THE
 OBSERVER'S
 HANDBOOK
 1960

Fifty-second Year of Publication THE ROYAL ASTRONOMICAL SOCIETY OF CANADA

Price 75 cents

THE ROYAL ASTRONOMICAL SOCIETY OF CANADA

Incorporated 1890 - Royal Charter 1903

The National Headquarters of the Royal Astronomical Society of Canada is located at 252 College Street, Toronto 2B, Ontario. The business office of the Society, reading rooms and astronomical library, are housed here, as well as a large room for the accommodation of telescope making groups.

Membership in the Society is open to anyone interested in astronomy. Applicants may affiliate with one of the Society's fourteen centres across Canada, or may join the National Society. Centres of the Society are established in Halifax, Quebec, Montreal, Ottawa, Hamilton, London, Windsor, Winnipeg, Edmonton, Calgary, Vancouver, Victoria, and Toronto. Addresses of the Centres' secretaries may be obtained from the National Office.

Publications of the Society are free to members, and include the Journal (6 issues per year) and the Observer's Handbook (published annually in November). Annual fees of $\$ 5.00$ are payable October 1 and include the publications for the following year.

Requests for additional information regarding the Society or its publications may be sent to the address above. Communications to the Editor should be sent to Miss Ruth J. Northcott, David Dunlap Observatory, Richmond Hill, Ontario.

Advertise

in the publications of

The

Royal Astronomical
Society of Canada

Sample copies and rate card sent to interested advertisers upon application to

252 COLLEGE STREET
TORONTO 2B,ONTARIO

You should have Sun Life's handy illustrated booklet

How to Forecast the Weather

Write to
218 Sun Life Building Montreal

SUN LIFE OF CANADA

THEOBSERVER'S HANDBOOK

1960

Editor
Ruth J. Northcott

Fifty-second Year of Publication THE ROYAL ASTRONOMICAL SOCIETY OF CANADA

252 College Street, Toronto 2B, Ontario

CONTENTS

PAGE
Acknowledgements 3
Anniversaries and Festivals 3
Symbols and Abbreviations 4
The Constellations 5
Miscellaneous Astronomical Data 6
Ephemeris of the Sun 7
Principal Elements of the Solar System 8
Satellites of the Solar System 9
Solar and Sidereal Time 10
Map of Standard Time Zones 11
Julian Day Calendar 11
Times of Rising and Setting of the Sun and Moon 12
Sunrise and Sunset 13
Beginning and Ending of Twilight 19
Moonrise and Moonset 20
The Planets for 1960 26
The Sky and Astronomical Phenomena Month by Month 32
The Observation of the Moon 56
Opposition Ephemerides of the Brightest Asteroids, 1960 56
Phenomena of Jupiter's Satellites 57
Ephemeris for the Physical Observation of the Sun 58
Eclipses and Transit of Mercury, 1960 59
Planetary Appulses and Occultations 60
Lunar Occultations, 1960 60
Meteors, Fireballs and Meteorites 63
The Brightest Stars, their magnitudes, types, proper motions, distances and radial velocities and navigation stars 64
Table of Precession for 50 Years 75
The Nearest Stars 76
Variable Stars 78
Representative Double Stars 80
Clusters and Nebulae:
Star Clusters 81
Galactic Nebulae 82
External Galaxies 83
Four Circular Star Maps 84
Calendar Cover p. iii

THE OBSERVER'S HANDBOOK for 1960 is the 52nd issue. Two additions have been made: the range of change during the year of the longitude of the moon's orbit and opposition ephemerides of the two brightest asteroids. Certain of the miscellaneous astronomical data and the section on time have been revised. The section on occultations has been extended to include stars of magnitude 5.3 or brighter.

Some changes in the form of the phenomena month by month and the phenomena of Jupiter's satellites have been necessary as a result of the unification of the British Nautical Almanac and the American Ephemeris.

Cordial thanks are offered to those who assisted with the preparation of this volume, Barbara Gaizauskas, K. S. McCormick, Kulli Milles, Helge Mairo, Isabel Williamson and Dorothy Yane. Special thanks are due to Malcolm M. Thomson and R. W. Tanner and the Dominion Observatory for preparing the revisions to the section on time, to Gordon E. Taylor and the British Astronomical Association for the data on planetary appulses and occultations and to Margaret W. Mayall, Director of the A.A.V.S.O., for the predictions of the times of maxima of the long-period variables.

Our deep indebtedness to the British Nautical Almanac Office and to the American Ephemeris is thankfully acknowledged.

Ruth J. Northcott

ANNIVERSARIES AND FESTIVALS, 1960

w Year's Day..... Fri.	Jan.	Pe	e
Epiphany Wed.	Jan.	Trinity Sunday	une 12
Accession of Queen		Corpus Christi. Thu.	June 16
Elizabeth (1952). . . . Sat.	Feb.	St. John Baptist (Mid-	
Septuagesima Sunday	Feb. 14	summer Day)...... . Fri.	June 24
Quinquagesima (Shrove		Dominion Day. Fri.	July 1
Sunday)	eb. 28	Birthday of Queen Mother	
St. David Tue.	Mar.	Elizabeth (1900) . . Thu	Aug. 4
Ash Wednes	Mar.	Labour Day......... Mon	Sept. 5
St. Patrick	Mar. 17	Hebrew New Year	
Palm Sunda	Apr. 10	(Rosh Hashanah) . . Th	22
Good Friday	Apr. 15	St. Michael	
Easter Sunday	Apr. 17	(Michaelmas Day). . Thu	Sept. 29
Birthday of Queen		Thanksgiving Day.... Mon.	Oct. 10
Elizabeth (1926) ... Thu	Apr. 21	All Saints' Day Tue.	Nov. 1
St. George. Sat.	Apr. 23	Remembrance Day... Fri.	Nov. 11
Rogation Sunday	May 22	First Sunday in Advent	Nov. 27
Empire Day (Victoria		St. Andrew Wed.	Nov. 30
Day)............ . . Mo	May 23	Christmas Day Sun.	Dec. 25
Ascension Day...... . Thu.	May 26		

SYMBOLS AND ABBREVIATIONS

SUN, MOON AND PLANETS

\odot The Sun

New Moon
Full Moon
First Quarter Last Quarter

d The Moon generally 8 Mercury Venus \oplus Earth $\sigma^{\prime \prime}$ Mars	

[^0]
ASPECTS AND ABBREVIATIONS

σ Conjunction, or having the same Longitude or Right Ascension. \circ° Opposition, or differing 180° in Longitude or Right Ascension. Quadrature, or differing 90° in Longitude or Right Ascension. § Ascending Node; ϑ Descending Node. $\boldsymbol{\alpha}$ or R.A., Right Ascension; δ or Dec., Declination. $\mathrm{h}, \mathrm{m}, \mathrm{s}$, Hours, Minutes, Seconds of Time. $\circ^{\prime \prime} \prime$, Degrees, Minutes, Seconds of Arc.

SIGNS OF THE ZODIAC

\uparrow	Ar	0°	Ω		120°		Sagittarius	240°
\succ	Taurus	. 30°	18	Virgo	. 150°	ठ	Capricornus	. $270{ }^{\circ}$
1	Gemini	. 60°	\sim	Libra	180°	\%	Aquarius.	300°
勺ิ	Cancer	90 ${ }^{\circ}$	m	Scor	.210 ${ }^{\circ}$)	Pisces....	330°

THE GREEK ALPHABET

$\mathbf{A}, \boldsymbol{\alpha}$	Alpha
$\mathbf{B}, \boldsymbol{\beta}$	Beta
$\mathbf{\Gamma}, \boldsymbol{\gamma}$	Gamma
$\Delta, \boldsymbol{\delta}$	Delta
$\mathbf{E}, \boldsymbol{\epsilon}$	Epsilon
$\mathbf{Z}, \boldsymbol{\zeta}$	Zeta
$\mathbf{H}, \boldsymbol{\eta} \boldsymbol{\eta}$	Eta
$\boldsymbol{\theta}, \boldsymbol{\theta}, \boldsymbol{\vartheta}$ Theta	

I, ι	Iota
\mathbf{K}, κ	Kappa
Λ, λ	Lambda
\mathbf{M}, μ	Mu
$\mathbf{N}, \boldsymbol{\nu}$	Nu
$\boldsymbol{\Xi}, \boldsymbol{\xi}$	Xi
$\mathbf{O}, \boldsymbol{\sim}$	Omicron
$\Pi, \boldsymbol{\pi}$	Pi

$\mathbf{P}, \boldsymbol{\rho}$	Rho
$\mathbf{\Sigma}, \boldsymbol{\sigma}$	Sigma
$\mathbf{T}, \boldsymbol{\tau}$	Tau
$\boldsymbol{\Upsilon}, \boldsymbol{v}$	Upsilon
$\mathbf{\Phi}, \boldsymbol{\phi}$	Phi
$\mathbf{X}, \boldsymbol{\chi}$	Chi
$\mathbf{\Psi}, \psi$	Psi
$\boldsymbol{\Omega}, \boldsymbol{\omega}$	Omega

THE CONFIGURATIONS OF JUPITER'S SATELLITES

In the Configurations of Jupiter's Satellites (pages 33, 35, etc.), O represents the disk of the planet, d signifies that the satellite is on the disk, ${ }^{*}$ signifies that the satellite is behind the disk or in the shadow. Configurations are for an inverting telescope.

CALCULATIONS FOR ALGOL

The calculations for the minima of Algol are based on the epoch J.D. 2434576.5110 and period 2.86731 days as published in the 1954 International Supplement, Kracow Observatory.

CELESTIAL DISTANCES

Celestial distances given herein are based on the standard value of $8.80^{\prime \prime}$ for the sun's parallax, not the more recent value $8.790^{\prime \prime}$ determined by Sir Harold Spencer Jones.

THE CONSTELLATIONS

Latin and English Names with Abbreviations

Andromeda, (Chained Maiden) ...And	Andr
Antlia, Air Pump......Ant	A
Apus, Bird of Paradise. .Aps	Apus
Aquarius, Water-bearer..Aqr	Aqar
Aquila, Eagle. Aql	Aqil
Ara, Altar............. . Ara	Arae
Aries, Ram. Ari	Arie
Auriga, (Charioteer).... Aur	Auri
Bootes, (Herdsman). . . . Boo	Boot
Caelum, Chisel. Cae	Cael
Camelopardalis, Giraffe..Cam	1
Cancer, Crab	
Canes Venatici, Hunting Dogs.........CVn	
Canis Major, Greater Dog.CMa	CMaj
Canis Minor, Lesser Dog.CMi	CMin
Capricornus, Sea-goat. . . Cap	Capr
Carina, Keel. Car	Cari
Cassiopeia, (Lady in Chair)	Cass
Centaurus, Centaur.....Cen	Cent
Cepheus, (King)Cep	Ceph
Cetus, Whale. Cet	Ceti
Chamaeleon, ChamaeleonCha	Cham
Circinus, Compasses..... Cir	Circ
Columba, Dove	Colm
Coma Berenices, Berenice's Hair. Com	
Corona Australis, Southern Crown..... CrA	CorA
Corona Borea	
Northern Crown CrB	CorB
Corvus, Crow. Cry	Corv
Crater, Cup............ Crt	Crat
Crux, (Southern) Cross. . Cru	Cruc
Cygnus, Swan..........Cyg	Cygn
Delphinus, Dolphin..... Del	Dlph
Dorado, Swordfish. Dor	Dora
Draco, Dragon. Dra	Drac
Equuleus, Little Horse. . . Equ	Equa
Eridanus, River Eridanus. Eri	Erid
Fornax, Furnace........For	Forn
Gemini, Twins. Gem	Gemi
Grus, Crane............ . Gru	Grus
Hercules, (Kneeling Giant) Her	Herc
Horologium, Clock..... . Hor	Horo
Hydra, Water-snake..... Hya	Hyda
Hydrus, Sea-serpent..... Hyi	Hydi
Indus, Indian...........Ind	Indi
Lacerta, Lizard..........Lac	Lacr

Leo, Lion..	Leo	on
Leo Minor, Lesser	LMi	LMin
Lepus, Hare.	Lep	Leps
Libra, Scales	Lib	Libr
Lupus, Wolf	Lup	Lupi
Lynx,	.Lyn	Lync
Lyra, Lyr	Lyr	Lyra
Mensa, Table (Men
Microscopium, Microscope.		Micr
Monoceros, Un	Mon	Mono
Musca, Fly.	Mus	Musc
Norma, Squar	No	Norm
Octans, Octant		O
Ophiuchus,		
Serpent-bea	Oph	Ophi
Orion, (Hunter)	Ori	Orio
Pavo, Peacock	Pa	Pavo
Pegasus, (Winged	Peg	Pegs
Perseus, (Champion)	Per	Pers
Phoenix, Phoeni	Ph	Phoe
Pictor, Painter	Pic	Pict
Pisces, Fishes	Psc	Pisc
Piscis Australis, Southern Fish		
Puppis, Poop	Pup	Pupp
Pyxis, Compas	Pyx	Pyxi
Reticulum, Net	Ret	Reti
Sagitta, Arrow	.Sge	Sgte
Sagittarius, Arc	. Sgr	Sgtr
Scorpius, Scorp	Sco	Scor
Sculptor, Sculptor	. Sc	Scu
Scutum, Shield	.Sct	Scut
Serpens, Serpent	Ser	Serp
Sextans, Sextant	Sex	Sext
Taurus, Bull.	Tau	Taur
Telescopium, Tele	Tel	Tele
Triangulum, Triangle		Tria
Triangulum Australe		
Southern Triangle	TrA	TrAu
Tucana, Toucan		Tucn
Ursa Major, Greater Be	UMa	UMaj
Ursa Minor, Lesser Bear	UMi	UMin
Vela, Sails.	Vel	Velr
Virgo, Virgin	Vir	Virg
Volans, Flying Fish	Vol	Voln
Vulpecula, Fox.	.Vul	Vulp
The 4-letter abbrev tended to be used in maximum saving of necessary.	ions ses ace	ere

MISCELLANEOUS ASTRONOMICAL DATA

Units of Length

1 Angstrom unit $=10^{-8} \mathrm{~cm}$.
1 micron $=10^{-4} \mathrm{~cm}$.
1 meter $\quad=10^{2} \mathrm{~cm} .=3.28084$ feet
1 kilometer $\quad=10^{5} \mathrm{~cm} .=0.62137$ miles
1 mile $\quad=1.60935 \times 10^{5} \mathrm{~cm} .=1.60935 \mathrm{~km}$.
1 astronomical unit $=1.49504 \times 10^{18} \mathrm{~cm} .=92,897,416 \mathrm{miles}$
1 light year $=9.463 \times 10^{17} \mathrm{~cm} .=5.880 \times 10^{12}$ miles $=0.3069$ parsecs
1 parsec $=30.84 \times 10^{17} \mathrm{~cm} .=19.16 \times 10^{19}$ miles $=3.259 \mathrm{l} . \mathrm{y}$
1 megaparsec $=30.84 \times 10^{28} \mathrm{~cm} .=19.16 \times 10^{18}$ miles $=3.259 \times 10^{6} \mathrm{l} . \mathrm{y}$.

Units of Time

Sidereal day $\quad=23 h 56 m$ 04.09s of mean solar time
Mean solar day $=24 \mathrm{~h} 03 \mathrm{~m} 56.56$ s of mean sidereal time
Synodical month $=29 d 12 h 44 m$; sidereal month $=27 d 07 h 43 m$
Tropical year (ordinary) $=365 d \quad 05 h 48 m 46 s$
Sidereal year $\quad=365 d 06 h 09 m 10 s$
Eclipse year $=346 d 14 \mathrm{~h} 53 \mathrm{~m}$

The Earth

Equatorial radius, $a=3963.35$ miles; flattening, $c=(a-b) / a=1 / 297.0$
Polar radius, $\quad b=3950.01$ miles
1° of latitude $=69.057-0.349 \cos 2 \phi$ miles (at latitude ϕ)
1° of longitude $=69.232 \cos \phi-0.0584 \cos 3 \phi$ miles
Mass of earth $=6.6 \times 10^{21}$ tons; velocity of escape from $\bigoplus=6.94$ miles, sec

Earth's Orbital Motion

Solar parallax $=8 . .^{\prime \prime} 80 ;$ constant of aberration $=20 .{ }^{\prime \prime} 47$
Annual general precession $=50 .^{\prime \prime} 26$; obliquity of ecliptic $=23^{\circ} 26^{\prime} 43^{\prime \prime}$ (1960)
Orbital velocity $=18.5$ miles $/ \mathrm{sec}$.; parabolic velocity at $\bigoplus=26.2 \mathrm{miles} . \mathrm{sec}$.

Solar Motion

Solar apex, R.A. $18 h 04 m$; Dec. $+31^{\circ}$
Solar velocity $=12.2 \mathrm{miles} / \mathrm{sec}$.

The Galactic System

North pole of galactic plane R.A. $12 h 49 m$, Dec. $+27 .{ }^{\circ} 4$ (1959)
Centre of galaxy R.A. $17 h 42 m$, Dec. -29° (1950)
Distance to centre $\sim 10,000$ parsecs; diameter $\sim 30,000$ parsecs.
Rotational velocity (at sun) $\sim 262 \mathrm{~km} . / \mathrm{sec}$.
Rotational period (at sun) $\sim 2.2 \times 10^{8}$ years
Mass $\sim 2 \times 10^{11}$ solar masses
Extra-galactic Nebulae
Red shift $\sim+100 \mathrm{~km} . / \mathrm{sec} . /$ megaparsec $\sim 19 \mathrm{miles} / \mathrm{sec} . /$ million $1 . y$.
Radiation Constants
Velocity of light $=299,860 \mathrm{~km} . / \mathrm{sec} .=186,324 \mathrm{miles} / \mathrm{sec}$.
Solar constant $=1.93 \mathrm{gram}$ calories/square $\mathrm{cm} . /$ minute
Light ratio for one magnitude $=2.512$; log ratio $=0.4000$
Radiation from a star of zero apparent magnitude $=3 \times 10^{-6}$ meter candles
Total energy emitted by a star of zero absolute magnitude $=5 \times 10^{25}$ horsepower

Miscellaneous

Constant of gravitation, $G=6.670 \times 10^{-8}$ c.g.s. units
Mass of the electron, $m=9.1083 \times 10^{-28} \mathrm{gm}$.; mass of the proton $=1.6724 \times 10^{-24} \mathrm{gm}$.
Planck's constant, $h=6.6234 \times 10^{-27}$ erg. sec.
Loschmidt's number $=2.6872 \times 10^{19}$ molecules $/ \mathrm{cu} . \mathrm{cm}$. of gas at N.T.P.
Absolute temperature $=T^{\circ} \mathrm{K}=T^{\circ} \mathrm{C}+273^{\circ}=5 / 9\left(T^{\circ} \mathrm{F}+459^{\circ}\right)$
1 radian $=57^{\circ} .2958 \quad \pi=3.141,592,653,6$

$$
\begin{array}{rc}
=34377^{\prime} .75 & \text { No. of square degrees in the sky } \\
=206,265^{\prime \prime} & =41,253
\end{array}
$$

1960 EPHEMERIS OF THE SUN AT 0h U.T.

PRINCIPAL ELEMENTS OF THE SOLAR SYSTEM
ORBITAL ELEMENTS (1954, Dec. 31, 12 ${ }^{\text {h }}$ U.T.)

Planet	Mean Distance from Sun (a)		Period of Revolution		Eccen-tricity (e)	In-clination (i)	Long. of Node (ठ)	Long. of Perihelion (π)	Mean Long. of Planet
			Sidereal (P)	Mean Synodic					
	$\oplus=1$	millions of miles							
				days		-	-	-	${ }^{\circ}$
Mercury	0.387	36.0	88.0 d .	116	. 206	7.0	47.8	76.8	305.8
Venus	0.723	67.2	224.7	584	. 007	3.4	76.3	130.9	127.1
Earth	1.000	92.9	365.3 017		102.2	99.4
Mars	1.524	141.5	687.0	780	. 093	1.8	49.2	335.2	21.3
Jupiter	5.203	483.3	11.86y.	399	. 048	1.3	100.0	13.6	108.0
Saturn	9.539	886.	29.46	378	. 056	2.5	113.3	92.2	219.5
Uranus	19.18	1783.	84.01	370	. 047	0.8	73.8	169.9	119.8
Neptune	30.06	2791.	164.8	367	. 009	1.8	131.3	44.2	205.9
Pluto	39.52	3671.	248.4	367	. 249	17.1	109.6	223.2	137.6

PHYSICAL ELEMENTS

Object	Symbol	Mean Diameter* miles	Mass* $\oplus=1$	Mean Density* water $=1$	Axial Rotation	Mean Surface Gravity* $\oplus=1$	Albedo*	Magnitude at Greates Brillian- cy
Sun	\odot	864,000	332,000	1.41	$24^{\mathrm{d}} .7$ (equatorial)	27.9		-26.8
Moon	(1)	2,160	0.0123	3.33	$27^{\text {d }} \quad 7.7^{\text {h }}$	0.16	0.072	-12.6
Mercury	8	3,010	0.0543	5.46	$88^{\text {d }}$	0.38	0.058	- 1.9
Venus	\bigcirc	7,610	0.8136	5.06	?	0.88	0.76	- 4.4
Earth	\oplus	7,918	1.0000	5.52	$23^{\text {h }} 56^{\text {m }} .1$	1.00	0.39	
Mars	0^{7}	4,140	0.1069	4.12	$24^{\mathrm{h}} 37^{\mathrm{m}} .4$	0.39	0.148	- 2.8
Jupiter	2	86,900	318.35	1.35	$9^{\text {h }} 50^{m} \pm$	2.65	0.51	- 2.5
Saturn	b	71,500	95.3	0.71	$10^{\mathrm{h}} 02^{\mathrm{m}} \pm$	1.17	0.50	- 0.4
Uranus	¢	29,500	14.54	1.56	$10^{\text {h }} .8 \pm$	1.05	0.66	+ 5.7
Neptune	Ψ	26,800	17.2	2.47	$15^{\text {h }} .8 \pm$	1.23	0.62	+ 7.6
Pluto	P	3,600	0.033?	2 ?	$6{ }^{\text {d }} .390$	0.16?	0.16	+14

[^1]SATELLITES OF THE SOLAR SYSTEM

Name	Stellar Mag.	Mean Dist. from Planet		Revolution Period d $\quad \mathrm{h}$	DiameterMiles	Discoverer
		" *	Miles			

Satellite of the Earth
Moon $\quad|-12.6| \quad 530|\quad 238,857| \begin{array}{llll}27 & 07 & 43 \mid & 2160 \mid\end{array}$

Satellites of Mars								
Phobos	12	8	5,800	0	07	39	10?	Hall, 1877
Deimos	13	21	14,600	1	06	18	5 ?	Hall, 1877

Satellites of Jupiter

V	13	48	112,600	0	11	57	100?	d, 1892
Io	5	112	261,800	1	18	28	2300	Galileo, 1610
Europa	6	178	416,600	3	13	14	2000	Galileo, 1610
Ganymede	5	284	664,200	7	03	43	3200	Galileo, 1610
Callisto	6	499	1,169,000	16	16	32	3200	Galileo, 1610
VI	14	3037	7,114,000	250	16		100?	Perrine, 1904
VII	16	3113	7,292,000	260	01		40 ?	Perrine, 1905
X	18	3116	7,300,000	260			15?	Nicholson, 1938
XI	18	5990	14,000,000	692			15?	Nicholson, 1938
VIII	16	6240	14,600,000	739			40?	Melotte, 1908
IX	17	6360	14,900,000	758			20?	Nicholson, 1914
XII	18		-	631			15?	Nicholson, 1951

Satellites of Saturn

Mimas	12	27	115,000	0	22	37	$400 ?$	W. Herschel, 1789
Enceladus	12	34	148,000	1	08	53	$500 ?$	W. Herschel, 1789
Tethys	11	43	183,000	1	21	18	$800 ?$	G. Cassini, 1884
Dione	11	55	234,000	2	17	41	$700 ?$	G. Cassini, 1684
Rhea	10	76	327,000	4	12	25	$1100 ?$	G. Cassini, 1672
Titan	8	177	759,000	15	22	41	$2600 ?$	Huygens, 1655
Hyperion	13	214	920,000	21	06	38	$300 ?$	G. Bond, 1848
Iapetus	11	515	$\mathbf{2 , 2 1 0 , 0 0 0}$	79	07	56	$1000 ?$	G. Cassini, 1671
Phoebe	14	1870	$8,034,000$	550			$200 ?$	W. Pickering, 1898

Satellites of Uranus

Miranda	17	9	81,000	1	09	56		Kuiper, 1948
Ariel	16	14	119,000	2	12	29	$600 ?$	Lassell, 1851
Umbriel	16	19	166,000	4	03	28	$400 ?$	Lassell, 1851
Titania	14	32	272,000	8	16	56	$1000 ?$	Wa. Herschel, 1787
Oberon	14	42	364,000	13	11	07	900 ?	W. Herschel, 1787

Satellites of Neptune

Triton	13	16	220,000	5	21	03	$3000 ?$	Lassell, 1846 Nereid
19	260	$3,460,000$	359			$200 ?$		
Kuiper, 1949								

*As seen from the sun.
Satellites Io, Europa, Ganymede, Callisto are usually denoted I, II, III, IV respectively, in order of distance from the planet.

SOLAR, SIDEREAL AND EPHEMERIS TIME

Any recurring event may be used to measure time. The various times commonly used are defined by the daily passages of the sun or stars caused by the rotation of the earth on its axis. The more uniform revolution of the earth about the sun, causing the return of the seasons, defines ephemeris time.

A sun-dial indicates apparent solar time, but this is far from uniform because of the earth's elliptical orbit and the inclination of the ecliptic. If the real sun is replaced by a fictitious mean sun moving uniformly in the equator, we have mean (solar) time. Apparent time-mean time $=$ equation of time. This is the same as correction to sun-dial on page 7 , with reversed sign.

If instead of the sun we use stars, we have sidereal time. The sidereal time is zero when the vernal equinox or first of Aries is on the meridian. As the earth makes one more revolution with respect to the stars than it does with respect to the sun, sidereal time gains on mean time $3^{\mathrm{m}} 56^{\mathrm{s}}$ per day or 2 hours per month. Right Ascension (R.A.) is measured east from the vernal equinox, so that the R.A. of a body on the meridian is equal to the sidereal time.

Sidereal time is equal to mean time plus 12 hours plus the R.A. of the fictitious mean sun, so that by observation of one kind of time we can calculate the other.

The foregoing refers to local time, in general different in different places on the earth. The local mean time of Greenwich, now known as Universal Time (UT) is used as a common basis for timekeeping. Navigation and surveying tables are generally prepared in terms of UT. When great precision is required, UT 1 and UT 2 are used differing from UT by polar variation and by the combined effects of polar variation and annual fluctuation respectively.

To avoid the inconveniences to travellers of a changing, local time, standard time is used. The earth is divided into 24 zones, each ideally 15 degrees wide, the zero zone being centered on the Greenwich meridian. All clocks within the same zone will read the same time.

In Canada and the United States there are 8 standard time zones as follows: Newfoundland (N), $3^{\mathrm{h}} 30^{\mathrm{m}}$ slower than Greenwich; 60th meridian or Atlantic (A), 4 hours; 75 th meridian or Eastern (E), 5 hours; 90 th meridian or Central (C), 6 hours; 105th meridian or Mountain (M), 7 hours; 120th meridian or Pacific (P), 8 hours; 135th meridian or Yukon (Y), 9 hours; and 150th meridian or Alaska (AL), 10 hours slower than Greenwich.

Universal time, even after the corrections mentioned have been applied, is still somewhat variable, as shown by atomic clocks or the orbital motion of the moon. Ephemeris Time (ET) is used when these irregularities must be avoided. The second, formerly defined as $1 / 86,400$ of the mean solar day, is now defined as $1 / 31,556,925.9747$ of the tropical year Jan. 0 at 12 hours E.T. The difference, $\Delta \mathrm{T}$, between UT and ET is measured as a small error in the observed longitude of the moon, in the sense $\Delta \mathrm{T}=\mathrm{ET}$ - UT. The moon's position is tabulated in ET, but observed in UT. Δ T was zero near the beginning of the century, but in 1960 will be about 35 seconds.

JULIAN DAY CALENDAR, 1960
J.D. 2,430,000 plus the following:

Jan. 1.......... . 6,935
Feb. 1. 6,966
Mar. 1...........6,995
Apr. 1.......... 7,026

May 1......... . . 7,056
June 1.......... . . 7,087
July 1...........7,117
Aug. 1. 7,148

Sept. 1......... 7,179
Oct. 1......... . 7,209
Nov. 1. 7,240
Dec. 1......... 7,270

The Julian Day commences at noon. Thus J.D. 2,436,935.0 = Jan. 1.5 U.T

TIMES OF RISING AND SETTING OF THE SUN AND MOON

The times of sunrise and sunset for places in latitudes ranging from 32° to 54° are given on pages 13 to 18, and of twilight on page 19. The times of moonrise and moonset are given on pages 20 to 25 . The times are given in Local Mean Time, and in the table below are given corrections to change from Local Mean Time to Standard Time for the cities and towns named.

The tabulated values are computed for the sea horizon for the rising and setting of the upper limb of the sun and moon, and are corrected for refraction. Because variations from the sea horizon usually exist on land, the tabulated times can rarely be observed.

The sun's declination, apparent diameter and the equation of time do not have precisely the same values on corresponding days from year to year. As the times of sunrise and sunset depend upon these factors, these tables for the solar phenomena can give only average values which may be in error by one or two minutes.

The Standard Times for Any Station

To derive the Standard Time of rising and setting phenomena for any place, first, from the list below find the approximate latitude of the place and the correction in minutes which follows the name. Then find in the monthly table the Local Mean Time of the phenomenon for the proper latitude on the desired day. Finally apply the correction to get the Standard Time.

CANADIAN CITIES AND TOWNS						AMERICAN CITIES		
	Lat.	Corr.		Lat.	Corr.		Lat.	Corr.
Athabaska	55°	+33M	Penticton	49°	-02P	Atlanta	34°	$+37 \mathrm{E}$
Baker Lake	64	+24C	Peterborough	44	$+13 \mathrm{E}$	Baltimore	39	+06E
Brandon	50	$+40 \mathrm{C}$	Port Harrison	59	$+13 \mathrm{E}$	Birmingham	33	$-13 \mathrm{C}$
Brantford	43	$+21 \mathrm{E}$	Port Arthur	48	$+57 \mathrm{E}$	Boston	42	$-16 \mathrm{E}$
Calgary	51	+36M	Prince Albert	53	$+03 \mathrm{M}$	Buffalo	43	$+15 \mathrm{E}$
Charlottetown	46	$+12 \mathrm{~A}$	Prince Rupert	54	+41P	Chicago	42	-10C
Churchill	60	+17C	Quebec	47	$-15 \mathrm{E}$	Cincinnati	39	$+38 \mathrm{E}$
Cornwall	45	$-1 \mathrm{E}$	Regina	50	-02M	Cleveland	42	$+26 \mathrm{E}$
Edmonton	54	$+31 \mathrm{M}$	St. Catharines	43	$+17 \mathrm{E}$	Dallas	33	+27C
Fort William	48	$+57 \mathrm{E}$	St. Hyacinthe	46	-08E	Denver	40	00M
Fredericton	46	$+27 \mathrm{~A}$	St. John, N.B.	45	+24A	Detroit	42	$+32 \mathrm{E}$
Gander	49	$+8 \mathrm{~N}$	St. John's, Nfld.	48	+01N	Fairbanks	65	-10AL
Glace Bay	46	00A	Sarnia	43	$+29 \mathrm{E}$	Flagstaff	35	$+27 \mathrm{M}$
Goose Bay	53	+2A	Saskatoon	52	+07M	Indianapolis	40	-15C
Granby	45	$-09 \mathrm{E}$	Sault Ste. Marie	47	$+37 \mathrm{E}$	Juneau	58	+58P
Guelph	44	+21E	Shawinigan Falls	47	$-09 \mathrm{E}$	Kansas City	39	+18C
Halifax	45	+14A	Sherbrooke	45	$-12 \mathrm{E}$	Los Angeles	34	-07P
Hamilton	43	$+20 \mathrm{E}$	Stratford	43	$+24 \mathrm{E}$	Louisville	38	$-17 \mathrm{C}$
Hull	45	+03E	Sudbury	47	$+24 \mathrm{E}$	Memphis	35	00C
Kapuskasing	49	$+30 \mathrm{E}$	Sydney	46	+01A	Miami	26	$+21 \mathrm{E}$
Kingston	44	+06E	The Pas	54	+45C	Milwaukee	43	-09C
Kitchener	43	$+22 \mathrm{E}$	Timmins	48	+26E	Minneapolis	45	+13C
London	43	$+25 \mathrm{E}$	Toronto	44	$+18 \mathrm{E}$	New Orleans	30	00C
Medicine Hat	50	$+23 \mathrm{M}$	Three Rivers	46	$-10 \mathrm{E}$	New York	41	$-04 \mathrm{E}$
Moncton	46	+19A	Trail	49	-09P	Omaha	41	+24C
Montreal	46	$-06 \mathrm{E}$	Truro	45	$+13 \mathrm{~A}$	Philadelphia	40	$+01 \mathrm{E}$
Moosonee	51	$+23 \mathrm{E}$	Vancouver	49	$+12 \mathrm{P}$	Phoenix	33	+28M
Moose Jaw	50	$+02 \mathrm{M}$	Victoria	48	+13P	Pittsburg	40	$+20 \mathrm{E}$
Niagara Falls	43	+16E	Whitehorse	61	00Y	St. Louis	39	+01C
North Bay	46	+18E	Windsor	42	$+32 \mathrm{E}$	San Francisco	38	+10P
Ottawa	45	$+03 \mathrm{E}$	Winnipeg	50	$+29 \mathrm{C}$	Seattle	40	+09P
Owen Sound	45	$+24 \mathrm{E}$	Yellowknife	62	$+38 \mathrm{M}$	Washington	39	+08E

Example-Find the time of sunrise at Owen Sound, on February 12.
In the above list Owen Sound is under " 45° ", and the correction is +24 \min. On page 13 the time of sunrise on February 12 for latitude 45° is 7.07 ; add 24 min . and we get 7.31 (Eastern Standard Time).

DATE	Latitu Sunrise	de 32° Sunset	Latitu Sunrise	Sunset	Latitu Sunrise	Sunset	Latitu Sunrise	Sunset	Latitu Sunrise	Sunset	Latitu Sunrise	Sunset	Latitud Sunrise	de 50° Sunset	Latitu Sunrise	de 54° Sunset
	h m	h m	h m	h m	h m	h m	h m	h m	h	h m	h m	h m	h m	h m	h m	h m
	701	507	711	457	722	445	735	432	742	425	750	417	759	408	819	348
	701	508	711	458	723	447	735	434	742	426	750	419	759	410	819	350
	701	510	712	500	723	449	735	436	742	429	750	421	758	413	818	353
	702	511	711	502	722	450	735	438	742	431	749	423	758	415	818	355
	702	513	711	504	722	452	734	440	741	433	749	426	757	418	816	358
	702	515	711	506	722	454	734	442	740	436	748	428	756	420	815	401
	701	516	711	508	721	456	733	445	739	439	747	431	755	423	814	404
	701	518	710	510	720	458	732	448	738	441	745	434	754	426	812	408
	701	520	710	512	720	5.00	730	450	737	444	744	437	752	429	810	411
	700	522	709	514	719	502	729	453	735	446	742	439	750	432	807	415
	659	524	708	515	718	505	728	455	734	448	740	442	748	435	805	418
	659	526	707	517	715	508	726	457	732	451	739	445	746	438	802	422
	658	527	706	519	714	510	725	500	731	454	737	448	744	441	800	426
	657	529	705	521	712	513	724	502	729	457	735	451	742	445	757	430
	656	531	704	523	711	515	722	505	727	500	733	454	739	448	754	434
	655	533	702	525	710	517	719	508	724	503	730	457	736	451	750	438
	653	535	700	527	708	520	717	5111	722	506	727	500	733	455	747	442
	652	537	659	529	706	522	715	513	720	509	725	504	730	458	744	446
	650	538	657	532	704	525	713	516	718	5111	722	507	727	502	740	450
	649	540	655	534	702	527	710	519	715	514	720	510	724	505	736	454
	647	542	653	536	700	$\begin{array}{ll}5 & 29\end{array}$	708	522	713	517	717	513	721	508	732	458
	645	544	651	538	659	531	705	$\begin{array}{ll}5 & 24\end{array}$	709	520	714	516	717	512	728	502
	644	545	649	540	655	534	703	$\begin{array}{ll}5 & 27\end{array}$	706	523	710	519	714	515	724	506
	642	547	647	542	653	536	700	530	702	526	706	523	710	519	720	510
	640	549	645	544	650	539	657	533	659	529	703	526	707	522	716	514
	638	550	643	546	648	$\begin{array}{ll}5 & 41\end{array}$	654	535	656	$\begin{array}{ll}5 & 32\end{array}$	659	$\begin{array}{ll}5 & 29 \\ 5\end{array}$	703	$\begin{array}{ll}5 & 26\end{array}$	$\begin{array}{ll}7 & 11 \\ 7 & 07\end{array}$	$\begin{array}{ll}5 & 18\end{array}$
	636	552	640	548	645	543	650	538	653	535	656	532	659	529	707	522
	633	554	638	550	642	545	647	540	649	538	652	535	655	532	702	526
	631	555	635	552	639	547	644	543	646	541	649	538	651	536	658	530
	629	557	633	554	636	549	640	546	643	544	645	541	647	539	653	534

	Latitude 32°	Latitude 36°	Latitude 40°	Latitude 44°	Latitude 46°
Latitude 48°	Latitude 50°	Latitude 54°			
DATE	Sunrise Sunset	Sunrise Sunset	Sunrise Sunset	Sunrise Sunset	Sunrise Sunset．Sunrise Sunset Sunrise Sunset Sunrise Sunset

 a
घ
上 10000
NOR2O20
－ 0 o o

NㅇㅇㅇN 10 O O O

N N WOLO － $0<0$

مـ
$8 \circlearrowleft 9.9$
00000
日 みN M N్N

－ 0 oo o
－ 0 O 0

a
a
』 0 O O o
용잉․
－ 0 © 0
No moㅇo
0000

日
م2

O

上 00000
On N 10 N
－ 0 o o

6

日MたN NW
－

－ 0 o 0

日
サONO＝
工 10201000
－ 0 oco
は MNNNO
जボーが
－ 0 o oco
0 © 0

पつIEW

NOMNO
مـ

－ 0 0 0

مـ

ヘサーN
－ 0 o o
NONMT NK
م2 مـ مـ

 － 0 O

81081029
م
12∞ NWN © 0 o
－ م1 م1 م1 م1 눅 N Nึ N O O O O
 م1 می

HeOMH $\rightarrow 0$ Oe No ${ }^{\circ}$ HO ما مـ وـ ※ － 0 o 0

ㅇํㅇำ～ مـ

NTMNTM

 o oce ocoがM Mecm
م

NNWCNN

 م1

ㅇNホN
－ 0 o o

م1
$-\infty \ln \mathrm{N}$

ต요
표N M N ocomil NNNN

 oococ NNNNN

똥ㅇㅇ

 かった。 ONNNN
水みみみみ

H00 『® －ocNN 20 M O N N N 1 20 H ザ

OM10 －0 OcN

OONOM
101020 स

Ficco － 0 oco

녹OJ
م2
∞ がれがれ

－ 0 －
o ooce

HNM NN H

مـ مد

 مـ

l！IdV

	DATE	Latitu Sunrise	Sunset	Latitu Sunrise	Sunset	Sunrise	de 54° Sunset										
\pm		h m	h m		h		h		h		h		h		h m		h m
	1	514	640	509	646	502	653	453	702		706		711	438	717	425	730
	3	513	642	507	648	459	656	450	704	446	709	440	714	434	720	421	734
	5	511	643	505	649	456	658	447	707	443	711	437	717	431	723	417	737
	7	509	646	503	651	454	700	444	709	440	714	434	720	427	726	413	741
	9	507	647	501	652	451	702	442	711	437	716	431	722	424	729	4.09	744
	11	506	648	459	654	449	704	439	714	434	719	428	725	421	732	406	748
	13	504	649	457	656	447	706	437	716	431	721	425	728	418	735	402	751
	15	503	650	455	657	445	708	435	718	428	724	422	730	415	738	358	755
	17	502	651	453	659	444	710	433	720	426	726	420	733	413	740	355	758
	19	500	653	451	701	442	711	431	722	424	728	417	735	410	743	352	801
$\stackrel{\underset{\sim}{2}}{\underset{\sim}{3}}$	21	459	654	450	703	440	713	429	724	422	731	415	738	407	746	349	805
	23	458	656	449	704	439	715	427	726	420	733	413	740	405	748	346	808
	25	457	657	448	705	437	716	425	728	418	735	411	743	403	751	344	811
	27	456	658	447	707	436	718	424	730	416	737	409	745	401	753	341	814
	29	456	659	446	708	435	720	422	732	415	739	407	747	359	756	339	816
	31	455	700	445	710	434	721	421	734	414	741	406	749	357	758	336	819
	2	454	702	445	711	433	723	420	735	413	743	405	751	356	800	334	821
	4	454	703	444	712	433	724	419	737	412	744	404	753	355	802	333	824
	6	454	704	444	713	432	725	418	738	411	746	403	754	353	804	331	826
	8	453	705	443	714	431	726	417	740	410	747	402	756	352	805	330	828
	10	453	705	443	715	431	727	417	741	409	749	401	757	351	$\begin{array}{ll}8 & 07\end{array}$	329	830
	12	453	706	443	716	431	728	417	742	409	750	401	758	351	808	328	831
	14	453	707	443	717	431	729	417	743	408	751	400	759	350	809	327	833
	$\{16$	454	708	443	718	431	730	417	744	408	752	400	800	350	810	327	834
	18	454	709	443	719	431	731	417	745	408	753	400	801	350	811	327	835
	20	454	709	443	719	431		417	745	408	754	400	802	350	812	327	836
	22	454	709	444	720	431	732	417	746	408	755	401	803	350	812	327	836
	24	455	710	444	720	432	732	418	746	409	755	401	803	351	813	328	836
	26	456	710	444	721	432	733	418	747	410	755	402	803	352	813	328	836
	28	456	710	445	721	433	733	419	747	411	755	403	803	353	813	329	836
	30	457	710	446	721	434	733	420	747	412	755	404	803	354	813	331	836

』 $\infty \infty \infty \infty$

－$-\infty \infty \infty$ घ OOSON
サザサザ
 NNNNN

Nサーかった
サザザか

\＆N N N N
여NNN H
MNNNN
ONTMN

みザザな

MNO NOM
د NNNNN
घ NNたパパ
かなNかな
みみみみか
ต이NN N
घ ભল๗ભค
aNNNNN
NMNNN

サザザが

NNNN

H H H H
OONM10
（\％

सM－
NNNNCO
응거N．

$\infty \infty \infty \infty$

80 오N
∞ MNN
OMNMN N M

12 NNNNN

NMNNN ※O～N

8
18

OOBN N
$\stackrel{\infty}{\sim}$
NNNOCO

ما ما مع مـا

オ8心以゚
NNoco
－ザ
مـ

N
＋
－
－ooco

ค 2 ค

$\infty \rightarrow \infty$
（MW

10WNOCO
O－ 0010102
OCMOM
由
NNNNN NNEOCO － 0 o

NOWOX

TNONWN N N N N
م
م1

๑80

OOODNWN HiNNOO
NMINGN M
NWNW
م2 210101
م1
10202010

0
0

－ 0 o
ज6，$\rightarrow \infty$
2 2010102
$\begin{array}{lll}\infty & \text { H H N } \\ \text { H M }\end{array}$

－ 0 o
－ $0 \ll$

مו

	DATE	Latitu Sunrise	de 32°	Latitude $36{ }^{\circ}$		Latitu Sunrise	de 40° Sunset	Latitude 44°		Latituc Sunrise	de 46° Sunset	Latitud Sunrise	de 48° Sunset	Latitur Sunrise	de 50 Sunset	Latitu Sunrise	de $54{ }^{\circ}$ Sunset
				h	h m		h		h m		h m	h m	h m		h m		h m
	2	535	623	531	627	527	631	523	636	520	638	518	641	515	644	508	650
	4	536	622	533	624	529	628	525	632	523	634	520	637	518	640	512	646
	6	538	619	534	622	531	625	527	628	525	631	523	633	521	635	515	641
	8	539	617	536	619	533	622	530	625	528	627	526	629	524	631	519	636
	10	541	613	538	616	535	618	532	621	531	623	529	625	527	627	522	631
	12	542	610	539	613	537	615	534	617	533	619	531	621	530	622	526	626
	14	543	609	541	610	539	612	536	614	535	615	534	616	533	618	530	621
	$\{16$	544	605	542	607	541	608	539	610	538	611	537	612	536	613	533	616
	2 18	546	602	544	604	543	605	541	607	541	607	540	608	539	609	537	611
	+ 20	546	601	546	601	545	602	544	603	544	603	543	604	542	605	540	606
	22	548	557	547	558	547	558	546	559	546	559	545	600	545	600	544	601
	24	549	556	549	555	549	555	548	555	548	555	548	556	548	556	547	556
	26	551	552	551	552	551	552	551	552	551	552	551	551	551	5 51	551	$5 \quad 51$
	28	552	549	552	549	552	549	553	548	553	548	554	547	554	547	555	546
	30	554	546	553	546	554	546	555	544	556	544	$5 \quad 57$	543	$5 \quad 57$	543	558	541
$\begin{aligned} & \text { b } \\ & \text { e } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	2	554	544	555	544	556	543	$\begin{array}{ll}5 & 57\end{array}$	$\begin{array}{ll}5 & 41\end{array}$	558	540	559	539	600	538	602	536
	4	556	541	556	541	558	540	559	537	601	536	602	535	603	534	606	531
	6	557	539	558	538	600	536	602	534	603	532	604	531	606	529	609	526
	8	558	536	559	535	602	533	604	530	606	528	607	527	609	525	613	521
	10	600	534	601	532	604	530	607	$5 \quad 27$	608	525	610	523	612	521	617	517
	12	600	533	603	530	606	$\begin{array}{ll}5 & 27\end{array}$	609	524	611	521	613	519	615	517	620	512
	14	603	5 5	604	527	608	524	611	520	614	518	616	515	619	513	624	507
	$\{16$	604	5	606	525	610	521	614	517	617	514	619	511	622	509	628	502
	18	605	525	608	522	612	518	617	513	619	511	622	508	625	505	632	458
	20	607	522	610	519	615	515	620	510	622	507	625	504	628	501	636	453
	22	609	520	612	$\begin{array}{ll}5 & 17\end{array}$	617	512	622	507	625	504	628	500	631	457	639	449
	24	610	518	614	514	619	509	625	504	628	500	631	457	635	453	643	444
	26	612	516	616	512	621	506	627	501	631	457	635	453	638	449	647	440
	28	613	514	618	509	624	503	630	457	634	453	638	449	642	445	651	436
	30	615	512	620	507	626	500	633	455	637	450	641	446	645	442	655	432

$\begin{array}{lllllllllll} & \text { Latitude } 32^{\circ} & \text { Latitude } 36^{\circ} & \text { Latitude } \mathbf{4 0}^{\circ} & \text { Latitude } 44^{\circ} & \text { Latitude } 46^{\circ} & \text { Latitude } 48^{\circ} & \text { Latitude }^{50} & \text { Latitude }^{\circ} 54^{\circ} \\ \text { DATE } & \text { Sunrise Sunset Sunrise Sunset Sunrise Sunset Sunrise Sunset }\end{array}$

上みみなみ
GOONH
－ONNNN
万®OM O
みザツバ
18 12 4

๗๗๓๗๗
©N＠Nึ H
ష

MNNN

エサザザみ

NOLOOO
onNNN
ベががあ
NNNNN
－
みみみがみ
NHNOM
$N N N N N$

MฺONLT
$\rightarrow N \mathrm{~N}$

$\underset{\sim}{\infty} \rightarrow \infty$

日
上
－ONNN
$\mathrm{N}=\mathrm{NLL}$
$N N N N N$

NMMN MN M M

をみみみみか

N
＝ 0 o e o
＜ 0 o
OWOOD
NNNNN

』 $\boldsymbol{H} \boldsymbol{H} \boldsymbol{H} \boldsymbol{H}$
N

上
－ 0 e
घ
以TWHO
』 101010 H
みサ～स स
घ NACNO
M以 MNM M M M
－ 0 －

－ 0 o 0 ∞
घOONOX

10101 ค

サザササザ
がo Mor M
－ $0<0<0$
－ 0 o 0
$9 N O W$
NGWN W W
－ 0 o
－NRNO
जNMN

M H H M \rightarrow

HNOMOCO
$1 \rightarrow N \infty \infty \infty$

Q－
みみかツ
$\begin{array}{ll}0 \infty & \infty \\ \cdots \sim 2\end{array}$
$\mathrm{N} N \mathrm{~N}$

$N G W 12 N$
NNNNN

Nex 2 202
ザがが

OWNNOM
$N N N N N$

がれがが
M上N $N N N N N$
 $\rightarrow N N N N N N N$

みれない
○心が心N

NNNNN

10
 －

みみみみみ

○ 0 O 0

FNLNNO

 ツ ๓ ๓ ๓
$\pm \infty \infty 刃 \infty$
$\infty \infty \infty \infty$
－
©

∞～
$\rightarrow N N N N$

$\stackrel{c}{-1}$
 $\rightarrow N N N N$

5
 $\rightarrow N \mathrm{~N} \mathrm{~N}$
\cdots
75
$\stackrel{R}{2}$

44

ペツ M M	$\begin{array}{ll} 19 & 0 \\ \text { M M M M M } \end{array}$	
サザザ	サザが	Hササササ
$4 \infty 10 \mathrm{~N}$	OCHEN	$\infty \infty \rightarrow \underset{N}{\infty}$
$N \mathrm{~N}$	NNNNN	$N \mathrm{~N}$
No e o e みれみればれ	$\omega_{4}^{\infty} \mathrm{N}_{4}^{\infty} \underset{H}{\infty}$	$0 \rightarrow \mathrm{NM}$ م1 مـ
H サ H＋＋	ササササ＋	
ONHCN 1010101010	O-N NOOO	
\bigcirc O 0	$\omega N \mathrm{~N}$	NNNNN

	$=\infty 10 \pm 0$	\cdots－IRNO NNNNN

The above table gives the local mean time of the beginning of morning twilight, and of the ending of evening twilight, for various latitudes. To obtain the corresponding standard time, the method used is the same as for correcting the sunrise and sunset tables, as described on page 12. The entry - in the above table indicates that at such dates and latitudes, twilight lasts all night. This table, taken from the American Ephemeris, is computed for astronomical twilight, i.e. for the time at which the sun is 108° from the zenith (or 18° below the horizon).

TIME OF MOONRISE AND MOONSET, 1960. (Local Mean Time)

DATE	Latitude 35° Moon Rise Set		Latitude 40° Moon		Latitude 45° Moon		Latitude 50° Moon		Latitude 54° Moon	
			Rise	Set	Rise	Set	Rise	Set	Rise	et
Jan.	h m	h m	h m	h m	h m	h m	h m	h m		
1	0915	2034	0922	2028	0931	2020	0941	2011	0950	20.
2	0957	2138	1001	2133	1007	2129	1014	2124	1020	2118
3	1034	${ }_{22}^{22} 38$	1037	${ }_{2}^{22} 37$	1039	2235	1043	2234	1046	2232
4	1109	2337	1110	2338	1110	2339	1109	2341	1110	2342
5 ?	1143		1141		1138		1135		1133	
6	1217	0034	1213	0037	1207	0042	1202	0046	1156	0051
8	1251	$\begin{array}{ll}01 & 29 \\ 02\end{array}$	1245	0135	1238	0141	$12 \quad 129$	0149	1220	0157
8	1328	0223	1320	0230	1310	0240	1259	0250	1247	0301
9	1407	0316	1357	0325	1346	0336	1332	0349	1318	0402
10	1448	0408	1437	0419	1425	0431	1410	0445	1355	0500
11	1533	0458	1522	0510	1509	0522	1453	0538	1437	0554
12	1622	0547	1611	0559	1558	0611	1542	0627	1526	0643
13 (2)	1713	0633	1702	0644	1651	0656	1636	0711	1621	0726
14	1807	0716	1758	0725	1747	0737	1735	0750	1721	0804
15	1903	0756	1855	0804	1847	0813	1836	0825	1826	0836
16	2000	0834	1955	0840	1948	0847	1941	0856	1933	0904
17	2058	0910	2055	0914	2051	0918	2047	0925	2043	0930
18	2157	0945	2156	0947	2156	0949	2154	0951	2154	0954
19	2257	1020	2259	1020	2301	1019	2304	1018	2306	1017
20	2359	1057		1053		1050		1046		1041
21 C		1135	0004	1129	0008	1123	0015	1116	0021	1108
22	0103	1217	0109	1209	0117	1201	0127	1150	0136	1139
23	0208	1304	0216	1254	$02 \quad 27$	1243	0239	1230	0252	1216
24	0313	1356	0324	1345	0336	1332	0350	1317	0406	1301
25	0417	1454	0428	1443	0441	1429	0457	1413	0514	1357
26 27	$\begin{array}{ll}05 & 17 \\ 06 & 13\end{array}$	$\begin{array}{lll}15 & 58 \\ 17 & 04\end{array}$	0529	1546	0541	1533	0557	1518	0614	1502
28 -	0703	1811	0623	1654	0635	1643	0649	1629	0704	1615
29	0748	1917	0754	19	078	1754	078	1744	0744	1733
30	0829	2021	0832	2018	$08 \quad 37$	$20 \quad 15$	0842	2011	0846	2008
31	0905	2122	0907	2122	0908	2122	0911	2121	0912	2122
Feb.										
1	0941	2221	0941	2224	0939	2226	0938	2230	0936	2232
2	1016	2319	1013	2323	1009	2329	1004	2335	1000	2341
3	1050		1045		1039		1031		1024	
4 ?	1127	0014	1119	0021	1111	0028	1100	0038	1050	0047
5	1205	0108	1156	0116	1146	0127	1132	0138	1120	
6	1245	0201	1235	0211	1224	0222	1208	0236	1154	0250
7	1329	0252	1318	0302	1305	0315	1249	0331	1234	0346
8	1416	0341	1404	0352	1352	0405	1336	0421	1320	0437
9	1506	0428	1455	0439	1443	0452		0507	1413	$05 \quad 23$
10	1559	0512	1550	0523	1538	0534	1525	0548	1511	0602
11	1655	0553	1648	0603	1637	0612			1615	
12 (3)	1752	0633	1746	0640	1739	0648	1730	0657	1722	0707
13	1851	0710	1847	0715	1842	0721	1836	0728	1832	0734
14	1951	0746	1949	0749	1947	0752	1945	0756	1943	0759
15	2051	$08 \quad 22$	2052	0823	2053	0822	2055	0823	2056	0823
16	2153	0859	2157	0856	2200	0854		0851	2210	0848
17	2255	0936	2302	0932	2308	0926	2317	0920	2325	0914
18	2359	1017		1010		1002		0952		0943
19 C		1101	0008	1053	0017	1042		1030	0039	1017
20	0103	1150	0112	1140	0125	1128	0138	1112	0152	1058
21	0205	1244	0216	1233	0229	1220	0245	1204	0300	1148
22	0305	1343	0317	1332	0330	1318	0345	1303	0401	1247
23	0401	1446	0412	1436	0424	1423		1409	0454	1354
24	0452	1551	0501	1542	0512	1533	0525	1520	05 38	1508
25	0539	1657	0546	1650	0554	1643	0604	1633	0614	1624
26 (1)	0621	1801	C6 26	1757	0631	1752	0638	1747	0645	
27	0700	1904	0702	1902	0705	1901	0709	1859	0712	1856
28	0736	2005	0737	2006	0736	2007	0737	2008	0737	2010
29	n8 12	21 C	0810	2108	$08 \quad 07$	2111	0804	2117	0801	2121

DATE		Latitude 35° Moon Rise Set		Latitude 40° Moon Rise Set		Latitude 45° Moon Rise Set		Latitude 50° Moon Rise Set		Latitude 54° Moon			
Mar.				h m	h m	h m	h m	h m	h m	h m	h m	h m	
1		0847	2202	0843	2207	0838	2214	0832	2222	0825	2230		
2		0924	2257	0917	2305	0910	2314	${ }^{09} 00$	2325	0852			
3		1001	2351	0953		0943		0931		0920 09			
4		1041		1032	0000	1020	$\begin{array}{ll}00 & 11 \\ 01 & 06\end{array}$	1006 1045	$\begin{array}{lll}00 & 24 \\ 01\end{array}$	0952 10	0037		
5	\bigcirc	1123	0043	1113	0054	1100	0106	1045	0121	1030			
6		1209	0133	1158	0144	1145	0157	1129	0213	1113	0228		
7		1258	0221	1247	0232	1234	0244	1218	0300	1203	0316		
8		1349	0306	1339	0317	1327	0329	1313	0343	1259	0358		
9		1444	0349	1435	0358	1425	0409	1412	0421	1400	0435		
10		1540	0429	1533	0436	1525	0445	1515	0456	1505	0507		
11		1639	0507	1634	0512	1628	0520	1621	0527	1615	0535		
12		1739	${ }^{05} 44$	1736	${ }^{05} 48$	1733 18 40	${ }^{05} 52$	1730 18	0557 06 25	1726 18	06 01		
13	(3)	1840	0621	1841	0622	1840	0623	1840	0625	1841	0626		
14		1943	0658	1946	0656	1949	0655	1952	0653 07	19 19 21	0651		
15		2047	0735	2052	0732	2058	0727	2105	0722	2112	0718		
16		2152	0816	2159	0810	2208	0803	2218	0754	2229	0746		
17		2256	0900	2306	0851	2317	0842	2330	0830	2343	0819		
18		2359	0948		0937		0926		0912		0858		
19			1040	0010	1029	0022	1016	0038	1000	0053	0945		
20	C	0100	1137	0111	1126	0124	1113	0140	1056	0156	1040		
21		0156	1237	0207	1226	0219	1215	0235	1159	0251	1144		
22		0247	1340	0257	1331	0308	1320	$03 \quad 23$	1307	0336	1254		
23		0334	1443	0342	1436	0351	1427	0402	1417	0414	1408		
24		0416	1547	0423	1542	0429	1536	0437	$\begin{array}{ll}15 & 29\end{array}$	0446	1522		
25		0456	1649	0459	1646	0504	1644	0508	1640	0513	1636		
26		0532	1750	0534	1750	0535	1750	0537	1750	0538	1750		
27	-	0608	1849	0607	1852	0605	1855	0604	1859	0602	1902		
28		0643	1948	0640	1953	0636	1958	0631	2005	0626			
29		0720	2045	0714	2052	0707	2100	0659	2109	0652	2119		
30		0757	2140	0749	2149	0740	2159	0730	2211	0719	2223		
31		0836	2234	0826	2244	0816	2255	0803	2309	0750	2324		
Apr.			2325	0907	2335	0855	2348	0841		0826			
2		1002	2325	0951		0938		0922	$\ddot{0} 0 \dot{0} \dot{4}$	0907	0020		
3		1049	0014	1038	0025	1025	0038	1009	0054	0954	0109		
4)	1139	0100	1128	0110	1116	0123	1101	0139	1046	0153		
5		1231	0143	1222	0152	1211	0204	1158	0218	1145	0232		
6		1327	0223	1318	0232	1310	0241	1258	0254	1248	0305		
7		1423	0302	1418	0308	1411	0317	1403	0326	1355	0335		
8		1523	0339	1519	0344	1515	0349	1509	0356	1505	0401		
9		1623	0416	1623	0418	1621	0421	1619	0424	1618	0427		
10		1727	0453	1728	0452	1730	0453	1731	0452	1733	0452		
11	(1)	1832	0530	1835	0528	1840	0525	1846	0521	1851	0518		
12		1938	0611	1944	0605	1952	0600	2001	0552	2010	0545		
13		2044	0654	2053	0646	2104	0638	2116	0627	2128	0617		
14		2150	0742	2201	0732	2213	0721	2228	0708	2242	0655		
15		2254	0834	2305	0823	2318	0810	2334	0755	2350	0740		
16		2352	0931		0920		0907		0850		0834		
17			1031	0003	1020	0016	1007	0032	0952	0048	0936		
18	c	00045	1133	0056	1124	0108	1112	0122	1058	0137	1045		
19		0133	1236 12	0142	$\begin{array}{ll}12 & 29 \\ 13 & \end{array}$	0152	$\begin{array}{ll}12 & 19 \\ 13 & 27\end{array}$						
20		0216	1339	0223	1333	0231	1327	0240	1319	0249	1310		
21		0256	1441	0300	1437	0306	1434	0311	1428	0317	14.24		
22		0332	1541	0335	1540	0337	1539	0340	1537	0343	1536		
23		0408	1640	0408	1642	${ }_{0} 0407$	1643	0407	1645	0406 0430	1648 17		
24		0442	1738	0440	1742	0437	1746	0433	1752	0430	1757		
25	-	0517	1835	0513	1841	0507	1849	0500	1857	0454	1905		
26		0554	1931	0547	1939	0539	1948	0529	2000	0520	2011		
27		0632	2025	0623	2035	0613	2046	0601	2100	0550	2113		
28		0713	2118	0703	2129	0651	2141	0637	2156	0623	2211		
29		0756	2208	0745	2219	0732	2232	0717	2248	0701	${ }^{23} 04$		
30		0842	2254	0831	2306	0818	2319	0801	2335	0746	2350		

DATE	Latitude 35° Moon		Latitude 40° Moon		Latitude 45° Moon		Latitude 50° Moon		Latitude 54° Moon	
			Rise	Set	Rise	Set	Rise	Set	Rise	Set
Sept.	h m	h m	h m	h m	h m					h m
1	1533	0113	1544	0101	1556	0048	1612	0033	1627	0016
2	1625	0217	1635	0206	1645	0154	1659	0139	1712	0124
3	1713	0323	1721	0314	1729	0304	1739	0252	1750	0239
4	1757	0430	1802	0424	1807	0416	1815	0407	1821	03 58
5 (3)	1837	0537	1839	0533	1843	$05 \quad 29$	1846	0523	1849	0517
6	1915	0642	1915	0642	1915	0640	1915	0638		0636
7	1952	0746	1949	0748	1946	0749	1943	0751	1939	0753
8	2029	0848	2024	0852	2018	0857	2011	0901		0907
9	2106	0947	2100	0954	2051	1001	2042	1010	2032	1017
10	2146	1045	2137	1053	2127	1102	2114	1114	2102	1125
11	2227	1140	2217	1149	2205	1201	2150	1215	2137	1228
12 C	2311	1233	2259	1244	2246	1256	2231	1311	2215	1326
13	2357	1323	2345	1334	2332	1347	2316	1403	2300	1419
14		1409		1420		1433		1449	2351	1505
15	$0 \dot{0} 4 \dot{6}$	1454	0035	1504	$00 \stackrel{22}{2}$	1515	$\ddot{0} 0 \dot{06}$	1530		1544
16	0137	1534	0127	1544	0116	1553	0101	1607	0048	1619
17	0230	1613	0222	1620	0212	1629	0200	1639	0148	1650
18	0326	1649	0319	1655	0312	1701	0302	1709	0253	1716
19	0422	1724	0418	1728	0412	1732	0406	1736	0359	1741
20 (1)	0520	1759	0518	1801	0515	1801	0512	1803	0509	1804
21	0620	1834	0619	1833	0620	1831	0620	1830	0620	1828
22	0720	1911	0722	1907	0726	1903	0730	1857	0733	1853
23	0821	1950	0827	1944	0832	1936	0840	1928	0847	1920
24	0924	2032	0932	2024	0940	2014	0951	2002	1001	1951
25	1027	2118	1036	2108	1048	2057	1101	2043	1114	2029
26	1130	2209	1140	2158	1153	2145	1208	2130		2114
27)	1230	2306	1241	2255	1255	2241	1311	2225	1327	2209
28	1326		1338	2355	$13 \quad 51$	2343	1406	$23 \quad 27$	1422	2312
29	1419	0006	1429		1441		1455		1509	
30	1507	0110	1516	0100	1525	0049	1537	0036	1548	0023
Oct.										
1	1551	0215	1557	0207	1604	0159	1613		1621	0138
2	1631	0321	1635	0315	1639	0310	1644	0302	1649	0255
3	1710	0425	1711	0423	1712	0420	1714	0416	1715	0413
4 (2)	1747	0529	1745	0530	1744	0529	1742	0529	1740	0530
5	1824	0631	1819	0634	1816	0637	1810	0641	1805	0644
6	1901	0732	1855	0737	1848	0743	1839	0750	1831	0758
7	1939	0831	1932	0838	1922	0847	1911	0857		
8	2020	0928	2011	0937	1959	0948	1946	1001	1932	1013
9	2103	1023	2052	1033	2040	1045	2025	1100		1115
10	2149	1114	2138	1125	2125	1138	2109	1154	2053	1210
11	2237	1203	2226	1214	2213		2157	1243		
12 C	2328	1248	2317	1259	2305	1312	2250	$13 \quad 27$	2235	1342
13		1330		1340		1351	2347	1405	2334	1419
14	0020	1410	0011	1417	0000	1427		1438		1450
15	0114	1446	0107	1453	0058	1500	$\stackrel{00}{0} \dot{4}$	1509	$\ddot{00} \ddot{37}$	1517
16	0210	1522	0204	1526	0158	1531	0150	1537		
17	0307	1556	0304	1559	0300	1601	0255	1604	0251	1607
18	0406	1631	0405	1631	0404	1631	0402	1631	0401	1630
19	0507	1708	0508	1705	0510	1702	0512	1658	0515	1654
20 (1)	0609	1746	0613	1741	0618	1734	0624	1728	0630	1720
21	0713	1827	0719	1820	0727	1811	0736	1801	0746	1751
22	0818	1913	0826	1904	0836	1853	0849	1840	0901	1827
23	0922	2004	0932	1953	0945	1941	1000	1926	1014	1910
24	1025	2100	1036	2049	1050	2035	1106	2019	1122	2003
25	1123	2200	1134	2149	1148	2136	1204	2120	1221	2104
26	1217	2303	1228	2253	1240	2241	1255	2227	1310	2212
27)	1306		1315	$23 \quad 59$	1326	2349	1338	2337	1350	2326
28	1351	0007	1357		1405		1415		1424	
29	1431	0111	1435	0105	1440	0058	1447	0050	1453	0042
30	1508	0214	1510	0211	1512	0207	1516	0202	1519	0158
31	1544	0317	1544	0316	1543	0315	1544	0314	1543	0313

DATE		Latitude 35° Moon		Latitude 40° Moon		Latitude 45° Moon		Latitude 50° Moon Rise Set		Latitude 54° Moon Rise Set	
Nov.		h m	h m	h m		h m	h m	h m		h m	h m
,		1620	0419	1618	0420	1614	0422	1611	0425	1607	0427
2		1657	0519	1651	0523	1646	0528	1638	0534	1632	0540
3	(2)	1735	0618	1728	0625	1719	0632	1709	0642	1659	0650
4		1815	0717	1805	0725	1755	0735	1742	0746	1729	0759
5		1856	0812	1846	0822	1834	0834	1819	0848	1805	0903
6		1942	0906	1930	$\begin{array}{ll}09 & 17 \\ 10\end{array}$	1917	0930	1901	${ }^{09} 45$	1845	1001
7		2029	0956	2017	1008	2004	1021	1948	1037	1932	1054
8		2119	1043	2108	1054	2055	1107	2039	1124	2024	1139
9		2210	1126	2200	1136	2148	1149	2134	1203	2121	1218
10		2303	1206	2255	1215	2244	1226	2233	1239	2221	1251
11	C	2357	1243	2351	1251	2343	1300	2333	1310	2325	1319
12			1319		1325		1331		1338		1345
13		0053	1353	0048	1357	0043	1400	0037	1404	0031	1409
14		0150	1427	0148	1429	0145	1429	0142	1430	0140	1432
15		0249	1502	0249	1501	0250	1459	0251	1457	0250	1455
16		0350	1539	0353	1536	0356	1531	0401	1525	0405	1520
17		0454	1620	0459	1614	0506	1606	0513	1556	0521	1548
18	-	0559	1704	0607	1656	0617	1645	0628	1633	0638	1621
19		0706	1753	0716	1743	0728	1731	0742	1716	0755	1702
20		0811	1849	0823	1838	0837	1824	0853	1808	0908	1751
21		0914	1949	0926	1938	0940	1925	0956	1908	1013	1851
22		1012	2054	1024	2043	1036	2030	1052	2015	1108	1959
23		1104	2159	1114	2150	1125	2140	1139	2126	1153	2114
24		1151	2304	1158	2257	1208	2249	1218	2239	1228	2230
	1	1232		1238		1244	2358	1251	2352	1259	2347
$\begin{aligned} & 25 \\ & 26 \end{aligned}$		1311	0008	1314	0004	1317		1322		1325	
27		1347	0111	1347	0108	1348	0107	1348	0104	1349	0101
28		1422	0212	1420	0212	1417	0213	1415	0214	1413	0215
29		1457	0311	1453	0315	1447	0318	1432	0323	1436	0327
30		1534	0410	1526	0416	1519	0422	1510	0430	1502	0437
Dec.											
1		1611	0508	1603	0515	1553	0525	1541	0535	1530	0546
2	(3)	1652	0603	1643	0614	1631	0624	1617	0638	1603	0651
3		1736	0658	1725	0709	1712	0721	1656	0737	1641	0752
4		1822	0750	1811	0801	1757	0814	1741	0831	1724	0847
5		1911	0839	1900	0850	1847	0903	1830	0920	1814	0936
6		2002	0924	1951	0935	1939	0947	1924	1002	1909	1018
7		2054	1005	2045	1015	2034	1025	2021	1040	2008	1053
8		2147	1042	2140	1051	2131	1101	2121	1112	2110	1124
9		2241	1118	2236	1125	2230	1132	2222	1142	2215	1150
10		2337	1153	2334	1157	2330	1202	2326	1208	2321	1214
11	c		1226		1227		1230		1233		
12		0034	1259	0033	1259	0032	1259	0031	1258	0030	1258
13		0133	1334	0134	1331	0136	1328	0138	1324	0140	1321
14		0233	1411	0238	1406	0242	1400	0248	1353	0254	1346
15		0337	1452	0343	1445	0351	1436	0400	1426	0409	1415
16		0443	1539	0451	1529	0502	1518	0514	1504	0527	1452
17		0550	1632	0600	1621	0612	1608	0628	1551	0643	1536
18	,	0655	1731	0707	1719	0720	1705	0737	1648	0754	1632
19		0758	1835	0810	1823	0823	1811	0839	1754	0856	1738
20		0855	1943	0906	1933	0918	1921	0933	1907	0948	1852
21		0946	2051	0955	2043	1005	2034	1017	2023	1029	2011
22		1032	2158	1038	2152	1045	2146	1054	2138	1103	2130
23		1112	2302	1115	2300	1121	2256	1126	2252	1131	2249
24)	1149		1151		1152		1155		1156	
25		1225	0005	1224	0005	1222	0005	1221	0005	1220	0004
26		1300	0105	1257	0108	1252	0111	1248	0114	1243	0117
27		1335	0204	1330	0210	$13 \quad 23$	0215	1315	${ }_{02} 22$	1307	0228
28		1412	0302	1405	0309	1355	0317	1345	0327	1334	0337
29		1452	0358	1442	0407	1431	0417	1417	0430	1405	0442
30		1533	0453	1523	0503	1510	0515	1455	0530	1440	0544
31		1618	0545	1607	0556	1554	0610	1538	0626	1521	0642

THE PLANETS FOR 1960

THE SUN

The diagram represents the sun-spot activity of the current 19th cycle, as far as the final numbers are available. The present cycle began at the minimum in April 1954. For comparison, cycle 18 which began February 1944 (solid curve), and the mean of cycles 8 to 18 (dashed curve), are placed with their minima on April 1954.

The present cycle reached its maximum in January 1958 and since then has been declining slowly.

The observations for sun-spot numbers may be performed by devoted amateur astronomers with small-sized telescopes (suitably protected). Here is a field for amateurs who wish to make a valuable contribution to solar astronomy.

Mercury is exceptional in many ways. It is the planet nearest the sun and travels fastest in its orbit, its speed varying from 23 mi . per sec. at aphelion to 35 mi. per sec. at perihelion. The amount of heat and light from the sun received by it per square mile is, on the average, 6.7 times the amount received by the earth. Its period of rotation on its axis is believed to be the same as its period of revolution about the sun, which is 88 days.

Mercury's orbit is well within that of the earth, and the planet, as seen from the earth, appears to move quickly from one side of the sun to the other several times in the year. Its quick motion earned for it the name it bears. Its greatest elongation (i.e., its maximum angular distance from the sun) varies between 18° and 28°, and on such occasions it is visible to the naked eye for about two weeks.

When the elongation of Mercury is east of the sun it is an evening star, setting soon after the sun. When the elongation is west, it is a morning star and rises shortly before the sun. Its brightness when it is treated as a star is considerable but it is always viewed in the twilight sky and one must look sharply to see it.

The most suitable times to observe Mercury are at an eastern elongation in the spring and at a western elongation in the autumn. The dates of greatest elongation this year, together with the planet's separation from the sun and its stellar magnitude, are given in the following table:

Maximum Elongations of Mercury During 1960

Elong. East - Evening Star			Elong. West - Morning Star			
Date	Distance	Mag.			Distance	Mag.
Feb. 23	18°	-0.3	Apr.	7	28°	+0.6
June 19	25°	$+0.7$	Aug.	5	19°	+0.5
Oct. 15	25°	$+0.1$	Nov.		20°	-0.3

The most favourable elongations to observe are: in the evening, Feb. 23 and also June 19, and in the morning, Aug. 5 and Nov. 24. At these times Mercury is over 80 million miles from the earth, and in a telescope looks like a half-moon about $7^{\prime \prime}$ in diameter.

VENUS

Venus is the next planet in order from the sun. In size and mass it is almost a twin of the earth. Venus being within the earth's orbit, its apparent motion is similar to Mercury's but much slower and more stately. The orbit of Venus is almost circular with radius of 67 million miles, and its orbital speed is 22 miles per sec.

On Jan. 1, 1960 Venus is in the morning sky and crosses the meridian about 3 hours before the sun. Its declination is -18° and it appears in the south-eastern sky at sunrise. Its stellar magnitude is -3.6 . It continues to be a morning star until June 22, when it comes into superior conjunction with the sun. Then it is to be seen east of the sun and it is an evening star for the rest of the year. On Dec. 31 it is in declination -15° and transits the meridian about 3 hours after the sun. Its stellar magnitude is -3.8 .

With the exception of the sun and moon, Venus is the brightest object in the sky. Its brilliance is largely due to the dense clouds which cover the surface of the planet. They reflect well the sun's light; but they also prevent the astronomer from detecting any solid object on the surface of the body. If such could be observed it would enable him to determine the planet's rotation period. It is probably around 30 days

MARS

The orbit of Mars is outside that of the earth and consequently its planetary phenomena are quite different from those of the two inferior planets discussed above. Its mean distance from the sun is 141 million miles and the eccentricity of its orbit is 0.093 , and a simple computation shows that its distance from the sun ranges between 128 and 154 million miles. Its distance from the earth varies
from 35 to 235 million miles and its brightness changes accordingly. When Mars is nearest it is conspicuous in its fiery red, but when farthest away it is no brighter than Polaris. Unlike Venus, its atmosphere is very thin, and features on the solid surface are distinctly visible. Utilizing them its rotation period of 24 h .37 m . has been accurately determined.

The sidereal, or true mechanical, period of revolution of Mars is 687 days; and the synodic period (for example, the interval from one opposition to the next one) is 780 days. This is the average value; it may vary from 764 to 810 days. At the opposition on Sept. 10, 1956, the planet was closer to the earth than it will be for some years. The next opposition is on Dec. 30, 1960, although Mars is nearest the earth on Dec. 25. Then its distance from the earth is $56,370,000$ miles, and the planet's stellar magnitude is -1.3 .

On Jan. 1, 1960 Mars is in Ophiuchus but is so low in the south-east at dawn that it is difficult to see. It remains in the morning sky all year. For its position throughout the year see the map.

JUPITER

Jupiter is the giant of the family of the sun. Its mean diameter is 87,000 miles and its mass is $2 \frac{1}{2}$ times that of all the rest of the planets combined! Its mean distance is 483 million miles and the revolution period is 11.9 years. This planet is known to possess 12 satellites, the last discovered in 1951 (see p. 9). Not so long ago it was generally believed that the planet was still cooling down from its original high temperature, but from actual measurements of the radiation from it to the earth it has been deduced that the surface is at about $-200^{\circ} \mathrm{F}$. The spectroscope shows that its atmosphere is largely ammonia and methane.

Jupiter is a fine object for the telescope. Many details of the surface as well as the flattening of the planet, due to its short rotation period, are visible, and the phenomena of its satellites provide a continual interest.

On Jan. 1, 1960 Jupiter is in Ophiuchus, not far from Mars, but is too close to the sun in the morning sky for easy observation; its stellar magnitude is -1.3 . It comes into opposition with the sun on June 19, when it moves into the evening sky and is visible all night. Its magnitude has brightened to -2.2. It retrogrades from Apr. 20 to Aug. 20 (see map). On Dec. 31 it is in Sagittarius but is too close to the sun to be seen in the evening sky.

SATURN

Saturn was the outermost planet known until modern times. In size it is a good second to Jupiter. In addition to its family of nine satellites, this planet has a unique system of rings, and it is one of the finest of celestial objects in a good telescope. The plane of the rings makes an angle of 27° with the plane of the planet's orbit, and twice during the planet's revolution period of $29 \frac{1}{2}$ years the rings appear to open out widest; then they slowly close in until, midway between the maxima, the rings are presented edgewise to the sun or the earth, at which times they are invisible. The rings were edgewise in 1937 and 1950, and at maximum in 1944 and in 1958.

Saturn was in conjunction with the sun on Dec. 31, 1959. It emerges from the sun in the morning sky and reaches opposition on July 7 when its stellar magni-

tude is +0.3 . It retrogrades, or moves westward among the stars, from Apr. 27 to Sept. 15 (see map). By the end of the year it is getting close to the sun in the evening sky; its stellar magnitude is +0.8 . It remains in Sagittarius during the year.

URANUS

Uranus was discovered in 1781 by Sir William Herschel by means of a $6 \frac{1}{4}-\mathrm{in}$. mirror-telescope made by himself. The object did not look just like a star and he observed it again four days later. It had moved amongst the stars, and he assumed it to be a comet. He could not believe that it was a new planet. However, computation later showed that it was a planet nearly twice as far from the sun as Saturn. Its period of revolution is 84 years and it rotates on its axis in about 11 hours. Its five satellites are visible only in a large telescope.

Uranus is in Leo during most of the year (see map). At the beginning of the year it rises over three hours after sunset and is retrograding (direct motion is resumed on Apr. 24). On Feb. 8 it is in opposition to the sun and is above the horizon all night; its apparent diameter is $3.9^{\prime \prime}$ and its stellar magnitude is +5.7 . By the time of conjunction on Aug. 14 its magnitude has faded to +5.9 . For the rest of the year it is in the morning sky.

NEPTUNE

Neptune was discovered in 1846 after its existence in the sky had been predicted from independent calculations by Leverrier in France and Adams in England. It caused a sensation at the time. Its distance from the sun is 2791 million miles and its period of revolution is 165 years. A satellite was discovered in 1846 soon after the planet. A second satellite was discovered by G. P. Kuiper at the McDonald Observatory on May 1, 1949. Its magnitude is about 19.5, its period about a year, and diameter about 200 miles. It is named Nereid.

Neptune is in Virgo during most of 1960 (see map). It is in opposition to the sun on April. 27, when it is above the horizon all night. Its stellar magnitude is then +7.70 , and during the year it fades slightly to +7.84 . Thus it is too faint to be seen with the naked eye. In the telescope it shows a greenish tint and an apparent diameter of from $2.5^{\prime \prime}$ to $2.3^{\prime \prime}$. It is in conjunction with the sun on Nov. 1 .

PLUTO

Pluto, the most distant known planet, was discovered at the Lowell Observatory in 1930 as a result of an extended search started two decades earlier by Percival Lowell. The faint star-like image was first detected by Clyde Tombaugh by comparing photographs taken on different dates. Further observations confirmed that the object was a distant planet. Its mean distance from the sun is 3671 million miles and its revolution period is 248 years. It appears as a 15 th mag. star in the constellation Leo. It is in opposition to the sun on Feb. 24, at which time its astrometric position is R.A. $10^{\mathrm{h}} 46 \mathrm{~m}$, Dec. $+21^{\circ} 32^{\prime}$.

Modern Astronomy as a living science

Theodore G. Mehlin's ASTRONOMY

Provides the reader with a clear, logical understanding of current knowledge of the astronomical universe. Chapters deal with: instruments and light, the life story of a typical star, the sun, binary stars and intrinsic variables, the stellar systems, and the solar system. 1959. 392 pages. Illus. \$7.95.

UNIVERSITY OF TORONTO PRESS, Toronto, Ontario RENOUF PUBLISHING CO., Montreal, Quebec

THE SKY MONTH BY MONTH

By J. F. Heard

THE SKY FOR JANUARY, 1960

Positions of the sun and planets are given at 0h U.T.
The times of transit at the 75th meridian are given in local mean time, 0 h at midnight; to change to Standard Time, see p. 12. Estimates of altitude are for an observer in latitude $45^{\circ} \mathrm{N}$.

The Sun-During January the sun's R.A. increases from 18h 42 m to 20 h 54 m and its Decl. changes from $23^{\circ} 06^{\prime} \mathrm{S}$ to $17^{\circ} 26^{\prime} \mathrm{S}$. The equation of time changes from -3 m 02 s to -13 m 31 s . The earth is in perihelion or closest to the sun on the 4th.

For changes in the length of the day, see p. 13.
The Moon-For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page. On Jan. 9th-10th, Aldebaran will be occulted by the moon. See p. 61. Times of moonrise and moonset are given on p. 20.

Mercury on the 15 th is in R.A. 19 h 13 m , Decl. $23^{\circ} 58^{\prime}$ S., and transits at 11 h 41 m . It is too close to the sun for observation, being in superior conjunction on the 26 th.

Venus on the 15 th is in R.A. 16 h 57 m , Decl. $20^{\circ} 47^{\prime}$ S., mag. -3.5 , and transits at 9 h 23 m . It is close to Antares and so is a morning star, rising in the south-east two to three hours before the sun. Venus is only about one degree north of Jupiter on the morning of the 21st.

Mars on the 15 th is in R.A. 18 h 03 m , Decl. $23^{\circ} 58^{\prime}$ S., and transits at 10 h 28 m . It is in Sagittarius and rises about an hour before the sun, but is difficult to observe.

Jupiter on the 15 th is in R.A. 17 h 24 m , Decl. $22^{\circ} 43^{\prime}$ S., mag. -1.4 , and transits at 9 h 48 m . It rises about two hours before sunrise and may be seen low in the south-east. See Venus.

For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 57.

Saturn on the 15 th is in R.A. 18 h 48 m , Decl. $22^{\circ} 27^{\prime}$ S., and transits at 11 h 12 m . It is a morning star but too close to the sun for observation.

Uranus on the 15 th is in R.A. 9 h 31 m , Decl. $15^{\circ} 30^{\prime}$ N., and transits at 1 h 56 m . It rises in the east about two hours after sunset.

Neptune on the 15 th is in R.A. 14 h 29 m , Decl. $12^{\circ} 49^{\prime}$ S. and transits at 6 h 53 m . It rises about two hours after midnight.

Pluto-For information in regard to this planet, see p. 31.

ASTRONOMICAL PHENOMENA MONTH BY MONTH

By Ruth J. Northcott

JANUARY E.S.T.				Sun's Colong.	$\begin{gathered} \text { Min. } \\ \text { of. } \\ \text { Algol } \end{gathered}$	Config. of Jupiter's $6 \mathrm{~h} \mathrm{30m}$
d	h	m		-	h m	
Fri. 1				295.08		32014
Sat. 2				307.26	1417	13024
Sun. 3						
Mon. 4			Quadrantid meteors.	319.44		O1234
	14		\oplus at Perihelion. Dist. from $\odot, 91,342,000$ mi.	331.61		12 O 34
Tue. 5	13	53	iii First Quarter	343.78	1106	20134
Wed. 6				355.94		13 O 24
Thu. 7				8.10		30124
Fri. 8				20.24	755	3204*
Sat. 9			\% at Aphelion.	32.39		4310*
Sun. 10	8		© at Apogee. Dist. from $\oplus, 252,300 \mathrm{mi}$.	44.53		40132
	23					
Mon. 11				56.66	445	412 O 3
Tue. 12				68.79		42 O 3
Wed. 13	18	51	(3) Full Moon.	80.92		d4102
Thu. 14				93.05	134	43012
Fri. 15				105.18		43210
Sat. 16	2			117.31	2223	d3420
Sun. 17				129.44		O4132
Mon. 18				141.58		d1O43
Tue. 19				153.72	1912	20134
Wed. 20				165.86		10324
Thu. 21	6		O아 4 우 $1.1^{\circ} \mathrm{N}$	178.01		30124
	10	01	© Last Quarter.			
Fri. 22	0		$\sigma \Psi \mathbb{4}$	190.17	1602	32104
Sat. 23				202.34		32 O 14
Sun. 24				214.51		O324*
Mon. 25	3		O24 $245^{\circ} \mathrm{S}$.	226.69	1251	10423
	10		\bigcirc O ©			
Tue. 26	4		$\sigma \sigma^{\circ}$ dr $\sigma^{\text {c }} 6^{\circ} \mathrm{S}$.	238.88		24013
	5		© at Perigee. Dist. from $\oplus, 224,800 \mathrm{mi}$.			
	10		Ob® b $4^{\circ} \mathrm{S}$............			
	10		б ४¢ \odot Superior....			
Wed. 27				251.07		41023
Thu. 28	1	16	-1/ New Moon.	263.26	940	43 O 12
Fri. 29	19		$\square \Psi \odot-\quad$ West	275.45		43210
Sat. 30			\% Greatest Hel. Lat. S.	287.65		43201
Sun. 31	6			299.83	630	402**

Explanation of symbols and abbreviations on p. 4, of time on p. 10, of colongitude on p. 56

Positions of the sun and planets are given at 0h U.T.

The times of transit at the 75th meridian are given in local mean time, 0 h at midnight; to change to Standard Time, see p. 12. Estimates of altitude are for an observer in latitude $45^{\circ} \mathrm{N}$.

The Sun-During February the sun's R.A. increases from 20h 54m to 22h 48 m and its Decl. changes from $17^{\circ} 26^{\prime} \mathrm{S}$. to $7^{\circ} 40^{\prime} \mathrm{S}$. The equation of time changes from -13 m 31 s to a minimum of -14 m 21 s on the 12 th and then to -12 m 31 s at the end of the month.

For changes in the length of the day, see p. 13.
The Moon-For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page. Times of moonrise and moonset are given on p. 20.

Mercury on the 15 th is in R.A. 22 h 46 m , Decl. $8^{\circ} 29^{\prime} \mathrm{S}$, and transits at 13 h 12 m . It is at greatest eastern elongation on the 23 rd, and for a few evenings about that time may be seen low in the west just after sunset. This is a favourable elongation.

Venus on the 15 th is in R.A. 19 h 39 m , Decl. $21^{\circ} 10^{\prime}$ S., mag. -3.4 , and transits at 10 h 04 m . It is a morning star visible briefly low in the south-east before sunrise. On the morning of the 7th Venus passes within about 12' north of Saturn, and on the morning of the 17 th Venus is very close to Mars.

Mars on the 15 th is in R.A. 19 h 43 m , Decl. $22^{\circ}{ }^{\circ} 1^{\prime}$ S., and transits at 10 h 07 m . It rises more than an hour before sunrise, but is difficult to observe. See Venus.

Jupiter on the 15 th is in R.A. 17 h 50 m , Decl. $22^{\circ} 59^{\prime}$ S., mag. -1.5 , and transits at 8 h 12 m . It is in Sagittarius, rising about three hours before sunrise. For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p .57.

Saturn on the 15 th is in R.A. 19 h 03 m , Decl. $22^{\circ} 09^{\prime}$ S., mag. +0.8 , and transits at 9 h 25 m . In Sagittarius, east of Jupiter, it rises about two hours before sunrise. See Venus.

Uranus on the 15 th is in R.A. 9 h 26 m , Decl. $15^{\circ} 55^{\prime} \mathrm{N}$. and transits at 23 h 45 m . It rises at about sunset. Opposition is on the 8th.

Neptune on the 15 th is in R.A. 14 h 29 m , Decl. $12^{\circ} 51^{\prime} \mathrm{S}$. and transits at 4 h 52 m . It rises at about midnight.

Pluto-For information in regard to this planet, see p. 31.

FEBRUARY E.S.T.				$\begin{aligned} & \text { Sun's } \\ & \text { Selen. } \\ & \text { Colong. } \end{aligned}$	Min Config. of of Sat. Algol 5 h 30 m	
	h	m		-	h m	
Mon. 1				312.02		41023
Tue. 2				324.20		24013
Wed. 3				336.38	319	1043*
Thu. 4	9	27	iii First Quarter	348.55		30124
Fri. 5				0.71		312 O 4
Sat. 6				12.87	008	32014
Sun. 7	1		(f) at Apogee. Dist. from $\oplus, 251,700 \mathrm{mi}$. ○아 ㅇ $0.2^{\circ} \mathrm{N}$	25.03		13 O 24
Mon. 8	14		$\bigcirc^{\circ} \uparrow \odot$ Dist. from $\oplus, 1,618,000,000 \mathrm{mi}$.	37.18	2057	dO234
Tue. 9				49.32		2 O 34
Wed. 10	9		$\Psi \quad$ Stationary in R.A	61.46		12 O 43
Thu. 11				73.60	1747	30412
Fri. 12	7 12	24		85.74		34120
Sat. 13				97.87		432 O 1
Sun. 14				110.01	1436	43102
Mon. 15				122.14		40123
Tue. 16	22		σ° ¢ 0^{7} o 아 $1.1^{\circ} \mathrm{N}$	134.29		4203*
Wed. 17				146.43	1125	42103
Thu. 18			\% at δ	158.58		d4O12
	5		б世 (1) $\Psi 2^{\circ} \mathrm{S}$.			
Fri. 19	18	48	(8) Last Quarter	170.74		d3140
Sat. 20				182.91	815	32 O 14
Sun. 21			\% at ϑ.	195.08		31024
	19		○2『 $25^{\circ} \mathrm{S}$.			
Mon. 22			¢ at Perihelion	207.26		O1324
	22		(f) at Perigee. Dist. from $\oplus, 228,400 \mathrm{mi}$.			
	23		obd b b $4^{\circ} \mathrm{S}$......			
Tue. 23	19		\% Greatest elongation E., 18°	219.45	504	21034
Wed. 24	2		$\bigcirc \sigma^{7}$ dr $\sigma^{7} 5^{\circ} \mathrm{S}$.	231.64		d2O34
	7		$\delta^{\circ} \mathrm{P} \odot$ Dist. from $\oplus, 3,050,000,000 \mathrm{mi}$.			
	8		Oㅇ ¢			
Thu. 25				243.84		O3124
Fri. 26	13	24	(1. New Moon	256.04	153	31024
Sat. 27	19		\bigcirc ¢ ©	268.24		32 O 14
Sun. 28				280.44	2243	31402
Mon. 29	21		\% Stationary in R.A.	292.65		40312

[^2]Positions of the sun and planets are given at 0h U.T.
The times of transit at the 75 th meridian are given in local mean time, 0 h at midnight; to change to Standard Time, see p. 12. Estimates of altitude are for an observer in latitude $45^{\circ} \mathrm{N}$.

The Sun-During March the sun's R.A. increases from 22 h 48 m to 0 h 41 m and its Decl. changes from $7^{\circ} 40^{\prime} \mathrm{S}$. to $4^{\circ} 28^{\prime} \mathrm{N}$. The equation of time changes from -12 m 31 s to -4 m 03 s . On the 20 th at 9 h 43 m E.S.T. the sun crosses the equator on its way north, enters the sign of Aries, and spring commences. This is the vernal equinox. There is a partial eclipse of the sun on the 27 th. For changes in the length of the day, see p. 14.

The Moon-For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page. Aldebaran will be occulted by the moon on Mar. 4th. See p. 61. There is an eclipse of the moon during the night of the 12 th -13 th. Times of moonrise and moonset are given on p .21.

Mercury on the 15 th is in R.A. 23 h 05 m , Decl. $2^{\circ} 37^{\prime}$ S., and transits at 11 h 30 m , It is too close to the sun for observation, being in inferior conjunction on the 10th.

Venus on the 15 th is in R.A. 22 h 05 m , Decl. $12^{\circ} 51^{\prime}$ S. mag. -3.3 , and transits at 10 h 35 m . It is a morning star, but its altitude in the south-east at sunrise is only about 10 degrees.

Mars on the 15 th is in R.A. 21 h 15 m , Decl. $17^{\circ} 08^{\prime}$ S., and transits at 9 h 44 m . It rises two hours or less before sunrise and is difficult to observe in the twilight sky.

Jupiter on the 15 th is in R.A. 18 h 07 m , Decl. $23^{\circ} 00^{\prime}$ S., mag. -1.7 , and transits at 6 h 35 m . In Sagittarius, it rises about four hours before sunrise and is a prominent object in the south-east. For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 57.

Saturn on the 15 th is in R.A. 19 h 13 m , Decl. $21^{\circ} 53^{\prime}$ S., mag. +0.8 , and transits at 7 h 41 m . In Sagittarius, east of Jupiter, it rises about three hours before the sun.

Uranus on the 15 th is in R.A. 9 h 21 m , Decl. $16^{\circ} 15^{\prime} \mathrm{N}$. and transits at 21 h 46 m . It is well up in the east at sunset.

Neptune on the 15 th is in R.A. 14 h 28 m , Decl. $12^{\circ} 44^{\prime}$ S. and transits at 2 h 56 m . It rises about two hours before midnight.

Pluto-For information in regard to this planet, see p. 31.

Explanation of symbols and abbrevations on p. 4, of time on p. 10, of colongitude on p. 56

THE SKY FOR APRIL, 1960

Positions of the sun and planets are given at 0h U.T.
The times of transit at the 75th meridian are given in local mean time, 0 h at midnight; to change to Standard Time, see p. 12. Estimates of altitude are for an observer in latitude $45^{\circ} \mathrm{N}$.

The Sun-During April the sun's R.A. increases from 0 h 41 m to 2 h 33 m and its Decl. changes from $4^{\circ} 28^{\prime} \mathrm{N}$. to $15^{\circ} 01^{\prime} \mathrm{N}$. The equation of time changes from -4 m 03 s to $+2^{\circ} 53^{\prime}$, being zero on the 15 th. For changes in the length of the day, see p. 14.

The Moon-For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page. Times of moonrise and moonset are given on p. 21.

Mercury on the 15 th is in R.A. 23 h 59 m , Decl. $2^{\circ} 55^{\prime}$ S., and transits at 10 h 27 m . It is at greatest western elongation on the 7 th and so for a few mornings at that time it may be seen low in the south-east before sunrise. However, this is not a favourable elongation.

Venus on the 15 th is in R.A. 0 h 28 m , Decl. $1^{\circ} 19^{\prime}$ N., mag. -3.3 , and transits at 10 h 55 m . It is a morning star, but so close to the sun as to be difficult to observe before sunrise.

Mars on the 15 th is in R.A. 22 h 47 m , Decl. $9^{\circ} 07^{\prime}$ S., mag. +1.3 , and transits at 9 h 14 m . In Aquarius, it rises about two hours before sunrise and stands about 15 degrees above the south-eastern horizon at sunrise.

Jupiter on the 15 th is in R.A. 18 h 16 m , Decl. $22^{\circ} 59^{\prime}$ S., mag. -1.9 , and transits at 4 h 41 m . In Sagittarius, it rises about at midnight and is past the meridian at sunrise. It is stationary on the 20th and begins to retrograde, or move westward among the stars. For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 57 .

Saturn on the 15 th is in R.A. 19 h 19 m , Decl. $21^{\circ} 44^{\prime}$ S., mag. +0.7 , and transits at 5 h 45 m . In Sagittarius, east of Jupiter, it rises after midnight. On the 27 th it is stationary and begins to retrograde.

Uranus on the 15 th is in R.A. 9h 19 m , Decl. $16^{\circ} 26^{\prime}$ N., and transits at 19 h 42 m . It is east of the meridian at sunset.

Neptune on the 15 th is in R.A. 14 h 25 m , Decl. $12^{\circ} 29^{\prime}$ S. and transits at 0 h 52 m . It rises about one hour after sunset.

Pluto-For information in regard to this planet, see p. 31.

$\begin{aligned} & \text { APRIL } \\ & \text { E.S.T. } \end{aligned}$				Sun's Colong.	$\begin{gathered} \text { Min. } \\ \text { of } \\ \text { Agol } \end{gathered}$	Config. Jupiter 3h 30m
d	h	m		-	h m	
Fri. 1				322.50		O3412
Sat. 2	17		© at Apogee. Dist. from $\oplus, 251,300 \mathrm{mi}$.	334.71		34210
Sun. 3				346.91	832	d4320
Mon. 4	2	05	iii First Quarter	359.11		43 O 12
Tue. 5				11.30		41032
Wed. 6			¢ at Aphelion	23.48	523	42 O 13
	$\begin{array}{r} 21 \\ 8 \\ 19 \end{array}$					
Thu. 7				35.67		4103*
Fri. 8				47.84		40312
Sat. 9				60.01	212	3412 O
Sun. 10				72.18		32014
Mon. 11	15	28	(3) Full Moon.	84.34	2301	3024*
Tue. 12	18		$\sigma \Psi \mathbb{C}$	96.51		10324
Wed. 13				108.67		2 O 134
Thu. 14	14		\mathbb{C} at Perigee. Dist. from $\oplus, 227,100 \mathrm{mi}$.	120.84	1950	12034
Fri. 15				133.01		O3124
Sat. 16	14		O20 $45^{\circ} \mathrm{S}$	145.18		d3104
Sun. 17	16		ob © b $4^{\circ} \mathrm{S}$.	157.36	1639	32014
Mon. 18			O Greatest Helio. Lat. S.	169.55		3 O 42 *
	7	57	(1/ Last Quarter			
Tue. 19				181.75		4102*
Wed. 20	0		24 Stationary in R.A.	193.96	1328	42013
Thu. 21			Lyrid meteors	206.17		42103
	20		$\sigma \sigma^{7}$ (8) $\sigma^{7} 2^{\circ} \mathrm{S}$.			
Fri. 22				218.39		40132
Sat. 23	20		бర্¢ (6) ¢ $1^{\circ} \mathrm{S}$.	230.61	1017	43102
Sun. 24	8		б¢ © ¢ ¢ $0.7^{\circ} \mathrm{N}$.	242.84		43201
	8		¢ Stationary in R.A.			
Mon. 25	16	45	(14.3 New Moon	255.07		43102
Tue. 26				267.30	706	d43O2
Wed. 27			O Greatest Helio. Lat. S.	279.54		2 O 143
	10		b Stationary in R.A.			
	21		$\bigcirc^{\circ} \Psi \odot$ Dist. from $\oplus, 2,724,000,000 \mathrm{mi}$.			
Thu. 28				291.77		21043
Fri. 29				304.00	356	O1234
Sat. 30	11		© at Apogee. Dist. from $\oplus, 251,800 \mathrm{mi}$.	316.23		13024

Explanation of symbols and abbreviations on p. 4, of time on p. 10, of colongitude on p. 56

Positions of the sun and planets are given at 0 h U.T.
The times of transit at the 75 th meridian are given in local mean time, 0 h at midnight; to change to Standard Time, see p. 12. Estimates of altitude are for an observer in latitude $45^{\circ} \mathrm{N}$.

The Sun-During May the sun's R.A. increases from 2 h 33 m to 4 h 36 m and its Decl. changes from $15^{\circ} 01^{\prime} \mathrm{N}$. to $22^{\circ} 01^{\prime} \mathrm{N}$. The equation of time changes from +2 m 53 s to a maximum of +3 m 44 s on the 14th and then to +2 m 20 s at the end of the month. For changes in the length of the day, see p. 15.

The Moon-For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page. Times of moonrise and moonset are given on p. 22.

Mercury on the 15 th is in R.A. 3 h 14 m , Decl. $17^{\circ} 48^{\prime}$ N., and transits at 11 h 47 m . It is too close to the sun for observation, being in superior conjunction on the 17 th .

Venus on the 15 th is in R.A. 2 h 46 m , Decl. $14^{\circ} 56^{\prime}$ N., mag. -3.4 , and transits at 11 h 16 m . It is a morning star but too close to the sun for easy observation.

Mars on the 15 th is in R.A. 0 h 13 m , Decl. $0^{\circ} 12^{\prime}$ S., mag. +1.2 , and transits at 8 h 41 m . Moving into Pisces, it now stands about 20 degrees above the eastern horizon at sunrise.

Jupiter on the 15 th is in R.A. 18 h 12 m , Decl. $23^{\circ} 02^{\prime}$ S., mag. -2.1 , and transits at 2 h 39 m . In Sagittarius, it rises before midnight and is well past the meridian at sunrise. For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 57 .
Saturn on the 15 th is in R.A. 19 h 19 m , Decl. $21^{\circ} 46^{\prime}$ S., mag. +0.6 , and transits at 3 h 46 m . In Sagittarius, east of Jupiter, it rises at about midnight.

Uranus on the 15 th is in R.A. 9 h 19 m , Decl. $16^{\circ} 23^{\prime}$ N. and transits at 17 h 45 m . It is past the meridian at sunset.

Neptune on the 15 th is in R.A. 14 h 22 m , Decl. $12^{\circ} 14^{\prime}$ S. and transits at 22 h 47 m . It is low in the south-east at sunset.

Pluto-For information in regard to this planet, see p. 31.

Explanation of symbols and abbreviations on p. 4, of time on p. 10, of colongitude on p. 56

Positions of the sun and planets are given at 0h U.T.
The times of transit at the 75 th meridian are given in local mean time, 0 h at midnight; to change to Standard Time, see p. 12. Estimates of altitude are for an observer in latitude $45^{\circ} \mathrm{N}$.

The Sun-During June the sun's R.A. increases from 4 h 36 m to 6 h 40 m and its Decl. changes from $22^{\circ} 01^{\prime} \mathrm{N}$. to $23^{\circ} 08^{\prime} \mathrm{N}$. The equation of time changes from +2 m 20 s to zero on the 13 th and then to -3 m 39 s at the end of the month. The solstice is on the 21 st at 4 h 43 m . For changes in the length of the day, see p. 15 .

The Moon-For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page. Times of moonrise and moonset are given on p. 22.

Mercury on the 15 th is in R.A. 7 h 20 m , Decl. $23^{\circ} 39^{\prime}$ N., and transits at 13 h 47 m . It is at greatest eastern elongation on the 19th, and is close to Pollux, so that for a few evenings at that time it may be seen low in the west after sunset.

Venus on the 15 th is in R.A. 5 h 24 m , Decl. $23^{\circ} 15^{\prime} \mathrm{N}$, mag. -3.5 , and transits at 11 h 52 m . It is too close to the sun for observation, being in superior conjunction on the 22 nd .

Mars on the 15 th is in R.A. 1 h 39 m , Decl. $8^{\circ} 46^{\prime}$ N., mag. +1.0 , and transits at 8 h 05 m . Moving from Pisces into Aries, it now rises about three hours before sunrise.

Jupiter on the 15 th is in R.A. 17 h 57 m , Decl. $23^{\circ} 07^{\prime}$ S., mag. -2.2 , and transits at 0 h 23 m . In Sagittarius, it rises about at sunset and dominates the southern sky all night. Opposition is on the 19th. For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 57.

Saturn on the 15 th is in R.A. 19 h 12 m , Decl. $21^{\circ} 59^{\prime}$ S., mag. +0.4 , and transits at 1 h 38 m . In Sagittarius, it rises about an hour after sunset.

Uranus on the 15 th is in R.A. 9 h 23 m , Decl. $16^{\circ} 04^{\prime} \mathrm{N}$. and transits at 15 h 47 m . It sets about three hours after sunset.

Neptune on the 15 th is in R.A. 14 h 20 m , Decl. $12^{\circ} 01^{\prime} \mathrm{S}$. and transits at 20 h 42 m . It is well up in the south-east at sunset.

Pluto-For information in regard to this planet, see p. 31.

Explanation of symbols and abbreviations on p. 4, of time on p. 10, of colongitude on p. 56

THE SKY FOR JULY, 1960

Positions of the sun and planets are given at 0h U.T.
The times of transit at the 75 th meridian are given in local mean time, 0 h at midnight; to change to Standard Time, see p. 12. Estimates of altitude are for an observer in latitude $45^{\circ} \mathrm{N}$.

The Sun-During July the sun's R.A. increases from 6 h 40 m to 8 h 45 m and its Decl. changes from $23^{\circ} 08^{\prime} \mathrm{N}$. to $18^{\circ} 05^{\prime} \mathrm{N}$. The equation of time changes from -3 m 39 s to a minimum of -6 m 25 s on the 26 th and then to -6 m 15 s at the end of the month. On the 2 nd the earth is in aphelion, or farthest from the sun. For changes in the length of the day, see p. 16.

The Moon-For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page. At dawn on July 19th, Aldebaran will be occulted by the moon. See p. 61. Times of moonrise and moonset are given on p. 23.

Mercury on the 15 th is in R.A. 7 h 47 m , Decl. $16^{\circ} 18^{\prime}$ N., and transits at 12 h 11 m . It is too close to the sun for observation, being in inferior conjunction on the 16th.

Venus on the 15 th is in R.A. 8 h 04 m , Decl. $21^{\circ} 31^{\prime}$ N., mag. -3.4 , and transits at 12 h 34 m . It is an evening star, but too close to the sun for easy observation.

Mars on the 15 th is in R.A. 3 h 02 m , Decl. $15^{\circ} 57^{\prime}$ N., mag. +0.9 , and transits at 7 h 30 m . Moving from Aries into Taurus, it is now fairly prominent in the eastern sky for about three hours before sunrise.

Jupiter on the 15 th is in R.A. 17 h 42 m , Decl. $23^{\circ} 07^{\prime}$ S., mag. -2.1 and transits at 22 h 05 m . In Sagittarius it is well up at sunset and sets before sunrise.
For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 57 .

Saturn on the 15 th is in R.A. 19 h 03 m , Decl. $22^{\circ} 16^{\prime}$ S., mag. +0.3 , and transits at 23 h 27 m . In Sagittarius, it rises about at sunset and sets just before sunrise. It is at opposition on the 7th.

Uranus on the 15 th is in R.A. 9 h 29 m , Decl. $15^{\circ} 36^{\prime}$ N., and transits at 13 h 55 m . It is low in the west at sunset.

Neptune on the 15 th is in R.A. 14 h 19 m , Decl. $11^{\circ} 57^{\prime}$ S. and transits at 18 h 43 m . It is past the meridian at sunset.

Pluto-For information in regard to this planet, see p. 31.

Explanation of symbols and abbreviations on p. 4 , of time on p. 10, of colongitude on p. 56

THE SKY FOR AUGUST, 1960

Positions of the sun and planets are given at 0 h U.T.
The times of transit at the 75 th meridian are given in local mean time, 0 h at midnight; to change to Standard Time, see p. 12. Estimates of altitude are for an observer in latitude $45^{\circ} \mathrm{N}$.

The Sun-During August the sun's R.A. increases from 8h 45 m to 10 h 41 m and its Decl. changes from $18^{\circ} 05^{\prime} \mathrm{N}$. to $8^{\circ} 22^{\prime} \mathrm{N}$. The equation of time changes from -6 m 15 s to -0 m 05 s . For changes in the length of the day, see p. 16 .
The Moon-For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page. Times of moonrise and moonset are given on p. 23.

Mercury on the 15 th is in R.A. 8 h 37 m , Decl. $19^{\circ} 10^{\prime}$ N., and transits at 11 h 06 m . It is at greatest western elongation on the 5 th, and so for a few mornings at this time it may be seen low in the east just before sunrise. By the 30 th it is in superior conjunction.

Venus on the 15 th is in R.A. 10 h 36 m , Decl. $10^{\circ} 21^{\prime}$ N., mag. -3.3 , and transits at 13 h 03 m . It is an evening star, but only about 5 degrees above the western horizon at sunset.

Mars on the 15 th is in R.A. 4 h 27 m , Decl. $20^{\circ} 54^{\prime}$ N., mag. +0.7 , and transits at 6 h 53 m . Moving through Taurus (5 degrees north of Aldebaran on the 17th), it rises about midnight and is prominent in the eastern sky until sunrise.

Jupiter on the 15 th is in R.A. 17 h 33 m , Decl. $23^{\circ} 07^{\prime}$ S., mag. -2.0 , and transits at 19 h 55 m . In Ophinchus, it is nearly to the meridian at sunset and sets about at midnight. On the 20th it is stationary and resumes direct, i.e. eastward, motion among the stars. For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 57 .

Saturn on the 15 th is in R.A. 18 h 55 m , Decl. $22^{\circ} 31^{\prime}$ S., mag. +0.4 and transits at 21 h 17 m . In Sagittarius, east of Jupiter, it is well up in the south-east at sunset and sets before sunrise.

Uranus on the 15 th is in R.A. 9 h 36 m , Decl. $15^{\circ} 00^{\prime} \mathrm{N}$. and transits at 12 h 00 m . It is too close to the sun for observation.

Neptune on the 15 th is in R.A. 14 h 19 m , Decl. $12^{\circ} 03^{\prime}$ S. and transits at 16 h 42 m . It is well down in the south-west at sunset.

Pluto-For information in regard to this planet, see p. 31.

Explanation of symbols and abbreviations on p. 4, of time on p. 10, of colongitude on p. 56

THE SKY FOR SEPTEMBER, 1960

Positions of the sun and planets are given at 0h U.T.
The times of transit at the 75th meridian are given in local mean time, $0 \mathrm{~h}^{*}$ at midnight; to change to Standard Time, see p. 12. Estimates of altitude are for an observer in latitude $45^{\circ} \mathrm{N}$.

The Sun-During September the sun's R.A. increases from 10h 41m to 12 h 29 m and its Decl. changes from $8^{\circ} 22^{\prime} \mathrm{N}$. to $3^{\circ} 06^{\prime} \mathrm{S}$. The equation of time changes from -0 m 05 s to +10 m 13 s , being zero during the first day of the month. On the 22 nd at 20 h 00 m E.S.T. the sun crosses the equator moving southward, enters the sign of Libra, and autumn commences. There is a partial eclipse of the sun on the 20th. For changes in the length of the day, see p. 17.

The Moon-For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page. There is a total eclipse of the moon during the night of the 4 th-5th. Times of moonrise and moonset are given on p. 24.

Mercury on the 15 th is in R.A. 12 h 18 m , Decl. $1^{\circ} 21^{\prime}$ S., and transits at 12 h 43 m . It is too close to the sun for observation.

Venus on the 15 th is in R.A. 12 h 56 m , Decl. $5^{\circ} 12^{\prime}$ S., mag. -3.3 , and transits at 13 h 21 m . It is an evening star which may be seen very low in the west just after sunset. On the evening of the 20th it passes 3 degrees north of Spica.

Mars on the 15 th is in R.A. 5 h 46 m , Decl. $23^{\circ} 10^{\prime}$ N., mag. +0.5 , and transits at 6 h 09 m . Moving from Taurus to Gemini and becoming rapidly brighter, it rises before midnight and is nearly to the meridian at sunrise.

Jupiter on the 15 th is in R.A. 17 h 37 m , Decl. $23^{\circ} 14^{\prime}$ S., mag. -1.8 , and transits at 17 h 58 m . In Ophinchus, it is west of the meridian at sunset and sets before midnight. For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 57.

Saturn on the 15 th is in R.A. 18 h 51 m , Decl. $22^{\circ} 39^{\prime}$ S., mag. +0.6 , and transits at 19 h 12 m . In Sagittarius, east of Jupiter, it is nearly to the meridian at sunset and sets before midnight. On the 15 th it is stationary and resumes direct, or eastward, motion among the stars.

Uranus on the 15 th is in R.A. 9 h 44 m , Decl. $14^{\circ} 23^{\prime}$ N., and transits at 10 h 05 m . It rises about two hours before the sun.

Neptune on the 15 th is in R.A. 14 h 22 m , Decl. $12^{\circ} 18^{\prime} \mathrm{S}$., and transits at 14 h 43 m . It is low in the south-west at sunset.

Pluto-For information in regard to this planet, see p. 31.

			SEPTEMBER E．S．T．	Sun＇s Selen． Colong．	$\begin{gathered} \text { Min. } \\ \text { of } \\ \text { Algol } \end{gathered}$	Config．of Jupiter＇s 19h 45m
d	h	m		－	h m	
Thu． 1	3		Obd b b $4^{\circ} \mathrm{S}$ ．	31.17		4201＊
Fri． 2	16		\mathbb{C} at Perigee．Dist．from $\oplus, 226,400 \mathrm{mi}$ ．	43.36	739	42103
Sat． 3				55.55		40123
Sun． 4				67.72		41023
Mon． 5	6	19	（3）Full Moon．Eclipse，see p． 59.	79.90	428	d2430
Tue． 6				92.07		3041＊
Wed． 7				104.25		31024
Thu． 8				116.42	116	23014
Fri． 9				128.60		21034
Sat． 10				140.79	2205	O1234
Sun． 11				152.98		10234
Mon． 12			Perseid meteors	165.17		d23O4
	17	20	（4）Last Quarter．			
Tue． 13	5			177.37	1854	3204＊
Wed． 14	13		（6）at Apogee．Dist from $\oplus, 251,400 \mathrm{mi}$ ．	189.58		31042
Thu． 15	15		b Stationary in R．A．．．．．．．．．．．．	201.79		43201
Fri． 16				214.01	1542	42103
Sat． 17	6		$\square 4 \odot$ East	226.23		40213
Sun． 18	2		\bigcirc 人 © ${ }^{\text {® }} 3^{\circ} \mathrm{N}$	238.45		41023
Mon． 19			\bigcirc at ϑ	250.68	1231	d4201
Tue． 20	18	13	（17）New Moon．Eclipse，see p． 59.	262.91		4320＊
Wed． 21				275.14		43102
Thu． 22	1		\bigcirc ¢ ¢ ¢ ¢ $3^{\circ} \mathrm{S}$ ．	287.37	919	d3401
	17		\bigcirc ¢ © ¢ ¢ $3^{\circ} \mathrm{S}$ ．			
	20	00	\odot in \bumpeq ．Autumn commences．			
Fri． 23	16		ర世せ $\Psi 3^{\circ} \mathrm{S}$	299.59		21043
Sat． 24	19		$\square \sigma^{\top} \odot$ West	311.82		O2143
Sun． 25			σ^{7} at Ω	324.03	608	10234
Mon． 26				336.25		20314
Tue． 27	5		62 $45^{\circ} \mathrm{S}$	348.45		32104
	20	13	iii First Quarter			
Wed． 28	9		obd b b $4^{\circ} \mathrm{S}$ ．	0.65	257	d3024
Thu． 29			¢ at Aphelion．	12.84		30124
Fri． 30	17		© at Perigee．Dist．from $\oplus, 229,400 \mathrm{mi}$ ．	25.02	2345	21034

Explanation of symbols and abbreviations on p．4，of time on p． 10 ，of colongitude on p． 56

THE SKY FOR OCTOBER, 1960

Positions of the sun and planets are given at 0h U.T.
The times of transit at the 75th meridian are given in local mean time, 0 h at midnight; to change to Standard Time, see p. 12. Estimates of altitude are for an observer in latitude $45^{\circ} \mathrm{N}$.

The Sun-During October the sun's R.A. increases from 12h 29 m to 14 h 25 m and its Decl. changes from $3^{\circ} 06^{\prime} \mathrm{S}$. to $14^{\circ} 22^{\prime} \mathrm{S}$. The equation of time changes from +10 m 13 s to +16 m 22 s . For changes in the length of the day, see p. 17 .

The Moon-For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page. On Oct. 9th Aldebaran will be occulted by the moon. See p. 61. Times of moonrise and moonset are given on p. 24.

Mercury on the 15th is in R.A. 14h 52m, Decl. $19^{\circ} 26^{\prime}$ S., and transits at 13 h 18 m . On the 15th it is at greatest eastern elongation, and so for a few evenings at this time it may be seen very low in the south-west just after sunset. However, this is an unfavourable elongation.

Venus on the 15 th is in R.A. 15 h 17 m , Decl. $18^{\circ} 46^{\prime}$ S., mag. -3.4 , and transits at 13 h 44 m . It is an evening star which may be seen low in the south-west for about an hour after sunset.

Mars on the 15 th is in R.A. 6 h 47 m , Decl. $23^{\circ} 33^{\prime}$ N., mag. +0.1 , and transits at 5 h 12 m . In Gemini, it rises in the late evening and is prominently seen all the rest of the night.
$J u p i t e r$ on the 15 th is in R.A. 17 h 52 m , Decl. $23^{\circ} 24^{\prime}$ S., mag. -1.6 and transits at 16 h 15 m . In Sagittarius, it is well past the meridian at sunset and sets about three hours later. For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 57.

Saturn on the 15 th is in R.A. 18 h 54 m , Decl. $22^{\circ} 38^{\prime}$ S., mag. +0.7 , and transits at 17 h 17 m . In Sagittarius, east of Jupiter, it is about on the meridian at sunset and sets before midnight.

Uranus on the 15 th is in R.A. 9 h 49 m , Decl. $13^{\circ} 55^{\prime}$ N. and transits at 8 h 13 m . It rises about one hour after midnight.

Neptune on the 15th is in R.A. 14h 26 m , Decl. $12^{\circ} 38^{\prime}$ S. and transits at 12 h 49 m . It is too close to the sun for observation.

Pluto-For information in regard to this planet, see p. 31.

Explanation of symbols and abbreviations on p. 4, of time on p. 10, of colongitude on p. 56

THE SKY FOR NOVEMBER, 1960

Positions of the sun and planets are given at 0h U.T.
The times of transit at the 75th meridian are given in local mean time, 0 h at midnight; to change to Standard Time, see p. 12. Estimates of altitude are for an observer in latitude $45^{\circ} \mathrm{N}$.

The Sun-During November the sun's R.A. increases from 14 h 25 m to 16 h 28 m and its Decl. changes from $14^{\circ} 22^{\prime} \mathrm{S}$. to $21^{\circ} 46^{\prime} \mathrm{S}$. The equation of time changes from +16 m 22 s to a maximum of +16 m 24 s on the 3 rd and then to +11 m 04 s at the end of the month. For changes in the length of the day, see p. 18.

The Moon-For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page. Times of moonrise and moonset are given on p. 25.

Mercury on the 15 th is in R.A. 14 h 26 m , Decl. $12^{\circ} 28^{\prime}$ S., and transits at 10 h 47 m . It is in inferior conjunction on the 7 th on which day it transits the sun (see p. 59), but by the 24th it is at greatest western elongation and so, for a few mornings at this time, it may be seen low in the south-east just before sunrise.

Venus on the 15 th is in R.A. 17 h 58 m , Decl. $25^{\circ} 20^{\prime}$ S., mag. -3.5 , and transits at 14 h 23 m . It is an evening star which may be seen low in the south-west for about two hours after sunset. On the evening of the 18th Venus and Jupiter are close together, and on the evening of the 27th Venus and Saturn.

Mars on the 15 th is in R.A. 7 h 21 m , Decl. $23^{\circ} 53^{\prime}$ N., mag. -0.5 , and transits at 3 h 43 m . In Gemini, it now rises in the late evening and is prominently seen all night. On the 21st it is stationary and begins to retrograde, or move westward among the stars.

Jupiter on the 15 th is in R.A. 18 h 16 m , Decl. $23^{\circ} 24^{\prime}$ S., mag. -1.5 , and transits at 14 h 37 m . In Sagittarius, it is well down in the south-west at sunset and sets about two hours later. See Venus. For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 57.

Saturn on the 15 th is in R.A. 19 h 03 m , Decl. $22^{\circ} 28^{\prime}$ S., mag. +0.8 , and transits at 15 h 24 m . In Sagittarius, east of Jupiter, it is west of the meridian at sunset and sets about three hours later. See Venus.

Uranus on the 15 th is in R.A. 9 h 53 m , Decl. $13^{\circ} 38^{\prime} \mathrm{N}$. and transits at 6 h 15 m . It rises about one hour before midnight.

Neptune on the 15 th is in R.A. 14 h 30 m , Decl. $13^{\circ} 00^{\prime}$ S. and transits at 10 h 51 m . It is too close to the sun for observation.

Pluto-For information in regard to this planet, see p. 31.

Explanation of symbols and abbreviations on p.4, of time on p.10, of colongitude on p. 56

THE SKY FOR DECEMBER, 1960

Positions of the sun and planets are given at 0h U.T.
The times of transit at the 75th meridian are given in local mean time, 0 h at midnight; to change to Standard Time, see p. 12. Estimates of altitude are for an observer in latitude $45^{\circ} \mathrm{N}$.

The Sun-During December the sun's R. A. increases from 16 h 28 m to 18 h 45 m and its Decl. changes from $21^{\circ} 46^{\prime} \mathrm{S}$. to $23^{\circ} 02^{\prime} \mathrm{S}$. The equation of time changes from +11 m 04 s to -3 m 22 s , being zero on the 25 th. The solstice is on the 21 st at 15 h 27 m E.S.T. For changes in the length of the day, see p. 18.

The Moon-For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page. Aldebaran will be occulted by the moon on Dec. 2 and again on Dec 29th-30th. See p. 61. Times of moonrise and moonset are given on p. 25.

Mercury on the 15 th is in R.A. 16 h 38 m , Decl. $21^{\circ} 55^{\prime}$ S., and transitsat 11 h 05 m . It is too close to the sun for observation.

Venus on the 15 th is in R.A. 20 h 34 m , Decl. $21^{\circ} 01^{\prime}$ S., mag. -3.7 , and transits at 15 h 00 m . It is an evening star which may be seen in the south-west for about three hours after sunset.

Mars on the 15 th is in R.A. 7 h 05 m , Decl. $25^{\circ} 47^{\prime}$ N., mag. -1.2 , and transits at 1 h 29 m . In Gemini, Mars is now spectacularly bright. Being in opposition on the 30 th, it is now well up in the east at sunset, transits the meridian about midnight and has not yet set at sunrise. It is closest to the earth on the 25th.

Jupiter on the 15 th is in R.A. 18 h 44 m , Decl. $23^{\circ} 07^{\prime}$ S., and transits at 13 h 07 m . In Sagittarius, it may barely be glimpsed very low in the south-west just after sunset. For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 57.

Saturn on the 15 th is in R.A. 19 h 16 m , Decl. $22^{\circ} 09^{\prime}$ S., and transits at 13 h 39 m . In Sagittarius, not far east of Jupiter, it may be seen briefly low in the south-west just after sunset.

Uranus on the 15th is in R.A. 9h 53m, Decl. $13^{\circ} 39^{\prime}$ N. and transits at 4 h 17 m . It rises over two hours before midnight.

Neptune on the 15 th is in R.A. 14 h 34 m , Decl. $13^{\circ} 18^{\prime}$ S. and transits at 8 h 57 m . It is a morning star, rising a few hours before the sun.

Pluto-For information in regard to this planet, see p. 31.

$\begin{gathered} \text { DECEMBER } \\ \text { E.S.T. } \end{gathered}$				$\begin{aligned} & \text { Sun's } \\ & \text { Selen. } \\ & \text { Colong. } \end{aligned}$	$\begin{gathered} \text { Min. } \\ \text { Mof } \\ \text { Algol } \end{gathered}$	Config. of Jupiter's $17 \mathrm{~h} \mathrm{00m}$
d	h	m		-	h m	
Thu. 1	6		¢ Stationary in R.A.	59.92		31024
Fri. 2	23	25	(3) Full Moon	72.06		30214
Sat. 3				84.19	139	21304
Sun. 4				96.32		20134
Mon. 5				108.45	2228	10234
Tue. 6	1			120.59		2 O 134
	22		\mathbb{C} at Apogee. Dist. from $\oplus, 252,100 \mathrm{mi}$.	132.72		d2O4*
Thu. 8				144.87	1917	34102
Fri. 9	7			157.01		34012
Sat. 10				169.16		
Sun. 11	4	39	(8) Last Quarter	181.32	1606	
Mon. 12				193.48		
Tue. 13			Geminid meteors.	205.65		
Wed. 14				217.82	1256	
Thu. 15	1		$\sigma \Psi \mathbb{d}$	230.00		
	22		P Stationary in R.A.			
Fri. 16			\bigcirc at \wp	242.19		
Sat. 17				254.38	945	
Sun. 18	5	47	(14. New Moon.	266.57		
Mon. 19	6 17		© at Perigee. Dist. from $\oplus, 222,800 \mathrm{mi}$. ob b $4^{\circ} \mathrm{S}$.	278.76		
Tue. 20				290.95	634	
Wed. 21	10		O우 © 아 $4^{\circ} \mathrm{S}$.	303.14		
	15	27	\bigcirc enters 7 . Winter commences. .			
Thu. 22			Ursid meteors.	315.32		
Fri. 23				327.50	323	
Sat. 24	21	30	(ii) First Quarter	339.67		
Sun. 25	1		σ^{\top} nearest \oplus. Dist. from $\oplus, 56,370,000$ mi.	351.83		
Mon. 26			¢ at Aphelion.	3.99	012	
Tue. 27				16.13		
Wed. 28				28.28	2101	
Thu. 29				40.42		
Fri. 30	5		$\bigcirc^{\circ} \bigcirc^{7} \odot$ Dist. from $\oplus, 56,640,000 \mathrm{mi} . . .$.	52.55		
Sat. 31				64.68	1750	

Explanation of symbols and abbreviations on p.4, of time on p.10, of colongitude on p. 56 Jupiter being near the sun, configurations of the satellites are not given after Dec.'. 9

THE OBSERVATION OF THE MOON

During 1960 the ascending node of the moon's orbit occurs near the position of the aumal equinox (δ from 179° to 159°). Thus the range in declination of the moon is close to its minimum value. Every month the moon will pass within a fraction of a degree of Aldebaran.

The sun's selenographic colongitude is essentially a convenient way of indicating the position of the sunrise terminator as it moves across the face of the moon. It provides an accurate method of recording the exact conditions of illumination (angle of illumination), and makes it possible to observe the moon under exactly the same lighting conditions at a later date.

The sun's selenographic colongitude is numerically equal to the selenographic longitude of the sunrise terminator reckoned eastward from the mean centre of the disk. Its value increases at the rate of nearly 12.2° per day or about $\frac{1}{2}^{\circ}$ per hour; it is approximately $270^{\circ}, 0^{\circ}, 90^{\circ}$ and 180° at New Moon, First Quarter, Full Moon and Last Quarter respectively. (See the tabulated values for 0h U.T. starting on p .33 .)

Sunrise will occur at a given point east of the central meridian of the moon when the sun's selenographic colongitude is equal to the eastern selenographic longitude of the point; at a point west of the central meridian when the sun's selenographic colongitude is equal to 360° minus the western selenographic longitude of the point. The longitude of the sunset terminator differs by 180° from that of the sunrise terminator.

The sun's selenographic latitude varies between $+1 \frac{1}{2}^{\circ}$ and $-1 \frac{1}{2}^{\circ}$ during the year.

OPPOSITION EPHEMERIDES OF THE BRIGHTEST ASTEROIDS, 1960

The asteroids are many small objects revolving around the sun mainly between the orbits of Mars and Jupiter. The largest, Ceres, is only 480 miles in diameter. Vesta, though smaller than Ceres, is considerably brighter. The next brightest asteroids, Pallas and Juno, are in the 9 th magnitude at maximum brightness.

Ephemerides for the two brightest asteroids, Vesta and Ceres, are given when the asteroids are near opposition. Right ascensions and declinations are for 0 h G.C.T. and the equinox of 1950.0 .

Vesta (No. 4)					
Opp. July 2 in Sgr					Mag. 6.0
June 12	19^{h}	04.3^{m}	$-20^{\circ} 25^{\prime}$		
17	19	00.5	-2051		
22	18	56.1	-2118		
27	18	51.2	-2146		
July	18	46.2	-2214		
7	18	41.1	-2242		
12	18	36.2	-23		
17	18	31.6	-23		
24					
22	18	27.6	-2358		

$\begin{gathered} \text { Ceres (No. } 1 \\ \text { Opp. Aug. } 14 \text { in PsA } \end{gathered}$			Mag. 7.9
July 25	$22^{\text {h }}$	$13.1{ }^{\text {m }}$	$-25^{\circ} 09^{\prime}$
30	22	09.9	-25 45
Aug. 4	22	06.2	-2620
	22	02.2	-2653
14	21	58.0	-2725
19	21	53.6	-2753
24	21	49.2	-2817
29	21	45.0	-28 36
Sept. 3	21	40.9	-2852

The phenomena are given for latitude $45^{\circ} \mathrm{N}$., for Jupiter one hour above the horizon, and the sun one hour below the horizon.

EMPHEMERIS FOR THE PHYSICAL OBSERVATION OF THE SUN, 1960 For 0h U.T.

Date	P	B_{0}	L_{0}	Date	P	B_{0}	L_{0}
		-			-	。	
Jan. 1	+ 2.49	-2.99	242.36	July 4	- 1.32	+3.26	320.66
	+ 0.06	-3.56	176.51	Ju9 9	+ 0.95	+3.79	254.49
11	- 2.36	-4.11	110.66	14	+ 3.20	+4.29	188.32
16	- 4.74	-4.62	44.82	19	+ 5.40	+4.76	122.16
21	- 7.05	-5.10	338.99	24	+ 7.56	+5.20	56.01
26	-9.29	-5.53	273.15	29	+9.64	+5.60	349.87
31	-11.43	-5.93	207.32	Aug. 3	$+11.65$	+5.97	283.74
Feb. 5	-13.46	-6.27	141.49	8	+13.56	+6.29	217.62
$\begin{aligned} & 0 \\ & 10 \end{aligned}$	-15.37	-6.57	75.66	13	$+15.36$	+6.57	151.52
15	-17.15	-6.82	9.82	18	+17.05	+6.80 +6.	85.43
20	-18.78	-7.01	303.98	23	$+18.63$	+6.99	19.35
25	-20.28	-7.14	238.13	28	+20.07	+7.13	313.29
Mar. 1	-21.62	-7.22	172.27	Sept. 2	+21.38	+7.21	247.24
6	-22.80	-7.25	106.40	Sept 7	+22.56	+7.25	181.20
11	-23.82	-7.22	40.52	12	+23.58	+7.23	115.18
16	-24.67	-7.14	334.62	17	+24.46	+7.16	49.17
21	-25.35	-7.00	268.70	22	+25.17	+7.04	343.17
26	-25.86	-6.80	202.77	27	+25.73	+6.87	277.18
31	-26.19	-6.56	136.82	Oct. 2	+26.11	+6.64	211.20
Apr. 5	-26.35	-6.27	70.85	7	+26.32	+6.37	145.23
10	-26.32	-5.94	4.86	12	+26.35	+6.04	79.26
15	-26.11	-5.56	298.84	17	+26.19	+5.68	13.31
20	-25.71	-5.14	232.81	22	+25.84	+5.26	307.37
25	-25.13	-4.69	166.76	27	+25.30	+4.81	241.43
30	-24.37	-4.21	100.69	Nov. 1	+24.56	+4.32	175.49
May 5	-23.43	-3.69	34.60	6	+23.62	+3.79	109.56
10	-22.31	-3.16	328.49	11	+22.49	+3.24	43.64
15	-21.02	-2.60	262.37	16	+21.17	+2.66	337.73
20	-19.56	-2.02	196.23	21	+19.66	+2.06	271.82
25	-17.95	-1.43	130.09	26	+17.97	+1.44	205.92
30	-16.20	-0.83	63.93	Dec. 1	$+16.12$	+0.81	140.02
June 4	-14.32	-0.23	357.76	6	+14.12	+0.17	74.14
9	-12.33	+0.37	291.58	11	+11.98	-0.47	8.25
14	-10.24	+0.97	225.39	16	+9.74	-1.11	302.37
19	-8.08	+1.57	159.21	21	+ 7.42	-1.74	236.51
24	-5.85	+2.15	93.03	26	+ 5.03	-2.36	170.65
29	- 3.59	+2.71	26.84	31	+2.61	-2.96	104.79

P -The position angle of the axis of rotation, measured eastward from the north point of the disk.
B_{0}-The heliographic latitude of the centre of the disk.
L_{0}-The heliographic longitude of the centre of the disk, from Carrington's solar meridian.

Carrington's Rotation Numbers-Greenwich date of commencement					
No.	Commences	No.	Commences	No.	Commences
1423	Jan. 19.40	1428	June 3.83	1432	Sept. 20.72
1424	Feb. 15.75	1429	July 1.03	1433	Oct. 18.01
1425	Mar. 14.07	1430	July 28.23	1434	Nov. 14.31
1426	Apr. 10.37	1431	Aug. 24.46	1435	Dec. 11.63

In 1960 there will be four eclipses, two of the sun and two of the moon.
I. A Total Eclipse of the Moon on the night of March 12-13, visible in North and South America.

enters umbra	.1h 38m E.S.T.
Totality begins.	2h 41m E.S.T.
Totality ends.	4h 16 m E.S.T.
(1) leaves umbra	5h 18m E.S.T.

II. A Partial Eclipse of the Sun on March 27, visible in Australia and Antarctica.
III. A Total Eclipse of the Moon on the night of September 4-5, the beginning visible in North America except the extreme north-eastern part, and the end visible on the west coast.

mbra	4h 36 m E.S.T.
Totality begins.	. $5 \mathrm{~h} \mathrm{38m} \mathrm{E.S.T}$.
Totality ends	.7h 06m E.S.T.
(1) leaves umbr	8h 08m E.S.T

IV. A Partial Fclipse of the Sun, September 20, visible in all of North America except the very eastern strip (where it begins after sunset). Apart from this exception, in the eastern half of the continent the eclipse is still in progress at sunset, in the western half it is completed before sunset.

TRANSIT OF MERCURY

On the morning of November 7th Mercury will transit the sun's disk, the phenomenon being visible in North America, except that the transit will already be in progress at sunrise for observers west of a line through $37^{\circ} \mathrm{N} ., 120^{\circ} \mathrm{W}$. and $61^{\circ} \mathrm{N} ., 100^{\circ} \mathrm{W}$.

Over the continent the variations in times of ingress and egress amount to less than 30 seconds, ingress being somewhat earlier in the south, and egress being somewhat earlier in the east. The following times are valid within 10 seconds for the eastern half of the continent:

Exterior ingress	9 h 35 m 20 s E.S.T.
Interior ingress	9 h 37 m 20 s E.S.T
Interior egress	14 h 10 m 20 s E.S.T.
Exterior egress	14 h 12 m 20 s E.S.T.

The position angle (reckoned from the north limb of the sun toward the east) of ingress is 148°, of egress 262°.

AUTHORITAIIVE HANDBOOKS ON ASTRONOMY

Practical Astronomy by W. Schoeder \$ 5.75
Frontiers of Astronomy by Fred Hoyle 5.75
The Planet Jupiter by B. M. Peek 9.50
Amateur Astronomer's Handbook-J. B. Sidgwick 12.75
Observational Astronomy for Amateurs-J. B. Sidgwick 10.75
Introducing Astronomy by J. B. Sidgwick 3.75
For Other Titles and Descriptive Lists write to: BRITISH BOOK SERVICE (CANADA) LIMITED 1068 BROADVIEW AVENUE, TORONTO 6, ONTARIO

PLANETARY APPULSES AND OCCULTATIONS

The close approach of a planet to a star is of interest to observers. Surprisingly few observable appulses of planets and stars of 9th magnitude or brighter occur during a year. An even rarer occurrence is the observable occultation of a star by a planet.

The following details have been kindly supplied by Mr. Gordon E. Taylor and the British Astronomical Association. The data include the E.S.T. of conjunction of the planet and star, the magnitude of the star, the angular separation of the star and planet as seen from the centre of the earth (geocentric separation), and the horizontal parallax of the planet.

Planet	Date	Conj. E.S.T.	Star	Mag.	Geoc. Sepn.	Hor. Par.
Mars		h m			"	"
	Jan. 28	2208	C.D. $-23^{\circ} 14758$	8.7	5	4
	Apr. 2	1912	B.D. $-12^{\circ} 6218$	8.3	9	4
	May15	2253	B.D. - $0^{\circ} 35$	8.6	3	5
Jupiter	June 8	2206	B.D. $+6^{\circ} 216$	9.0	6	5
	Feb. 9	239	C.D. $-22^{\circ} 12237$	8.4	0	2
	July 1	2354	C.D. $-23^{\circ} 13598$	8.4	27	2
	Oct. 6	437	C.D. $-23^{\circ} 13589$	8.3	3	2
Saturn	Nov. 4	2338	C.D. $-23^{\circ} 14011$	9.0	8	2
	Dec. 6	2221	C.D. $-23^{\circ} 14580$	6.8	21	,
	Dec. 10	443	C.D. $-23^{\circ} 14633$	9.0	48	1
	Apr. 23	2057	B.D. $-21^{\circ} 5359$	9.0	14	1
	Apr. 30	2011	B.D. $-21^{\circ} 5359$	9.0	1	1
	Sept. 4	023	C.D. $-22^{\circ} 13397$	8.0	17	1

Saturn and its rings will occult the star B.D. $-21^{\circ} 5359$ (Mag. 9.0) between Apr. 29 and May 1. As Saturn is near its stationary point no accurate form of prediction is possible (the planet's motion is only $1^{\prime \prime}$ an hour). Very approximate times only are given.

	Disappearance		Reappearance		
	E.S.T.	P.	E.S.T		
Outer edge of rings	Apr. $29{ }_{2}^{\text {d }}$	258	May		
Limb of Saturn	Apr. 3010	261	May		

LUNAR OCCULTATIONS

When the moon passes between the observer and a star that star is said to be occulted by the moon and the phenomenon is known as a lunar occultation. The passage of the star behind the east limb of the moon is called the immersion and its re-appearance from behind the west limb the emersion. As in the case of eclipses, the times of immersion and emersion and the duration of the occultation
are different for different places on the earth's surface. The tables given below, adapted from data supplied by the British Nautical Almanac Office and give the times of immersion or emersion or both for occultations visible at Toronto, Montreal, Edmonton and Vancouver. Stars of magnitude 5.3 or brighter are included as well as daytime occultations of very bright stars and planets. Since an occultation at the bright limb of the moon is difficult to observe the predictions are limited to phenomena occurring at the dark limb.

The terms a and b are for determining corrections to the times of the phenomena for stations within 300 miles of the standard stations. Thus if λ_{0}, ϕ_{0}, be the longitude and latitude of the standard station and λ, ϕ, the longitude and latitude of the neighbouring station then for the neighbouring station we have:

Standard Time of phenomenon $=$ Standard Time of phenomenon at the standard station $+a\left(\lambda-\lambda_{0}\right)+b\left(\phi-\phi_{0}\right)$
where $\lambda-\lambda_{0}$ and $\phi-\phi_{0}$ are expressed in degrees. The quantity P is the position angle of the point of contact on the moon's disk reckoned from the north point towards the east.

LUNAR OCCULTATIONS VISIBLE AT TORONTO AND MONTREAL, 1960

Date	Star	Mag.	$\begin{array}{cc} \text { I } & \text { Age } \\ \text { or } & \text { of } \\ \mathrm{E} & \text { Moon } \end{array}$	Toronto				Montreal			
				E.S.T.	a	b	P	E.S.T.	a	b	P
			d	h m	m	m		h m	m	m	
Jan 10	75 Tau	5.3	I $\quad 11.4$	043.5	-0.7	-4.6	144	040.9	-0.7	-3.2	131
Jan. 11	111 Tau	5.1	I 12.5	424.4			166	Low	. .		
Jan. 16	ξ Leo	5.1	$\mathrm{E} \quad 17.5$	148.1	-	-	352	No occ			
Jan. 24	24 Sco	5.0	$\mathrm{E} \quad 25.6$	Low				450.6	$+0.2$	-1.4	343
Feb. 9	26 Gem	5.1	I 11.9	$\begin{array}{ll}0 & 01.6\end{array}$	-1.7	-0.8	85	${ }_{0} 009.2$	-1.5	-0.6	75
Mar. 4	$\boldsymbol{\alpha}$ Tau	1.1	$\mathrm{I} \quad 7.2$	$18 \quad 26.3$	-2.1	+0.3	79	1838.3	-1.9	+0.1	74
Mar. 4	$\boldsymbol{\alpha}$ Tau	1.1	$\mathrm{E} \quad 7.2$	1955.6	-1.8	-0.7	265	$20 \quad 03.3$	-1.5	-1.2	272
Mar. 8	λ Gem	3.6	I 10.5	155.7	+0.2	-2.4	138	150.5	+0.2	-2.1	128
Mar. 11	48 Leo	5.2	I 14.4	2156.6	-2.5	$+3.2$	56	No occ.			
Mar. 14	θ Vir	4.4	I 17.4	2129.8	-0.7	+1.9	76	2139.2	-1.1	+2.7	63
Mar. 14	θ Vir	4.4	$\mathrm{E} \quad 17.4$	2221.5	-0.5	-0.8	329	$\begin{array}{lll}22 & 21.7\end{array}$	-0.3	-1.6	343
Mar. 25	Merc.	1.1	I $\quad 27.7$	Low				531.9	-0.4	+2.7	22
Mar. 25	Merc.*	1.1	$\mathrm{E} \quad 27.7$	608.3	-0.4	+0.8	297	$\begin{array}{lll}6 & 13.0\end{array}$	-0.7	+0.7	301
Apr. 14	24 Sco	5.0	$\mathrm{E} \quad 18.9$	Low				23 36.1	-0.6	+0.4	303
Apr. 28	$\boldsymbol{\alpha}$ Tau*	1.1	I 2.8	904.9	+0.1	+2.2	48	$\begin{array}{lll}9 & 09.1\end{array}$	-0.1	+2.3	50
Apr. 28	$\boldsymbol{\alpha}$ Tau*	1.1	E 2.8	1002.2	-0.8	+1.0	284	1009.5	-1.0	+1.1	282
May 9	$\boldsymbol{\kappa}$ Vir	4.3	I 14.2	$20 \quad 03.4$	-1.5	+2.2	66	2019.5	-	3	46
July 19	$\boldsymbol{\alpha}$ Tau	1.1	$\mathrm{I} \quad 25.3$	354.5	-	-.	12	358.0	$+0.5$	+3.9	15
July 19	$\boldsymbol{\alpha}$ Tau*	1.1	E 25.3	422.9	-	-	320	430.8	-1.6	-0.6	316
Aug. 15	γ Tau	3.9	I 22.6	${ }_{2}^{2} 23.9$	-0.4	+1.8	70	$\begin{array}{lll}2 & 30.2\end{array}$	-0.6	+1.8	71
Aug. 15	γ Tau	3.9	E $\quad 22.6$	333.8	-1.0	+1.6	258	343.0	-1.1	+1.6	256
Aug. 15	$\boldsymbol{\alpha}$ Tau*	1.1	I $\quad 22.9$	1313.6	-	-.	6	No occ.			
Aug. 15	α Tau*	1.1	$\mathrm{E} \quad 22.9$	$13 \quad 22.3$	-	1	350	No oc c			
Aug. 29	24 Sco	5.0	$\begin{array}{ll}\text { I } & 7.7\end{array}$	2206.5	-0.9	-1.3	95	Low			
Oct. 2	φ Aqr	4.4	I 12.2	2119.7	-2.1	+0.1	108	$\begin{array}{ll}21 & 32.1\end{array}$	-2.2	-0.3	111
Oct. 8	71 Tau	4.6	$\mathrm{E} \quad 18.2$	2241.3	+0.2	+3.1	205	2246.1	+0.2	+3.3	203
Oct. 8	θ^{1} Tau	4.0	I 18.3	2306.1	-0.5	+1.7	75	2312.7	-0.7	+1.7	76
Oct. 8	θ^{2} Tau	3.6	I 18.3	2308.0	-0.7	$+1.2$	96	$\begin{array}{lll}23 & 15.0\end{array}$	-0.9	+1.2	98
Oct. 9	θ^{2} Tau	3.6	$\mathrm{E} \quad 18.3$	$\begin{array}{lll}0 & 12.8\end{array}$	-0.7	$+2.3$	232	021.7	-0.9	+2.4	231
Oct. 9	θ^{1} Tau	4.0	$\mathrm{E} \quad 18.3$	016.1	-1.0	+1.7	254	025.4	-1.1	+1.7	253
Oct. 9	264 BTau	4.8	$\mathrm{E} \quad 18.3$	133.2	-1.8	+0.7	276	145.0	-1.9	+0.5	276
Oct. 9	$\boldsymbol{\alpha}$ Tau	1.1	$\mathrm{I} \quad 18.4$	$\begin{array}{lll}3 & 57.9\end{array}$	-1.9	$+1.5$	55	411.1	-1.8	+1.4	50
Oct. 9	α Tau	1.1	$\mathrm{E} \quad 18.4$	517.0	-1.8	-1.5	286	523.6	-1. 5	-2.0	293
Oct. 10	111 Tau	5.1	$\mathrm{E} \quad 19.4$	306.5	-1.3	+3.4	215	320.8	-1.6	$+3.0$	218
Oct. 29	λ Aqr	3.8	I 9.5	$18 \quad 03.4$	-1.1	+2.1	38	$18 \quad 13.8$	-1.2	+1.9	39
Nov. 12	A Leo	4.6	$\mathrm{E} \quad 23.0$	547.3	-1.3	-2.2	330	548.8	-0.9	-3.5	345
Nov. 30	ξ^{1} Cet	4.5	I 11.2	006.5	-1.3	+0.6	50	$\begin{array}{lll}0 & 14.7\end{array}$	-1.1	$+0.5$	47
Dec. 2	$\boldsymbol{\alpha}$ Tau	1.1	I 14.1	1831.4	+0.3	+2.5	33	$18 \quad 34.7$	+0.2	+2.6	34
Dec. 2	α Tau	1.1	$\mathrm{E} \quad 14.1$	1916.7	-0.8	+0.6	298	$1 \begin{array}{lll}19 & 23.3 \\ 16 & 50\end{array}$	-1.0	+0.7	296
Dec. 29	γ Tau	3.9	I 11.5	Sun				1650.3	-0.4	+1.6	83
Dec. 29	75 Tau	5.3	I 11.7	2222.1	-1.8	$+1.6$	53	2235.2	-1.7	+1.4	49
Dec. 29	264 BTau	4.8	I 11.7	2348.0	-1.9	-2.2	116	2354.4	-1.6	-1.9	109
Dec. 30	$\boldsymbol{\alpha}$ Tau	1.1	$\mathrm{I} \quad 11.9$	302.8	-0.6	-0.9	73	3104.4	-0.5	-0.7	64
Dec. 30	α Tau	1.1	$\mathrm{E} \quad 11.9$	404.6	0.0	-1.6	280	400.8	$+0.2$	-1.8	290
Dec. 31	115 Tau	5.3	I 12.9	328.9	-1.0	-0.2	54	334.4	-0.9	$+0.3$	42

*Daytime Occultation

LUNAR OCCULTATIONS VISIBLE AT EDMONTON AND VANCOUVER, 1960

Date	Star		$\begin{gathered} \mathrm{I} \\ \text { or } \\ \mathrm{E} \end{gathered}$	$\begin{gathered} \text { Age } \\ \text { of } \\ \text { Moon } \end{gathered}$	Edmonton				Vancouver			
					M.S.T.	a	b	P	P.S.T.	a	b	P
	75 Tau	5.3	I	d ${ }_{11.4}$	$\mathrm{cc}_{\text {h m }}^{21}$		0		20			
Jan. 10	${ }_{\alpha}$ Tau	1.1	I	11.6	$\begin{array}{r}21 \\ 212.8 \\ \hline 12\end{array}$	-0.4	-0.3	113	$\begin{array}{rr}20 & 09.1 \\ 1 & 18.8\end{array}$	-1.9 -0.5	-0.1	107
Jan. 10	α Tau	1.1	E	11.6	312.1	-0.4	-0.9	242	208.0	-0.9	+0.2	${ }_{222}$
Jan. 11	111 Tau	5.1	I	12.5	152.5			162	No occ.			
Jan. 23	θ Lib	4.3	I	24.8	Sun				703.8	-0.9	-1.1	155
Feb. 8	26 Gem	5.1	I	11.9	2104.1	-1.5	+1.5	65	1943.4	-1.4	+1.5	76
Feb. 17	82 Vir	5.2	E	20.2	548.2	-1.6	-0.4	254	427.8			233
Mar. 4	${ }^{\alpha}$ Tau*	1.1	I	7.2	1559.6	-0.4	+4.0	20	1441.4	-0.1	+3.7	22
Mar. 4	α Tau*	1.1	E	7.2	1642.1	-2.1	-1.6	315	1526.1	-2.0	-0.7	311
Mar. 7	λ Gem	3.6	I	10.5	2321.6	-0.6	-3.0	145	Graze			
Mar. 11	48 Leo	5.2	I	14.4	No occ.				1823.4	-0.2	+4.1	44
Mar. 15	$\mathrm{k}^{\text {Vir }}$	4.3	E	18.6	No occ.				2326.0	-0.3	-0.8	336
Mar. 31	${ }^{10}$ Tau	4.0	I	4.9	2206.3	0.0	-2.0	110	2116.0	0.0	-2.7	129
Mar. 31	${ }^{02}$ Tau	3.6	I	4.9	2216.6	+0.3	-2.9	136	No occ.			
Mar. 31	75 Tau	5.3	I	4.9	No occ.				${ }^{21} 27.2$			17
Mar. 31	264 BTau	4.8	I	4.9	Low				2209.2		-1.1	77
Apr. 30	26 Gem	5.1	I	5.3	${ }_{22}^{22} 31.0$	-0.7	$+0.2$	33	2126.5	-0.6	-0.7	58
June 1	48 Leo	5.2	I	7.7	2343.3	-0.4	-1.1	57	2242.9	-0.6	-1.2	71
July 16	$\xi^{1} \mathrm{Cet}$	4.5	I	22.4	Sun				${ }_{2}^{2} 41.3$	0.0	+3.0	15
July 16	ξ^{1} Cet	4.5	E	22.4	Sun				3 3 22.9	-1.5	+0.5	301
July 30	${ }_{\kappa} \mathrm{Vir}$	4.3	I	7.4	${ }^{21} 46.9$	-0.8	-1.7	111	2044.6	-1.0	-1.6	117
Aug. 8	φ Aqr	4.4	,	16.6	$\begin{array}{rrr}23 & 50.3\end{array}$	-1.0	+1.3	83	2235.5	-0.8	+1.4	84
Aug. 8/9	φ Aqr	4.4	E	16.6	$\begin{array}{lll}0 & 57.3 \\ 1 & 23\end{array}$	-1.1	+1.3	234	2340.7	-1.0	+1.6	235
Aug. 15	γ Tau	3.9	E	22.6	123.9	-0.4	+0.7	311	Low			
Aug. 15	71 Tau	4.6	E	22.7	Sun				336.3	-0.2	+3.2	208
Aug. 15	${ }^{10}$ Tau	4.0	I	22.8	Sun				403.6	-1.0	+1.8	72
Aug. 15	θ^{2} Tau	3.6	I	22.8	Sun				405.2	-1.2	+1.2	94
Aug. 15	${ }_{\boldsymbol{\alpha}} \mathrm{Tau}^{*}$	1.1	E	22.9	No occ.				$\begin{array}{ll}9 & 24.1\end{array}$			25
Aug. 15	${ }^{\alpha}$ Tau*	${ }_{3}^{1.1}$	E	22.9 14	No occ.				1004.8	-	-	323
$\begin{array}{ll}\text { Sep. } & 5 \\ \text { Oct. } \\ \\ \text { O }\end{array}$	λ Aqr \ddagger φ Aqr	3.8 4.4	E	14.0 12.2	2 18 50.0 50.9	-0.8	-0.2 +1.7	236 75	Sun			
Oct. 8	${ }_{\theta^{1}}$ Tau	4.0	I	18.3	2128.9	+0.5	+2.4	27	Low			
Oct. 8	$\theta^{1} \mathrm{Tau}$	4.0	E	18.3	2206.2	-0.4	+0.8	307	Low			
Oct. 8	${ }^{02}$ Tau	3.6	E	18.3	2214.5	-0.2	+1.4	280	Low			
Oct.9/10	111 Tau	5.1	E	19.4	${ }_{0}^{0} 50.8$	-0.7	+1.5	271	2338.5	-0.5	+1.5	270
Nov. 5	γ Tau	3.9	I	15.9	$\begin{array}{ll}3 & 03.4 \\ 3 & 5\end{array}$	-1.6	-2.8	130	$1 \begin{array}{ll}1 & 59.1 \\ 2\end{array}$			149
Nov. 5	${ }^{\gamma} \mathrm{Tau}$	3.9	$\stackrel{\text { E }}{ }$	15.9	353.6	-1.3	+1.8	210	226.8		-	188
Nov. Nov, 12	26 Gem	5.1	E	18.7	2146.5	+0.5	+2.6	219	Low			
Nov. 12 Nov. 13	A Leo	4.6	E	23.0	No occ.				153.2	-0.7	-2.2	346
Nov. 13 Nov. 14	${ }_{\beta}^{59} \mathrm{Vir}$	5.1 3.8	E	24.1	Noocc. 611.8			88	4 37.7 4 56.7			${ }_{6}^{6}$
Nov. 14	β Vir	3.8 3.8	E	25.1	Sun			88	ll $\begin{aligned} & 4 \\ & 6\end{aligned} 086.8$	-0.9	+0.9 +0.1	300
Nov. 26	λ Aqr	3.8	I	7.2	2301.5	-0.2	+0.2	31	2156.8	-0.5	+0.3	36
$\begin{array}{ll}\text { Dec. } \\ \text { Dec. } & 12 \\ 12\end{array}$	η Vir	4.0	E	23.6	552.8	-1.1	-0.2	126	445.1	-0.8	-0.9	147
Dec. 12	η Vir	4.0	E	23.6	708.2	-1.4	-0.2	285	550.6	-1.8	+0.9	264
Dec. 29	${ }^{\theta^{1}} \mathrm{Tau}$	4.0	I	11.7	1930.8	-1.0	+1.3	90	1815.7	-0.8	+1.5	90
$\begin{array}{ll}\text { Dec. } & 29 \\ \text { Dec. } & 29\end{array}$	${ }^{\theta^{2} \text { Tau }}$	3.6 4.8	I	11.7	1937.3	- 1.4	+0.6	114	181821.8	-1.1	+0.8	114
Dec. 29	264 BTau	4.8	I	11.7	2047.9	-1.2	+1.5	66	1929.8	-1.0	+1.8	68
Dec.29/30 Dec. 30	α Tau	1.1	E	11.9	$\begin{array}{ll}0 & 22.3 \\ 1\end{array}$	-1.3	+0.4	54	2305.5	-1.7	+0.5	66
Dec. 30 Dec. $30 / 31$	${ }_{115}$ Tau	1.1 5.3	E	11.9 12.9	$\begin{array}{ll}1 & 29.9 \\ 0 & 47.5\end{array}$	-1.0	-2.1	290	${ }^{0} 25.0$	-1.4	-1.3	276
Dec.30/31	115 Tau	5.3	I	12.9		-1.5		37	2325.2	-1.7	+1.4	53

*Daytime Occultation
\ddagger During Lunar Eclipse

Amateurs-Have Your Mirrors Aluminized at VACUUM METALLIZING LTD. 300 Carlaw Ave., Toronto 8 HOward 1-6349

(Mirror returned the same day if required)

METEORS, FIREBALLS AND METEORITES

By Peter M. Millman

Meteoroids are small solid particles moving in orbits about the sun. On entering the earth's atmosphere at velocities ranging from 10 to 45 miles per second they become luminous and appear as meteors or fireballs and, if large enough to avoid complete vapourization, in rare cases they may fall to the earth as meteorites.

Meteors are visible on any night of the year. At certain times of the year the earth encounters large numbers of meteors all moving together along the same orbit. Such a group is known as a meteor shower and the accompanying list gives the most important showers visible in 1960.

On the average an observer sees 7 meteors per hour which are not associated with any recognized shower. These have been included in the hourly rates listed in the table. The radiant is the position among the stars from which the meteors of a given shower seem to radiate. The appearance of any very bright fireball should be reported immediately to the nearest astronomical group or organization. If sounds are heard accompanying such a phenomenon there is a possibility that a meteorite may have fallen and the astronomers must rely on observations made by the general public to track it down.

Meteor Showers for 1960

Shower	Shower Maximum			Radiant			Single Observer Hourly Rate	Normal Duration to $\frac{1}{4}$ strength of Max.
	Date	E.S.T.	Moon	Position at Max. $\alpha \quad \delta$	${ }_{\alpha}^{\substack{\text { Daily } \\ \text { Motion }}}$			
					-			(days)
Quadrantids	Jan. 4	$00^{\text {b }}$	F.Q.	$232+50$			40	0.6
Lyrids	Apr. 21	18	L.Q.	$274+34$	+1.1	0.0	15	2.3
η Aquarids	May 4	18	F.Q.	${ }^{336} 000$	+0.9	+0.4	20	18
δ Aquarids	July 29	01	F.Q.	339 -17	+0.85	$+0.17$	20	20
Perseids	Aug. 11	21	L.Q.	$046+58$	+1.35	+0.12	50	5.0
Orionids	Oct. 20	08	N.M.	$095+15$	+1.23	+0.13	25	8
Taurids	Nov. 5	09	F.M.	$053+14$	+0.67	+0.13	15	(30)
Leonids	Nov. 16	07	N.M.	$152+22$	+0.70	-0.42	15	4
Geminids	Dec. 13	02	L.Q.	$113+32$	+1.05	-0.07	50	6.0
Ursids	Dec. 22	07	F.Q.	${ }^{117}+76$	+1.05	-0.07	15	2.2

Study the Stars with Binoculars and Telescopes from
 EATON'S OF CANADA

(Business Not Solicited in the U.S.A.)

THE BRIGHTEST STARS

By Donald A. MacRae

The 286 stars brighter than apparent magnitude 3.55.
Star. If the star is a visual double the letter A indicates that the data are for the brighter component. The brightness and separation of the second component B are given in the last column. Sometimes the double is too close to be conveniently resolved and the data refer to the combined light, $A B$; in interpreting such data the magnitudes of the two components must be considered.

Visual Magnitude (V). These magnitudes are based on photoelectric observations, with a few exceptions, which have been adjusted to match the yellow colour-sensitivity of the eye. The photometric system is that of Johnson and Morgan in Ap. J., vol. 117, p. 313, 1953. It is as likely as not that the true magnitude is within 0.03 mag . of the quoted figure, on the average. Variable stars are indicated with a " v ". The type of variability, range, R, in magnitudes, and period in days are given.

Colour index $(B-V)$. The blue magnitude, B, is the brightness of a star as observed photoelectrically through a blue filter. The difference $B-V$ is therefore a measure of the colour of a star. The table reveals a close relaton between $B-V$ and spectral type. Some of the stars are slightly reddened by interstellar dust. The probable error of a value of $B-V$ is only 0.01 or 0.02 mag .

Type. The customary spectral (temperature) classification is given first. The Roman numerals are indicators of luminosity class. They are to be interpreted as follows: Ia-most luminous supergiants; Ib-less luminous supergiants; II—bright giants; III—normal giants; IV—subgiants; V—main sequence stars. Intermediate classes are sometimes used, e.g. Iab. Approximate absolute magnitudes can be assigned to the various spectral and luminosity class combinations. Other symbols used in this column are: p-a peculiarity; e-emission lines; v -the spectrum is variable; m -lines due to metallic elements are ab normally strong; f-the O-type spectrum has several broad emission lines; n or nn-unusually wide or diffuse lines. A composite spectrum, e.g. M1 Ib + B, shows up when a star is composed of two nearly equal but unresolved components. In the far southern sky, spectral types in italics were provided through the kindness of Prof. R. v. d. R. Woolley, Australian Commonwealth Observatory. Types in parentheses are less accurately defined (g-giant, d-dwarf, c-exceptionally high luminosity). All other types were very kindly provided especially for this table by Dr. W. W. Morgan, Yerkes Observatory.

Parallax (π). From "General Catalogue of Trigonometric Stellar Parallaxes" by Louise F. Jenkins, Yale Univ. Obs., 1952.

Absolute visual magnitude $\left(\mathrm{M}_{V}\right)$, and distance in light-years (D). If π is greater than $0.030^{\prime \prime}$ the distance corresponds to this trigonometric parallax and the absolute magnitude was computed from the formula $\mathrm{M}_{V}=V+5+5 \log \pi$. Otherwise a generally more accurate absolute magnitude was obtained from the luminosity class. In this case the formula was used to compute π and the distance corresponds to this "spectroscopic" parallax. The formula is an expression of the inverse square law for decrease in light intensity with increasing distance. The effect of absorption of light by interstellar dust was neglected, except for three stars, ζ Per, σ Sco and ζ Oph, which are significantly reddened and would therefore be about a magnitude brighter if they were in the clear.

Annual proper motion (μ), and radial velocity (R). From "General Catalogue of Stellar Radial Velocities" by R. E. Wilson, Carnegie Inst. Pub. 601, 1953. Italics indicate an average value of a variable radial velocity.

The star names are given for all the officially designated navigation stars and a few others. Throughout the table, a colon (:) indicates an uncertainty.

We are indebted to Dr. Daniel L. Harris, Yerkes Observatory, particularly for his compilation of the photometric data from numerous sources.

		$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & 0 \\ & \stackrel{\rightharpoonup}{5} \\ & \text { d } \\ & \stackrel{0}{0} \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \text { B } \\ & \text { B } \\ & \hline 9 \end{aligned}$			$\begin{aligned} & \text { ơ } \\ & \text { 愛 } \\ & \end{aligned}$				$\begin{aligned} & \text { CH0 } \\ & 0 \\ & 0 \\ & 0.0 \\ & 0 \\ & 0 \end{aligned}$	
Star	R.A. 19	60 Dec.	V	$B-V$		Type	π	M_{V}	D	μ	R	
Sun	h m	- 1	-26.73	+0.63		V	"	+4.84	1.y.	"	km./sec.	Sun
$\boldsymbol{\alpha}$ And	0006.3	+28 52	2.06	-0.08	B9p		0.024	-0.1	90	0.209	-11.7	Manganese star Alpheratz
β Cas	07.0	+58 56	2.26	+0.34	F2	IV	0.072	+1.6	45	0.555	+11.8	(Caph
$\gamma \mathrm{Peg}$	11.2	+1458	2.84 v	-0.23	B2	IV	-. 004	-3.4	570	0.010	+04.1	β CMa type, R in $V 2.83-2.85,0.15{ }^{\text {d }}$.
β Hyi	23.7	-7729	2.78	+0.62	G1	IV	0.153	$+3.7$	21	2.255	$+22.8$	$\gamma \mathrm{Peg}=$ Algenib
α Phe	24.3	-4231	2.39	+1.08	K0	III	0.035	+0.1	93	0.442	$+74.6$	Ankaa
δ And A	37.2	+30 39	3.25:	+1.26	K3	III	0.024	-0.2	160	0.161	-07.3	$B 12^{\mathrm{m}} 28^{\prime \prime}$
α Cas	38.2	+56 19	2.16	+1.18	K0	II-III	0.009	-1.1	150	0.058	-03.8	Var.? Schedar
β Cet	41.6	-18 12	2.02	+1.03	K1	III	0.057	$+0.8$	57	0.234	$+13.1$	Diphda
η Cas A	46.7	+5736	3.47	+0.56	G0	V	0.182	+4.8	18	1.221	+09.4	$B 7.26{ }^{\mathrm{m}} 9^{\prime \prime}$
γ Cas A	54.3	+6030	2.13 v	$-0.16 \mathrm{v}$	B0	IV: pe	0.034	-0.3:	96:	0.026	-06.8	Var. $B 8.18^{\mathrm{m}} 2^{\prime \prime}$
β Phe $A B$	0104.3	$-46 \quad 56$	3.30	+0.88	G8	III	0.017	+0.3	190	0.035	-01.1	$A 4.1{ }^{\text {m }} B 4.1^{\mathrm{m}} 2^{\prime \prime}$
η Cet	06.6	-1024	3.47	+1.16	K3	III	0.032	$+1.0$	102	0.250	+11.5	
$\boldsymbol{\beta}$ And	07.5	+35 25	2.02	+1.57	M0	III	0.043	$+0.2$	76	0.211	+00.3	Mirach
δ Cas	23.2	+60 02	2.67	+0.13	A5	V	0.029	$+2.1$	43	0.301	+06.7	Ecl. ? R 0.08: ${ }^{\text {m 759 }}{ }^{\text {d }}$
γ Phe	26.6	-43 31	3.44	+1.56	K5	Ib	$-.003$	-4.6	1300	0.209	+25.7	
$\boldsymbol{\alpha}$ Eri	36.2	-5726	0.51	-0.16	B5	$I V:$	0.023	-2.3	118	0.098	+19	Achernar
τ Cet	42.2	-1609	3.50	+0.72	G8	Vp	0.275	$+5.70$	12	1.921	-16.2	

Star	R.A. 19	60 Dec.	V	$B-V$	Type	π	M_{V}	D	μ	R	
	h m	-				"		1.y.	"	km./sec.	
$\boldsymbol{\alpha}$ Tri	0150.8	+29 23	3.45	+0.46	F6 IV	0.050	+2.0	65	0.230	-12.6	
ϵ Cas	51.5	+63 28	3.33	-0.15	B3 IV: p	0.007	-2.7	520	0.038	-08.1	
β Ari	52.4	+20 37	2.68	+0.14	A5 V	0.063	+1.7	52	0.147	-01.9	
α UMi A	55.5	+89 05	1.99v	+0.60v	F8 Ib	0.003	-4.6	680	0.046	-17.4	Cep., R 0.11 ${ }^{\mathrm{m}} 4.0^{\text {d }}, B 8.9^{\mathrm{m}} 18^{\prime \prime}$ Polaris
$\boldsymbol{\alpha}$ Hyi	57.5	-6146	2.84	$+0.28$	FO V		$+2.9$	31	0.265	+07	
γ And A	0201.4	+4208	2.14:	+1.16:	K3 II	0.005	-2.4	260	0.068	-11.7	$B 5.4^{\mathrm{m}} C 6.2^{\mathrm{m}} A-B C 10^{\prime \prime} B-C 0.7^{\prime \prime}$
$\boldsymbol{\alpha}$ Ari	04.9	+2316	2.00	+1.15	K2 III	0.043	+0.2	76	0.241	-14.3	Hamal
β Tri	07.2	+34 48	3.00	+0.13	A5 III	0.012	-0.1	140	0.156	+09.9	
- Cet A	17.3	-03 09	2.0 v		(gM6e)	0.013	-0.5	103	0.232	+63.8	LP, 2 2.0-10.1, 332 ${ }^{\text {d }}$, $B 10^{\mathrm{m}} 1^{\prime \prime}$ Mira
γ Cet $A B$	41.2	+03 04	3.48	+0.11	A2 V	0.048	+2.0	68	0.203	-05.1	$A 3.57^{\mathrm{m}}$ B 6.23 ${ }^{\mathrm{m}} 3^{\prime \prime}$
θ Eri $A B$	56.7	-4028	2.92	+0.13	A3 V	0.028	+1.7	65	0.061	+11.9	A 3.25 ${ }^{\text {m }}$ B $4.36{ }^{\text {m }} 8^{\prime \prime}$ Acamar
$\boldsymbol{\alpha}$ Cet	0300.2	+03 56	2.54	+1.63	M2 III	0.003	-0.5	130	0.075	-25.9	Menkar
γ Per	01.9	+53 21	2.91:	+0.72:	G8III: + A3:	0.011	+0.3	113	0.004	+02.5	
ρ Per	02.6	+38 41	3.5 v		M4 II-III	0.008	-1.0	260	0.172	+28.2	Irr. R 3.2-3.8
β Per	05.6	+40 48	2.06v	-0.07	B8 V	0.031	-0.5	105	0.006	+04.0	Ecl. R 2.06-3.28, 2.87d Algol
α Per	21.5	$+4943$	1.80	+0.48	F5 Ib	0.029	-4.4	570	0.035	-02.4	Mirfak
δ Per	40.1	$+4740$	3.03	-0.14	B5 III	0.007	-3.3	590	0.046	-09	
η Tau	45.1	$+2359$	2.86	-0.09	B7 III	0.005	-3.2	541	0.050	$+10.1$	in Pleiades Alcyone
γ Hyi	47.8	-7422	3.30	+1.61	M2 II-III	$-.001$	-1.5	300	0.125	$+16.0$	
$\zeta \operatorname{Per} A$	51.6	+3146	2.83	+0.13	B1 Ib	0.007	-6.1	1000	0.015	$+20.6$	$B 9.36{ }^{\mathrm{m}} 13^{\prime \prime}$
ϵ Per A	55.2	+39 54	2.88	-0.17	B0.5 V	$-.001$	-3.7	680	0.036	-01	$B 7.99^{\mathrm{m}} 9^{\prime \prime}$
γ Eri	56.2	-1337	3.01	+1.58	M0 III	0.003	-0.5	160	0.126	+61.7	
$\boldsymbol{\alpha}$ Ret A	0413.9	-62 34	3.33	+0.91	G6 II	0.008	-2.1	390	0.064	$+35.6$	$B 12^{\mathrm{m}} 49^{\prime \prime}$
$\boldsymbol{\epsilon}$ Tau	26.3	+1906	3.54	+1.02	K0 III	0.018	+0.1	160	0.118	$+38.6$	
$\theta^{2} \mathrm{Tau}$	26.4	+15 47	3.42	+0.17	A7 III	0.025	+0.2	140	0.108	$+39.5$	
α Dor	33.1	-5508	3.28	-0.08	AO IIIP	0.011	-1.2	260	0.051	$+25.6$	Silicon star
α Tau A	33.6	+1626	0.86 v	+1.52	K5 III	0.048	-0.7	68	0.202	+54.1	Irr. ? R0.78-0.93, $B 13^{\mathrm{m}} 31^{\prime \prime}$ Aldebaran
π^{3} Ori	47.7	+06 54	3.17	$+0.45$	F6 V	0.125	+3.65	26	0.468	$+24.3$	
¢ Aur	54.4	+33 06	2.64:	+1.49	K3 II	0.015	-2.4	330	0.021	+17.5	

Star	R.A. 19	60 Dec.	V	$B-V$		ype	π	M_{V}	D	μ	R	
	h m	- ,					"		1.y.	"	km./sec.	
$\boldsymbol{\epsilon}$ Aur	0459.1	+43 46	3.0 v	+0.50:	F0	Iap	0.004	-7.1	3400	0.008	-02.5	Ecl. $R 0.81{ }^{\mathrm{m}} 9886^{\text {d }}$
η Aur	0503.7	+41 11	3.17	-0.18	B3	V	0.013	-2.1	370	0.077	+07.4	
ϵ Lep	03.8	-2225	3.21	+1.46	K5	III	0.006	-0.4	170	0.077	+01.0	
β Eri	05.9	-05 08	2.79	+0.13	A3	III	0.042	+0.9	78	0.122	-08	
μ Lep	11.1	-16 15	3.29	-0.09	B9	$I I I p$	0.018	-2.1	390	0.049	+27.7	Manganese star
β Ori A	12.6	-08 15	0.14 v	-0.04	B8	Ia	$-.003$	-7.1	900	0.001	+20.7	Irr.? R 0.08-0.20, $B 6.65^{\text {mi }} 9^{\prime \prime} \quad$ Rigel
$\boldsymbol{\alpha}$ Aur	13.7	+45 58	0.05	+0.80	G8II	: +F	0.073	-0.6	45	0.435	+30.2	Capella
η Ori $A B$	22.5	-0226	3.32 v	-0.18	B0.5	V	0.004	-3.7	940	0.008	+19.8	Ecl. $R 3.32-3.50,8.0^{\text {d }}, A 3.59^{\mathrm{m}} B 4.98^{\mathrm{m}} 1^{\prime \prime}$
γ Ori	23.0	+06 19	1.64	-0.23	B2	III	0.026	-4.2	470	0.015	+18.2	Bellatrix
β Tau	23.8	$+2835$	1.65	-0.13	B7	III	0.018	-3.2	300	0.178	+08.0	Elnath
β Lep A	26.5	-2047	2.81	+0.82	G5	III	0.014	+0.1	113	0.090	-13.5	$B 9.4{ }^{\mathrm{m}} 3^{\prime \prime}$
δ Ori A	30.0	-0020	2.20v	-0.20	09.5	II	0.004	-6.1	1500	0.002	$+16.0$	Ecl. R 2.20-2.35 5.7d, $B 6.74{ }^{\text {m }} 53^{\prime \prime}$
α Lep	31.0	-1751	2.58	+0.22	F0	Ib	0.002	-4.6	900	0.006	$+24.7$	
λ Ori $A B$	32.9	+09 55	3.40	-0.18	O8		0.006	-5.1	1800	0.006	+33.5	$A 3.56{ }^{\mathrm{m}} B 5.54^{\mathrm{m}} 4^{\prime \prime} C 10.92^{\mathrm{m}} 29^{\prime \prime}$
¢ Ori $A B$	33.5	-0556	2.76	-0.24	O9	III	0.021	-6.1	2000	0.005	+21.5	$A 2.78{ }^{\mathrm{m}}$ B $7.31^{\mathrm{m}} 11^{\prime \prime}$
$\boldsymbol{\epsilon}$ Ori	34.2	$\begin{array}{lll}-01 & 14\end{array}$	1.70	-0.19	B0	Ia	$-.007$	-6.8	1600	0.000	$+26.1$	Alnilam
$\zeta \mathrm{Tau}$	35.3	+2107	3.07:	-0.13:	B2	III: p	-. 002	-4.2	940	0.023	+24.3	Shell star
$\boldsymbol{\alpha} \operatorname{Col} A$	38.2	-3406	2.64	-0.11	B8	$V e{ }^{\text {a }}$	$-.005$	-0.6	140	0.026	$+35$	$B 12^{\mathrm{m}} 12^{\prime \prime}$
ζ Ori $A B$	38.7	-0158	1.79	-0.22	09.5	Ib	0.022	-6.6	1600	0.004	$+18.1$	$A 1.91{ }^{\text {m }}$ B $4.05^{\mathrm{m}} 3^{\prime \prime}$
$\boldsymbol{\kappa}$ Ori	45.9	-09 41	2.06	-0.17	B0.5	Ia	0.009	-6.9	2100	0.004	+20.6	
$\beta \mathrm{Col}$	49.5	-35 47	3.12	+1.16		K1)	0.023	+0.0	140	0.402	+89.4	
$\boldsymbol{\alpha}$ Ori	53.0	+0724	0.41 v	+1.87:	M2	Iab	0.005	-5.6	520	0.028	+21.0	Irr.? R 0.06:-0.75: ${ }^{\text {m }}$ Betelgeuse
β Aur	56.6	+44 57	1.86	+0.06	A2	V	0.037	-0.3	88	0.051	-18.2	Irr.? R 0.06:0.75. Betelgeuse
θ Aur $A B$	57.0	+37 13	2.65	-0.07	B9.5p		0.018	+0.1	108	0.097	+29.3	Silicon star $A 2.67^{\mathrm{m}} B 7.14{ }^{\mathrm{m}} 3^{\prime \prime}$
$\boldsymbol{\eta}$ Gem A	0612.5	$+2231$	3.33 v	$+1.58$	M3	III	0.013	-0.6	200	0.066	+19.0	$R 0.27^{\mathrm{m}}, B 6.70^{\mathrm{m}} 1^{\prime \prime}$
$\zeta \mathrm{CMa}$	18.8	-3003	3.04	-0.18	B2.5	V	$-.003$	-2.4	390	0.004	+32.2	
μ Gem	20.5	+2232	2.92 v	+1.63	M3	III	0.021	-0.6	160	0.129	+54.8	$R 0.14{ }^{\text {m }}$
$\boldsymbol{\beta} \mathrm{CMa}$	20.9	-1756	1.96	-0.24	B1	II-III	0.014	-4.8	750	0.004	+33.7	β CMa type variable
$\boldsymbol{\alpha}$ Car	23.1	-52 40	-0.72	+0.16	F0	Ib-II	0.018	-3.1	98	0.025	+20.5	Canopus
γ Gem	35.4	+16 26	1.93	0.00	A0	IV	0.031	-0.6	105	0.066	-12.5	

Star	R.A. 19	60 Dec.	V	$B-V$	Type	π	M_{V}	D	μ	R	
	h m	- ,				"		1.y.	"	km./sec.	
ν Pup	0636.5	-43 10	3.19	-0.10	B7 III		-3.2	620	0.010	$+28.2$	
ϵ Gem	41.5	+25 10	3.00	+1.39	G8 Ib	0.009	-4.6	1080	0.016	+09.9	
$\boldsymbol{\xi}$ Gem	43.0	+1256	3.38	+0.43	F5 IV	0.051	$+1.9$	64	0.224	$+25.3$	
$\boldsymbol{\alpha} \mathrm{CMa} A$	43.4	-16 40	-1.42	+0.01	A1 V	0.375	$+1.45$	8.7	1.324	-07.6	$B 8.66^{\mathrm{m}} 1960: 9^{\prime \prime}, \theta=90^{\circ} \quad$ Sirius
$\boldsymbol{\alpha}$ Pic	47.8	-61 54	3.27	+0.21	$A 5 \quad V$		+2.1	57	0.272	+20.6	B $1960 \cdot{ }^{\prime \prime}, \theta=90^{\circ}$ Sirius
τ Pup	48.9	-5034	2.97	+1.17	K0 III		+0.1	124	0.079	$+36.4$	
ϵ CMa A	57.1	-2855	1.48:	-0.18:	B2 II		-5.1	680	0.004	$+27.4$	$B 7.5^{\mathrm{m}} 8^{\prime \prime} \quad$ Adhara
$\boldsymbol{o}^{2} \mathrm{CMa}$	0701.4	-23 46	3.02	-0.09	B3 Ia		-7.1	3400	0.000	+48.4	
$\boldsymbol{\delta} \mathrm{CMa}$	06.8	-2620	1.85	+0.65	F8 Ia	-. 018	-7.1	2100	0.005	+34.3	
$\mathrm{L}_{2} \mathrm{Pup}$	12.3	-44 34			(gM5e)	0.016	-3.1	650	0.342	+53.0	LP, R 3.4-6.2, $141^{\text {d }}$
π Pup	15.7	-37 01	2.81	+1.56:	(gK4)	0.023	-0.3	140	0.008	+15.8	
$\boldsymbol{\eta}$ CMa	22.5	-2913	2.46	-0.08	B5 Ia		-7.1	2700	0.008	$+41.1$	
$\boldsymbol{\beta} \mathrm{CMi}$	25.0	+08 22	2.91	-0.09	B7 V	0.020	-1.1	210	0.065	$+22$	
$\sigma \operatorname{Pup} A$	28.0	-4313	3.28	+1.49	(gK5)	0.013	-0.4	180	0.195	$+88.1$	$B 9.4{ }^{\mathrm{m}} 22^{\prime \prime}$
$\boldsymbol{\alpha}$ Gem A	32.0	+3159	1.97	+0.00:	A1 V	0.072	$+1.3$	45	0.199	+06.0	$5^{\prime \prime}, B-V+0.02, C 9.08 \mathrm{v}^{\mathrm{m}} 73^{\prime \prime}$ Castor
$\boldsymbol{\alpha}$ Gem B	32.0	+31 59	2.95	+0.07:	A5m	0.072	$+2.3$	45	0.199	-01.2	$\} 5^{\prime \prime}, B-V+0.02, C 9.08 \mathrm{v}^{\mathrm{m}} 73^{\prime \prime}$ Castor
$\boldsymbol{\alpha} \mathrm{CMi} A$	37.2	+05 20	0.37	+0.41	F5 IV-V	0.288	$+2.7$	11.3	1.250	-03.2	$B 10.7^{\mathrm{m}} 5^{\prime \prime} \quad$ Procyon
$\boldsymbol{\beta}$ Gem	42.9	+28 07	1.16	+1.02	K0 III	0.093	+1.0	35	0.625	+03.3	Pollux
$\boldsymbol{\xi}$ Pup	47.6	-2445	3.34	+1.23	G3 Ib	-. 003	-4.6	1240	0.005	+02.7	
χ Car	55.8	-5252	3.48	-0.18	(B3)		-2.1	430	0.039	+19.1	
ζ Pup	0802.2	-3953	2.23	-0.26	O5f		-7.1	2400	0.033	-24	
ρ Pup	05.8	-24 11	2.80 v	$+0.42$	F6 IIp	0.031	+0.3:	105:	0.098	$+46.6$	Var. R 2.72-2.87
$\gamma \operatorname{Vel} A$	08.3	-47 14	1.88	-0.26	$W C 7$		-4.1	520	0.011	+35	$B 4.31^{\mathrm{m}} 41^{\prime \prime}$
$\epsilon \mathrm{Car}$	21.7	-5923	1.97	+1.14:	$(\mathrm{K} 0+\mathrm{B})$		-3.1:	340	0.030	$+11.5$	Avior
- UMa A	27.0	+6051	3.37	+0.83	G5 III	0.004	$+0.1$	150	0.171	+19.8	$B 15{ }^{\mathrm{m}} 7^{\prime \prime}$
δ Vel $A B$	43.6	-5434	1.95	+0.05	AO V	0.043	$+0.2$	76	0.086	+02.2	$A 2.0^{\mathrm{m}} B 5.1^{\mathrm{m}} 3^{\prime \prime} C D 10^{\mathrm{m}} 69^{\prime \prime}$
ϵ Hya $A B C$	44.7	+06 34	3.39	+0.68	G0 comp.	0.010	$+0.6$	140	0.198	$+36.4$	$A 3.7^{\mathrm{m}} B 5.2^{\mathrm{m}} 0.2^{\prime \prime} 15^{\mathrm{y}}, C 6.8^{\mathrm{m}} 3^{\prime \prime} D 12^{\mathrm{m}} 20^{\prime \prime}$
ζ Hya	53.3	+06 06	3.11	+1.00	K0 II-III	0.029	-1.1	220	0.101	+22.8	
\checkmark UMa A	56.5	+48 12	3.12	+0.19	A7 V	0.066	$+2.2$	49	0.505	+12.2	$B C 10.8^{\mathrm{m}} 7^{\prime \prime}$

Star	R.A. 19	60 Dec.	V	$B-V$	Type	π	M_{V}	D	μ	R	
	h m	$\bigcirc 1$				11		1.y.	11	km./sec.	
λ Vel	0906.5	-4316	2.24	+1.64:	$K 5 \quad I b$	0.015	-4.6	750	0.026	+18.4	Suhail
a Car	09.9	-5848	3.43	-0.17	B3 IV		-2.9	590	0.028	+23.3	
$\boldsymbol{\beta}$ Car	12.8	-6933	1.67	+0.01	AO III	0.038	-0.4	86	0.183	-05	Miaplacidus
¢ Car	16.0	-5906	2.25	+0.17	FO Ib		-4.6	750	0.019	$+13.3$	
$\boldsymbol{\alpha}$ Lyn	18.6	$+3434$	3.17	$+1.54$	M0 III	0.021	-0.5	180	0.217	+37.6	
κ Vel	20.9	-5450	2.45	-0.15	B2 IV	0.007	-3.4	470	0.012	+21.9	
$\boldsymbol{\alpha}$ Hya	25.6	-08 29	1.98	$+1.44$	K4 III	0.017	-0.3	94	0.034	-04.3	Alphard
N Vel	30.0	-5651	3.19	$+1.56$	(gK5)	0.015	-0.4	170	0.036	-13.9	
θ UMa A	30.2	+5152	3.19	$+0.46$	F6 IV	0.052	$+1.8$	63	1.094	+15.4	$B 14{ }^{\text {m }} 5^{\prime \prime}$
є Leo	43.6	$+2358$	2.99	$+0.81$	G0 II	0.002	-2.1	340	0.048	+05.0	
1 Car	44.1	-6219	4.1		(cG0)	0.019	-5.5	2700	0.016	$+04.0$	Cep. max. $3.4{ }^{\mathrm{m}} \min .4 .8^{\mathrm{m}}, 35.52^{\text {d }}$
v Car $A B$	46.1	-6453	2.95	+0.26	$A 7 \% \quad I I$	0.020	-2.1	340	0.012	$+13.6$	$A 3.02^{\mathrm{m}}$ B $6.03^{\mathrm{m}} 5^{\prime \prime}$
$\boldsymbol{\alpha}$ Leo A	1006.2	+1210	1.36	-0.11	B7 V	0.039	-0.7	84	0.248	$+03.5$	$B 8.1^{\mathrm{m}} 177^{\prime \prime}$ Regulus
ω Car	12.8	-6950	3.33	-0.08	$B 8.5$ IV		-1.5	300	0.029	+04	
ζ Leo	14.5	$+2337$	3.46	+0.30	$\mathrm{F0}$ III	0.009	$+0.5$	130	0.023	-15.0	
$\boldsymbol{\lambda}$ UMa	14.7	+43 07	3.45	+0.03	A2 IV	$-.010$	+0.1	150	0.170	+18.3	
q Car	15.8	-6108	3.41 v	$+1.55$	$K 5 \quad I b$	0.018	-4.6	1300	0.023	+08.6	Var. R 3.38-3.44
γ Leo $A B$	17.8	$+2003$	1.99	+1.13	K0 IIIp	0.019	+0.1	90	0.350	-36.6	$A 2.29{ }^{\mathrm{m}}$ B $3.54{ }^{\mathrm{m}} 4^{\prime \prime}$
$\mu \mathrm{UMa}$	20.0	+41 42	3.05	+1.55	M0 III	0.031	+0.5	105	0.086	-20.5	
p Car	30.6	$\begin{array}{lll}-61 & 29\end{array}$	3.30 v	-0.11	B5 IVpe		-2.3	430	0.021	$+26.0$	Var. R 3.22-3.39
θ Car	41.5	-64 11	2.74	-0.22	B0 Vp		-4.0	710	0.018	$+24$	
$\mu \mathrm{Vel} A B$	45.0	$\begin{array}{lll}-49 & 12\end{array}$	2.67	+0.89	G5 III		+0.1	108	0.085	+06.9	$A 2.7{ }^{\text {m }}$ B $7.2^{\mathrm{m}} 2^{\prime \prime}$
ν Hya	47.6	-1559	3.12	+1.25	K3 III	0.022	-0.2	150	0.221	-01.0	
β UMa	59.4	$+5636$	2.37	-0.03	A1 V	0.042	$+0.5$	78	0.087	-12.0	Merak
$\boldsymbol{\alpha}$ UMa $A B$	1101.3	+6158	1.81	$+1.06$	K0 III	0.031	-0.7	105	0.138	-08.9	$A 1.88{ }^{\mathrm{m}}$ B 4.82 ${ }^{\mathrm{m}} 1^{\prime \prime} \quad$ Dubhe
$\psi \mathrm{UMa}$	07.4	+44 43	3.00	$+1.14$	K1 III		$+0.0$	130	0.072	-03.8	
$\boldsymbol{\delta}$ Leo	12.0	+20 45	2.57	+0.13	A4 V	0.040	$+0.6$	82	0.201	-20.6	
$\boldsymbol{\theta}$ Leo	12.1	$+1539$	3.34	0.00	A2 V	0.019	+1.1	90	0.104	+07.8	
$\boldsymbol{\lambda}$ Cen	33.9	-6248	3.15	-0.05	B9 III		-2.1	370	0.039	+07.9	
$\boldsymbol{\beta}$ Leo	47.0	$+1448$	2.14	+0.09	A3 V	0.076	$+1.5$	43	0.511	-00.1	Denebola

ロ		
\geqslant	1000 HOO © 	
Q		
$\sum_{k}^{ \pm}$		
k		
岂		
A \cdots m	 órinirióoóoóoóonóo $1++++1+++1+++11$	OOOOHONOHNOHNHNH $+t++111++11++111$
Δ	 	
نِ	 $111++111111+1+11$	
$\begin{aligned} & \text { O- } \\ & \text { < } \\ & \stackrel{4}{4} \end{aligned}$	ష 上	 12
岕	 	

Star	R.A. 19	60 Dec.	V	$B-V$		Ype	π	M_{V}	D	μ	R	
	h m	\bigcirc,					'		1.y.	/	km./sec.	
β Sco $A B$	1603.1	-19 42	2.65	-0.09	B0.5	V	0.004	-3.7	650	0.027	-06.6	$A 2.78{ }^{\mathrm{m}} B 5.04^{\mathrm{m}} 1^{\prime \prime}, C 4.93^{\mathrm{m}} 14^{\prime \prime}$
$\delta \mathrm{Oph}$	12.2	-03 36	2.72	+1.59	M1	III	0.029	-0.5	140	0.156	-19.9	
$\epsilon \mathrm{Oph}$	16.2	-04 36	3.22	+0.97	G9	III	0.036	+1.0	90	0.089	-10.3	
σ Sco A	18.8	-25 30	2.86v	+0.14	B1	III		-4.4	570	0.030	-00.4	β CMa R 2.82-2.90, $0.25{ }^{\text {d }}$, B 8.49m $20^{\prime \prime}$
η Dra A	23.4	+6136	2.71	+0.92	G8	III	0.043	+0.9	76	0.062	-14.3	$B 8.7{ }^{\text {m }} 6^{\prime \prime}$
α Sco A	26.9	-26 -21	0.92 v	+1.84	M1	$\mathrm{Ib}+\mathrm{B}$	0.019	-5.1	520	0.029	-03.2	A $0.86{ }^{\mathrm{m}} 1.02^{\mathrm{m}}$ B $5.07^{\mathrm{m}} 3^{\prime \prime} \quad$ Antares
β Her	28.5	$+2135$	2.78	+0.92	G8	III	0.017	+0.3	103	0.105	-25.5	
$\boldsymbol{\tau}$ Sco	33.4	-28 08	2.85	-0.25	B0	V		-4.0	750	0.030	-00.7	
$\zeta \mathrm{Oph}$	35.0	-10 29	2.57	+0.00	O9.5	V	$-.007$	-4.3	520	0.022	-19	
$\zeta \operatorname{Her} A B$	39.8	+31 40	2.81	+0.64	G0	IV	0.110	+3.1	30	0.608	-69.9	$A 2.91{ }^{\text {m }} B 5.46{ }^{\text {m }} 1^{\prime \prime}$
η Her	41.5	+39 00	3.46	+0.92	G7	III-IV	0.053	+2.1	62	0.097	+08.3	
$\boldsymbol{\alpha}$ TrA	44.4	-68 57	1.93	+1.43	K2	III	0.024	-0.1	82	0.044	-03.6	Atria
ϵ Sco	47.6	$\begin{array}{lll}-34 & 13\end{array}$	2.28	+1.16	K2	$I I I-I V$	0.049	+0.7	66	0.664	-02.5	
μ^{1} Sco	49.2	-37 59	2.99 v	-0.20	B1.5	V		-3.0	520	0.033	-25	Ecl. $R 2.99-3.09,1.4{ }^{\text {d }}$
ζ Ara	55.3	$-55 \quad 56$	3.16	+1.61	(gK	K5)	0.036	+0.9	90	0.042	-06.0	
$\boldsymbol{\kappa}$ Oph	55.8	+09 26	3.18	$+1.15$	K2	III	0.026	-0.1	150	0.293	-55.6	
η Oph $A B$	1708.1	-15 41	2.46	+0.06	A2.5	V	0.047	+1.4	69	0.097	-00.9	$A 3.0^{\mathrm{m}} B 3.4^{\mathrm{m}} 1^{\prime \prime} \quad$ Sabik
ζ Dra	08.7	+65 46	3.20	-0.12	B6	III	0.017	-3.2	620	0.026	-14.1	
η Sco	09.3	$\begin{array}{lll}-43 & 11\end{array}$	3.33	+0.38	F2	III	0.063	+2.3	52	0.293	-28.4	
$\boldsymbol{\alpha}$ Her $A B$	12.8	+14 26	3.10 v	+1.41	M5	II	$-.007$	-2.3	410	0.032	-33.1	A 3.2 ${ }^{\mathrm{m}} \pm 0.3$ B 5.4 ${ }^{\mathrm{m}} 5^{\prime \prime} \quad$ Ras-Algethi
δ Her	13.4	+24 53	3.14	+0.09	A3	IV	0.034	+0.8	96	0.164	-41	
π Her	13.7	+36 51	3.13	+1.43	K3	II	0.020	-2.4	410	0.029	-25.7	
$\theta \mathrm{Oph}$	19.6	-24 58	3.29	-0.22	B2	IV		-3.4	710	0.025	-03.6	
β Ara	22.0	-55 30	2.90	+1.45:	K3	Ib	0.026	-4.6	1030	0.035	-00.4	
γ Ara A	22.0	-5621	3.32	-0.16	B1	V		-3.3	680	0.017	-04	$B 10^{\mathrm{m}} 18^{\prime \prime}$
v Sco	28.0	-37 16	2.71	-0.22	B2	IV		-3.4	540	0.039	+18	
α Ara	28.7	-49 51	2.95	-0.18:	B2.5	V		-2.4	390	0.083	-02	
β Dra A	29.5	+5220	2.77	+0.96	G2	II	0.009	-2.1	310	0.019	-20.0	$B 11.49{ }^{\text {m }} 4^{\prime \prime}$
λ Sco	30.9	-3705	1.60	-0.24	B1	V		-3.3	310	0.031	00	Shaula
$\boldsymbol{\alpha}$ Oph	33.1	+1235	2.09	+0.16	A5	III	0.056	+0.8	58	0.260	+12.7	Rasalhague
$\boldsymbol{\theta}$ Sco	34.4	-4258	1.86	+0.39	FO	$I b$	0.020	-4.6	650	0.012	+01.4	

	$B C 9.78^{\mathrm{m}} 33^{\prime \prime}$		三 10 ค ∞ is 思 $\dot{\sim}$ $\nabla 円$		
a			$\begin{aligned} & \text { N } \\ & \text { N }{ }^{\circ} \\ & +1 \end{aligned}$		
z		000000000000	$\begin{aligned} & \text { 응 } \\ & 0 . \end{aligned}$		
๑			$\mathrm{O}_{4} \mathrm{O}$		$\begin{aligned} & 2 ᄋ 9 \\ & 3 \text { 가 } \end{aligned}$
\sum_{i}^{Δ}			$\begin{array}{r} -\infty \\ +0 \\ ++ \end{array}$		
＊			$\begin{aligned} & \text { 웅 } \\ & \text { Aㅇㅇ } \\ & 000 \end{aligned}$		$\begin{gathered} 40 \\ 80 \\ 0.0 \end{gathered}$
$\stackrel{\mathscr{L}}{\stackrel{\rightharpoonup}{\lambda}}$				ت － ज N	
$\begin{aligned} & A \\ & 1 \end{aligned}$			$\begin{aligned} & \infty-8 \\ & 0.0 \\ & +1 \\ & \hline \end{aligned}$		$$
Δ	 		$\begin{aligned} & \text { We } \\ & \text { } \\ & \text { 认 } \end{aligned}$		
$\begin{aligned} & \text { ن犬 } \\ & \text { ه́ } \\ & 0 \end{aligned}$			$\begin{aligned} & 0 \infty \\ & 10 \\ & \text { N } \\ & \text { N1 } \\ & 1+1 \end{aligned}$	$\begin{aligned} & \mathrm{Y}-1 \\ & 11 \\ & \hline \end{aligned}$	
		 ∞	$\begin{aligned} & -\dot{0} \dot{8} \dot{8} \\ & 0 \end{aligned}$		
$\begin{gathered} \stackrel{\pi}{0} \\ \stackrel{y}{2} \end{gathered}$	 そうに山いの	 			

Star	R.A. 19	60 Dec.	V	$B-V$	Type	π	M_{V}	D	μ	R	
	h m	- 1				11		1.y.	' 1	km./sec.	
θ Aql	$20 \quad 09.2$	-0056	3.31	-0.07	B9.5 III	0.008	-1.7	330	0.034	-27.3	
β Cap A	18.8	-1455	3.06	$+0.76$	comp.	0.005	$+0.1$	130	0.039	-18.9	Type gK0: + late B; B 5.97m $205^{\prime \prime}$
γ Cyg	20.8	$+4008$	2.22	+0.66	F8 Ib	$-.006$	-4.6	750	0.001	-07.5	
α Pav	22.5	-5652	1.95	-0.20	$B 3$ IV		-2.9	310	0.087	+02.0	Peacock
α Ind	34.8	-4726	3.11	$+1.00$	$K 0 \quad$ III	0.039	$+1.1$	84	0.082	-01.1	
α Cyg	40.1	+4508	1.26	+0.09	A2 Ia	$-.013$	-7.1	1600	0.003	-04.6	Deneb
β Pav	41.4	-6621	3.45	+0.16	A5 III	0.026	-0.1	160	0.046	+09.8	
η Cep	44.5	+61 41	3.41	+0.92	K0 IV	0.071	+2.7	46	0.825	-87.3	
$\epsilon \mathrm{Cyg}$	44.6	$+3349$	2.46	$+1.03$	K0 III	0.044	$+0.7$	74	0.481	-10.3	
ζ Cyg	2111.2	+30 04	3.25 :		G8 II	0.021	-2.2	390	0.056	+17.4	
α Cep	17.6	+62 25	2.44	+0.24	A7 IV, V	0.063	$+1.4$	52	0.156	-10	Alderamin
β Cep	28.2	$+7023$	3.15 v	$-0.22 \mathrm{v}$	B2 III	0.005	-4.2	980	0.014	-08.2	β CMa R 3.14-3.16, 0.19d
$\beta \mathrm{Aqr}$	29.5	-0545	2.86	+0.82	G0 Ib	0.000	-4.6	1030	0.017	+06.5	
ϵ Peg A	42.2	+09 41	2.31	+1.55	K 2 Ib	$-.005$	-4.6	780	0.025	+04.7	$B 11^{\mathrm{m}} 82^{\prime \prime} \quad$ Enif
δ Cap	44.8	-1619	2.92 v	+0.29	A6m	0.065	$+2.0$	50	0.392	-06.3	Var. R 2.88-2.95
γ Gru	51.5	-3733	3.03	-0.10	$B 8 \quad$ III:	0.008	-3.1	540	0.102	-02.1	
$\alpha \mathrm{Aqr}$	2203.7	-0031	2.96	+0.96	G2 Ib	0.003	-4.6	1080	0.016	$+07.5$	
$\boldsymbol{\alpha}$ Gru	05.7	-4709	1.76	-0.14	B5 V	0.051	+0.3:	64:	0.194	+11.8	Al Na'ir
ζ Cep	09.5	+5800	3.31	$+1.55$	$\mathrm{K} 1 \quad \mathrm{Ib}$	0.019	-4.6	1240	0.015	-18.4	
$\boldsymbol{\alpha}$ Tuc	15.8	-6028	2.87	+1.40	K3 III-IV	0.019	$+1.5$	62	0.079	+42.2	
δ Cep A	27.7	$+5813$	3.96 v	+0.66v	F5-G2 Ib	0.005	-4.0	1300	0.012	-16.8	Cep. R 3.51-4.42, $5.4{ }^{\text {d }}$, $B 6.19 \mathrm{~m} 41^{\prime \prime}$
$\zeta \mathrm{Peg}$	39.5	$+1037$	3.40 :	-0.08:	B8 V	$-.004$	-0.6	210	0.077	+07	
β Gru	40.3	-4706	2.17 v	+1.59	M3 \quad II	0.003	-2.5	280	0.134	+01.6	Var. R 2.11-2.23
$\eta \mathrm{Peg}$	41.1	+3001	2.95	+0.85	G8 II: + F ?	$-.002$	-2.2	360	0.027	+04.3	
$\delta \mathrm{Aqr}$	52.5	-1602	3.28	+0.08	A3 V	0.039	$+1.2$	84	0.047	$+18.0$	
$\boldsymbol{\alpha}$ PsA	55.4	-2950	- 19	+0.10	A3 V	0.144	$+2.0$	22.6	0.367	+06.5	Fomalhaut
$\boldsymbol{\beta}$ Peg	2301.8	+2752	2.5 v	+1.67	M2 II-III	0.015	-1.5	210	0.234	+08.7	Var. 2 2.4-2.7 Scheat
$\boldsymbol{\alpha} \mathrm{Peg}$	02.8	+1459	2.50	-0.03	B9.5 III	0.030	-0.1	109	0.071	-03.5	Markab
γ Cep	37.7	$+7725$	3.20	+1.02	K1 IV	0.064	$+2.2$	51	0.168	-42.4	

TABLE OF PRECESSION FOR 50 YEARS

$\begin{aligned} & \dot{4} \\ & \sim \end{aligned}$	$\begin{aligned} & \text { E } 888 \\ & \text { s N } 7=1 \end{aligned}$	$\begin{aligned} & \text { 요 } 80 \\ & 000 \end{aligned}$	$\begin{aligned} & 808 \\ & 0 \\ & \infty \\ & \infty \end{aligned}$		8 용 ※ ๗゚ ๙	앙 시N N	808 구욱	$\begin{aligned} & \text { 아요 } \\ & \text { 익 } \infty \underset{\sim}{\infty} \end{aligned}$
				$\begin{aligned} & \text { H゙ m N O O } \\ & \text { © } \\ & 111 \end{aligned}$				
			تٌ 릉ㅇ응		品 $\stackrel{\text { ® }}{+}$		No N	
		O앙	$\begin{aligned} & \text { N N N゙ } \\ & \text { Ni } \end{aligned}$			$\begin{gathered} \text { N } \\ \text { Ni } \\ \text { N } \end{gathered}$		厄ٌ
				ค ค ค ค		\mathbf{H}_{0}° ล่ ล่ เ	ㅇNN N	
		은 ผ่ ล					$\begin{aligned} & \circ \leftrightarrow 8 \\ & \text { Ni B B } \\ & \text { Ni } \end{aligned}$	
		흥 © © ค ค	옷NN 꾼				$\begin{gathered} \text { N O O O} \\ \text { Ni } \\ \text { Ni } \end{gathered}$	No
		$\stackrel{N}{N} \stackrel{\circ}{\sim} \stackrel{\infty}{\infty}$	$\stackrel{10}{\infty} \stackrel{\infty}{\infty} \underset{\sim}{\infty} \underset{\sim}{\circ}$			Oㅓㅓ융	స్ से ન્ ค่ ง่ ง	
			No 응 N	$\underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\infty} \text { No }$		「び ค \mathfrak{N}	긍	
						성	$\stackrel{\otimes}{-\infty} \underset{\sim}{\infty}$	$\begin{aligned} & \text { O OO O} \\ & \text { 응 } \\ & \hline \end{aligned}$
		$\begin{aligned} & \text { N N N N } \\ & \text { Ni } \end{aligned}$				릉웅		$\underset{\sim}{\text { ®in }} \underset{\sim}{\infty} \underset{\sim}{\text { No }}$
		OiN				엉		
				당 응 1510 is		丽	$\begin{aligned} & \text { 아영 } \\ & \text { o } \\ & +\quad+1 \end{aligned}$	$\begin{aligned} & \text { N 안 } \\ & \text { NO } \\ & \text { OOO } \\ & 1 \end{aligned}$
			$\because 8$ ํํ ํํ $+++$		웅 No 0 $++1$	－ 0内 $1 \rightarrow$ 111	出思 $\dot{\sim}-\infty$ 111	
$\begin{array}{\|c} \dot{\sim} \dot{\sim} \\ \text { 品. } \end{array}$				$\begin{aligned} & \text { H゙ O N O O } \\ & +\underset{\sim}{\circ} \\ & ++++ \end{aligned}$		$\stackrel{H}{H}$		
岚	$\begin{aligned} & 1808 \\ & 100 \end{aligned}$				8 융 		$\begin{aligned} & 8080 \\ & 20100 \end{aligned}$	

THE NEAREST STARS

By R. M. Petrie and Jean K. McDonald

Perhaps the most difficult problem in observational astronomy is the determination of the distances to the stars. The reason, of course, is that the distances are so enormous as to require the measurement of vanishingly small angular displacements. As the earth goes in its orbit around the sun the stars show a small change in their positions and it is this small apparent movement which is called the annual parallax. If we can measure the parallax we can at once calculate the distance to the star concerned.

Astronomers speak of stellar distances in terms of light-years or, alternatively, parsecs. A light-year is the distance light travels in one year with its speed of 186,000 miles per second. If we know the parallax in seconds of arc we obtain the distance in light-years by dividing 3.26 by the parallax. Thus the star Sirius, which has an annual parallax of 0.1375 , is 8.7 light-years distant. The reciprocal of the parallax gives the distance in parsecs; Sirius is 2.7 parsecs from the sun.

The apparent motion, per year, of a star across the sky, called proper motion, is a good indication of a star's distance. Obviously, the nearer stars will appear to move more rapidly than their more distant fellows and this fact has many times been instrumental in the discovery of nearby stars.

The table accompanying this note lists, in order of distance, all known stars within sixteen light-years. Including the sun it contains fifty-five stars, but it does not contain the unseen companions of double and multiple stars entered in the table. The table is taken from a paper by Professor van de Kamp, published in 1953. In addition to the name and position for each star, the table gives spectral type, Sp.; parallax, π; distance in light-years, D ; proper motion in second of arc per year, μ; total velocity with respect to the sun in $\mathrm{km} . / \mathrm{sec}$., R ; apparent visual magnitude, m ; and finally, luminosity in terms of the sun, L . In column four, wd indicates a white dwarf, and e indicates an emission-line star.

The stars within sixteen light-years form an important astronomical table because the annual parallaxes are large enough to be well determined. This means that we have accurate knowledge of the distances, speeds, and luminosities of these stars. Furthermore this sample is probably quite representative of the stellar population in our part of the galaxy, and as such is well worth our study.

It is interesting to note that most of the stars are cool red dwarfs, of type M. This must be the most populous of all the stellar varieties. Only ten of these nearby stars are bright enough to be seen with the unaided eye (magnitude less than five). Only three stars, Sirius, Altair, and Procyon, are brighter than the sun while the great majority are exceedingly faint. Not one giant star is contained in the list nor is there a B-type star. This is a consequence of the extreme rarity of very hot and very bright stars. One may conclude that stars brighter than the sun are very scarce.

Another striking fact is the prevalence of double and multiple stars, there being sixteen such systems if we count unseen components. Obviously double and multiple stars are quite common in the stellar population, and must be explained by any acceptable theory of stellar formation and evolution.

THE NEAREST STARS

Star	1950		Sp.	π	D	μ	R	m	L
	α	δ							
Sun $\boldsymbol{\alpha}$ Cen $\begin{array}{r}\text { A } \\ \mathbf{B} \\ \mathbf{C}\end{array}$		\bigcirc	G0	"	1.y.	"	km./sec.	-26.9	1.0
				0.760					
	$14 \quad 36$	$\begin{array}{ll}-60 & 38\end{array}$	G0		4.3	3.68	34	0.3	1.0
			K5					1.7	0.28
	$\begin{array}{ll}14 & 26 \\ 17 & 55\end{array}$	+62 28 +433	M5e					11	0.000052
Barnard's	$\begin{array}{ll}17 & 55 \\ 10 & 54 \\ 10\end{array}$	+ +433 +720	M5	. 5421	6.0 7	10.30 4.84	141	${ }_{13}^{9.5}$	0.00040 0.000017
Luy. 726-8A	136	-1813	M6e	. 410	7.9	3.35	48	12.5	0.00004
			M6e					13.0	0.00003
Lal. 21185*	1101	+36 18	M2	. 398	8.2	4.78	103	7.5	0.0048
Sirius A	$6 \quad 43$	$-16 \quad 39$	A0	. 375	8.7	1.32	18	-1.6	23.
			wd					7.1	0.008
Ross 154	$\begin{array}{ll}18 & 47\end{array}$	-23 53	M5e	.351	9.3	0.67	10	10.6	0.00036
Ross 248	$23 \quad 39$	+43 55	M6e	. 316	10.3	1.58	84	12.2	0.00010
ϵ Eri	$3{ }^{3} 31$	- 938	K2	. 303	10.8	0.97	21	3.8	0.25
Ross 128	1145	+ 107	M5	. 298	10.9	1.40	26	11.1	0.00030
61 Cyg* A	2105	+38 30	K6	. 293	11.1	5.22	106	5.6	0.052
Luy. 789-6	2236	-15 37	M6	. 292	11.2	3.27	80	${ }_{12.2}^{6.3}$	0.00012
Procyon A	$7 \begin{array}{ll}7 & 37\end{array}$	+ 521	F5	. 288	11.3	1.25	20	0.5	5.8
			wd					10.8	0.00044
${ }_{\Sigma}^{\text {¢ Ind }} 2398 \mathrm{~A}$	22	-57+59+53	K5	. 285	$\begin{aligned} & 11.4 \\ & 11.6 \end{aligned}$	4.67 2	8738	4.7	0.12
			M4					8.9	0.0028
			M4$\mathrm{M} 2 e$					9.7	0.0013
Groom. 34 A	016	+43 44		. 278	11.7	2.91	51	8.1	0.0058
		$\begin{array}{ll}-16 & 12\end{array}$	$\begin{gathered} \text { M4e } \\ \text { G44 } \end{gathered}$	275	11.8			10.9	0.00044
Lac. 9352	$23 \quad 03$	-36 09	M2	. 273	11.9	6.87	37	7.2	${ }_{0}^{0.013}$
BD $+50^{\circ} 1668$	$7 \quad 25$	+ 529	M4	. 263	12.4	3.73	72	10.1	0.0010
Lacaille 8760	21	-39 04	M1	. 255	12.8	3.46	68	6.6	0.028
Kapteyn's	5	-4500	M0	. 251	13.0	8.79	275	9.2	0.0025
Kruger 60 A	22	-45+57	$\begin{aligned} & \text { M4 } \\ & \text { M5e } \end{aligned}$. 249	13.1	0.87	29	9.9	0.0013
								11.4	0.00033
Ross 614*	$6 \quad 27$	- 247	M5e	248	13.1	0.97	30	10.9	0.00052
BD-1204523,	$16 \quad 28$	-12 32	M5	244	13.4	1.24	27	10.0	0.0013
van Mannen's	$\begin{array}{ll}0 & 46\end{array}$	+ 918	$w d \mathrm{~F}$. 223	13.8	2.98	64	12.3	0.00016
Wolf 424 A	$12 \quad 31$		M6eM6e		14.6	1.87	40	12.6	0.00014
								12.6	0.00014
Groom. 1618	1008	+49 42	K5	. 222	14.7	1.45	41134	6.8	0.030
CD-370 ${ }^{\circ} 15492$	$\begin{array}{ll}0 & 02 \\ 17\end{array}$	-37-46-41	M3	. 21219	14.9	6.09		8.6	0.0058
CD-46 ${ }^{\circ} 11540$	$17 \quad 25$		$\begin{aligned} & \text { M4 } \\ & \text { M4e } \end{aligned}$	$\begin{aligned} & .213 \\ & .211 \end{aligned}$	$\begin{aligned} & 15.3 \\ & 15.4 \end{aligned}$	1.15		9.7	0.0023
BD $+20^{\circ} 2465^{*}$	10	-4651 +20				0.49	15	9.511.2	$\begin{aligned} & 0.0028 \\ & 0.00058 \end{aligned}$
CD-44 ${ }^{\circ} 11909$	$17 \quad 34$	-44 -49	M5	$\begin{aligned} & .211 \\ & .209 \end{aligned}$	$\begin{aligned} & 15.4 \\ & 15.6 \end{aligned}$	1.14			
CD-49 ${ }^{\circ} 13515$	$\begin{array}{ll}21 & 30\end{array}$		$\begin{aligned} & \text { M3 } \\ & \text { M3 } \end{aligned}$	$\begin{aligned} & .209 \\ & .206 \end{aligned}$	15.615.8	0.78		9.1	0.0044
AOe 17415-6	$17 \quad 37$	+68 23				1.31	342855		0.0040
Ross 780	$22 \quad 50$	+14+151+15	M5	. 206	15.815.9	1.12		10.2	0.0014
Lal. 25372	$13 \quad 43$					2.30	55	11	0.00630.0008
CC 658	1143	$\begin{array}{r} 1010 \\ -6433 \\ -744 \end{array}$	wd K0 $w d \mathrm{~A}$	$\begin{aligned} & .203 \\ & .200 \end{aligned}$	$\begin{aligned} & 16.0 \\ & 16.3 \end{aligned}$	$\begin{aligned} & 2.69 \\ & 4.08 \end{aligned}$	105		
0^{2} Eri A	$4 \quad 13$							4.5	0.30
								9.2	0.0040
$70 \mathrm{Oph}{ }^{\text {C }}$	$18 \quad 03$	+ 231	K1	. 199	16.4	1.13	28	11.0 4.2	0.0008 0.40
O								5.9	0.083
Altair	1948	$\begin{array}{r} +844 \\ +44 \\ +785 \\ +787 \end{array}$	$\begin{aligned} & \text { A5 } \\ & \text { M5e } \\ & \text { M4 } \end{aligned}$. 198	16.516.5	0.660.84	3120	0.9	
BD $+43^{\circ} 4305$	$22 \quad 45$							10.2	0.00160.0008
AC $79^{\circ} 3888$	1144			0.196	16.6	0.87	121	11.0	

*Star has an unseen component.

VARIABLE STARS

Maps of the fields of four bright variable stars are given below. In each case the magnitudes of several suitable comparison stars are given. Note that the decimal points are omitted: a star 362 is of mag. 3.62. Use two comparison stars, one brighter and one fainter than the variable, and estimate the brightness of the variable in terms of these two stars. Record the date and time of observation. When a number of observations have been made, a graph may be plotted showing the magnitude estimate as ordinates against the date (days and tenths of a day) as abscissae. Each type of variable has a distinctive shape of light curve.

In the tables the first column, the Harvard designation of the star, gives the 1900 position: the first four figures give the hours and minutes of R.A., the last two figures give the Dec. in degrees, italicised for southern declinations. The column headed Max. gives the mean maximum magnitude. The Period is in days. The Epoch gives the predicted date of the earliest maximum occurring this year; by adding the period to this epoch other dates of maximum may be found. The list of long-period variables has been prepared by the American Association of Variable Star Observers and includes the variables with maxima brighter than mag. 8.0, and north of Dec. -20°. These variables may reach maximum two or three weeks before or after the listed epoch and may remain at maximum for several weeks. The second table contains stars which are representative of other types of variable. The data are taken from "The General Catalogue of Variable Stars" by Kukarkin and Parenago and for eclipsing binaries from Rocznik Astronomiczny Obserwatorium Krakowskiego, 1959, International Supplement.

LONG-PERIOD VARIABLE STARS

Variable		$\underset{\mathrm{m}}{\operatorname{Max}}$	Per. d	$\begin{gathered} \text { Epoch } \\ 1960 \end{gathered}$	Variable		$\underset{\mathrm{m}}{\mathrm{Max}} .$	Per. d	$\begin{gathered} \text { Epoch } \\ 1960 \end{gathered}$
001755	T Cas	7.3	445	Feb. 17	143227	R Boo	7.2	223	July 31
001838	R And	7.0	409	Feb. 8	151731	SCrB	7.3	361	May 19
021143	W And	7.4	397	Oct. 11	154639	V CrB	7.5	358	Feb. 17
021403	- Cet	3.4	332	July 20	154615	R Ser	6.9	357	Mar. 9
022813	U Cet	7.5	235	Feb. 5	160625	RU Her	8.0	484	July 29
023133	R Tri	6.2	266	Jan.	162119	U Her	7.5	406	Oct.
043065	T Cam	8.0	374	Sept. 1	162112	V Oph	7.5	298	Apr. 27
045514	R Lep	6.8	432		163266	R Dra	7.6	245	Aug. 10
050953	R Aur	7.7	459	Oct. 23	164715	S Her	7.6	307	June 4
054920a	U Ori	6.3	372	May 24	170215	R Oph	7.9	302	Mar. 11
061702	V Mon	7.0	335	Nov. 14	171723	RS Her	7.9	219	Mar. 27
065355	R Lyn	7.9	379	Oct. 13	180531	T Her	8.0	165	May
070122a	R Gem	7.1	370	Mar. 31	181136	W Lyr	7.9	196	Feb. 25
070310	R CMi	8.0	338	Jan. 15	183308	X Oph	6.8	334	July 21
072708	$\mathrm{SCMi}^{\text {C }}$	7.5	332	Sept. 17	190108	R Aql	6.1	300	July 11
081112	R Cnc	6.8	362	Mar. 23	191017	T Sgr	8.0	392	Mar. 3
081617	$\checkmark \mathrm{Cnc}$	7.9	272	Jan. 13	191019	R Sgr	7.3	269	Aug.
084803	S Hya	7.8	257	May 28	193449	R Cyg	7.5	426	
085008	T Hya	7.8	288	Sept. 25	194048	RT Cyg	7.3	190	Feb. 13
093934	R LMi	7.1	372	Dec. 31	194632	$\chi \mathrm{Cyg}$	5.2	407	Oct. 30
094211	R Leo	5.8	313	Mar. 29	200938	RS Cyg	7.2	418	Dec. 27
103769	R UMa	7.5	302	Aug. 13	201647	U Cyg	7.2	465	Aug. 27
121418	R Crv	7.5	317	Apr. 23	204405	T Aqr	7.7	202	June 16
122001	SS Vir	6.8	355	June 30	210868	T Cep	6.0	390	Nov.
123160	T UMa	7.7	257	Jan. 16	213753	RU Cyg	8.0	234	Mar. 22
123307	R Vir	6.9	146	Jan. 8	230110	R Peg	7.8	378	July 19
123961	S UMa	7.8	226	Jan. 29	230759	V Cas	7.9	228	Jan. 15
131546	V CVn	6.8	192	Apr. 10	231508	S Peg	8.0	319	Feb. 12
132706	S Vir	7.0	378	Aug. 27	233815	R Aqr	6.5	387	Feb. 2
134440	R CVn	7.7	328	Mar. 10	235350	R Cas	7.0	431	Sept. 25
142584	R Cam	7.9	270	Sept. 12	235715	W Cet	7.6	351	Aug. 16
142539	V Boo	7.0	258	May 11					

OTHER TYPES OF VARIABLE STARS

Variable		Max. m	Min. m	Type	Sp. Cl.	$\underset{\mathrm{d}}{\text { Period }}$	Epoch 1960 E.S.T.
005381	U Cep	6.8	9.8	Ecl	B8+gG2	2.49295	Jan. 1.55*
025838	$\rho \mathrm{Per}$	3.2	3.8	SemiR		33-55	
035512	λ Tau	3.5	4.0	Ecl	B3	3.952952	Jan. 1.51*
060822	η Gem	3.1	3.9	SemiR	M3	233.4	May 16*
061907	T Mon	5.8	6.8	δ Cep	F7-K1	27.0205	Jan. 13.22
065820	$\zeta \mathrm{Gem}$	3.7	4.1	$\delta \mathrm{Cep}$	F7-G3	10.15172	Jan. 10.57
154428	R CrB	5.8	14	R CrB	cG0ep		
171014	α Her	3.0	4.0	SemiR	M5		
184205	R Sct	5.0	8.4	RVTau	G0-M5	144	
184633	β Lyr	3.4	4.3	Ecl	B8p	12.931163	Jan. 2.51*
192242	RR Lyr	7.3	8.1	RR Lyr	A2-F0	0.56683735	Jan. 1.02
194700	η Aql	3.7	4.4	δ Cep	F6-G4	7.176641	Jan. 4.78
222557	δ Сер	3.8	4.6	δ Cep	F5-G2	5.366341	Jan. 5.75

[^3]REPRESENTATIVE DOUBLE STARS

	Star	a 1950 ס		Mag. and Spect.	d	D	Remarks
		h m			"	L.Y.	
π	And	0034.2	+33 27	$74.4 \mathrm{~B} 3 ; 8.5$	36	470	
η	Cas	0046.0	+57 33	3.6F8; 7.2M0	8	18	526y; 66AU
a	UMi	0148.8	+89 02	2 var. F8; 8.8	19	407	Polaris
γ	Ari	0150.8	+1903	3 4.8A0; 4.8A0	8.3	150	
a	Pis	0159.4	+02 31	5.2A2; 4.3A2	2.4	130	$\dagger \dagger$
γ	And	0200.8	+42 05	52.3K0; 5.4A0; 6.6	10, 0.7	410	56y ; 23AU
	Tri	0209.5	+30 04	4 5.4G4; 7.0F3	3.6	330	$\dagger \dagger$
	Per	0247.0	+55 41	$13.9 \mathrm{K0} ; 8.5$	28	540	
32	Eri	$0 \cdot 351.8$	-03 06	65.0G5; 6.3A	6.7	300	
β	Ori	0512.1	-08 15	50.3B8; 7.0	9	540	\dagger
θ	Ori	0532.8	-05 25	55.4;6.8; 6.8; 7.9;0	13, 17	540	Trapezium
	Mon	0626.4	-07 00	4.7B2; 5.2; 5.6	7, 25	470	
12	Lyn	0641.8	+59 30	5.3A2; 6.2; 7.4	1.7,8	180	
a	$\mathrm{CMa}^{\text {a }}$	0643.0	-16 39	-1.6A0; 8.5F			50y; 20AU
δ	Gem	0717.1	+22 05	5 3.5F0; 8.0M0	6.8	58	\dagger
$\stackrel{ }{\square}$	Gem	0781.4	+3200	2.0A0; 2.8A0; 9M10	4,70		340 y ; 79AU
ζ	Cnc	0809.3	+1748	5.6G0; 6.0;6.2	1,5	78	60 y ; 21AU
	Leo	1017.2	+20 06	2.6K0; 3.8G5	4	160	400y
ξ	UMa	$1 \begin{array}{ll}11 & 15.5 \\ 11 & 21.3\end{array}$	+3148	4.4G0; 4.9G0	2		†t60y; 20AU
,	Leo	1121.3	+10 48	84.1F3; 6.8F3	2	69	
γ	Vir	1239.1	-01 10	3.6F0; 3.7F0	6		171y; 42AU
	CVn	1253.7	+38 35	2.9A0; 5.4A0	20	140	$\dagger \dagger$
ζ	UMa	$1 \begin{array}{ll}13 & 21.9\end{array}$	+55 11	$12.4 \mathrm{~A} 2 ; 4.0 \mathrm{~A} 2$	14	78	
	Boo	1438.4	+16 38	4.9A0; 5.1A0	6	360	
ϵ	Boo	1442.8	+27 17	2.7K0; 5.1A0	3	220	
ξ	Boo	1449.1	+19 18	4.8G5; 6.7	3	22	151y; 31AU
δ	Ser	1532.4	+10 42	4.2F0; 5.2 FO	4	170	
ξ	Sco	1601.6	-11 14	5.1F3; 4.8; 7G7	1, 7		44.7 y ; 19AU
a	Her	171212.4	+14 27	var.M5; 5.4G	5	540	\dagger
δ	Her	1713.0	+24 54	3.2A0; 8.1G2	11	100	\dagger Optical
	Lyr	1842.7	+39 37	75.1, 6.0A3; 5.1, 5.4A5	3, 2	200	Pairs 207"
β	Cyg	119 28.7 20 14	+2751	$13.2 \mathrm{K0}$; 5.4B9	34	410	
	Cap	${ }_{20}^{20} 14.9$	-12 40	3.8G5; 4.6G0	376		Optical
γ 61	Del Cyg	$\left\lvert\, \begin{array}{ll}20 & 44.3 \\ 21 & 04.6\end{array}\right.$	+1557 +3830	7 $4.5 \mathrm{G} 5 ; 5.5 \mathrm{~F} 8$	10 23	110 11	
β	Cep	2128.1	+70 20	var.B1; 8.0A3	14	540	\dagger
ζ	Aqr	2226.2	-00 17	74.4F2; 4.6F1	3	140	
δ	Cep	2227.3	+58 10	var.G0; 7.5A0	41	650	
8	Lac	2233.6	+39 23	5.8B3; 6.5B5	22	1100	\dagger
σ	Cas	2356.5	+55 29	\|5.1B2; 7.2B3	3	820	

\dagger or $\dagger \dagger$, one, or two of the components are themselves very close visual double or more generally, spectroscopic binaries.

STAR CLUSTERS

The star clusters for this observing list have been selected to include the more conspicuous members of the two main classes-open clusters and globular clusters. Most of the data are from Shapley's Star Clusters and from Trumpler's catalogue in Lick Bulletin No. 420. In the following table N.G.C. indicates the serial number of the cluster in the New General Catalogue of Clusters and Nebulae; M, its number in Messier's catalogue; Con., the constellation in which it is located; α and δ, its right ascension and declination; Cl., the kind of cluster, $O p$ for open or galactic and $G l$ for globular; Diam., the apparent diameter in minutes of arc; Mag. B.S., the magnitude of the fifth brightest star in the case of open clusters, the mean of the 25 brightest for globulars; No., the number of stars in the open clusters down to the limiting magnitudes of the photographs on which the particular clusters were studied; Int. mag., the total apparent magnitude of the globular clusters; and Dist., the distance in light years.

N.G.C.	M	Con.	$\mathrm{h}^{\boldsymbol{a}} \mathrm{m}$ m	60 \%	Cl .	Diam.	Mag. B.S.	No.	Int. mag.	$\begin{gathered} \text { Dist } \\ \text { 1.y. } \end{gathered}$
869		h Per	0216.2	$+5658$	Op	30	7			4.300
884		χ Per	0219.6	+5656	Op	30	7			4,300
1039	34	Per	0239.4	+4237	Op	30	9	80		1,500
Pleiades	45	Tau	0345.1	+23 59	Op	120	4.2	250		490
Hyades		Tau	0418	+1531	Op	400	4.0	100		120
1912	38	Aur	0526.0	+35 48	Op	18	9.7	100		2,800
2099	37	Aur	0549.7	+3233	Op	2.4	9.7	150		2,700
2168	35	Gem	0606.4	+24 21	Op	29	9.0	120		2,700
2287	41	C Ma	0645.3	-20 42	Op	32	9	50		1,300
2632	44	Cnc	0837.8	+2007	Op	90	6.5	350		490
5139		ω Cen	1324.3	-47 16	Gl	23	12.9		3	22,000
5272	3	CV	1340.4	+28 35	Gl	10	14.2		4.5	40,000
5904	5	Ser	1516.5	+02 13	G1	13	14.0		3.6	35,000
6121	4	Sco	1621.2	-26 26	G1	14	13.9		5.2	24,000
6205	13	Her	1640.2	+36 32	G1	10	13.8		4.0	34,000
6218	12	Oph	1645.2	-01 53	G1	9	14.0		6.0	36,000
6254	10	Oph	1655.0	-04 03	G1	8	14.1		5.4	36,000
6341	92	Her	1715.9	+4311	Gl	8	13.9		5.1	36,000
6494	23	Sgr	17546	-19 01	Op	27	102	120		2,200
6611	16	Ser	1816.6	-13 48	Op	8	10.6	55		6,700
6656	22	Sgr	1834.0	-23 57	G1	17	12.9		36	22,000
7078	15	Peg	2128.0	+1159	G1	7	14.3		5.2	43,000
7089	2	Aqr	2131.4	-0100	Cl	8	14.6		5.0	45,000
7092	39	Cyg	2130.8	+48 15	Op	32	6.5	25		1,000
7654	52	Cas	2322.4	+6123	Op	13	11.0	120		4,400

GALACTIC NEBULAE

The galactic nebulae here listed have been selected to include the most readily observable representatives of planetary nebulae such as the Ring Nebula in Lyra, diffuse bright nebulae like the Orion nebula and dark absorbing nebulosities such as the Coal Sack. These objects are all located in our own galactic system. The first five columns give the identification and position as in the table of clusters. In the Cl column is given the classification of the nebula, planetary nebulae being listed as $P l$, diffuse nebulae as $D i f$, and dark nebulae as Drk. Size indicates approximately the greatest apparent diameter in minutes of arc; and $m n$ is the magnitude of the planetary nebula and m * is the magnitude of its central star. The distance is given in light years, and the name of the nebula is added for the better known objects.

N.G.C.	M	Con	$\mathrm{h}^{\boldsymbol{a}} \mathrm{m}$	60 \%	Cl	Size	m	${ }_{*}^{*}$	Dist. 1.y.	Name
650	76	Per	0139.7	+5122	Pl	1.5	11	17	15,000	
1952	1	Tau	0532.1	+2200		6	11	16	4,100	Crab
1976	42	Ori	0533.3	-05 25	Dif	30			1,800	Orion
B33		Ori	0538.9	-02 29	Drk	4			300	Horsehead
2261		Mon	0637.0	+08 46	Dif	2				Hubble's var.
2392		Gem	0726.8	+2100	Pl	0.3	8	10	2,800	
2440		Pup	0740.1	$\begin{array}{ll}-18 & 07\end{array}$	Pl	0.9	11	16	8,600	
3587	97	UMa	1112.5	+55 14	Pl	3.3	11	14	12,000	Owl
		Cru	1249	-63	Drk	300			300	Coalsack
6210		Her	1642.8	+23 52	Pl	0.3	10	12	5,600	
B72		Oph	1721.2	-23 35	Drk	20			400	S nebula
6514	20	Sgr	1800.0	-23 02	Dif	24			3,200	Trifid
B86		Sgr	1800.5	-27 53	Drk	5				
6523	8	Sgr	1801.2	-2423	Dif	50			3,600	Lagoon
6543		Dra	1758.6	+66 37	P1	0.4	9	11	3,500	
6572		Oph	1810.2	+06 50	P1	0.2	9	12	4,000	
B92		Sgr	1813.2	-18 15	Drk	15				
6618	17	Sgr	1818.5	-16 12	Dif	26			3,000	Horseshoe
6720	57	Lyr	1852.1	+3259	Pl	1.4	9	14	5,400	Ring
6826		Cyg	1943.7	+50 26	Pl	0.4	9	11	3,400	
6853	27	Vul	1957.9	+2236	Pl	8	8	13	3,400	Dumb-bell
6960		Cyg	2044.0	+30 34	Dif	60				Network
7000		Cyg	2057.4	+44 10	Dif	100				N. America
7009		Aqr	2102.0	-1132	Pl	0.5	8	12	3,000	
7662		And	2324.0	+42 19	Pl	0.3	9	13	3,900	

EXTERNAL GALAXIES

Among the hundreds of thousands of systems far beyond our own galaxy relatively few are readily seen in small telescopes. The following list contains a selection of the closer brighter objects of this kind. The first five columns give the catalogue numbers, constellation and position on the celestial sphere. In the column $C l, E$ indicates an elliptical nebula, I an irregular object, and $S a, S b$, $S c$ spiral nebulae, in which the spiral arms become increasingly dominant compared with the nucleus as we pass from a to c. The remaining columns give the apparent magnitude of the nebula, its distance in light years and the radial velocity in kilometers per second. As these objects have been selected on the basis of ease of observation, the faint, very distant objects which have spectacularly large red shifts, corresponding to large velocities of recession, are not included.

N.G.C.	M	Con	${ }_{\text {h m }}{ }^{\text {a }} 19$	60 。 ${ }^{\text {d }}$,	Cl	Dimens.	Mag.	Distance millions of $1 . \mathrm{y}$.	$\begin{gathered} \text { Vel. } \\ \mathrm{km} / \mathrm{sec} \end{gathered}$
221	32	And	0040.5	+40 39	E	3×3	8.8	1.6	-185
224	31	And	0040.5	+4103	Sb	160×40	5.0	1.6	- 220
SMC		Tuc	0053	-72 35	I	220×220	1.5	0.17	+ 170
598	33	Tri	0131.6	+3028	Sc	60×40	7.0	1.4	- 70
LMC		Dor	0521	-6926	I	430×530	0.5	0.17	+ 280
3031	81	UMa	0952.4	+69 16	Sb	16×10	8.3	4.8	- 30
3034	82	UMa	0952.7	+69 53	I	7×2	9.0	5.2	+ 290
3368	96	Leo	1044.6	+1202	Sa	7×4	10.0	11.4	+ 940
3623	65	Leo	1116.8	+13 19	Sb	8×2	9.9	10.0	+ 800
3627	66	Leo	1118.2	+13 13	Sb	8×2	9.1	8.6	+ 650
4258		CV	1217.0	+4732	Sb	20×6	8.7	9.2	$+500$
4374	84	Vir	1223.0	+13 06	E	3×2	9.9	12.0	+1050
4382	85	Com	1223.4	+1825	E	4×2	10.0	7.4	$+500$
4472	49	Vir	1227.8	+08 13	E	5×4	10.1	11.4	+ 850
4565		Com	1234.4	+26 12	Sb	15×1	11.0	15.2	+1100
4594		Vir	1237.9	-11 24	Sa	7×2	9.2	14.4	+1140
4649	60	Vir	1241.7	+1146	E	4×3	9.5	15.0	+1090
4736	94	CVn	1249.0	+4120	Sb	5×4	8.4	6.0	+ 290
4826	64	Com	1254.8	+2154	Sb	8×4	9.2	2.6	+ 150
5005		CVn	1309.0	+3716	Sc	5×2	11.1	13.2	+ 900
5055	63	CV	1314.0	+42 14	Sb	8×3	9.6	7.2	$+450$
5194	51	CVn	1328.2	+4724	Sc	12×6	7.4	6.0	+ 250
5236	83	Hya	1334.8	-29 40	Sc	10×8	8	5.8	+ 500
6822		Sgr	1942.7	-14 52	1	20×10	11	2.0	- 150
7331		Peg	2235.2	+34 12	Sb	9×2	10.4	10.4	+ 500

The above map represents the evening sky at

Midnigh	Feb. 6
11 p.m.	21
10	Mar. 7
9	22
8	Apr. 6
7	21

The centre of the map is the zenith, the circumference the horizon. To identify the stars hold the map so that the part of the horizon you are facing is down.

The above map represents the evening sky at

Midnigh	May 8
11 p.m.	24
10 "	June 7
9	" 22
8 "	July 6

The centre of the map is the zenith, the circumference the horizon. To identify the stars hold the map so that the part of the horizon you are facing is down.

The above map represents the evening sky at

Midnight 11 p.m.	.Aug. 5
$10 \times$	Sept. 7
9 "	" 23
8	.Oct. 10
7	26
6	Nov. 6
5 "	21

The centre of the map is the zenith, the circumference the horizon. To identify the stars hold the map so that the part of the horizon you are facing is down.

The above map represents the evening sky at

Midnight	Nov.
11 p.m.	21
10	Dec.
9	21
8	an.
7	20
6	Feb.

The centre of the map is the zenith, the circumference the horizon. To identify the stars hold the map so that the part of the horizon you are facing is down.

Fortunate indeed is the observer who has this UNITRON $4^{\prime \prime}$ Photo-Equatorial, Model 166, at his disposal. Never before has such a wealth of equipment and features been found in an instrument of this size.
Model 166 comes complete with clock drive, astro-camera, photographic guide telescope, 42 mm . viewfinder, Super UNIHEX rotary eyepiece selector, 10 eyepieces,
and many other accessories for only $\$ 1280$ complete.
The unexcelled performance, careful workmanship, and elegant finish of Model 166 is characteristic of each and every telescope that bears the famous UNITRON name. Such uniform excellence is but one of the many exclusive features which distinguish UNITRONS from all other refractors of equal aperture.

UNITRON IS YOUR LOGICAL CHOICE

There is much to recommend a UNITRON Refractor as the logical choice for the amateur astronomer. A UNITRON, optically speaking, duplicates the performance of larger telescopes of other types. With its long focal length, higher magnifications of planetary and lunar images are obtained with low-power eyepieces. Moreover, there are no mirrored surfaces to
1.6" ALTAZIMUTH
with eyepieces for 78x, 56x, 39x
2.4" ALTAZIMUTH
with eyepieces for 100x, 72x, 50x, 35x
2.4" EQUATORIAL
\$225
with eyepieces for $129 x, 100 x, 72 x, 50 x, 35 x$
3" ALTAZIMUTH \$265
with eyepieces for 171x, 131x, 96x, 67x, 48x
$3^{\prime \prime}$ EQUATORIAL \$435
with eyepieces for 200x, 131x, 96x, 67x, 48x
3"' PHOTO-EQUATORIAL \$550
with eyepieces for 200x, 171x, 131x, 96x, 67x, 48x
4" ALTAZIMUTH \$465
with eyepieces for $250 x, 214 x, 167 x$, 120x, 83x, 60x
4" EQUATORIAL \$785
with eyepieces for $250 x, 214 x, 167 x, 120 x$, 83x, 60x, 38x
4" PHOTO-EQUATORIAL \$890
with eyepieces for 250x, 214x, 167x, 120x, 83x, 60x, 38x
4" EQUATORIAL with clock drive
$\$ 985$
Model 160V, eyepieces as above
4" EQUATORIAL with clock drive and $\$ 1075$ metal pier, Model 166V, eyepieces as above
4" PHOTO-EQUATORIAL with clock drive \$1175 and ASTRO-CAMERA, with eyepieces for 250x, 214x, 167x, 120x, 83x, 60x, 38x, 25x
4" PHOTO-EQUATORIAL with clock $\$ 1280$ drive, pier, ASTRO-CAMERA, eyepieces for 375x, 300x, 250x, 214x, 167x, 120x, 83x, 60x, 38x, 25x
5" PHOTO-EQUATORIAL with clock \$2275 drive and ASTRO-CAMERA with eyepieces for 500x, 400x, 333x, 286x, 222x, 160x, 111x, 80x, 50x, 33x
6" EQUATORIAL with clock drive, $\quad \$ 5125$ pier, $2.4^{\prime \prime}$ view finder, with eyepieces for 625x, 500x, 416x, 357x, 277x, 200x, 138x, 100x, 62x, 42x
6" PHOTO-EQUATORIAL as above but $\$ 5660$ with $4^{\prime \prime}$ guide telescope, illuminated diagonal, UNIBALANCE, ASTRO-CAMERA Model 330
$6^{\prime \prime}$ PHOTO-EQUATORIAL as above with $\$ 6075$ addition of $3^{\prime \prime}$ Astrographic Camera Model 80
become oxidized, no components which require periodic alignment, no secondary optics to cause diffraction patterns, and no folding of the light back on itself through turbulent air with consequent loss of definition. No wonder that you see more and see better with a UNITRON-the telescope that has withstood the test of time.

Get UNITRON's FREE

Observer's Guide and Catalog on

ASTRONOMICAL TELESCOPES

This valuable 38-page book is yours for the asking!

With artificial satellites already launched and space travel almost a reality, astronomy has become today's fastest growing hobby. Exploring the skies with a telescope is a relaxing diversion for father and son alike. UNITRON's handbook contains full-page illustrated articles on astronomy, observing, telescopes and accessories. It is of interest to both beginners and advanced amateurs.
Contents include -

- Observing the sun, moon, planets and wonders of the sky
- Constellation map
- Hints for observers
- Glossary of telescope terms
- How to choose a telescope
- Amateur clubs and research programs

HOW TO ORDER

Send check or money order in full. Shipments made express collect. Send 20\% deposit for C.O.D. shipment. UNITRON instruments are fully guaranteed for quality workmanship, and performance.

See back cover

WHAT IS SIDEREAL TIME?

By definition it is the hour angle of the March equinox, which is at right ascension 0 hours. At your observing station the right ascension of the celestial meridian is always your local sidereal time.
Knowing the sidereal time is an astronomical necessity, for it tells you quickly the hour angle of any celestial body to which you wish to point your telescope. Our clocks can be equipped for broadcasting time signals at some extra cost.

Haines Electric
Sidereal Clock
\$53.00

Haines Scientific Instruments

Box 171 Englewood, New Jersey

"NANHMN
 $T 02$ MIILION CANADIANS
 working20 with Canadians in every walk of life since 1817...
 Bank of Montreal
 - Canada'd First Bank

SKY-SCOPE

The full $31 / 2^{\prime \prime}$ diameter reflecting type, Astronomical telescope that is sweeping the country. Shows Moon craters, Saturn's Ring, Jupiter's 4 moons and close "double-stars" with guaranteed observatory clearness.

It has a tested $1 / 4$-wave aluminized mirror, 60 power Ramsden type eyepiece and is equatorially mounted on an all-metal stand.

Complete as illustrated
\$2975
(125 \& 35 power extra eye-pieces are available at \$5.20 each)
Finder
(with brackets) $\$ 7.50$

We invite your attention to our free and straightforward descriptive brochure which also shows photographs of the individual parts we use.
The Skyscope Company, Inc. P.O. Box 55-R BROOKLYN 28, N.Y.

UUUSUAL OPTICAL BUYS

See the Stars, Moon, Close Up! 3'ノ REFLECTING TELESCOPE 60 to 180 Power-An Unusual Buyl Famous Mt. Palomar Type

You'll see the Rings of Saturn, the fascinating planet Mars, huge craters on the Moon, Star Clusters, Moons of Jupiter in detail. Aluminized and overcoated $3^{\prime \prime}$ diameter high-speed f/10 mirror. Equatorial mount with lock on both axes. An Optical Finder Telescope is also included. Sturdy, hardwood, portable tripod. Free with scope-valuable star chart and 272 page "Astronomy Book', Order by Stock No. Send check or M. O.-Money-back guarantee!
Stock No. 85,050-V \$29.95 Postpaid

Rack \& Pinion Eyepiece Mounts

Real rack-and-pinion focusing with variable tension adjustment; tube accommodates standard $1 / 4^{\prime \prime}$. eyepieces and accesory equipment; lightweight aluminum body casting (not cast iron); focusing tube and rack of chrome-plated brass; body finished in black wrinkle paint.

For Reflectors

Stock \# 50,077-V (less diagonal holder) $\$ 8.50$ ppd.
Stock \# 60,049-V (diagonal holder only) 1.00 ppd.
For Refractors
Stock \# 50,103-V (for $27 / 8^{\prime \prime}$ I.D. tubing) $\mathbf{1 2 . 9 5}$ ppd. Stock \# 50,108-V (for 3 7/8' $1 . D$. tubing) 13.95 ppd.

SALEI TERRIFIC WAR SURPLUS BARGAIN! AERIAL CAMERA LENSES
Gov't Cost \$1218-
Now Low as \$39.50 Used Made by B \& L and E.K. -24" F.L. f/6, in 23" long Lens Cone. Use as long range, Big Bertha Telephoto lens-for Richest field (wide field, low power) telescope, etc. Lenses are $4^{\prime \prime}$ dia.- precision 4 -element type. Aero Tessar and Aero Ektar (no choice). Easily removed. Diaphragm ($\mathrm{f} / 6$ to $\mathrm{f} / 22$) is included. Opens approx. $1^{\prime \prime}$ to $31 / 2 \prime$. Lens and cone-wt. 25 lbs. Sturdy carrying trunk-wt. 26 lbs.

Stock No. 85,059-V, 24", used. Price $\$ 39.50$ f.o.b. Utah
Stock No. 85,060-V, 24', new. Price $\$ 59.50$ f.o.b. Utah

4 $1 / 4^{\prime \prime}$ ASTRONOMICAL TELESCOPE

Mt. Palomar Type! Up to 270 Power

A fine Reflector Telescope complete with real Equatorial Mount and Tripod and 6 X Finder. Aluminum tube, $4^{1 / 4 \prime \prime}$ dia. mirror, rack and pinion focusing eyepiece holder. 2 eyepieces and mounted Barlow Lens for $40 \mathrm{X}, 90 \mathrm{X}, 120 \mathrm{X}$ and 270 X . Low cost accessory eyepiece available for power up to 540. Free with scope, Valuable ,Star Chart and 272 page "Astronomy Book." Order by Stock No. Send check or M. O. Money-back guarantee Stock No. 85,006-V, complete, $\$ 74.50$ f.o.b. Barrington, N. J.

Same Telescope as above but equipped with Electric Clock Drive- Stock No. 85-094-V
$\$ 111.50$ F.O.B. Barringfon, N.J.

TELESCOPE ROLL-FILM CAMERA

This model uses rolls of
 No. 127 film. Picture area will be a circle 1-9/16" in diameter. The advantage of this model is the ease of using roll film. With each camera you get a piece of ground glass. Before loading film in camera, you focus the telescope. Then lock it in this position. For positions other than infinity, you can scribe a mark on your tube.
Stock No. 70,182-V
$\$ 29.50$ pstpd.

6X FINDER TELESCOPE

Has crosshairs for exact locating. You focus by sliding objective mount in and out. Base fits any diameter tube-an important advantage.
Has 3 centering screws for aligning with main telescope. $20-\mathrm{mm}$. diam. objective. Weighs less than $1 / 2$ pound.
Stock No. 50,121-V $\$ 8.00$ postpaid

MOUNTED BARLOW LENS

 Double and triple
your
Telescope's y our Telescope's power with a Barlow Lens. Ours is mounted in chrome - plated brass tubing with variable spacers-just slide this mounted negative lens into your $11 / 4^{\prime \prime}$ I.D. eyepiece holder, and use your regular eyepiece in it. Fully guaranteed to please you. Stock No. 30,200-V
$\$ 8.00$ postpaid

```
GET BIG FREE
CATALOG "V"
```

128 pages. Over 1,000 optical bargains. War surplus-imported - domestic! Astronomical Telescopes, Satellite Scopes, Microscopes, Binoculars, kits, lenses, prisms, reticles, etc., Write for Free

GET BIG FREE

Equipped with:

3-inch finder telescope
5 -inch guide telescope
2-inch Fecker-Ross f:7 astrograph
Sidereal rate electric drive
Circles for right ascension and declination
Clamps and slow motions

j. W. fecker inc.

A subsidiary of American Optical Company 6592 HAMILTON AVE., PITTSBURGH 6, PA.

For every astronomical interest-

Sky Publications

JOIN

the leading astronomers and thousands of amateurs throughout the world who look to SKY AND TELESCOPE as a welcome monthly package of informative articles pleasingly illustrated, up-to-date news items, observing material, and telescope making notes. The largest astronomical magazine on any planet!

SUBSCRIPTION:

In Canada and Pan American Postal One year, $\$ 6.00$; two years, $\$ 11.00$; Union Countries three years, \$16.00.
In the United States and possessions
One year, \$5.00; two years, \$9.00; three years, $\$ 13.00$.
In all other countries
One year, $\$ 7.00$; two years, $\$ 13.00$; three years, $\$ 19.00$.

OTHER SKY PUBLICATIONS

THE HISTORY OF THE TELESCOPE, by Henry C. King-The complete story of the evolution of the telescope $\$ 7.50$ MAKING YOUR OWN TELESCOPE, by Allyn J. Thompson-How to construct a low-cost 6 -inch reflecting telescope
SKY SETS I AND II-Two different collections, 24 large pictures in each set. Solar system, Milky Way, and galaxies Each set, $\$ 4.00$
MOON SETS-18 pictures of the moon's entire visible face $\$ 3.00$
LUNAR CRESCENT SETS-A matching series to Moon Sets, for the waxing and waning phases. 10 pictures in a set …................ $\$ 2.50$
ELGER'S MAP OF THE MOON-Canvas mounted, $30^{\prime \prime} \times 19 / 2^{\prime \prime} \quad \$ 3.00$
COLOR CHARTS OF THE MOON-Two maps of the first- and lastquarter moon. Each lunar half is $27^{\prime \prime}$ in diameter $\$ 3.00$
COLOR MAP OF THE NORTHERN HEAVENS \$1.50 each; 4 for $\$ 5.00$
ATLAS OF THE HEAVENS, from the Skalnate Pleso Observatory16 large charts, covering both hemispheres to stellar magnitude 7.75 DE LUXE EDITION-Printed in five colors, clothbound, with transparent co-ordinate grid overlay, $166^{1 / 2^{\prime \prime}} \times 23^{\prime \prime} \ldots \ldots$.
FIELD EDITION-Stars are white on black background, $12^{\prime \prime} \times 18^{\prime \prime}$ on stiff paper, unbound $\$ 4.00$ each set; 2 for $\$ 7.50$
NORTON'S STAR ATLAS-Stars to magnitude $6 \frac{113}{3}$, in book form $\$ 5.25$
POPULAR STAR ATLAS-16 bound maps to stellar magnitude 512 $\quad \$ 2.00$
SPACEFLIGHT-A quarterly magazine for astronauts, edited by the British Interplanetary Society. Write for further information.
Write for free circular describing these and other Sky Publications.
Please enclose your check or money order payable to

Elementary Astronomy

by STRUVE, LINDS \& PILLANS

Requiring no prior knowledge of mathematics and physics this completely new text is the only one which gives the student the main ideas of physical science in their relation to the universe, together with authoritative descriptive astronomy. 400 pp., 150 illustrations. $\$ 7.00$
OXFORD UNIVERSITY PRESS

University of Toronto Press BOOK DEPARTMENT

- Books in Science and the Humanities
- All better Paperback Series
- Mail Order

ASTRONOMICAL REFLECTOR TELESCOPES EQUATORIAL MOUNTINGS • MIRROR CELLS ALUMINUM TUBING • TELESCOPE SADDLES • TRIPODS Write for FREE Catalogue

SPECIAL PARTS MADE TO ORDER Send Diagram and Specifications for FREE Estimate Grakam Sakaratories
Wright Building, 424 Wellington St., LONDON, ONTARIO
MANUFACTURERS OF SCIENTIFIC INSTRUMENTS

A New CONCEPT IN TELESCOPE INSTRUMENTATION

"The Refractorflex-Telesphere"

Three views of the $18^{\prime \prime}$ model are shown here. Magnifications:

35X to 140X

A $12^{\prime \prime}$ model is also available for \$100.00.

Excellent for satellite tracking and moon watch teams.

Price
Complete as illustrated including tripod
only
\$250.00
F.O.B.

Philadelphia

The International Telescope Co. of Phila. is dedicated to one idea-to develop only the "new" in telescopes for your benefit and pleasureto do independent, imaginative design research in a field that has lacked it too long. For 300 years, the basic design of the telescope has gone along unchanged. We feel that to have progress we must also have change. For the very finest change, choose a superb "RefractorflexTelesphere."

When thinking about telescopes and their accessories - think modern - think of the "Refractorflex-Telesphere" - think about the International Telescope Co. of Phila., a company in your future - but always think. Present projects under research for you, include a startling new refractor-"The Trinary" and the whispered "Project X"—the P.F.C.

As graceful as a delicate instrument yet bold enough to inspire profound scientific imagination, an 84 -foot Kennedy radio telescope similar to the one pictured here is being installed for the Dominion Observatory.

Some of the telescope features: equatorial mount; automatic right ascension drive at sidereal rate; full hemispheric coverage; positioning accuracy ± 2 minutes of arc; precision operation in winds to 30 mph , survival in winds over 120 mph .

The Dominion Observatory radio telescope is one from Kennedy's wide line of antenna systems which includes 28 -, 60 - and 84 -foot telescopes, radar antennas, trackers and scatter communications antennas.

Da yau knau

1. That the University of Toronto Press is one of only four printing plants in the world using the four-line system of typesetting mathematical formulas mechanically?
2. That this system has been developed to its highest degree of mechanization and efficiency right here at University of Toronto Press?
3. That printing experts and scholars from the United States, Great Britain, and other parts of the world regularly visit our plant to see this system in operation?
4. That this research and experimentation has been made possible only by the co-operation of Canadian scholars, scientific societies and non-profit scientific journals?
> for mathematical and scientific printing

UNITRON'S $6^{\prime \prime}$ Refractor on left, $4^{\prime \prime}$ on right

Amateur and professional astronomers alike continue to proclaim their enthusiasm and high praise for UNITRON's new 6 -inch Refractor. And little wonder-for this latest and largest UNITRON offers features, precision, and performance usually associated only with custombuilt observatory telescopes of much larger aperture. Here, indeed, is the ideal telescope for the serious observer and for the school and college observatory.

Imagine yourself at the controls of this 6^{11} UNITRON-searching the skies, seeing more than you have ever seen before, photographically recording your observations-truly, the intellectual adventure of a lifetime.
Full specifications are given in the UNITRON Telescope Catalog available on request. There are three massive $6^{\prime \prime}$ models from which to choose with prices starting at $\$ 5125$.

SEE OUR ADVERTISEMENTS ON THE INSIDE PAGES

UNITRON

INSTRUMENT DIVISION OF UNITED SCIENTIFIC CO.

[^0]: 4 Jupiter
 b Saturn
 ${ }^{6}$ Uranus
 Ψ Neptune
 e Pluto

[^1]: *Kuiper, "The Atmospheres of the Earth and Planets," 1952.

[^2]: Explanation of symbols and abbreviations on p. 4, of time on p. 10, of colongitude on p. 56

[^3]: *Minima

