulae here listed have been selected to include the most readily observable representatives of planetary nebulae such as the Ring Nebula in Lyra, diffuse bright nebulae like the Orion nebula and dark absorbing nebulosities such as the Coal Sack. These objects are all located in our own galactic system. The first five columns give the identification and position as in the table of clusters. In the Cl column is given the classification of the nebula, planetary nebulae being listed as $P l$, diffuse nebulae as $D i f$, and dark nebulae as Drk. Size indicates approximately the greatest apparent diameter in minutes of arc; and $m n$ is the magnitude of the planetary nebula and m^{*} is the magnitude of its central star. The distance is given in light years, and the name of the nebula is added for the better known objects.

N.G.C.	M	Con	$\mathrm{h}^{\boldsymbol{a}} \mathrm{m}$ m	60 。 ${ }^{\text {d }}$	Cl	Size	m	${ }^{\text {m }}$	Dist. 1.y.	Name
650	76	Per	0139.7	+5122	Pl	1.5	11	17	15,000	
1952	1	Tau	0532.1	+2200		6	11	16	4,100	Crab
1976	42	Ori	0533.3	-05 25	Dif	30			1,800	Orion
B33		Ori	0538.9	-02 29	Drk	4			300	Horsehead
2261		Mon	0637.0	+08 46	Dif	2				Hubble's var
2392		Gem	0726.8	+2100	Pl	0.3	8	10	2,800	
2440		Pup	0740.1	-18 07	Pl	0.9	11	16	8,600	
3587	97	UMa	1112.5	+55 14	Pl	3.3	11	14	12,000	Owl
		Cru	1249	-63	Drk	300			300	Coalsack
6210		Her	1642.8	+2352	P1	0.3	10	12	5,600	
B72		Oph	1721.2	-23 35	Drk	20			400	S nebula
6514	20	Sgr	1800.0	-23 02	Dif	24			3,200	Trifid
B86		Sgr	1800.5	-2753	Drk	5				
6523	8	Sgr	1801.2	-24 23	Dif	50			3,600	L.agoon
6543		Dra	1758.6	+66 37	Pl	0.4	9	11	3,500	
6572		Oph	1810.2	+0650	Pl	0.2	9	12	4,000	
B92		Sgr	1813.2	-18 15	Drk	15				
6618	17	Sgr	1818.5	-16 12	Dif	26			3,000	Horseshoe
6720	57	Lyr	1852.1	+32 59	Pl	1.4	9	14	5,400	Ring
6826		Cyg	1943.7	+50 26	Pl	0.4	9	11	3,400	
6853	27	Vul	1957.9	+22 36	Pl	8	8	13	3,400	Dumb-bell
6960		Cyg	2044.0	+30 34	Dif	60				Network
7000		Cyg	2057.4	+44 10	Dif	100				N. America
7009		Aqr	2102.0	-1132	Pl	0.5	8	12	3,000	
7662		And	2324.0	+42 19	Pl	0.3	9	13	3,900	

EXTERNAL GALAXIES

Among the hundreds of thousands of systems far beyond our own galaxy relatively few are readily seen in small telescopes. The following list contains a selection of the closer brighter objects of this kind. The first five columns give the catalogue numbers, constellation and position on the celestial sphere. In the column $C l, E$ indicates an elliptical nebula, I an irregular object, and $S a, S b$, $S C$ spiral nebulae, in which the spiral arms become increasingly dominant compared with the nucleus as we pass from a to c. The remaining columns give the apparent magnitude of the nebula, its distance in light years and the radial velocity in kilometers per second. As these objects have been selected on the basis of ease of observation, the faint, very distant objects which have spectacularly large red shifts, corresponding to large velocities of recession, are not included.

N.G.C.	M	Con			Cl	Dimens.	Mag.	Distance millions of l.y.	$\begin{gathered} \text { Vel. } \\ \mathrm{km} / \mathrm{sec} \end{gathered}$
221	32	And	0040.5	+40 39	E	3×3	8.8	1.6	- 185
224	31	And	0040.5	+4103	Sb	160×40	5.0	1.6	- 220
SMC		Tuc	0053	-7235	I	220×220	1.5	0.17	+ 170
598	33	Tri	0131.6	+3028	Sc	60×40	7.0	1.4	- 70
LMC		Dor	0521	-69 26	I	430×530	0.5	0.17	+ 280
3031	81	UMa	0952.4	+69 16	Sb	16×10	8.3	4.8	- 30
3034	82	UMa	0952.7	+69 53	I	7×2	9.0	5.2	+ 290
3368	96	Leo	1044.6	+1202	Sa	7×4	10.0	11.4	+ 940
3623	65	Leo	1116.8	+13 19	Sb	8×2	9.9	10.0	+ 800
3627	66	Leo	1118.2	+13 13	Sb	8×2	9.1	8.6	+ 650
4258		CV	1217.0	+4732	Sb	20×6	8.7	9.2	$+500$
4374	84	Vir	1223.0	+1306	E	3×2	9.9	12.0	+1050
4382	85	Com	1223.4	+1825	E	4×2	10.0	7.4	$+500$
4472	49	Vir	1227.8	+08 13	E	5×4	10.1	11.4	$+850$
4565		Com	1234.4	+26 12	Sb	15×1	11.0	15.2	+1100
4594		Vir	1237.9	-1124	Sa	7×2	9.2	14.4	+1140
4649	60	Vir	1241.7	+1146	E	4×3	9.5	15.0	+1090
4736	94	CV	1249.0	+4120	Sb	5×4	8.4	6.0	$+290$
4826	64	Com	1254.8	+2154	Sb	8×4	9.2	2.6	$+150$
5005		CV	1309.0	$+3716$	Sc	5×2	11.1	13.2	+ 900
5055	63	CV n	1314.0	+42 14	Sb	8×3	9.6	7.2	+ 450
5194	51	CV	1328.2	+4724	Sc	12×6	7.4	6.0	+ 250
5236	83	Hya	1334.8	-29 40	Sc	10×8	8	5.8	+ 500
6822		Sgr	1942.7	-14 52	I	20×10	11	2.0	- 150
7331		Peg	2235.2	+34 12	Sb	9×2	10.4	10.4	$+500$

The above map represents the evening sky at

Midnight 11 p.m.	Feb. $\quad 6$
10	. Mar. 7
9	22
8	.Apr. 6
7	21

The centre of the map is the zenith, the circumference the horizon. To identify the stars hold the map so that the part of the horizon you are facing is down.

The above map represents the evening sky at

$$
\begin{aligned}
& \text { Midnight.............May } 8 \\
& 11 \text { p.m.............. " } 24 \\
& 10 \text { "June } 7 \\
& 9 \text { "" " } 22 \\
& 8 \text { "July } 6
\end{aligned}
$$

The centre of the map is the zenith, the circumference the horizon. To identify the stars hold the map so that the part of the horizon you are facing is down.

The above map represents the evening sky at

Midnight	Aug.
$11 \mathrm{p} . \mathrm{m}$.	" 21
10 "	Sept. 7
9 "	23
8 "	. Oct. 10
7	26
6	Nov. 6
5 "	21

The centre of the map is the zenith, the circumference the horizon. To identify the stars hold the map so that the part of the horizon you are facing is down.

The above map represents the evening sky at

Midnig	Nov.
11 p.m	21
10	Dec. 6
9	21
8	Jan. 5
7 "	20
6	Feb.

The centre of the map is the zenith, the circumference the horizon. To identify the stars hold the map so that the part of the horizon you are facing is down.

South appears at the top

Visiting Hours at some Canadian Observatories

Dominion Observatory, Ottawa, Ont.:
Monday to Friday, daytime, rotunda only.
Saturday evenings, April through October.
The 15 -inch telescope is used for visitors and one of the five divisions of the Observatory is open.
David Dunlap Observatory, Richmond Hill, Ont.:
Wednesday afternoons.
Saturday evenings, April through October (by reservation).
The 74 -inch telescope is used for visitors; small telescopes are operated by members of the Toronto Centre.
Dominion Astrophysical Observatory, Victoria, B.C.:
Mondays to Fridays, daytime, no programme.
Saturday evenings, April through November.
The 72 -inch telescope is used for visitors.

For every astronomical interest-

Sky Publications

Abstract

JOIN the leading astronomers and thousands of amateurs throughout the world who look to SKY AND TELESCOPE as a welcome monthly package of informative articles pleasingly illustrated, up-to-date news items, observing material, and telescope making notes. The largest astronomical magazine on any planet!

SUBSCRIPTION:
In Canada and Pan American Postal One year, $\$ 6.00$; two years, $\$ 11.00$; Union Countries three years, $\$ 16.00$.
In the United States and possessions One year, $\$ 5.00$; two years, $\$ 9.00$; three years, \$13.00.
In all other countries One year, \$7.00; two years, \$13.00; three years, $\$ 19.00$.

OTHER SKY PUBLICATIONS

LAROUSSE ENCYCLOPEDIA OF ASTRONOMY \$12.50
THE HISTORY OF THE TELESCOPE, by Henry C. King-The complete story of the evolution of the telescope $\$ 7.50$
MAKING YOUR OWN TELESCOPE, by Allyn J. Thompson-How to construct a low-cost 6 -inch reflecting telescope
$\$ 4.00$
SKY SETS I AND II-Two different collections, 24 large pictures in each set. Solar system, Milky Way, and galaxies Each set, \$4.00
MOON SETS-18 pictures of the moon's entire visible face $\$ 3.00$
LUNAR CRESCENT SETS-A matching series to Moon Sets, for the waxing and waning phases. 10 pictures in a set $\$ 2.50$
ELGER'S MAP OF THE MOON-Canvas mounted, $30^{\prime \prime} \times 191 / 2^{\prime \prime} \quad \$ 3.00$
COLOR CHARTS OF THE MOON-Two maps of the first- and lastquarter moon. Each lunar half is $27^{\prime \prime}$ in diameter $\$ 2.00$
COLOR MAP OF THE NORTHERN HEAVENS \$1.00
ATLAS OF THE HEAVENS, from the Skalnate Pleso Observatory16 large charts, covering both hemispheres to stellar magnitude 7.75
DE LUXE EDITION-Printed in five colors, clothbound, with transparent co-ordinate grid overlay, $166^{1 \frac{1}{\prime \prime}} \times 23^{\prime \prime}$........................ $\$ 9.75$
FIELD EDITION-Stars are white on black background, $12^{\prime \prime} \times 18^{\prime \prime}$ on stiff paper, unbound $\$ 4.00$ each set; 2 for $\$ 7.50$
ATLAS COELI CATALOGUE .. $\$ 8.75$
NORTON'S STAR ATLAS-Stars to magnitude $61 / 3$, in book form .. $\$ 5.25$
POPULAR STAR ATLAS-16 bound maps to stellar magnitude 51/2 $\quad \$ 2.00$
SPACEFLIGHT-A quarterly magazine for astronauts, edited by the British Interplanetary Society. Write for further information.
Write for free circular "C" describing these and other Sky Publications. Please enclose your check or money order payable to

IN CANADA...

AN 84' KENNEDY RADIO-TELESCOPE

D. S. KENNEDY \& CO. has designed, built and erected almost 4 times as many radio telescopes as all other companies combined. This one, now in operation for the Dominion Observatory is pictured during installation at Penticton, B.C. For information on the complete range of KENNEDY Radio Telescopes call or write
D. S. KENNEDY \& CO.

Antenna Division, Cohasset, Massachusetts. EVergreen 3-1200.

unusual optical buts

See the Stars, Moon, Close Up! 3" REFLECTING TELESCOPE

60 to 180 Power-An Unusual Buy! Famous Mt. Palomar Type

You'll see the Rings of Saturn, the fascinating planet Mars, huge craters on the Moon, Star Clusters, Moons of Jupiter in detail. Aluminized and overcoated $3^{\prime \prime}$ diameter high-speed f/10 mirror. Equatorial mount with lock on both axes. An Optical Finder Telescope is also included. Sturdy, hardwood, portable tripod. Free with scope-valuable, star chart and 272 page "Astronomy Book', Order by Stock No. Send check or M. O.-Money-back guarantee!

Stock No. 85,050-V \$29.95 Postpaid

TELESCOPE ROLL-FILM CAMERA

This model uses rolls of No. 127 film. Picture area will be a circle 1-9/16" in diameter. The advantage of this model is the ease of using roll film. With each camera you get a piece of ground glass. Before loading film in camera, you focus the telescope. Then lock it in this position. For positions other than infinity, you can scribe a mark on your tube.
Stock No. 70,182-V
$\$ 29.50$ pstpd.

6X FINDER TELESCOPE

Has crosshairs for exact locating. You focus by sliding objective mount in and out. Base fits any diameter tube-an important advantage. Has 3 centering screws for aligning with main telescope. $20-\mathrm{mm}$. diam. objective. Weighs less than $1 / 2$ pound.
Stock No. 50,121-V

BEAUTIFUL CIRCULAR DIFFRACTION GRATING JEWELRY

A Dazzling Rainbow of Color!

As a scientific phenomenon, this new kind of jewelry is capturing attention everywhere. Shimmering rainbows of gemlike color in jewelry of exquisite beauty-made with GIRCULAR DIFFRACTION GRATING REPLICA. Just as a prism breaks up light into its full range of individual colors, so does the Diffraction Grating.
Stock \# 30,349-V
Stock \# 30,350-V
Stock \# 30,372-V
Stock \# 30,390-V

Earrings $\$ 2.75$ Pstpd. Cuff Links $\$ 2.75$ Pstpd. Pendant $\$ 2.75$ Pstpd. Tie-Clasp $\$ 2.75$ Pstpd.

4/4" ASTRONOMICAL TELESCOPE UP TO 255 POWER

New Vibration-Free Metal Pedestal Mount

With this scope you can see everything described at left, but with greater power. Also, it will split closer double stars. Mirror has twice the light-gathering power. Rack-and-pinion focusing, real equatorial mounting-only one motion needed to follow the stars! Aluminum tube. 6-power finder telescope. 2 standardsize eyepieces and mounted Barlow lens give you powers of $40 \mathrm{x}, 90 \mathrm{x}, 120 \mathrm{x}$, and 255 x . Lowcost accessory eyepiece available for higher powers. FREE with Scope: Valuable STAR CHART plus 272-page "HANDBOOK OF THE HEAVENS" plus the book "HOW TO USE YOUR TELESCOPE" Shpg. wt. 25 lbs. Stock \#85, 105-V. \qquad $\$ 79.50$ f.o.b. Barrington, N.J. Same telescope as described above but equipped with Electric Clock Drive.
Stock \#85,107-V.
. $\$ 109.00$ f.o.b.
Barrington, N.J.

Rack \& Pinion Eyepiece Mounts

Real rack-and-pinion focusing with variable tension adjustment; tube accommodates standard $114^{\prime \prime}$ eyepieces and accesory equipment; lightweight aluminum body casting (not cast iron); focusing tube and rack of chrome-plated brass; body finished in black
wrinkle paint.
For Reflectors
Stock \# 50,077-V (less diagonal holder) $\$ 8.50$ ppd.
Stock \# 60,049-V (diagonal holder only) 1.00 ppd.

For Refractors

Stock \# 50, 103-V (for 2 7/8' ${ }^{\prime \prime}$ I.D. tubing) 12.95 ppd. Stock \# 50, 108-V (for 3 7/8'" I.D. tubing) 13.95 ppd.

MOUNTED BARLOW LENS

Double and triple your Telescope's power with a Barlow Lens. Ours is mounted in chrome-plated brass tubing with variable spacers-just slide this mounted negative lens into your $11 / 4^{\prime \prime}$ I.D. eyepiece holder, and use your regular eyepiece in it. Fully guaranteed to please you. Stock No. 30,200-V $\$ 8.00$ postpaid

GET BIG FREE CATALOG "V"

144 pages. Over 1,000 optical bargains. War surplus-imported - domestic! Astronomical Telescopes, Satellite Scopes, Microscopes, Binoculars, kits, lenses, prisms, reticles, etc. Write for Free Catalog "V'".

AUTHORITATIVE HANDBOOKS ON ASTRONOMY

Introducing Astronomy by J. B. Sidgwick ... $\$ 3.75$
Amateur Astronomer's Handbook by J. B. Sidgwick 12.75
Observational Astronomy for Amateurs by J. B. Sidgwick 10.75
Frontiers of Astronomy by Fred Hoyle .. 7.00
Moon Maps by H. P. Wilkins .. 7.00
The Sun by Giorgio Abetti ... 12.75
For further information write to:
BRITISH BOOK SERVICE (CANADA) LIMITED 1068 Broadview Avenue, Toronto 6, Ontario

Da you know

1. That the University of Toronto Press is one of only four printing plants in the world using the four-line system of typesetting mathematical formulas mechanically?
2. That this system has been developed to its highest degree of mechanization and efficiency right here at University of Toronto Press?
3. That printing experts and scholars from the United States, Great Britain, and other parts of the world regularly visit our plant to see this system in operation?
4. That this research and experimentation has been made possible only by the co-operation of Canadian scholars, scientific societies and non-profit scientific journals?

for mathematical and scientific printing

UNIVERSITY OF TORONTO PRESS

> Amateurs-Have Your Mirrors Aluminized at
> V AC U U M M E T A L LIZ IN G LTD.
> 300 Carlaw Ave., Toronto 8 HOward 1-6349
> (Mirror returned the same day if required)

UNITRON IS YOUR LOGICAL CHOICE

There is much to recommend a UNITRON Refractor as the logical choice for the amateur astronomer. A UNITRON, optically speaking, duplicates the performance of larger telescopes of other types. With its long focal length, higher magnifications of planetary and lunar images are obtained with low-power eyepieces. Moreover, there are no mirrored surfaces to
1.6" ALTAZIMUTH $\$ 75$
with eyepieces for 78x, 56x, 39x
2.4" ALTAZIMUTH \$125
with eyepieces \$225
with eyepieces for 129x, 100x, 72x, 50x, 35x
$3^{\prime \prime}$ ALTAZIMUTH \$265
with eyepieces for 171x, 131x, 96x, 67x, 48x
$3^{\prime \prime}$ EQUATORIAL $\$ 435$
with eyepieces for 200x, 131x, 96x, 67x, 48x
3" PHOTO-EQUATORIAL $\$ 550$
with eyepie
$67 x, 48 x$
4" ALTAZIMUTH \$465
with eyepieces for 250x, 214x, 167x, 120x, 83x, 60x
4" EQUATORIAL $\$ 785$
with eyepieces
4" PHOTO-EQUATORIAL $\$ 890$
with eyepieces for 250x, 214x, 167x, 120x, 83x, 60x, 38x
4" EQUATORIAL with clock drive $\$ 985$
Model 160V, eyepieces as above
4" EQUATORIAL with clock drive and \$1075metal pier, Model 166V, eyepieces as above
4" PHOTO-EQUATORIAL with clock drive \$1175and ASTRO-CAMERA, with eyepieces for250x, 214x, 167x, 120x, 83x, 60x, 38x, 25x
4" PHOTO-EQUATORIAL with clock \$1280drive, pier, ASTRO-CAMERA, eyepieces for375x, 300x, 250x, 214x, 167x, 120x, 83x,60x, 38x, 25x
5" PHOTO-EQUATORIAL with clock \$2275 drive and ASTRO-CAMERA with eyepieces for 500x, 400x, 333x, 286x, 222x, 160x, 111x, 80x, 50x, 33x
6" EQUATORIAL with clock drive, \$5125 pier, 2.4" view finder, with eyepieces for 625x, 500x, 416x, 357x, 277x, 200x, 138x, 100x, 62x, 42x
6" PHOTO-EQUATORIAL as above but $\$ 5660$ with 4" guide telescope, illuminated diagonal, UNIBALANCE, ASTRO-CAMERA Model 330
6" PHOTO-EQUATORIAL as above with \$6075 addition of $3^{\prime \prime}$ Astrographic Camera Model 80
become oxidized, no components which require periodic alignment, no secondary optics to cause diffraction patterns, and no folding of the light back on itself through turbulent air with consequent loss of definition. No wonder that you see more and see better with a UNITRON-the telescope that has withstood the test of time.

Get UNITRON's FREE

Observer's Guide and Catalog on

ASTRONOMICAL TELESCOPES

This valuable 38-page book is yours for the asking!

With artificial satellites already launched and space travel almost a reality, astronomy has become today's fastest growing hobby. Exploring the skies with a telescope is a relaxing diversion for father and son alike. UNITRON's handbook contains full-page illustrated articles on astronomy, observing, telescopes and accessories. It is of interest to both beginners and advanced amateurs.
Contents include -

- Observing the sun, moon, planets and wonders of the sky
- Constellation map
- Hints for observers
- Glossary of telescope terms
- How to choose a telescope
- Amateur clubs and research programs

66 NeEDHAM STREET, NEWTON HIGHLANDS 61, MASS.

HOW TO ORDER

Send check or money order in full. Shipments made express collect. Send 20% deposit for C.O.D. shipment. UNITRON instruments are fully guaranteed for quality workmanship, and performance.

See back cover

Fortunate indeed is the observer who has this UNITRON 4" Photo-Equatorial, Model 166, at his disposal. Never before has such a wealth of equipment and features been found in an instrument of this size.
Model 166 comes complete with clock drive, astro-camera, photographic guide telescope, 42 mm . viewfinder, Super UNIHEX rotary eyepiece selector, 10 eyepieces,
and many other accessories for only $\$ 1280$ complete.
The unexcelled performance, careful workmanship, and elegant finish of Model 166 is characteristic of each and every telescope that bears the famous UNITRON name. Such uniform excellence is but one of the many exclusive features which distinguish UNITRONS from all other refractors of equal aperture.

PASSOMIT TO IVPNITY

"The Refractorflex-Telesphere"

CARRIES YOU TO EXCITING ADVENTURES IN SPACE BEYOND TIME WRITE FOR FREE BOOKLET TO:
the INTERNATIONAL TELESCOPE COMPANY
of philadelphia 835 NORth 19th STREET PHILADELPHIA 30, PA., U. S. A.

6325 SOMERLED AVE.
MONTREAL, P. Q., CANADA

Advertise

in the publications of
The
Royal Astronomical
Society of Canada

Sample copies and rate card sent to interested advertisers upon application to

252 COLLEGE STREET

TORONTO 2B,ONTARIO

ACCUSTAR for the telescope or
visual observation solves the amateur's biggest problem. Gives sidereal times instantly. Anywhere.

Find celestial objects with an ease, speed and accuracy never before approached.

ACCUSTAR and the book "Find the Stars" $\$ 9.75$. This unique 56 -page book has 23 sky maps and much needed information for the amateur.

Book "Find the Stars" alone \$1.00
ACCUSTAR p.o. box 2806, DETROIT 31, Michigan

WHAT IS SIDEREAL TIME?

By definition it is the hour angle of the March equinox, which is at right ascension 0 hours. At your observing station the right ascension of the celestial meridian is always your local sidereal time.
Knowing the sidereal time is an astronomical necessity, for it tells you quickly the hour angle of any celestial body to which you wish to point your telescope. Our clocks can be equipped for broadcasting time signals at some extra cost.
Sidereal time for any time and place will be computed free of charge to anyone sending their Longitude as exact as possible and computation formula sheets will be provided also. Write for instructions.

Haines Electric
 Sidereal Clock

\$62.00

Haines Scientific Instruments

Box 171 Englewood, New Jersey

As a public service, Sun Life Assurance
Company of Canada is offering eleven leaflets in its Values in Education series. These leaflets, dealing with such subjects as the advisability of remaining in school, the value of a college
education, adult education today, preparing oneself for retirement and many others are available without charge or obligation. For further details write:
VALUES IN EDUCATION, 218 SUN LIFE BUILDING, MONTREAL.
SUN LIFE OF CANADA

Time is Money ...save both

You'll like Saving at the
BANK OF Montreal Canadai Fust Bank

UNITRON'S $6^{\prime \prime}$ Refractor on left, 4" on right

Amateur and professional astronomers alike continue to proclaim their enthusiasm and high praise for UNITRON's new 6 -inch Refractor. And little wonder-for this latest and largest UNITRON offers features, precision, and performance usually associated only with custombuilt observatory telescopes of much larger aperture. Here, indeed, is the ideal telescope for the serious observer and for the school and college observatory.

Imagine yourself at the controls of this $6^{\prime \prime}$ UNITRON-searching the skies, seeing more than you have ever seen before, photographically recording your observations-truly, the intellectual adventure of a lifetime.
Full specifications are given in the UNITRON Telescope Catalog available on request. There are three massive $6^{\prime \prime}$ models from which to choose with prices starting at $\$ 5125$.

SEE OUR ADVERTISEMENTS ON THE INSIDE PAGES

UNITRON

INSTRUMENT COMPANY - TELESCOPE SALES DIV.

 66 NEEDHAM STREET, NEWTON HIGHLANDS 61, MASS.
[^0]: E-eclipse, O-occultation, T-transit, S-shadow, D-disappearance, R-reappearance I-ingress, e-egress; E.S.T. (For other times see p. 10.)
 The phenomena are given for latitude $45^{\circ} \mathrm{N}$., for Jupiter one hour above the horizon, and the sun one hour below the horizon:

[^1]: *These phenomena may be observed in some parts of North America; the others occur in daylight or when the objects are below the horizon.

 No occultations by planets are predicted to be visible from North America during 1961.

[^2]: *Minima

