THE
 Observer's Handbook FOR 1942

PUBLISHED BY

The Ropal Estronomical玉ociety of Canada

C. A. CHANT, Editor

F. S. HOGG, Assistant Editor david dunlap observatory

THIRTY-FOURTH YEAR OF PUBLICATION

JULIAN DAY CALENDAR, 1942
J.D. $2,430,000$ plus the following:

Jan. 1. 361
Feb. 1. 392
Mar. 1 420
Apr. 1........... 451

May 1. 481
June 1. 512
July 1. 542
Aug. 1........... . 573

Sept. 1. 604
Oct. 1. 634
Nov. 1. 665
Dec. 1........... 695

The Julian Day commences at noon.
Thus J.D. $2,430,361=$ Jan. 1.5 G.C.T.

THE
 ObsERVER's HANDBOOK FOR 1942

PUBLISHED BY

The Ropal Elstronomical Fociety of Canada

C. A. CHANT, Editor
F. S. HOGG, Assistant Editor david dunlap observatory

THIRTY-FOURTH YEAR OF PUBLICATION

CONTENTS

PAGE
Calendar and Julian Day Calendar....................... Cover p. ii
Preface - - - - - \quad - \quad - 3
Anniversaries and Festivals - - - - - - 3
Symbols and Abbreviations - - - - - - 4
The Constellations - - - \quad -
Miscellaneous Astronomical Data - \quad - \quad - 6
Ephemeris of the Sun - - - - - - 7
Solar and Sidereal Time - \quad - $\quad-\quad-\quad-\quad-\quad 8$
Map of Standard Time Zones - \quad - \quad - \quad - 9
Times of Sunrise and Sunset - \quad - \quad - 10
Times of Beginning and Ending of Twilight - - 17
Times of Moonrise and Moonset - - - - - 18
The Planets for 1942 - \quad - \quad - \quad - 24
Eclipses, 1942 - $-\quad$ - \quad - \quad - \quad - 31
The Sky and Astronomical Phenomena Month by Month - 32
Phenomena of Jupiter's Satellites - - - - - 56
Meteors or Shooting Stars - - - - - 58
Principal Elements of the Solar System - - - 60
Satellites of the Solar System - - \quad - \quad - 61
Double and Multiple Stars, with a short list - - - 62
The Brightest Stars, their magnitudes, types, proper motions,
distances and radial velocities $\quad-\quad-\quad-\quad-64$
Star Clusters and Nebulae, with Messier's List - - - 72
Four Circular Star Maps - - - - - - 75
List of Air Navigation Stars - - - - - 79
Tables of Meteorological Data:
Canadian and United States Stations - - - - 80
European and Asiatic Stations - - - Cover p. iii

PREFACE

The Handbook for 1942 is the thirty-fourth issue. Its chief changes from that of last year are: (1) On pages 17 to 23 the times of moonrise and moonset are given for each day of the year for four latitudes. This information has been prepared in response to a request from instructors in the Air Force; (2) A table of meteorological information for stations in Europe and Asia is given on page 3 of the cover.

In order to make room for the moonrise and moonset tables it has been necessary to omit the pages ordinarily devoted to Lunar Occultations, Variable Stars and Distances of the Stars. For the latter two subjects reference may be made to previous issues.

Four circular star maps, 9 inches in diameter, are obtainable from the Director of University Extension, University of Toronto, for one cent each. For fuller information reference may be made to Norton's Star Atlas and Reference Handbook (Gall and Inglis, price 12s $6 d$; supplied also by Eastern Science Supply Co., Boston, Mass.). The seventh edition (1940) contains greatly extended lists of double and variable stars, and clusters and nebulae.

For the preparation of this volue Dr. F. S. Hogg, Assistant Editor, is largely responsible; but hearty thanks are due to those whose names are mentioned in the book, especially to Miss Ruth J. Northcott and to other members of the staff of the David Dunlap Obserfatory for their assistance.

> C. A. Chant.

David Dunlap Observatory, Richmond Hill, Ont., December 1941.

ANNIVERSARIES AND FESTIVALS 1942

New Year's Day......Thu. Jan.	
Epiphany	
Quinquagesima (Shrove	
Sunday	
Ash Wednes	
St. David	
St. Patrick	
Palm Sund	
Good Friday	
	Ap
St. George	
Rogation Sunday	
Ascension Day. Thu. May 14 Pentecost (Whit Sunday). . . . May 24	
Empire Day (Victoria ${ }_{\text {Day) }}$	
Birthday of the Queen Mother	
Mary (1867)....... . Tue.	
Trinity Sunday	-
Corpus Christi....... Thu.	
St. John Baptist (Midsummer	
Day)................	Jun. 24

Dominion Day.........Wed. Jul. 1 Birthday of Queen Elizabeth (1900)................ Tue. Aug. 4 Labour Day............ Mon. Sep. 7 Hebrew New Year (Rosh

Hashanah)..........Sat. Sep. 12 St. Michael (Michaelmas

Day)................Tue. Sep. 29
All Saints' Day. Sun. Nov. 1
Remembrance Day.... Wed. Nov. 11
First Sunday in Advent....... Nov. 29
St. Andrew. Mon. Nov. 30
Ascension of King George VI
(1936)...............Fri. Dec. 11

Birthday of King George VI
(1895). Mon. Dec. 14

Christmas Day........Fri. Dec. 25

Thanksgiving Day, date set by Proclamation

SYMBOLS AND ABBREVIATIONS

SIGNS OF THE ZODIAC

\uparrow Aries	0°	Ω Leo.	120°		Sagittarius..	240°
\bigcirc Taurus	30°	mp Virgo	$.150^{\circ}$	ठ	Capricornus.	270°
II Gemini	60°	\simeq Libra	. 180°		Aquarius.	300°
(3) Cancer.	90°	m Scorpio	$.210^{\circ}$	-	Pisces.. .	. 330°

SUN, MOON AND PLANETS

\odot The Sun.	(d) The Moon generally.	24 Jupiter.
(4) New Moon.	¢ Mercury.	b Saturn.
(3) Full Moon.	\% Venus.	¢ or Hi Uranus.
(1) First Quarter	\oplus Earth.	Ψ Neptune.
(1) Last Quarter.	0^{7} Mars.	P Pluto

ASPECTS AND ABBREVIATIONS

σ^{\prime} Conjunction, or having the same Longitude or Right Ascension.
δ° Opposition, or differing 180° in Longitude or Right Ascension.
Quadrature, or differing 90° in Longitude or Right Ascension. Ω Ascending Node; ४ Descending Node. a or A. R., Right Ascension; δ Declination. h, m, s, Hours, Minutes, Seconds of Time. $\circ^{\prime \prime}$ ", Degrees, Minutes, Seconds of Arc.

THE GREEK ALPHABET

A, a,	Alpha.	I, ι,	Iota.	P, ρ,	Rho.
B, β,	Beta.	\mathbf{K}, κ,	Kappa.	$\mathbf{\Sigma}, \sigma, s$,	Sigma.
Γ, γ,	Gamma.	Λ, λ,	Lambda.	T, τ,	Tau.
Δ, δ,	Delta.	M, μ,	Mu.	Υ, v,	Upsilon.
E, $\boldsymbol{\varepsilon}$,	Epsilon.	$\mathrm{N}, \nu_{\text {, }}$	Nu.	ϕ, ϕ,	Phi.
Z, ζ,	Zeta.	\underline{E}, ξ,	Xi.	x, χ,	Chi.
H, η,	Eta.	$0, o$,	Omicron.	Ψ, ψ,	Psi.
$\theta, \theta, \vartheta$,	Theta.	II, π,	Pi.	$\boldsymbol{\Omega}, \omega$,	Omega.

THE CONFIGURATIONS OF JUPITER'S SATELLITES

In the Configurations of Jupiter's Satellites (pages 27, 29, etc.), 0 represents the disc of the planet, d signifies that the satellite is on the disc, * signifies that the satellite is behind the disc or in the shadow. Configurations are for an inverting telescope.

THE CONSTELLATIONS

Latin and English Names with Abbreviations

Lion	on
Leo Minor, Lesser Lion..LMi	LMin
Lepus, Hare. Lep	Leps
Libra, Scales....... Lib	Libr
Lupus, Wolf. Lup	Lupi
Lynx, Lynx............ . Lyn	Lync
Lyra, Lyre... Lyr	Lyra
Mensa, Table (Mountain)Men	Mens
Microscopium, Microscope.	
Monoceros, Unicorn. . . . Mon	Mono
Musca, Fly............ Mus	Musc
Norma, Square. Nor	Norm
Octans, Octant. Oc	Octn
Ophiuchus, Serpent-bearer	
Orion, (Hunter)	Orio
Pavo, Peacock........ . . Pav	Pavo
Pegasus, (Winged Horse) Peg	Pegs
Perseus, (Champion)... Per	Pers
Phoenix, Phoenix. Phe	Phoe
Pictor, Painter. Pic	Pict
Pisces, Fishes Psc	Pisc
Piscis Australis, Southern Fish PsA	
Puppis, Poop.......... Pup	Pupp
Pyxis, Compass........ . Pyx	Pyxi
Reticulum, Net......... Ret	Reti
Sagitta, Arrow. Sge	Sgte
Sagittarius, ArcherSgr	Sgtr
Scorpius, Scorpion.Scr	Scor
Sculptor, Sculptor Scl	Scul
Scutum, Shield. Sct	Scut
Serpens, Serpent...... . . . Ser	Serp
Sextans, Sextant........ Sex	Sext
Taurus, Bull........... . Tau	Taur
Telescopium, Telescope. Tel	Tele
Triangulum, Triangle. . Tri	Tria
Triangulum Australe, Southern Triangle..... .TrA	$\mathrm{Tr} A u$
Tucana, Toucan....... Tuc	Tucn
Ursa Major, Greater Bear.UMa	UMaj
Ursa Minor, Lesser Bear. UMi	UMin
Vela, Sails............. Vel	Velr
Virgo, Virgin. Vir	Virg
Volans, Flying Fish.....V.Vol	Voln
Vulpecula, Fox......... . Vul	Vulp
The 4-letter abbreviations tended to be used in cases maximum saving of space	where is n

MISCELLANEOUS ASTRONOMICAL DATA

Units of Length
1 Angstrom unit $=10^{-8} \mathrm{~cm}$.
1 micron $\quad=10^{-4} \mathrm{~cm}$.
1 meter $\quad=10^{2} \mathrm{~cm} .=3.28084 \mathrm{fcet}$
1 kilometer $\quad=10^{5} \mathrm{~cm} .=0.62137$ miles
1 mile $\quad=1.60935 \times 10^{5} \cdot \mathrm{~cm} .=1.60935 \mathrm{~km}$.
1 astronomical unit $=1.49504 \times 10^{13} \mathrm{~cm} .=92,897,416$ miles
1 light year $\quad=9.463 \times 10^{17} \mathrm{~cm} .=5.880 \times 10^{12}$ miles $=0.3069$ parsecs
1 parsec $\quad=30.84 \times 10^{17} \mathrm{~cm} .=19.16 \times 10^{12}$ miles $=3.2591 . y$.
1 megaparsec $\quad=30.84 \times 10^{23} \mathrm{~cm} .=19.16 \times 10^{18}$ miles $=3.259 \times 10^{6} \mathrm{l} . \mathrm{y}$.
Units of Time
Sidereal day $\quad=23 h 56 m 04.09 s$ of mean solar time
Mean solar day $=24 h 03 m 56.56 \mathrm{~s}$ of sidereal time
Synodical month $=29 d 12 h 44 m$; sidereal month $=27 d 07 h 43 m$
Tropical year (ordinary) $=365 d$ 05h $48 m 46 s$
Sidereal year $\quad=365 d 06 h 09 m 10 s$
Eclipse year $\quad=346 d 14 h 53 m$

The Earth

Equatorial radius, $a=3963.35$ miles; flattening, $c=(a-b) / a=1 / 297.0$
Polar radius, $\quad b=3950.01$ miles
1° of latitude $=69.057-0.349 \cos 2 \phi$ miles (at latitude ϕ)
1° of longitude $=69.232 \cos \phi-0.0584 \cos 3 \phi$ miles
Mass of earth $=6.6 \times 10^{21}$ tons; velocity of escape from $\bigoplus=6.94 \mathrm{miles} / \mathrm{sec}$.
Earth's Orbital Motion
Solar parallax $=8 .{ }^{\prime \prime} 80$; constant of aberration $=20 .{ }^{\prime \prime} 47$
Annual general precession $=50 .^{\prime \prime} 26$; obliquity of ecliptic $=23^{\circ} 26^{\prime} 50^{\prime \prime}$ (1939)
Orbital velocity $=18.5 \mathrm{miles} / \mathrm{sec}$.; parabolic velocity at $\Theta=26.2 \mathrm{miles} / \mathrm{sec}$.

Solar Motion

Solar apex, R.A. $18 h 04 m$; Dec. $+31^{\circ}$
Solar velocity $=12.2$ miles $/ \mathrm{sec}$.
The Galactic System
North pole of galactic plane R.A. $12 h 40 m$, Dec. $+28^{\circ}$ (1900)
Centre, 325° galactic longitude, $=$ R.A. 17 h 24 m , Dec. -30°
Distance to centre $=10,000$ parsecs; diameter $=30,000$ parsecs.
Rotational velocity (at sun) $=262 \mathrm{~km} . / \mathrm{sec}$.
Rotational period (at sun) $=2.2 \times 10^{8}$ years
Mass $=2 \times 10^{11}$ solar masses
Extragalactic Nebular
Red shift $=+530 \mathrm{~km}$. $/ \mathrm{sec}$. $/$ megaparsec $=+101 \mathrm{miles} / \mathrm{sec} . /$ million l.y.

Radiation Constants

Velocity of light $=299,774 \mathrm{~km} . / \mathrm{sec} .=186,271 \mathrm{miles} / \mathrm{sec}$.
Solar constant $=1.93$ gram calories $/ \mathrm{square} \mathrm{cm} . /$ minute
Light ratio for one magnitude $=2.512 ; \log$ ratio $=0.4000$
Radiation from a star of zero apparent magnitude $=3 \times 10^{-6}$ meter candles
Total energy emitted by a star of zero absolute magnitude $=5 \times 10^{25}$ horsepower

Miscellaneous

Constant of gravitation, $G=6.670 \times 10-8$ c.g.s. units
Mass of the electron, $m=9.035 \times 10^{-28} \mathrm{gm}$.; mass of the proton $=1.662 \times 10^{-84} \mathrm{gm}$.
Planck's constant, $h=6.55 \times 10^{-27}$ erg. sec.
Loschmidt's number $=2.705 \times 10^{19}$ molecules $/ \mathrm{cu} . \mathrm{cm}$. of gas at N.T.P.
Absolute temperature $=T^{\circ} \mathrm{K}=T^{\circ} \mathrm{C}+273^{\circ}=5 / 9\left(T^{\circ} \mathrm{F}+459^{\circ}\right)$
1 radian $=57^{\circ} .2958 \quad \pi=3.141,592,653,6$
$=3437^{\prime} .75 \quad$ No. of square degrees in the sky
$=206,265^{\prime \prime} \quad=41,253$

1942 EPHEMERIS OF THE SUN AT Oh GREENWICH CIVIL TIME

Date	Apparent R.A.	Corr. to Sundial	Apparent Dec.	Date	Apparent R.A.	Corr. to Sundial	Apparent Dec.
	h m		- ,		h m		$\bigcirc \quad 1$
Jan. 1	184317	+0314	-23 04.3	July 3	$\begin{array}{llll}06 & 45 & 25\end{array}$	+0352	+23 02.0
	185631	+0438	-22 48.5		065747	+0425	+22 46.8
	190941	+05 58	-22 28.7		071006	+04 54	+22 28.0
". 10	$\begin{array}{lll}19 & 22 & 47\end{array}$	+0715	-2204.9 -210	"، 12	0712222	+05 20	+22 05.7
" 13	193548	+08 27	-21 37.1	" 15	073434	+0543	+2140.0
"، 16	194845	+0933	-21 05.6		074642	+06 01	+2110.9
، 19	200135	+1033	-20 30.5	"، 21	075844	+0614	+20 38.6
".	$\begin{array}{llll}20 & 14 & 18\end{array}$	+1127	-19 51.9	24	081042	+0621	+20 03.2
"، 25	202654	+1214	-19 10.0	27	082234	+06 24	+1924.8
"، 28	$\begin{array}{llll}20 & 39 & 23\end{array}$	+1253	-18 24.9		083420	+0821	+18 43.5
" 31	205145	+1325	-17 36.8		084602	+06 12	1759.5
b. 3	$\begin{array}{llll}21 & 03 & 59\end{array}$	+1350	-16 45.9		0857	+05 59	+17 12.8
. 6	$\begin{array}{llll}21 & 16 & 06\end{array}$	+1407	-15 52.4		090909	+0540	+16 23.5
"	212806	+14 17	-14 56.4		092034	+05 16	+1531.9
" 12	213959	+1420	-13 58.2	14	093155	+04 47	+14 38.1
، ${ }^{\prime} 15$	215145	+1417	-12 57.8	17	094310	+04 12	+13 42.1
، 18	220325	+1407	-1155.6	20	095421	+03 33	+1244.2
"، 21	22 14 58 22	+1350	-10 51.7	23	$\begin{array}{llll}10 & 05 & 27\end{array}$	+0250	+1144.5
" 24	222625	+1328	-09 46.3	26	101629	+02 02	+10 43.1
" 27	223746	+1300	-08 39.5		$\begin{array}{llll}10 & 27 & 27\end{array}$	+0111	+09 40.2
Mar. 2	224903	+1226	-07 31.6	Sept. 1	103822	+00 16	+08 35.9
	$\begin{array}{llll}23 & 00 & 14\end{array}$	+1148	-06 22.7		104915	-00 41	+0730.4
" 48	231122	+1106	-05 13.1		110005	-01 40	+03 23.7
"، 11	$\begin{array}{llll}23 & 22 & 27\end{array}$	+1021	-04 02.8	10	111053	-02 41	+0516.1
" 14	$23 \quad 3328$	+09 33	-02 52.0	13	112141	-03 44	+04 07.7
"، 17	23 44 4 28	+0843	-01 41.0	16	$\begin{array}{llll}11 & 32 & 27\end{array}$	-04 47	+02 58.6
"، 20	235525	+0751	-00 29.8	19	$11 \begin{array}{ll}11 & 43 \\ 13\end{array}$	-05 51	+0149.1
". 23	$\begin{array}{llll}00 & 06 & 21\end{array}$	+0657	+00 41.3	22	1111 53 1	-06 55	+00 39.2
". 26	$\begin{array}{llll}00 & 17 & 16\end{array}$	+06 02	+01 52.1	25	120445	-07 58	-00 30.9
" 29	002810	+0507	+03 02.6	28	$\begin{array}{llll}12 & 15 & 33\end{array}$	-09 00	-0141.0
Apr. 1	$\begin{array}{llll}00 & 39 & 05\end{array}$	+04 12	+04 12.6	Oct. 1	122623	-10 00	-02 51.1
"، 4	$\begin{array}{llll}00 & 50 & 01 \\ 01\end{array}$	+03.18	+05 21.8		123715	-10 57	-04 00.9
$\begin{array}{ll}\text { ". } & 7\end{array}$	010058	+02 26	+06 30.2		124811	-1151	$\begin{array}{lll}-05 & 10.2\end{array}$
"، 10	011157	+0135	+0737.7	10	125910	-12 42	-03 19.0
" 13	$01 \quad 2259$	+0047	+08 43.9	13	131013	-13 28	-07 -07.1
"، 16	013403	+00 02	+09 48.9	16	132121	-14 10	-08 34.2
"، 19	014511	-00 40	+10 52.4	19	133233	-14 47	-09 40.2
"، 22	015622	-0119	+1154.3	22	134351	-15 19	-1045.0
"، 25	020736	-01 54	+1254.5	25	135515	-15 45	-1148.3
" 28	021855	-02 24	+13 52.7	28	140645	-16 04	-12 50.0
May	023019	-02 51	+14 48.8	31	141822	-1617	-13 49.9
". 4	024147	-03 12	+15 42.8	Nov. 3	143006	-16 22	-14 47.8
	$\begin{array}{llll}02 & 53 & 20\end{array}$	-03 29	+16 34.4	c. 6	144158	-16 21	-15 43.6
". 10	$\begin{array}{llll}03 & 0459\end{array}$	-03 40	+16 23.5		145357	-16 11	-16 37.0
". 13	$\begin{array}{llll}03 & 16 & 43\end{array}$	-03 46	+18 10.1	12	150604	-15 54	-1728.0
". 16	$\begin{array}{llll}03 & 28 & 32\end{array}$	-03 46	+18 53.9	15	$\begin{array}{llll}15 & 18 & 18\end{array}$	-15 29	-18 16.2
". 19	034026	-03 42	+19 34.8	18	153040	-14 58	-19 01.5
"، 22	035225	-03 32	+20 12.7	21	154308	-14 18	-19 43.7
25	$\begin{array}{llll}04 & 04 & 29\end{array}$	-03 18	+20 47.6	24	155545	-13 32	-20 22.7
28	$\begin{array}{lll}04 & 1637\end{array}$	-03 00	+21 19.2	27	160828	-1238	-20 58.4
" 31	042849	-02 37	+21 47.4	30	162118	-1138	-2130.5
June 3	044105	-02 11	+22 12.3	Dec. 3	$\begin{array}{llll}16 & 34 & 14\end{array}$	-10 31	-21 58.9
6	045325	-0141	+22 33.7	6	164716	-09 19	-22 23.5
9	$\begin{array}{llll}05 & 0547\end{array}$	-01 08	+22 51.6		170023	-08 01	-22 44.2
12	$\begin{array}{llll}05 & 18 & 13\end{array}$	-00 32	+23 05.8	12	$17 \begin{array}{lll}17 & 13 & 35\end{array}$	-06 40	-23 00.9
15	053040	+00 05	+23 16.4	15	1712649	-05 15	-23 13.5
، ${ }^{\prime} 18$	054308	+00 44	+23 23.3	18	174006	-03 48	-23 21.9
21	$\begin{array}{llll}05 & 55 & 37\end{array}$	+0123	+23 26.4	21	175324	-02 19	-23 26.2
24	060806	+0202	+23 25.9	24	$\begin{array}{llll}18 & 06 & 43\end{array}$	-00 50	-23 26.1
27	062034	+0240	+23 21.6	27	182002	+0039	-23 21.9
- 30	063300	+0317	+2313.6	30	183320	+0208	-23 13.4

To obtain local mean time, apply corr. to sundial to apparent or sundial time.

SOLAR AND SIDEREAL TIME

In practical astronomy three different kinds of time are used, while in ordinary life we use a fourth.

1. Apparent Time-By apparent noon is meant the moment when the sun is on the meridian, and apparent time is measured by the distance in degrees that the sun is east or west of the meridian. Apparent time is given by the sun-dial.
2. Mean Time-The interval between apparent noon on two successive days is not constant, and a clock cannot be constructed to keep apparent time. For this reason mean time is used. The length of a mean day is the average of all the apparent days throughout the year. The real sun moves about the ecliptic in one year; an imaginary mean sun is considered as moving uniformly around the celestial equator in one year. The difference between the times that the real sun and the mean sun cross the meridian is the equation of time. Or, in general, Apparent Time-Mean Time = Equation of Time. This is the same as Correction to Sundial on page 7, with the sign reversed.
3. Sidereal Time-This is time as determined from the stars. It is sidereal noon when the Vernal Equinox or First of Aries is on the meridian. In accurate time-keeping the moment when a star is on the meridian is observed and the corresponding mean time is then computed with the assistance of the Nautical Almanac. When a telescope is mounted equatorially the position of a body in the sky is located by means of the sidereal time.
4. Standard Time-In everyday life we use still another kind of time. A moment's thought will show that in general two places will not have the same mean time; indeed, difference in longitude between two places is determined from their difference in time. But in travelling it is very inconvenient to have the time varying from station to station. For the purpose of facilitating transportation the system of Standard Time was introduced in 1883. Within a certain belt approximately 15°. wide, all the clocks show the same time, and in passing from one belt to the next the hands of the clock are moved forward or backward one hour.

In Canada we have six standard time belts, as follows;-60th meridian or Atlantic Time, 4h. slower than Greenwich; 75th meridian or Eastern Time, 5h.; 90th meridian or Central Time, 6h.; 105th meridian or Mountain Time, 7h.; 120th meridian or Pacific Time, 8h.; and 135th meridian or Yukon Time, 9h. slower than Greenwich.

The boundaries of the time belts are shown on the map on page 9.
Daylight Saving Time is the standard time of the next zone eastward. It is adopted in many places between certain specified dates during the summer. As a war-time measure many places are using daylight saving time throughout the year.

MÅP OF STANDARD TIME ZONES

TIMES OF SUNRISE AND SUNSET

In the tables on pages 11 to 16 are given the times of sunrise and sunset for places in latitudes $36^{\circ}, 40^{\circ}, 44^{\circ}, 46^{\circ}, 48^{\circ}, 50^{\circ}$ and 52°. The times are given in Local Mean Time, and in the table below are given corrections to change from Local Mean to Standard Time for the cities and towns named.

How the Tables are Constructed

The time of sunrise and sunset at a given place, in local mean time, varies from day to day, and depends principally upon the declination of the sun. Variations in the equation of time, the apparent diameter of the sun and atmospheric refraction at the points of sunrise and sunset also affect the final result. These quantities, as well as the solar declination, do not have precisely the same values on corresponding days from year to year, and so the table gives only approximately average values. The times are for the rising and setting of the upper limb of the sun, and are corrected for refraction. It must also be remembered that these times are computed for the sea horizon, which is only approximately realised on land surfaces, and is generally widely departed from in hilly and mountainous localities. The greater or less elevation of the point of view above the ground must also be considered, to get exact results.

The Standard Times for Any Station

In order to find the time of sunrise and sunset for any place on any day, first from the list below find the approximate latitude of the place and the correction, in minutes, which follows the name. Then find in the monthly table the local time of sunrise and sunset for the proper latitude, on the desired day, and apply the correction to get the Standard Time.

$\begin{gathered} 34^{\circ} \\ \text { Los Angeles } \end{gathered}$	$\min _{-7}$	$\begin{gathered} \mathbf{4 4}^{\circ} \\ \text { Brantford } \end{gathered}$	$\min _{+21}$	$\underset{\text { Glace }}{\mathbf{4 6}^{\circ}} \quad \underset{\text { Bay }}{\min .}$	$\begin{array}{r} \mathbf{5 0}^{\circ} \\ \text { Brandon } \end{array}$	m +40 +40
		Guelph	+21	Moncton $\quad+19$	Kenora	+18
38°		Halifax	+14	Montreal - 6	Medicine Hat	+22
St. Louis	$+1$	Hamilton	$+20$	New Glasgow +11	Moose Jaw.	+ 2
San Francisco	$+10$	Kingston	+6	North Bay +18	Port. la Prairie	+33
Washington	$+8$	Kitchener	+22	Ottawa +3	Regina	- 2
		Milwaukee Minneapolis	+ 8	Parry Sound Quebec	Trail	-9 +12
Baltimore ${ }^{40}$	$+6$	Minneapolis	+13 +18	Quebec St. John, N.B. +24	Vancouver Winnipeg	+12 +28
New York	-4	Oshawa	+15	Sault St. Marie +37		
Philadelphia	+1	Owen Sound	+24	Sherbrooke -12	52°	
Pittsburgh	+20	Peterborough	+13	Sudbury +24	Calgary	$+36$
		St. Catharines	+17	Sydney +1	Saskatoon	$+6$
$\text { Boston }^{\mathbf{4 2}}$		Stratford	+24	Three Rivers -10		
Buffalo	+15	Woodstock, Ont	+	48°	Edmonton	+34
Chicago	-10	Yarmouth	+24	Port Arthur +57	Prince Albert	+11
Cleveland	$+26$			St. John's, Nfd. 0	Prince Rupert	+41
Detroit	-28	46°		Seattle $\quad+9$		
London, Ont.	$+25$	Charlottetown	$+13$	Timmins +26	60°	
Windsor	+32	Fredericton	+26	Victoria +13	Dawson	+18

Example.-Find the time of sunrise at Owen Sound, also at Regina, on February 12.

In the above list Owen Sound is under " 44° ", and the correction is +24 min . On page 11 the time of sunrise on February 12 for latitude 44° is 7.05 ; add 24 min . and we get 7.29 (Eastern Standard Time). Regina is under " 50° ", and the correction is -2 min . From the table the time is 7.17 and subtracting 2 min . we get the time of sunrise 7.15 (Mountain Standard Time).

DATE		Latitu Sunrise	36° Sunset	Latitu Sunrise	de 40° Sunset	Latitu Sunrise	Se 44°	Latitu Sunrise	ude 6° Sunset	Latitu Sunrise	de 48° Sunset	Latitu Sunrise	de 50° Sunset	Latitu Sunrise	de 52° Sunset
January	1	$\begin{array}{ll} \mathrm{h} \\ 7 & \mathrm{~m} \\ 11 \end{array}$	$\begin{array}{ll}\mathrm{h} & \mathrm{m} \\ 4 & 57\end{array}$	$\begin{array}{cc} \mathrm{h} & \mathrm{~m} \\ 7 & 22 \end{array}$	$\mathrm{h} \mathrm{~m}$ 445	$\begin{array}{ll} \mathrm{h} \\ 7 & \mathrm{~m} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{h} \\ & 4 \mathrm{~m} \\ & 42 \end{aligned}$	$\begin{aligned} & \mathrm{h} \\ & 7 \\ & 7 \end{aligned}$	$\begin{aligned} & \mathrm{h} \text { m } \\ & 425 \end{aligned}$	$\begin{gathered} \mathrm{h} \quad \mathrm{~m} \\ 7 \\ \hline \end{gathered}$	$\begin{array}{ll} \mathrm{h} \\ 4 & \mathrm{~m} \\ \hline \end{array}$	$\begin{gathered} \text { h } \quad \mathrm{m} \\ 759 \end{gathered}$	$\begin{aligned} & \mathrm{h} \text { m } \\ & 408 \end{aligned}$	$\begin{aligned} & h \\ & 8 \end{aligned}$	$\begin{aligned} & \text { h m } \\ & 359 \end{aligned}$
	3	711	458	723	447	735	434	742	426	750	419	759	410	808	401
	5	712	500	723	449	735	436	742	429	750	422	758	413	807	403
	7	711	502	722	450	735	438	742	431	749	423	758	415	806	406
	9	711	504	722	452	734	440	741	433	749	426	757	418	805	408
	11	711	506	722	454	734	442	740	436	748	428	756	420	805	411
	13	711	505	7.21	456	733	445	739	439	747	431	755	423	803	414
	15	710	510	720	458	732	448	738	441	745	434	754	426	801	418
	17	710	512	720	500	730	450	737	444	744	437	752	429	759	421
	19	709	514	719	502	729	453	735	446	742	439	750	432	757	424
	21	708	515	718	505	728	455	734	448	740	442	748	435	756	427
	23	707	517	715	508	726	457	732	451	739	445	746	438	754	431
	25	706	519	714	510	726	500	731	454	737	448	744	441	751	435
	27	705	521	712	513	724	502	729	457	7×35	451	742	445	748	438
	29	704	523	711	515	722	505	727	500	733	454	739	448	746	442
February	31	702	525	710	$5 \cdot 17$	719	508	724	503	730	457	736	451	743	445
	2	700	527	708	520	717	511	722	506	727	500	733	455	739	449
	4	659	529	706	522	715	513	720	$5 \cdot 09$	725	504	730	458	735	453
	6	657	532	704	525	713	516	718	511	722	507	727	502	732	456
	8	655	534	702	527	710	519	715	514	720	510	724	505	729	500
	10	653	536	700	529	708	522	713	$\begin{array}{ll}5 & 17\end{array}$	717	513	721	508	725	503
	12	651	538	659	531	705	524	709	$\begin{array}{ll}5 & 20\end{array}$	714	516	717	512	721	507
	14	649	540	655	$\begin{array}{ll}5 & 34\end{array}$	703	527	706	523	710	519	714	515	718	510
	16	647	542	653	- 536	700	530	702	526	706	523	710	519	714	514
	18	645	544	650	539	657	533	659	529	703	526	707	522	711	518
	20	643	546	648	541	654	535	656	532	659	529	703	526	707	522
	22	6.40	548	645	543	650	538	653	535	656	$\begin{array}{ll}5 & 32\end{array}$	659	529	702	526
	24	638	550	642	545	647	540	649	538	652	535	655	532	658	530
	26	635	552	639	547	644	543	646	541	649	538	651	536	653	533
	28	633	554	636	549	640	546	643	544	645	541	647	539	649	531

date		Latitude 3° Sunrise Sunset	Latitude $\mathbf{4 0}^{\circ}$ Sunrise Sunset	Latitude 44° Sunrise Sunset	Latitude 46° Sunrise Sunset	Latitude 48° Sunrise Sunset	Latitude 50° Sunrise Sunset	Latitude $5^{\circ}{ }^{\circ}$ Sunrise Sunse
March		6305					${ }^{\text {h m m m }}$	-
	4		$\begin{array}{llll}6 & 3 & 5 & 5 \\ 6 & 54 \\ 6 & 27 & 5 & 57\end{array}$	634 6 63 630 554	636 6 632 63 5 5	$\begin{array}{llll}637 & 547 \\ 633 & 5 & 51\end{array}$	6 6 639 635	641 6 6 67 5 5
				630 6 62654 505	63255 6 6	633 6 6 6		
	10	619 6 6		6 6 626 505 59	6 6 24	6 6 6 295 59 5 57	6 6 6 26	${ }^{6} 28$
	12	617604	618603	619602	${ }_{6}^{620} 601$	${ }^{6} 21{ }^{6} 000$	622559	${ }_{6} 63$
	14			615 612 612 6		617603 613 606	${ }^{6} 1146020$	${ }_{6}^{614} 14$
	18	608 60810 6	608609	608.609 605 11	$\begin{array}{llll}609 & 609 \\ 605 & 611\end{array}$	${ }_{6}^{609} 60$	610 605	${ }^{6} 10{ }_{6} 10$
	20	6	605	605				
		${ }_{6}^{6} 03013$	${ }_{6}^{6} 020613$	${ }^{6} 02614$		${ }^{6} 01615$	${ }_{6}^{6} 01015$	${ }^{6} 000615$
	${ }_{26}^{24}$		5 59 5 6 6 15	5 5 5 5 58 58 619			5 57 5 5 618	5
	28	5 5 54	${ }^{5} 52619$	551621	${ }_{5}^{50} 622$	549623	548624	
	30	51619	549621	548623	546624	${ }^{5} 45625$	543627	541629
April								
	5	${ }_{5}^{542} 624$		54040 5 5 57 6838	535633			5286
	7	542 540	5 5 56 6	5 5 5 3 66338	535 5 51 635	532 5 5 5		${ }_{5}^{5} 236$
		537628	533 5	529 5	527638	524640	${ }_{5} 21643$	519
	13 15		$\begin{array}{ll}5 & 27 \\ 5 & 6 \\ 5 & 3 \\ 5 & 35 \\ 6 & 38\end{array}$		519 5 5164	516 5 5 5 $6^{646} 49$	513 5 509 509	${ }_{5}^{5} 106$
	17	529 526 5	524 521 5	519645 515645				
	19	524 51 57	518642	512648	${ }_{5} 09651$	${ }_{5} 05655$	${ }_{5} 01659$	456702
	${ }_{25}^{23}$	518 516 5164	(${ }^{5} 112646$	506 502 50655	502656 45859	${ }_{4}^{454} 703$	${ }_{4}^{4} 49708$	${ }_{4} 448$
	27	513643	507650	459657	455701	451706	${ }^{4} 45711$	4407
	29	511644	504652	456700	452704	447708	442714	436720

DATE		Latitu Sunrise	de 36° Sunset	Latitu Sunrise	de 40° Sunset	Latitu Sunrise	de 44° Sunset	Latitu Sunrise	de 46° Sunset	Latitu Sunrise	de 48° Sunset	Latitu Sunrise	ade 50° Sunset	Latitu Sunrise	de 52° Sunset
May	1	$\begin{array}{ll}\mathrm{h} & \mathrm{m} \\ 5 & 09\end{array}$	$\begin{array}{cc}\text { h m } \\ 6 & 46\end{array}$	$\begin{array}{ll}\mathrm{h} & \mathrm{m} \\ 5 & 02\end{array}$	$\begin{array}{cc}\mathrm{h} & \mathrm{m} \\ 6 & 53\end{array}$	$\begin{array}{ll}\mathrm{h} & \mathrm{m} \\ 4 & 53\end{array}$	$\begin{array}{cc}\mathrm{h} & \mathrm{m} \\ 7 & 02\end{array}$	h m 4	$\begin{aligned} & \mathrm{h} \mathrm{~m} \\ & 706 \end{aligned}$	$\begin{array}{ll}\mathrm{h} & \mathrm{m} \\ 4 & 44\end{array}$	$\begin{array}{cc}h & m \\ 7 & 11\end{array}$	$\begin{array}{cc}\text { h m } \\ 4 & 38\end{array}$	$\begin{array}{ccc}\text { h } & \mathrm{m} \\ 7 & 17\end{array}$	h m 4 4	$\begin{array}{ccc}\text { h } & \text { m } \\ 7 & 23\end{array}$
	3	507	648	459	656	450	704	446	709	440	714	434	720	428	726
	5	505	649	456	658	447	707	443	711	437	717	431	723	425	729
	7	503	651	454	700	444	709	440	714	434	720	427	726	421	732
	9	501	652	451	702	442	711	437	716	431	722	424	729	417	736
	11	459	654	449	704	439	714	434	719	428	725	421	732	414	739
	13	457	656	447	706	437	716	431	721	425	728	418	735	411	742
	15	455	657	445	708	435	718	428	724	422	730	415	738	407	745
	17	453	659	444	710	433	720	426	726	420	733	413	740	404	748
	19	451	701	442	711	431	722	424	728	417	735	410	743	401	752
	21	450	703	440	$\begin{array}{ll}7 & 13\end{array}$	429	724	422	731	415	738	407	746	358	755
	23	449	704	439	715	427	726	420	733	413	740	405	748	355	757
	25	448	705	437	716	425	728	418	735	411	743	403	751	353	800
	27	447	707	436	718	424	730	416	$\begin{array}{ll}7 & 37\end{array}$	409	745	401	753	351	803
	29	446	708	435	720	422	732	415	739	407	747	359	756	349	805
June	31	445	710	434	721	421	734	414	741	406	749	357	758	347	808
	2	445	711	433	723	420	735	413	743	405	751	356	800	345	810
	4	444	712	433	724	419	737	412	744	404	753	355	802	344	812
	6	444	713	432	725	418	738	411	746	402	754	353	804	342	814
	8	443	714	431	726	417	740	410	747	402	756	352	805	341	816
	10	443	716	431	7 7 27	417	741	409	749	401	757	351	807	3. 40	818
	12	443	716	431	728	417	742	409	750	401	758	351	808	340	819
	14	443	717	431	729	417	743	408	751	400	759	350	809	339	820
	16	443	718	431	730	417	744	408	752	400	800	350	810	339	821
	18	443	719	431	731	417	745	408	753	400	801	350	811	339	822
	20	443	$\begin{array}{ll}7 & 19\end{array}$	431		417	745	408	754	400	802	350	812	339	823
	22	444	720	431	732	417	746	408	755	401	803	350	812	339	823
	24	444	720	432	732	418	746	409	755	401	803	351	813	340	824
	26	444	721	432	733	418	747	410	755	402	803	352	813	341	824
	28	445	721	433	733	419	747	411	755	403	803	353	813	342	824
	30	446	721	434	733	4.20	747	412	755	404	803	354	813	343	824

DATE	Latitude 36° Sunrise Sunset		Latitude 40° Sunrise Sunset		Latitude 44° Sunrise Sunset		Latitude $\mathbf{4 6}^{\circ}$ Sunrise Sunset		Latitude 48° Sunrise Sunset		Latitude 50° Sunrise Sunset		Latitude 52° Sunrise Sunset	
September 2	$\begin{array}{cl}\mathrm{h} & \mathrm{m} \\ 5 & 31\end{array}$	$\begin{array}{ll}\mathrm{h} & \mathrm{m} \\ 6 & 27\end{array}$	$\begin{array}{ll}\mathrm{h} & \mathrm{m} \\ 5 & 27\end{array}$	h $\quad \mathrm{m}$ 6	$\begin{array}{ll}\mathrm{h} & \mathrm{m} \\ 5 & 23\end{array}$	$\begin{array}{ll}\text { h } & \text { m } \\ 6 & 36\end{array}$	$\begin{array}{ll}\mathrm{h} & \mathrm{m} \\ 5 & 20\end{array}$	$\begin{array}{cc}\text { h m } \\ 6 & 38\end{array}$	$\begin{array}{cc}\mathrm{h} & \mathrm{m} \\ 5 & 18\end{array}$	$\begin{array}{ll}\text { h m } \\ 6 & 41\end{array}$	$\begin{array}{cc}\mathrm{h} & \mathrm{m} \\ 5 & 15\end{array}$	$\begin{array}{ccc}h & m \\ 6 & 44\end{array}$	$\begin{array}{ccc}\mathrm{h} & \mathrm{m} \\ 5 & 12\end{array}$	$\begin{array}{cc}\text { h m } \\ 6 & 47\end{array}$
4	533	624	529	628	525	632	523	634	520	637	518	640	515	641
6	534	622	531	625	527	628	525	631	523	633	521	635	519	637
8	536	619	533	622	530	625	528	627	526	629	524	631	522	633
10	538	616	535	618	532	621	531	623	529	625	527	627	525	628
12	539	613	537	615	534	617	533	619	531	621	530	622	528	623
14	541	610	539	612	536	614	535	615	534	616	533	618	531	619
16	542	607	541	608	539	610	538	611	537	612	536	613	534	614
18	544	604	543	605	541	607	541	607	540	608	539	609	538	610
20	546	601	545	602	544	603	544	603	543	604	542	605	541	605
22	5.47	558	547	558	546	559	546	559	545	600	545	600	544	600
24	549	555	549	555	548	555	548	555	548	556	548	556	547	556
26	$\begin{array}{ll}5 & 51 \\ 5 & 51\end{array}$	552	$\begin{array}{ll}5 & 51\end{array}$	552	5 51	552	551	552	551	$5 \quad 51$	551	551	551	551
28	552	549	552	549	553	548	553	548	554	557	554	547	554	546
30	553	546	554	546	555	544	556	543	557	543	557	543	557	542
October 2	555	544	556	543	$5 \quad 57$	541	558	540	559	539	600	538	600	537
4	556	541	558	540	559	537	601	536	602	535	603	534	604	532
6	558	538	600	536	602	534	603	532	604	531	606	529	607	528
8	559	535	602	533	604	530	606	528	607	527	609	525	611	523
10	601	532	604	530	607	527	608	525	610	523	612	521	614	519
12	603	530	606	527	609	524	611	521	613	519	615	$\begin{array}{ll}5 & 17\end{array}$	617	515
14	604	527	608	524	611	520	614	518	616	515	619	$\begin{array}{lll}5 & 13\end{array}$	621	510
16	606	525	610	521	614	517	617	514	619	511	622	509	625	506
18	608	522	612	518	617	513	619	511	622	508	625	505	628	502
20	610	519	615	515	620	510	622	507	625	504	628	501	632	458
22	612	517	617	512	622	507	625	504	628	500	631	457	635	454
24	614	$\begin{array}{ll}5 & 14\end{array}$	619	509	625	504	628	500	631	457	635	453	639	450
26	616	512	621	506	627	501	631	457	635	453	638	449	643	446
28	618	509	624	503	630	457	634	453	638	449	642	445	647	442
30	620	507	626	500	633	455	637	450	641	446	645	442	650	438

DATE	Latitude $\mathbf{3 6}^{\circ}$ Sunrise Sunset		Latitude $\mathbf{4 0}^{\circ}$ Sunrise Sunset		Latitude 44° Sunrise Sunset		Latitude 46° Sunrise Sunset		Latitude $\mathbf{4 8}^{\circ}$ Sunrise Sunset		Latitude 50° Sunrise Sunset		Latitude $\mathbf{5 2}^{\circ}$ Sunrise Sunset	
November $\begin{array}{r}1 \\ 3 \\ \\ 5 \\ \\ 7 \\ \\ 9\end{array}$	${ }_{6} \mathrm{~m}$	${ }_{5}^{\mathrm{h}} \mathrm{m}$	${ }_{6}^{\mathrm{h}} \mathrm{m}_{2}$	${ }_{4}^{\mathrm{h}} \mathrm{m}$	${ }^{\text {h }} \mathrm{m}$	h 4 m	h 6 1	$\begin{array}{ll}\text { h m } \\ 4 & 47\end{array}$	h m 6	h m 4	h 6 48	$\begin{array}{lll}\text { h } \\ 4 & 39\end{array}$	h 6 5	h 4 4 4
	${ }_{6}^{624}$	${ }^{5} 03$	631	455	638	449	642	444	647	440	652	435	657	430
	626	501	633	453	641	446	645	441	650	437	655	432	700	427
	627	459	635	451	643	443	648	438	653	434	658	428	704	423
	629	457	637	449	646	441	651	436	656	431	701	425	707	419
11	631	456	639	447	648	439	653	433	659	429	704	422	711	416
13	633	454	642	445	651	437	656	431	702	426	708	420	714	413
15	635	452	644	444	654	435	659	429	705	424	711	417	718	410
17	637	451	647	442	657	432	702	427	708	421	715	414	722	407
19	639	450	649	441	659	431	704	425	710	419	718	412	725	404
21	641	449	651	439	701	429	707	423	713	417	721	410	728	402
23	643	448	654	438	704	428	710	421	716	415	724	408	731	400
25	645	448	656	437	706	427	712	420	719	414	727	406	735	358
27	647	447	658	436	709	425	715	419	722	412	730	404	738	356
29	648	447	659	436	711	424	718	418	725	411	733	403	741	355
December	650	447	701	435	713	423	720	417	727	410	736	402	744	354
	652	446	703	435	715	423	722	416	730	409	738	401	747	352
	654	446	705	435	718	423	725	415	732	408	741	400	749	351
	656	446	707	435	720	422	727	415	735	407	743	359	752	350
	657	446	709	435	722	422	729	415	737	407	745	359	754	350
	659	446	710	435	724	422	731	415	739	407	748	358	757	349
	701	447	712	435	725	422	732	415	740	407	750	358	759	349
	702	447	714	436	727	423	734	416	742	407	751	359	801	349
	704	448	716	436	729	423	736	416	744	408	753	359	803	349
	705	449	717	437	730	424	737	417	745	408	754	400	804	349
	706	450	718	438	731	425	738	418	746	409	755	401	805	350
	707	451	719	439	732	426	739	419	747	410	756	402	806	351
	708	452	720	440	733	427	740	420	748	411	757	403	807	352
	709	453	721	441	734	428	741	421	749	413	758	404	808	354
	709	454	721	442	734	430	741	422	750	414	758	406	808	356
	710	456	722	444	735	431	742	424	750	416	759	407	808	358

BEGINNING OF MORNING AND ENDING OF EVENING TWILIGHT

The above table gives the local mean time of the beginning of morning twilight, and of the ending of evening twilight, for various latitudes. To obtain the corresponding standard time, the method used is the same as for correcting the sunrise and sunset tables, as described on page 10. The entry - in the above table indicates that at such dates and latitudes, twilight lasts all night. This table, taken from the American Ephemeris, is computed for astronomical twilight, i.e., for the time at which the sun is 108° from the zenith (or 18° below the horizon).
TIMES OF MOONRISE AND MOONSET， 1942

		 －으쿠N か：까웅 \％：O－m			：ణొలึసี ：Onलm 순ํㅜ゚ㅋ －0ㅇ․․a		
					：～ูิ	ごずN	
	－ 000	－9육NN	～ザロ゚ッ	－¢నสสึ	：OmNm	はザロ	
	日			プO¢్రం心	웃ํㅇㄱN	®®O日	
	ォNomac	\％：0rm		－ 000000	－O』コニ	ツザロ	
	ম！				NMEか	＋170가	
	sR－ $0^{0} 00$	－9ㅋ゙アヘ	ッザロッツ		OHNN	のサー5	
	Eサなざった8		¢－¢			గొల్ర	
	ヶNmのスヘ	๓ ：OMN	のH1	－ 0×0 O	잌ㅍN	ロザロ	
	を $冖$ ¢		¢0애눙	ごザザテ	－00ば	¢	
	－$\times \infty$	익NN	ワザロペ	๑๐ลลสึ	－rac	のササ	
		$\stackrel{\sim}{-1}$	ゼల	ツ®omo	깽N융	み\％	
		\％	¢み	－ $0 \infty 00$	잌ํN	ツザロ	
思	∞	$\bigcirc 9$	N19NN			ผิ入	
	ロポ\％	80\％109			－	－	
	上イroonos	O유․	－	\cdots			
	を \ddagger ¢0nno	${ }_{7}^{\infty} \times$	คํㅒ		こnが年	mom	
	－novise	\％－ก		－ 0 000	이으＝․	ホNツ్さ	
	घ	¢NM№m	KO¢N®	OR	令 ：악	Fonmoio	
	∞ os	－0유…		운	สัํ ：Or		
		ท80ㅇ：－			Oゼかんに		
	－n90Nas	애N్M ：		－	－09ジミ	－	
	曰ざminem	＋0，	¢		－ల్ల ：¢్లల్	¢	
	008	－O유․a゙	Nがm゙		N		
		mº이：		8\％が気	－moni	み－\％）	
	souNan				이컈N		
			¢0¢	OnNiN		－	
	008	の年べット			สึ๊		
	घ -1	\％ 2808	ㅇoneot		ロッキサ	N100잉	
		－สัa ：	FNm\％os	－nmosos	읔コ̇		
$\stackrel{\text { 出 }}{\stackrel{y}{4}} \underset{\sim}{\dot{\omega}}$	－N0m\％12	－ 0 O日	ํํํ̇̇	9n్nco		N－	

TIMES OF MOONRISE AND MOONSET, 1942

These are local civil times (75th meridian). To obtain Standard Time for any station apply corrections as tabulated on page 10.
TIMES OF MOONRISE AND MOONSET, 1942

These are local civil times (75th meridian). To obtain Standard Time for any station apply corrections as tabulated on page 10.
TIMES OF MOONRISE AND MOONSET, 1942

	$\left\|\begin{array}{cc} \text { Latitude } \mathbf{4 0}^{\circ} \\ \text { Moon-'-Moon- } \\ \text { rise } & \text { Set } \end{array}\right\|$		Latitude 45° Moon- Moon- rise set		$-\begin{gathered} \text { Latitude } 50^{\circ} \\ \begin{array}{c} \text { Moon- Moon- } \\ \text { rise } \\ \hline \end{array} \\ \hline \end{gathered}$		Latitude 52$\begin{gathered}\text { Mon- } \\ \text { rise }\end{gathered}$set		Date Aug.	$\begin{array}{\|c\|} \hline \text { Latitude } \mathbf{4 0}^{\circ} \\ \text { Moon- Moon- } \\ \hline \text { rise } \\ \hline \end{array}$				Latitude $\mathbf{4 5}^{\circ}$ Moon- Moon- rise set		$\left\|\begin{array}{c} \text { Latitude } \mathbf{5 0}^{\circ} \\ \begin{array}{c} \text { Moon- } \\ \text { rise } \\ \text { Moon- } \end{array} \\ \text { set } \end{array}\right\|$			$\begin{array}{\|c} \text { Latitude } 52^{\circ} \\ \begin{array}{c} \text { Moon- Moon- } \\ \text { rise } \end{array} \\ \text { set } \end{array}$	
	2206		22								h m			${ }_{\text {h }} \mathrm{m}$				1017		
${ }_{2}$	${ }^{22}$22 22 23 43		22 14	8 9 9 12 12				$\begin{aligned} & 7 \\ & 9 \end{aligned}$			2 52	$\begin{array}{ll} 10 & 15 \\ 11 & 15 \end{array}$			10 11 19 15			1017		
3	23	102	2319	1021	2321	10	2322	1015			3	12	4							
4	2348	11	2348	11	2346	11	2346		5			13		34	13			22	23	
${ }_{7}^{6}$	O 19	14	44	14	038		0 0 10	$\begin{aligned} & 13 \\ & 14 \end{aligned}$						025 104			048	${ }_{16}^{15} 29$	41	1536 168
8		15	16	15	105	1541	100	1547	8			16					131			
9	59	161	49		36	16	30		9					${ }_{2}^{237}$			${ }_{2}^{2} 20$			
10	237				10	17	03	17	10								3			
11	319				250				11					426			413			
12	4		4		335	19	27		12										5 6	
14	549	20	36		521	20		204	14								727	20	26	20
15	645	20			21		615		5		838			37			36	20	36	
16	42		34		724		20		16										${ }^{9} 97$	
17									18											
18									19		157									23
19	$1 \begin{array}{ll}10 \\ 11 \\ 48\end{array}$	22 23 32	10 11 11 51	${ }_{23}^{22} 5$	11045	${ }_{23}^{22} 54$	11045	23	19 20		2 4 4 03			3	23			${ }_{23}^{23} 53$		
	1253				07	2352		23												
${ }_{23}$	14	${ }^{0} 08$	1410		14 20		14.26		3		${ }^{6}$							04		
24		1	1630		1646		1653		5		749		17	758			812			
25					1751		1759		25											
		332	1833		1849	302	1857					4						30		
	19	438	19	${ }^{4} 26$	19	${ }_{4}^{4} 10$	1944	403	27		9	${ }^{6} 52$	19	9	648 76			644 7 56	1949	
$\begin{aligned} & 28 \\ & 29 \end{aligned}$	${ }^{19} 5058$	548 65	${ }^{20} 207$		20 218		20 23					900			9			906		
30	21		2118		11		2123		30		123				1007			1013		
31	2149	911	2149	-	2149	7	2149	06	1		158	1100	1	148	1108		137	1118	\|21 32	11

These are local civil times (75th meridian). To obtain Standard Time for any station apply corrections as tabulated on page 10.
TIMES OF MOONRISE AND MOONSET, 1942

	Latitude 40° Moon- Moon- rise set		Latitude Moon- Moon- rise set		$$		$$		Date Oct.	Latitude Moon- Moon- rise set		$\left\lvert\, \begin{array}{\|c} \text { Latitude } \mathbf{4 5}^{\circ} \\ \text { Moon- Moon- } \\ \text { rise } \end{array}\right.$		Latitude $\mathbf{5 0}^{\circ}$Moon- Moon- rise set		$\begin{aligned} & \text { Latitude } \mathbf{5 2}^{\circ} \\ & \text { Moon- Moon- } \\ & \text { rise set } \end{aligned}$	
	h m	$\begin{array}{cc}\text { h m } \\ \\ 11 & 58\end{array}$	h m	$\mathrm{ch} \mathrm{m}_{12} \mathrm{~m}$			${ }_{\text {h }} \mathrm{m}$ m	$\mathrm{h}_{12}^{\mathrm{m}}$		$\begin{array}{cc}\text { h } \\ 22 & \text { m }\end{array}$	h m 12 1	h m 22	$\begin{array}{cc}\text { h m } \\ 12 & 40\end{array}$	$\begin{array}{cc}\text { h } & \mathrm{m} \\ 22 & \\ 05\end{array}$	$\begin{array}{lll}1 / \mathrm{h} & \mathrm{m} \\ 12 & 57\end{array}$	$\begin{array}{ll} \mathrm{h} & \mathrm{~m} \\ 21 & 57 \end{array}$	
1	$\begin{array}{ll}22 & 34 \\ 23 & 13\end{array}$	$\begin{array}{ll}11 & 58 \\ 12 & 52\end{array}$	22 23	$\begin{array}{ll}12 & 08 \\ 13 & 04 \\ \\ \end{array}$	$\begin{array}{ll}22 & 09 \\ 22 & 45\end{array}$	$\begin{array}{ll}12 & 20 \\ 13 & 19\end{array}$	22 204	1226 13	1	22 23	$\begin{array}{lll}12 & 27 \\ 13 & 15\end{array}$	22 211	1240 13 18	$1 \begin{array}{ll}22 & 05 \\ 22 & 54\end{array}$	$\begin{array}{lll}12 & 57 \\ 13 & 45\end{array}$	21 21576	1305 1353
3	2356	1345	2343	1358	2326	1414	2319	1422	3		13159		1411	2349	1427	2341	1435
4		1435		1448		1505		1513		017	14.40	004	1452		1505		1511
5	043	1521	029	1534	013	1550	005	1557	5	112	15-18	101	$15 \quad 27$	048	1538	042	1543
6	134	1604	121	1616	105	1631	058	1635		210	1553	201	1600	152	16 - 09	146	1612
8	228	$\begin{array}{ll}16 & 44 \\ \\ 17\end{array}$	216	1654	202	1707	155	1713	8	311	$\begin{array}{lll}16 & 27 \\ 17\end{array}$	305	$\begin{array}{lll}16 & 31 \\ 17\end{array}$	257	$\begin{array}{lll}16 & 37\end{array}$	254	1638
8	325	1721	315	1729	303	1739	258	17 18 18	8	413	1700	410	1701	406	1703	404	1704
9 10	424 5	1756 18	4 5 17	18 18 18	4 4 5	18 18 18	$\begin{array}{ll}4 & 04 \\ 5 & 13\end{array}$	18 18 18 11	10	$\begin{array}{lll}5 & 17 \\ 6 & 23\end{array}$	$\begin{array}{ll}17 & 34 \\ 18 & 09\end{array}$	$\begin{array}{lll}5 & 17 \\ 6 & 27\end{array}$	17 18 18	$\begin{array}{ll}5 & 17 \\ 6 & 30\end{array}$	17 17 18	$\begin{array}{ll}5 & 17 \\ 6 & 32\end{array}$	1729
11	628	1902	627	1902	625	1903	623	1903	11	731	1846	737	1839	745	$18 \quad 30$	748	1826
12	732	1935	733	1933	735	1930	735	1928	12	839	1928	849	1918	859	1907	905	1900
13	838	2011	841	2005	847	1958	849	1955	13	948	2015	959	2002	1013	1947	1020	1941
14	944	2048	951	2040	959	2030	1003	20 26	14	1053	2107	1106	2053	1123	$\begin{array}{lll}20 & 37\end{array}$	1131	$20 \quad 29$
15	1050	2131	1100	2120	1112	2107	1117	2100	15	1155	2204	1209	2150	1226	2133	1234	2125
16	1156	2218	1208	2205	1222	2150	1229	2143	16	1251	2305	1304		1320	2236	1329	2229
17	1259	2311	1313	2257	1329	2241	1337	2233	17	1341	$\cdot{ }_{0}$ io	1353	2359	1407	2345	1414	2339
18	1359		1413	2356	1430	2340	1437	2332	18	1425	010	1435		1447		1452	
19	1453	010	1507		$15 \quad 23$		1530		19	1505	116	1512	$1 \begin{array}{ll}1 & 07 \\ 2\end{array}$	1520	0 57	1524	O 51
20	1542	113	$15 \quad 54$	00	1607	046	1614	038	20	1540	222	1544	215	1550	209	1552	205
21	$\begin{array}{ll}16 & 26\end{array}$	$\begin{array}{ll}2 & 19\end{array}$	1635	209	1645	156		150	21	$\begin{array}{ll}16 & 14\end{array}$		1615	323		320	1617	318
22	1705	326	1711	319	1718	309	1722	305	22	1646	430	1644	430	1642	429	1642	430
23	1741	433	1743	428	1748	422	1749	420	23	1718	532	1714	535	1709	538	1706	540
25	1815	539	1814	537	1815	535	1815	534	24	1751	633	1744	639		646		
25	1847	643	1844	644	1841	646	1840	647	25	1826	733	1816	742	1806	751		757
26	1920	746	1914	749	1908	755	1905	757	26	1903		1852	842		855		
28	1954	846	1946	853	1936	902	1932	906	27	1944	927	1931	940	$19 \quad 15$	55	1908	1002
28	2030	945	2020	954	2007	1006	2002	$\begin{array}{ll}10 & 11\end{array}$	28	2028	1019	2014	1033	1958	1050	1950	1058
29	2108	1042	2056	1054	2042	1107	2035	1113	29	2115	1109	2101	1123	2045	1140	2037	1148
30	2149	1136	2137	1149	2121	1204	2113	1212		2206			1208				1232

TIMES OF MOONRISE•AND MOONSET， 1942

$\begin{array}{ll} \circ \\ \circ \\ \text { O } \\ \hline \end{array}$		Nocono		Nocery	$\stackrel{10}{10 \infty} \underset{\sim}{\infty}$	욱 No p	ค
芜		1200 Ma	ㅇNN :O	ーNツザロ	－1，oos	윽으N.	$\stackrel{\text { N }}{ }$
				がすがo	Ninが心OO	NGNTN:	10
H	د：O－NH	150000	으NN		$\begin{array}{ccc} 129 & 9 \\ \end{array}$	ONNNఱ:	\bigcirc
$\circ \text { 号 }$		onnow	ल゙ロ	Soncion		অপoning	$\stackrel{12}{\sim}$
$\begin{aligned} & 10 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		No No	애N ：	ーNのサー	－1Noの		$\stackrel{\sim}{\sim}$
$\begin{array}{ll} \underset{\sim}{7} & \dot{\sim} \\ \underset{\sim}{*} & 0 \\ 0 \end{array}$		N1ㄲNㅇㅇ	がㅇNN	OHFOM	요 Minlo Nol	mincep :	¢
へ ${ }^{\text {¢ }}$	上：OHNH	上0No9	윽NNㅓN	ッツザッパ	$\stackrel{10}{10} 9 \times \infty$	어NN	\bigcirc
in 品	घO＜N\％	Fon NN	Fine :N	NNANA	유웅	యొmponi	$\stackrel{\infty}{\sim}$
N		Non	ㅇNハ ：	いNツサレ	－ $0 \infty \infty$	으웈ㅋN	$\stackrel{\sim}{\sim}$
		Finger op	ザ NサM MTIONL	NOOHN	స웅్లN	NNNN：	$\stackrel{\sim}{\infty}$
\cdots	上：OHNH	$150 N \infty$				OMNNセ M:	\bigcirc
		にヲNoが	$10 \text { HVन : } 10$		Nom Nom	MeNN No	\cdots
		29かの	ONNM:O	ーツツザ	－0N00	かOO日の	－
		120	NO유NN	NคNのか		サलన్న్ ：	\bigcirc
	\＆：OーN以	$130 N \infty$			$0 \times \infty$	어NN:	\bigcirc
四		coser		CNMNAR	ลベNズM	¢Nが心	$\stackrel{1}{8}$
обя วрп7！วет	মmmonco	$\cdots \mathfrak{m}$ 10 NLMN		－© かin			
		$\operatorname{coc}_{100}^{\infty}$	OQNNM	:HNふサ	$1200 \infty 0$	으NNNN	
		NTM- Noo	NOM： 10.0 NNनLON		Nrig Hio	유№m	
	上セ ：OHN	＋100000	ONNM	かみみレロ		AOMNN	
	ম心onmon	MNOTN	NलipNo	:OONW		Nొొ్గంగ్ల	
		NのNが		－ーNが	100000	으NNNN	
		○たNがロ	Nぺー우N		ONNMN	かかN๙N NANAN	
	－¢ ：OmN	HLSONO	으Nำ	コザボ9120	$0 \rightarrow 1 \sim \infty$	OONNW	
			앙N:	－NTNND			
		$\underset{\sim 1 N N}{\infty}$	OPNN	OーNmサ	200Nかく	으궄NN	
		2019NがN	88ㅇNNN		$\underset{\sim 10}{20} \sim \cos ^{+1}$	サonmm M	
	上โ ：OmN	Hレパハ	읔NN	のサस二口 －－－－－	$\omega_{n}^{\infty} \underbrace{\infty}$	OONNN	
		OTOCion	Hisoco:	FiNNWN	NNMMMO		
		$\underset{\sim 1}{\infty} \rightarrow \infty$	બNN๙ :	OーNツサ	100N00	の○日゙ッ	
		刃O유아	प까가NO	がっかㅇNㅇ	수우№	요욱여역	
	上凩：OHN	＋100N		ハボがった。	$\underset{1}{0}=\infty$	ginnN	
		craseo	ENaccincin	Concor	ลただが	NNNR゚	

These are local civil times（75th meridian）．To obtain Standard Time for any station apply corrections as tabulated on page 10.

THE PLANETS FOR 1942

By R. M. Petrie

MERCURY

The planet Mercury, smallest of the solar system, is so far as we know, cioser to the sun than any other object. For this reason it always appears near the sun in the day sky and is never seen at night among the stars. Its period of revolution around the sun is only 88 days so it appears now east of the sun (evening star), and now west (morning star), at intervals of only a few weeks. In order to see the planet one must, therefore, know when and where to look. The following table gives the elongations during 1942; the dates, apparent distances from the sun and magnitudes being included. When Mercury is an evening star, at eastern elongation, look for it in the western twilight about one-half hour after sunset. When it is a morning star search the eastern twilight about one-half hour before sunrise.

Elongations of Mercury in 1942

	Evening Star	Morning Star				
Date	Distance	Mag.	Date	Distance	Mag.	
May	18	$22^{\circ} .2$	-0.4	Mar.	7	$27^{\circ} .4$
Jan.	25	$18^{\circ} .5$	+0.6	July	6	$21^{\circ} .4$
Sept. 15	$26^{\circ} .7$	+0.3	Oct.	26	$18^{\circ} .5$	-0.6

The two most favourable elongations occur on May 18, when Mercury is an evening star, and on July 6, when it is a morning star. If looked for faithfully about those dates one should be rewarded with a glimpse of this elusive planet. In order to facilitate this, the accompanying maps show the paths of the planet for a few days before and after elongations. At the May elongation, Mercury is moving toward and between the bright stars β and ζ Tauri. On July 6 the planet is quite close to ζ Tauri and moves toward μ Geminorum. On May 18 the planet is $79,000,000$ miles from the earth; on July 6 it is 78,000,000 away.

VENUS

The planet Venus requires no aid for recognition since it is the most brilliant of all the planets and stars; so bright indeed, that near elongation, it can be seen by the unaided eye in full daylight. The planet revolves in an orbit lying between Mercury and the earth, and, like Mercury, is seen either as an evening or morning star, although straying farther from the sun so that it is sometimes seen in a dark sky.

Venus is similar to the earth in size and mass. It is covered with a dense and extensive atmosphere which reflects a large part of the incident sunlight and gives the planet its dazzling white brilliance. Unlike the earth, Venus possesses no moon.

Venus is an evening star at the beginning of the year and is near maximum brilliance, being of stellar magnitude -4.4 . The planet will move rapidly toward the sun and will soon be lost in the evening twilight. On February 2, inferior conjunction takes place, the planet then being closest to the earth, some $25,110,000$ miles away. Passing to the west of the sun Venus then becomes a morning star, rapidly increasing in brilliance and distance from the sun. Greatest brilliance as a morning star occurs on March 9, and greatest elongation on April 13, when Venus will be 46° from the sun, of stellar magnitude -4.0 , some $25^{\prime \prime}$ in diameter, and exhibiting a half disc similar to the moon at last quarter. The planet will remain a morning star, slowly approaching the sun, during spring and summer, and will pass behind the sun, at superior conjunction on November 16, when its distance from the earth reaches its maximum value of $158,000,000$ miles. At the end of the year Venus will again be an evening star but will be too close to the sun for ready observation.

MARS

Mars is the fourth planet in order of distance from the sun. Since its orbit lies outside that of the earth the planet is well situated for observation when it is "opposite" the sun and approaches us closely in the night sky. Due to its small size, however, one can distinguish surface features only under favourable conditions.

At the beginning of 1942 Mars will be a fairly prominent object in the

The Path of Mars Among the Stars During January-June, 1942. The position of the planet is indicated, for the first of each month, by an open circle.
evening sky. At the end of January it is ninety degrees east of the sun and, consequently, sets about midnight. At this time Mars is of magnitude 0.6 and its distance from the earth is $110,000,000$ miles. During the spring and summer Mars will gradually become fainter and move into the evening twilight as it is overtaken and passed by the sun in his annual eastward motion. Conjunction with the sun occurs on October 5 after which Mars will become a morning star. Except for the first few months of the year Mars will be poorly situated for observation and will not be a conspicuous planet. The accompanying chart shows the path of the planet among the stars during the first part of the year.

JUPITER

Jupiter is the largest and most massive planet of the solar system. It is also, deservedly, a favourite object for observation because of its brightness,

The Path of Jupiter Among the Stars During 1942.
size, variety of surface markings, and interesting satellite system. Its surface markings and four of the eleven moons may be seen to advantage in a small telescope or pair of field glasses.

Jupiter is a conspicuous and splendid object in 1942. During the first four months of the year it is a brilliant evening star in the constellation Taurus, just a little northeast of its lucida, Aldebaran. The sun overtakes the planet on June 25, when conjunction occurs after which Jupiter becomes a morning star. On October 18 western quadrature occurs so that the planet will be a brilliant morning star during the fall. At the end of the year, Jupiter is approaching opposition and may be seen all during the night in the constellation Gemini. Its least distance from the earth during 1942 occurs on January 1, when it will be
$389,000,000$ miles from the earth. At this time Jupiter will have a stellar magnitude -2.3 and his disc will have an apparent polar diameter of $44^{\prime \prime}$. The path of Jupiter, among the stars, during 1942 is given on the accompanying map.

SATURN

Saturn is the next planet beyond Jupiter and the most remote known to the ancients. Its beautiful ring system renders it a fine telescope object and the delicate markings and shades on the disc repay observation. During 1942 Saturn is well placed for observation from the northern hemisphere and the ring system is seen to good effect, the distortion due to projection being near its minimum. The satellites are also interesting to watch, although they are much fainter than those of Jupiter.

The Path of Saturn Among the Stars During 1942.

Saturn will be an evening star during the first part of the year and will be found in the constellation Taurus, west and a little south of Jupiter. The sun overtakes Saturn in May and conjunction occurs on May 23, after which the planet becomes a morning object. Toward the end of summer it will be a conspicuous object in the morning sky, still in the contellation Taurus, and will rise earlier each night until it is visible all night throughout December. Opposition occurs on December 1, when the planet is of stellar magnitude -0.2 and its distance from the earth is a minimum of some $750,000,000$ miles. At this time the planet is about one-sixth the brightness of Jupiter and its disc appears to be about one-half the diameter of that of Jupiter. The accompanying map shows the path of Saturn among the stars during 1942. The planet remains
in Taurus throughout the year, moving eastward from February to October and westward or "retrograde" the rest of the time.

URANUS

Uranus was the first planet to be discovered in modern times, being found and recognized by Sir Wm. Herschel in 1781. The planet is faint and just beyond the reach of unaided vision under ordinary circumstances. It can, however, be easily recognized with field glasses if one studies the accompanying map carefully. On this chart all stars brighter than magnitude 6.50 have been plotted so that the planet may be identified with certainty.

Uranus is in the constellation Taurus throughout the year 1942 passing between the Pleiades and the bright star Aldebaran. During the early part of

The Path of Uranus Among the Stars During 1942.
the year the planet is in the evening. sky and conjunction with the sun occurs on May 22. During the fall Uranus will be visible throughout the night. Opposition occurs on November 25 when the planet will be at its closest approach to the earth of some $1,700,000,000$ miles and has the stellar magnitude 5.9. At this distance a large telescope is required to see the disc of the planet and also the very faint satellites, of which there are four.

NEPTUNE

Neptune, the most remote planet visible in moderate telescopes, was discovered in 1846 from calculations based upon the perturbations of Uranus. Its

The Path of Neptune Among the Stars During 1942.
great distance from the sun renders it too faint to be seen without optical aid but it is readily visible in a small telescope since its stellar magnitude at opposition is 7.7. At that time it is some $2,700,000,000$ miles from the sun and appears star-like except in the largest telescopes which are also required to show its single satellite.

Neptune remains in the constellation Virgo during 1942, moving slowly between the stars β and η. It is in opposition to the sun on March 19, and may best be seen for a month or two before and after that date. The accompanying chart will serve to identify the planet since all stars brighter than magnitude 8.5 have been plotted. A small telescope or a pair of powerful field glasses will enable the observer to see Neptune. It will be approximately twice as bright as the faintest stars shown on the chart.

PLUTO

Pluto, discovered in March 1930, by the Lowell Observatory is the farthest planet from the sun. Because of its great distance from the sun and its small size, it can be observed only with the largest telescopes and by comparison with good star maps of the region. During 1942 Pluto is a yellowish 15th magnitude star in the constellation Cancer.

ECLIPSES DURING 1942

There will be five eclipses in 1942, three of the sun and two of the moon. The three solar eclipses are partial while both the lunar eclipses are total.

The solar eclipses occur on March 16, August 12, and September 10. The first two are invisible in Canada and can be seen only in the southern hemisphere. The eclipse of September 10, will be visible briefly in the northernmost part of Canada north of latitude $+60^{\circ}$. These partial solar eclipses are, therefore, of slight interest to observers in Canada.

The Lunar Eclipses are as follows:

1. A Total Lunar Eclipse on March 2, 1942. The beginning visible generally in Asia except the extreme eastern part, the Indian Ocean, Europe, Africa, the Atlantic Ocean, eastern and central South America, and the extreme northeastern part of North America; the ending visible generally in Western Asia, Europe, Africa, the western part of the Indian Ocean, North America except the extreme northwestern part, the Atlantic Ocean, South America, and the eastern part of the Pacific Ocean.

The Circumstances of this Eclipse are (75th Meridian Civil Time) :

2. A Total Eclipse of the Moon on August 26, 1942. The beginning visible generally in southwestern Asia, the western part of the Indian Ocean, Europe, Africa, the Atlantic Ocean, North America except the northwestern and extreme western part, South America, and the southeastern part of the Pacific Ocean; the ending visible generally in southwestern Europe and part of the British Isles, the western part of Africa, the Atlantic Ocean, North America except the extreme northwestern part, South America and the eastern part of the Pacific Ocean.

The Circumstances of the Eclipse are (75th Meridian Time):
Moon enters penumbra ...August 25 d .20 h .01 .7 m.
Moon enters umbra ...August 25 d .21 h .00 .5 m.
Total eclipse begins ...August 25 d .22 h .00 .9 m.
Middle of eclipse ...August 25 d .22 h .48 .0 m.
Total eclipse ends ...August 25 d .23 h .35 .0 m.
Moon leaves umbra ...August 26 d .00 h .35 .3 m.
Moon leaves penumbra ...August 26 d. 01 h .34 .0 m.

THE SKY MONTH BY MONTH

By W. F. M. Buscombe

THE SKY FOR JANUARY, 1942

The times of transit are given in local mean time, 0 h at midnight; to change to Standard Time, see p. 10. Altitudes are for an observer in latitude $45^{\circ} \mathrm{N}$.

The Sun-During January the sun's R.A. increases from 18 h 43 m to 20 h 56 m and its Decl. changes from $23^{\circ} 04^{\prime} \mathrm{S}$. to $17^{\circ} 20^{\prime} \mathrm{S}$. The equation of time (see p. 7) changes from -03 m 14 s to -13 m 34 s . Owing to this rapid drop in value, the length of the forenoon as indicated by our clocks remains almost constant for the first ten days of the month. For changes in the length of the day, see p. 11. The sun enters Aquarius, the second winter sign of the zodiac, on the 20th of the month. Due to the precession of the vernal equinox, the sign Aquarius now corresponds in the main with the stars of the constellation Capricornus. The earth is in perihelion, or nearest the sun, on January 2.

The Moon-For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page.

Mercury on the 15 th is in R.A. 20 h 47 m , Decl. $19^{\circ} 45^{\prime} \mathrm{S}$. and transits at 13.13 . It reaches greatest elongation east of the sun in the evening sky on the 25th, when it sets about an hour and a half after the sun. However, as the planet is far south, it is not favourably placed for observation at this time, being only 9° above the horizon at sunset. Its stellar magnitude at elongation is -0.4 .

Venus on the 15 th is in R.A. 21 h 29 m , Decl. $11^{\circ} 09^{\prime} \mathrm{S}$. and transits at 13.50 . It is rapidly approaching the sun in the evening sky, but during the first half of the month sets more than two hours after sunset. It is a bright star of magnitude -4.3 . To telescopic observers it appears crescent-shaped.

Mars on the 15 th is in R.A. 01 h 56 m , Decl. $12^{\circ} 58^{\prime} \mathrm{N}$. and transits at 18.19 . The planet is gradually fading in the evening sky. Its stellar magnitude is +0.3 . It sets soon after midnight.

Jupiter on the 15 th is in R.A. 04 h 43 m , Decl. $21^{\circ} 43^{\prime} \mathrm{N}$. and transits at 21.03 . During the month it retrogrades or moves west among the stars. It is visible most of the night, setting about three hours before sunrise. After Venus has set it is the most conspicuous object in the sky, for it is of stellar magnitude -2.2 . For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 56.

Saturn on the 15 th is in R.A. 03 h 19 m , Decl. $16^{\circ} 05^{\prime} \mathrm{N}$. and transits at 19.40. It appears as a yellowish star of magnitude +0.2 in the evening sky, setting about three hours after midnight. During the month it moves slowly westward among the stars of the constellation Taurus until it reaches a stationary point on the 23 rd. The rings are in a fairly open position, as the line of sight is inclined to their plane by 22°. They are seen from the south side.

Uranus on the 15 th is in R.A. 03 h 37 m , Decl. $19^{\circ} 11^{\prime} \mathrm{N}$. and transits at 19.58 .
Neptune on the 15 th is in R.A. 12 h 01 m , Decl. $01^{\circ} 17^{\prime} \mathrm{N}$. and transits at 04.25 .
Pluto-For information in regard to this planet, see p. 30.

ASTRONOMICAL PHENOMENA MONTH BY MONTH By Ruth J. Northcott

Explanation of symbols and abbreviations on p. 4, of time on p. 8.

The times of transit are given in local mean time, 0 h at midnight; to change to Standard Time, see p. 10. Estimates of altitude are for an observer in latitude $45^{\circ} \mathrm{N}$.

The Sun-During February the sun's R.A. increases from 20 h 56 m to 22 h 45 m and its Decl. changes from $17^{\circ} 20^{\prime} \mathrm{S}$. to $07^{\circ} 54^{\prime} \mathrm{S}$. The equation of time decreases from -13 m 34 s to a minimum of -14 m 20 s on the 12 th, and then increases to -12 m 38 s at the end of the month (see p. 7). For changes in the length of the day, see p. 11. The sun enters Pisces, the third winter sign of the zodiac, on the 19th.

The Moon-For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page.

Mercury on the 15 th is in R.A. 21 h 06 m , Decl. $12^{\circ} 58^{\prime} \mathrm{S}$. and transits at 12.24. The planet is too near the sun for observation this month, reaching inferior conjunction with the sun on the 9 th when it passes into the morning sky.

Venus on the 15 th is in R.A. 20 h 29 m , Decl. $10^{\circ} 43^{\prime} \mathrm{S}$. and transits at 10.48. It is in inferior conjunction with the sun on the 2 nd , but later in the month rapidly separates from the sun in the morning sky. By the 20th it is a brilliant object of stellar magnitude -4.1 and rises one hour and a half before sunrise. On the 2nd, at its closest approach to the earth for the year, its distance is only $25,110,000$ miles.

Mars on the 15 th is in R.A. 03 h 02 m , Decl. $18^{\circ} 32^{\prime} \mathrm{N}$. and transits at 17.23 . It appears as a star of first magnitude in Aries, gradually approaching the sun in the evening sky. It sets just after midnight.

Jupiter on the 15 th is in R.A. 04 h 40 m , Decl. $21^{\circ} 45^{\prime} \mathrm{N}$. and transits at 18.59 . It is the brightest object in the evening sky, and is of magnitude -2.0 . It sets about two and a half hours after midnight. It reaches a stationary point in its orbit on the 5th, and then commences to move eastward again among the stars. For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 56.

Saturn on the 15 th is in R.A. 03 h 21 m , Decl. $16^{\circ} 20^{\prime} \mathrm{N}$. and transits at 17.40. Saturn is now moving eastward among the stars and sets just after midnight. Its stellar magnitude is +0.4 .

Uranus on the 15 th is in R.A. 03 h 37 m , Decl. $19^{\circ} 10^{\prime} \mathrm{N}$. and transits at 17.56 . Neptune on the 15 th is in R.A. 12 h 00 m, Decl. $01^{\circ} 29^{\prime} \mathrm{N}$. and transits at 02.21 . Pluto-For information in regard to this planet, see p. 30.

Explanation of symbols and abbreviations on p. 4, of time on p. 8.

THE SKY FOR MARCH, 1942

The times of transit are given in local mean time, 0 h at midnight; to change to Standard Time, see p. 10. Estimates of altitude are for an observer in latitude $45^{\circ} \mathrm{N}$.

The Sun-During March the sun's R.A. increases from 22 h 45 m to 00 h 39 m and its Decl. changes from $07^{\circ} 54^{\prime} \mathrm{S}$. to $04^{\circ} 13^{\prime} \mathrm{N}$. The equation of time increases steadily from -12 m 38 s to -04 m 12 s (see p. 7). For changes in the length of the day, see p. 11. The sun is at the vernal equinox at 01 h 11 m E.S.T. March 21. At this time the sun crosses the equator travelling north, enters the sign of Aries, and spring commences. There is a partial eclipse of the sun on March 16. For details see p. 31.

The Moon-For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page. There is a total eclipse of the moon on March 2. For details see p. 31.

Mercury on the 15 th is in R.A. 22h 01m, Decl. $13^{\circ} 47^{\prime} \mathrm{S}$. and transits at 10.33. It reaches its greatest apparent distance from the sun in the morning sky on the 7th, but can only be seen by those who have a clear south-eastern horizon. On this date it rises about an hour before the sun and reaches an altitude of 9° by sunrise. Look for a reddish object of stellar magnitude +0.4.

Venus on the 15 th is in R.A. 20h 53 m , Decl. $12^{\circ} 47^{\prime} \mathrm{S}$. and transits at 09.25. The planet is very brilliant in the morning sky, being now of magnitude -4.3. As it rises about two hours before the sun it should be possible to follow it into the daylight sky. It can also be located at meridian passage by looking due south, 32° above the horizon, at the time of transit. On the 13 th it is only 2° north of the moon.

Mars on the 15 th is in R.A. 04 h 09 m , Decl. $22^{\circ} 27^{\prime}$ N. and transits at 16.40 . It appears as a bright object in Taurus, passing north-west of Aldebaran which is slightly brighter than the planet at this time. It sets about six hours after the sun.

Jupiter on the 15 th is in R.A. 04 h 49 m , Decl. $22^{\circ} 06^{\prime} \mathrm{N}$. and transits at 17.18 . It is of magnitude -1.8 , and sets almost an hour after midnight. For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 56.

Saturn on the 15 th is in R.A. 03 h 28 m , Decl. $16^{\circ} 54^{\prime} \mathrm{N}$. and transits at 15.57. It is now approaching nearer the sun in the evening sky, and sets north of the west point about five hours after sunset.

Uranus on the 15 th is in R.A. 03h 39 m , Decl. $19^{\circ} 19^{\prime} \mathrm{N}$. and transits at 16.08.
Neptune on the 15 th is in R.A. 11 h 57 m , Decl. $01^{\circ} 47^{\prime} \mathrm{N}$. and transits at 00.28 .
Pluto-For information in regard to this planet, see p. 30.

Explanation of symbols and abbreviations on p. 4, of time on p. 8.

The times of transit are given in local mean time, 0 h at midnight; to change to Standard Time, see p. 10. Estimates of altitude are for an observer in latitude $45^{\circ} \mathrm{N}$.

The Sun-During April the sun's R.A. increases from 00h 39 m to 02 h 30 m and its Decl. changes from $04^{\circ} 13^{\prime} \mathrm{N}$. to $14^{\circ} 49^{\prime} \mathrm{N}$. The equation of time changes from -04 m 12 s to +02 m 51 s (see p. 7). For changes in the length of the day, see p. 11. The sun enters Taurus, the second spring sign of the zodiac, on the 20 th.

The Moon-For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page.

Mercury on the 15 th is in R.A. 01 h 10 m , Decl. $06^{\circ} 00^{\prime} \mathrm{N}$. and transits at 11.42. It is too near the sun to be well seen, as it is in superior conjunction with the sun on the 20th and passes into the evening sky.

Venus on the 15 th is in R.A. 22 h 38 m , Decl. $08^{\circ} 05^{\prime} \mathrm{S}$. and transits at 09.08. It continues to be the most brilliant object of the morning sky, and reaches greatest elongation west of the sun on the 13th, at which time it rises nearly two hours before the sun and is of stellar magnitude -4.0. It is now at the last quarter phase, as half the disk is illuminated. On the 11th the moon passes so close to it that a daytime occultation is visible to observers in the tropics.

Mars on the 15 th is in R.A. 05 h 30 m , Decl. $24^{\circ} 43^{\prime}$ and transits at 15.59. It continues to fade in the evening sky, and is of stellar magnitude +1.6 . It now sets about five hours after sunset.

Jupiter on the 15 th is in R.A. 05 h 09 m , Decl. $22^{\circ} 40^{\prime} \mathrm{N}$. and transits at 15.36 . It is a very bright object of magnitude -1.6 , setting almost five hours after the sun. For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 56.

Saturn on the 15 th is in R.A. 03 h 41 m , Decl. $17^{\circ} 45^{\prime} \mathrm{N}$. and transits at 14.08. It is now becoming rather close to the sun to be well seen, but may be glimpsed in the evening sky during the first half of the month. On the 15 th it is about 28° above the horizon at sunset.

Uranus on the 15 th is in R.A. 03 h 45 m , Decl. $19^{\circ} 37^{\prime}$ N. and transits at 14.11 .
Neptune on the 15 th is in R.A. 11 h 54 m , Decl. $02^{\circ} 06^{\prime}$ N. and transits at 22.19.
Pluto-For information in regard to this planet, see p. 30.

Explanation of symbols and abbreviations on p. 4, of time on p. 8.

The times of transit are given in local mean time, 0 h af midnight; to change to Standard Time, see p. 10. Estimates of altitude are for an observer in latitude $45^{\circ} \mathrm{N}$.

The Sun-During May the sun's R.A. increases from 02 h 30 m to 04 h 33 m and its Decl. changes from $14^{\circ} 49^{\prime} \mathrm{N}$. to $21^{\circ} 56^{\prime} \mathrm{N}$. The equation of time increases from +02 m 51 s to a maximum of +03 m 47 s on the 15 th, and then decreases to +02 m 29 s (see p. 7). For changes in the length of the day, see p. 11. The sun enters Gemini, the third spring sign of the zodiac, on the 21st.

The Moon-For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page.

Mercury on the 15 th is in R.A. 04 h 54 m , Decl. $25^{\circ} 02^{\prime} \mathrm{N}$. and transits at 13.27. It reaches greatest elongation east of the sun on the 18 th, and should be easy to locate as this is the most favourable time of the year to observe the planet in the evening sky. It sets about one hour and a half after the sun, and is about 19° above the horizon at sunset. Look for a reddish object of stellar magnitude +0.6 in the north-western sky.

Venus on the 15 th is in R.A. 00 h 38 m , Decl. $02^{\circ} 18^{\prime} \mathrm{N}$. and transits at 09.10 . It remains a prominent object in morning twilight, having stellar magnitude -3.7 and being 17° above the eastern horizon at sunrise.

Mars on the 15 th is in R.A. 06 h 50 m , Decl. $24^{\circ} 21^{\prime} \mathrm{N}$. and transits at 15.21 . It appears as a red star of magnitude +1.8 in the north-western twilight sky. It is in the constellation Gemini, and sets about four hours after sunset.

Jupiter on the 15 th is in R.A. 05 h 35 m , Decl. $23^{\circ} 07^{\prime} \mathrm{N}$. and transits at 14.04 . It is rapidly becoming closer to the sun in the evening sky but can still be seen about 24° above the horizon at sunset, of stellar magnitude -1.5 . For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 56.

Saturn on the 15 th is in R.A. 03 h 56 m , Decl. $18^{\circ} 36^{\prime}$ N. and transits at 12.25 . Conjunction with the sun occurs on the 23 rd, so the planet cannot be seen this month.

Uranus on the 15 th is in R.A. 03h 51 m , Decl. $19^{\circ} 59^{\prime} \mathrm{N}$. and transits at 12.20 . Neptune on the 15th is in R.A. 11h 52 m , Decl. $02^{\circ} 19^{\prime} \mathrm{N}$. and transits at 20.19. Pluto-For information in regard to this planet, see p. 30.

[^0]
THE SKY FOR JUNE, 1942

The times of transit are given in local mean time, 0 h at midnight; to change to Standard Time, see p. 10. Estimates of altitude are for an observer in latitude $45^{\circ} \mathrm{N}$.

The Sun-During June the sun's R.A. increases from 04 h 33 m to 06 h 37 m and its Decl. changes from $21^{\circ} 56^{\prime} \mathrm{N}$. to a maximum of $23^{\circ} 27^{\prime} \mathrm{N}$. on the 22 nd , and then decreases to $23^{\circ} 10^{\prime} \mathrm{N}$. The equation of time changes from +02 m 29 s to -03 m 29 s (see p .7). For changes in the length of the day, see p. 11. The sun reaches its most northerly position at 20 h 17 m E.S.T. on June 21 , when summer begins. During the last half of June the days are longest in the northern hemisphere and the duration of daylight changes little. The local mean time of sunset is almost constant due to the decrease of the equation of time.

The Moon-For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page.

Mercury on the 15 th is in R.A. 05 h 18 m , Decl. $19^{\circ} 21^{\prime} \mathrm{N}$. and transits at 11.43. It is too near the sun to be well seen this month, as inferior conjunction with the sun occurs on the 12 th. However, the planet may possibly be glimpsed in the north-eastern sky before sunrise on the last few mornings of June.

Venus on the 15 th is in R.A. 02h 52 m , Decl. $14^{\circ} 17^{\prime} \mathrm{N}$. and transits at 09.22 . The planet is dimming slightly, and getting closer to the sun. It rises about two hours before sunrise.

Mars on the 15 th is in R.A. 08h 12 m , Decl. $21^{\circ} 19^{\prime} \mathrm{N}$. and transits at 14.41 . It is the most conspicuous object in the evening twilight sky, and is of second magnitude. It is about 25° above the north-western horizon at sunset.

Jupiter on the 15 th is in R.A. 06 h 05 m , Decl. $23^{\circ} 18^{\prime} \mathrm{N}$. and transits at 12.32. As the planet reaches conjunction with the sun on the 25 th it cannot be seen this month except for occasional glimpses at sunset in the north-west, on the first few evenings of the month.

Saturn on the 15 th is in R.A. 04 h 13 m , Decl. $19^{\circ} 23^{\prime} \mathrm{N}$. and transits at 10.39. The planet has now passed into the morning sky but is still too close to the sun to be seen until the last few days of the month. By the 30th it rises about two hours before the sun.

Uranus on the 15 th is in R.A. 03 h 59 m , Decl. $20^{\circ} 21^{\prime} \mathrm{N}$. and transits at 10.26 .
Neptune on the 15 th is in R.A. 11 h 51 m, Decl. $02^{\circ} 22^{\prime}$ N. and transits at 18.17.
Pluto-For information in regard to this planet, see p. 30.

JUNE75th Meridian Civil Time			$\begin{gathered} \text { Min. } \\ \text { of } \\ \text { Algol } \end{gathered}$
	d hm		h m
Mon. 1			
Tue.	2		2022
Wed. 3			
Thu. 4			
Fri.	51626	Last Quarter.	1711
Sat. 6			
Sun.	715 ठ	Greatest Hel. Lat. N.	
Mon.	$818 \quad \Psi$	Stationary in R.A.	1359
Tue. 9			
Thu.	112026 ర ${ }^{\text {¢ }}$ (§ $4^{\circ} 54^{\prime} \mathrm{N}$.	1048
Fri.	12255 ob d	$\mathrm{b} \quad 3^{\circ} 19^{\prime} \mathrm{N}$.	
	16 ర	Inferior.	
Sat.	131253 ర¢	§ $\quad 1{ }^{\circ} 24^{\prime} \mathrm{N}$.	
	14 Moon	in Apogee. Dist. from	
	1602	New Moon.	
Sun.	14 9.49 ¢ 4 ©	$244^{\circ} 27^{\prime} \mathrm{N}$.	.0737
Mon.	$1516 \quad$ ¢	Greatest Hel. Lat. S.	
Tue. 16			
Wed.	17206 ర ${ }^{\text {® }}$	$8^{7} \quad 4^{\circ} 13^{\prime} \mathrm{N}$.	. 0426
Thu.	$1820 \square \Psi \odot$		
Fri.	19		
Sat.	20		. 0115
Sun.	211029 б $\Psi \mathbb{1}$	$\Psi \quad 0^{\circ} 29^{\prime} \mathrm{S}$.	
	1544 iil	First Quarter.	
	$2017 \odot$ ente	rs 9 , Summer commen	
Mon.			.2203
Tue. 23 . .. ${ }^{\text {. }}$. 22.			
Wed. 2412 ¢ $¢$ Stationary in R.A			
Thu.	$2512 \quad$ ¢ $4 \odot$. 1852
Fri. 26			
Sat. 2720 Moon in Perigee. Dist. from			
Sun. 28709 (2) Full Moon.............................. 1541			
Mon.	2915 ¢ 웅	아 $1^{\circ} 41^{\prime} \mathrm{S}$.	
Tue. 30			

Explanation of symbols and abbreviations on p. 4, of time on p. 8. Jupiter being near the sun, phenomena of the satellites are not given from June 1 to July 16.

THE SKY FOR JULY, 1942

The times of transit are given in local mean time, 0 h at midnight; to change to Standard Time, see p. 10. Estimates of altitude are for an observer in latitude $45^{\circ} \mathrm{N}$.

The Sun-During July the sun's R.A. increases from 06h 37 m to 08 h 42 m and its Decl. changes from $23^{\circ} 10^{\prime} \mathrm{N}$. to $18^{\circ} 14^{\prime} \mathrm{N}$. The equation of time decreases from -03 m 29 s to a minimum of -06 m 24 s on the 27 th , and then increases to -06 m 16 s by the end of the month (see p. 7). For changes in the length of the day, see p. 11. The sun enters Leo, the second summer sign of the zodiac, on the 23 rd . The earth is in aphelion, the point in its orbit farthest from the sun, on July 5.

The Moon-For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page.

Mercury on the 15 th is in R.A. 06 h 14 m , Decl. $22^{\circ} 14^{\prime} \mathrm{N}$. and transits at 10.47. It reaches its greatest apparent distance from the sun in the morning sky on the 6th and should be easy to locate during the first half of the month. It rises almost one and a half hours before the sun, reaching an altitude of 15° at sunrise. Its stellar magnitude is +0.6 . Toward the end of the month it rapidly approaches superior conjunction with the sun, which occurs on August 2.

Venus on the 15 th is in R.A. 05 h 18 m , Decl. $21^{\circ} 50^{\prime} \mathrm{N}$. and transits at 09.49. It is a brilliant star of magnitude -3.4 , about 23° above the horizon at sunrise.

Mars on the 15 th is in R.A. 09 h 28 m , Decl. $16^{\circ} 13^{\prime}$ N. and transits at 13.58 . It is rapidly fading as it approaches the sun in the evening sky, and for the remainder of the year will be very difficult to see.

Jupiter on the 15 th is in R.A. 06 h 34 m , Decl. $23^{\circ} 07^{\prime} \mathrm{N}$. and transits at 11.03. The planet is too close to the sun in the morning sky to be well seen until the last few days of the month when it rises about two hours before the sun. For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 56.

Saturn on the 15 th is in R.A. 04 h 27 m , Decl. $19^{\circ} 58^{\prime} \mathrm{N}$. and transits at 08.56. It is separating from the sun in the morning sky, rising in the northeast about three hours before the sun.

Uranus on the 15 th is in R.A. 04 h 05 m , Decl. $20^{\circ} 39^{\prime} \mathrm{N}$. and transits at 08.34 . Neptune on the 15 th is in R.A. 11 h 53 m , Decl. $02^{\circ} 13^{\prime}$ N. and transits at 16.20 .
Pluto-For information in regard to this planet, see p. 30.

[^1]
THE SKY FOR AUGUST, 1942

The times of transit are given in local mean time, 0 h at midnight; to change to Standard Time, see p. 10. Estimates of altitude are for an observer in latitude $45^{\circ} \mathrm{N}$.

The Sun-During August the sun's R.A. increases from 08 h 42 m to 10 h 38 m and its Decl. changes from $18^{\circ} 14^{\prime} \mathrm{N}$. to $08^{\circ} 36^{\prime} \mathrm{N}$. The equation of time increases steadily from -06 m 16 s to -00 m 16 s (see p. 7). For changes in the length of the day, see p. 11. The sun enters Virgo, the third summer sign of the zodiac, on the 23rd. There is a partial eclipse of the sun on August 11. For details, see p. 31.

The Moon-For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page. There is a total eclipse of the moon on August 25. For details see p. 31.

Mercury on the 15 th is in R.A. 10 h 24 m , Decl. $11^{\circ} 31^{\prime} \mathrm{N}$. and transits at 12.55. The planet is not favourably placed for observation this month, being too near the sun in the evening sky. However, it may be possible to catch sight of it in the west after sunset on the last few days of the month, as it is approaching maximum eastern elongation.

Venus on the 15 th is in R.A. 07 h 58 m , Decl. $20^{\circ} 51^{\prime} \mathrm{N}$. and transits at 10.28. It remains a conspicuous object in the morning sky but is gradually approaching the sun.

Mars on the 15 th is in R.A. 10 h 42 m , Decl. $09^{\circ} 18^{\prime}$ N. and transits at 13.11 . It is too near the sun to be observed this month.

Jupiter on the 15 th is in R.A. 07 h 03 m , Decl. $22^{\circ} 37^{\prime} \mathrm{N}$. and transits at 09.30. It is rapidly moving away from the sun in the morning sky and now is of stellar magnitude -1.5 . It is about 32° above the horizon at sunrise. For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 56.

Saturn on the 15 th is in R.A. 04 h 39 m , Decl. $20^{\circ} 19^{\prime} \mathrm{N}$. and transits at 07.06. It is now plainly visible in the morning sky, rising just before midnight as a yellowish body of magnitude +0.3 .

Uranus on the 15 th is in R.A. 04 h 09 m , Decl. $20^{\circ} 51^{\prime} \mathrm{N}$. and transits at 06.36 .
Neptune on the 15 th is in R.A. 11 h 56 m , Decl. $01^{\circ} 53^{\prime} \mathrm{N}$. and transits at 14.21 .
Pluto-For information in regard to this planet, see p. 30.

Explanation of symbols and abbreviations on p. 4, of time on p. 8.

THE SKY FOR SEPTEMBER, 1942

The times of transit are given in local mean time, 0 h at midnight; to change to Standard Time, see p. 10. Estimates of altitude are for an observer in latitude $45^{\circ} \mathrm{N}$.

The Sun-During September the sun's R.A. increases from 10 h 38 m to 12 h 26 m and its Decl. changes from $08^{\circ} 36^{\prime} \mathrm{N}$. to $02^{\circ} 51^{\prime} \mathrm{S}$. The equation of time changes from -00 m 16 s to +10 m 00 s (see p. 7). For changes in the length of the day, see p. 11. The sun is at the autumnal equinox at 11 h 17 m E.S.T. on September 23. This is the beginning of autumn as the sun enters Libra. The length of day and night are approximately equal all over the world. There is a partial eclipse of the sun on September 10. For details see p. 31.

The Moon-For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page. When at the full phase in September, the moon is most conspicuous in the northern hemisphere. Due to the inclination of its orbital plane to that of the earth, it rises more nearly at the same hour on successive nights than at any other time of year.

Mercury on the 15 th is in R.A. 13 h 03 m , Decl. $09^{\circ} 27^{\prime} \mathrm{S}$. and transits at 13.29. It reaches its greatest apparent separation from the sun in the evening sky on the 15 th when it sets less than an hour after the sun. At sunset it appears as a reddish object, of stellar magnitude +0.3 , about 7° above the western horizon.

Venus on the 15 th is in R.A. 10 h 31 m, Decl. $10^{\circ} 41^{\prime} \mathrm{N}$. and transits at 10.58 . It can be observed only by those who have a clear eastern horizon. It rises about an hour and a half before the sun. Small telescopes will show a disk near the full phase whose diameter is about 10 seconds of arc.

Mars on the 15 th is in R.A. 11 h 56 m , Decl. $01^{\circ} 23^{\prime} \mathrm{N}$. and transits at 12.21 . It reaches conjunction with the sun on October 5 and hence cannot be observed. On the 18 th it is at its greatest distance from the earth, $245,300,000$ miles.

Jupiter on the 15 th is in R.A. 07 h 27 m , Decl. $21^{\circ} 56^{\prime} \mathrm{N}$. and transits at 07.52. It is brightening a little and is of magnitude -1.6 , about the brightness of Sirius. It rises more than five hours before the sun. For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 56.

Saturn on the 15 th is in R.A. 04 h 45 m , Decl. $20^{\circ} 27^{\prime} \mathrm{N}$. and transits at 05.10. It is now becoming a prominent object in the morning sky, being near the meridian at sunrise. At this time the plane of the rings makes an angle of 26° to the line of sight.

Uranus on the 15 th in is R.A. 04 h 11 m , Decl. $20^{\circ} 54^{\prime} \mathrm{N}$. and transits at 04.36 . Neptune on the 15 th is in R.A. 12 h 00 m , Decl. $01^{\circ} 27^{\prime}$ N. and transits at 12.23 . Pluto-For information in regard to this planet, see p. 30.

[^2]
THE SKY FOR OCTOBER, 1942

The times of transit are given in local mean time, 0 h at midnight; to change to Standard Time, see p. 10. Estimates of altitude are for an observer in latitude $45^{\circ} \mathrm{N}$.

The Sun-During October the sun's R.A. increases from 12 h 26 m to 14 h 22 m and its Decl. changes from $02^{\circ} 51^{\prime} \mathrm{S}$. to $14^{\circ} 09^{\prime} \mathrm{S}$. The equation of time increases steadily from +10 m 00 s to +16 m 20 s (see p. 7), so that the sun crosses the meridian a few seconds earlier each day. For changes in the length of the day, see p. 11. On the 24 th the sun enters Scorpio, the second autumnal sign of the zodiac.

The Moon-For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page.

Mercury on the 15 th is in R.A. 12 h 47 m , Decl. $05^{\circ} 32^{\prime} \mathrm{S}$. and transits at 11.11. The planet will be difficult to see during this month as it is in inferior conjunction with the sun on the 10th. Passing into the morning sky, it reaches greatest western elongation from the sun on the 26th, appearing at sunrise as a bright star of magnitude -0.2 , about 18° above the eastern horizon. It rises less than two hours before the sun.
$V e n u s$ on the 15 th is in R.A. 12 h 49 m , Decl. $03^{\circ} 45^{\prime}$ S. and transits at 11.18. The planet is very difficult to observe, being quite close to the sun in the morning sky. It is only 7° above the horizon at sunrise.

Mars on the 15 th is in R.A. 13 h 08 m , Decl. $06^{\circ} 30^{\prime}$ S. and transits at 11.35 . It is now in the morning sky but cannot be seen as it rises only a few minutes before the sun.

Jupiter on the 15 th is in R.A. 07 h 43 m , Decl. $21^{\circ} 24^{\prime \prime} \mathrm{N}$. and transits at 06.10. It now dominates the morning sky and is near the meridian at sunrise, with stellar magnitude -1.8 . For the configurations of Jupiter's satellites see opposite page, and for theír eclipses, etc., see p. 56.

Saturn on the 15 th is in R.A. 04 h 44 m , Decl. $20^{\circ} 21^{\prime} \mathrm{N}$. and transits at 03.11. The planet is bright most of the night, rising two hours after sunset.

Uranus on the 15 th is in R.A. 04 h 09 m , Decl. $20^{\circ} 49^{\prime} \mathrm{N}$. and transits at 02.36.
Neptune on the 15 th is in R.A. 12 h 04 m , Decl. $01^{\circ} 01^{\prime} \mathrm{N}$. and transits at 10.29 . Pluto-For information in regard to this planet, see p. 30.

Explanation of symbols and abbreviations on p. 4, of time on p. 8.

THE SKY FOR NOVEMBER, 1942

The times of transit are given in local mean time, 0 h at midnight; to change to Standard Time, see p. 10. Estimates of altitude are for an observer in latitude $45^{\circ} \mathrm{N}$.

The Sun-During November the sun's R.A. increases from 14h 22 m to 16 h 26 m and its Decl. changes from $14^{\circ} 09^{\prime} \mathrm{S}$. to $21^{\circ} 40^{\prime} \mathrm{S}$. The equation of time increases from +16 m 20 s to a maximum of +16 m 23 s on the 4 th, and then decreases to +11 m 16 s at the end of the month (see p. 7). For changes in the length of the day, see p. 11. On the 22nd the sun enters Sagittarius, the third autumnal sign of the zodiac.

The Moon-For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page.

Mercury on the 15 th is in R.A. 14 h 42 m , Decl. $14^{\circ} 42^{\prime} \mathrm{S}$. and transits at 11.10. It may possibly be glimpsed in the east just before sunrise on the first few mornings of November, but is otherwise too near the sun to be seen.
V enus on the 15 th is in R.A. 15 h 17 m , Decl. $17^{\circ} 35^{\prime} \mathrm{S}$. and transits at 11.44. On the 16th it reaches superior conjunction and passes into the evening sky. It is too near the sun to be well seen this month.

Mars on the 15 th is in R.A. 14 h 26 m , Decl. $14^{\circ} 06^{\prime} \mathrm{S}$. and transits at 10.52 . It is gradually becoming farther from the sun in the morning sky, but is still too close to the sun to be conspicuous.

Jupiter on the 15 th is in R.A. 07 h 49 m , Decl. $21^{\circ} 14^{\prime} \mathrm{N}$. and transits at 04.14. As a star of magnitude -2.0 it rises more than three hours before midnight. On the 12 th it commences to retrograde, or move westward among the stars. For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 56.

Saturn on the 15 th is in R.A. 04 h 36 m , Decl. $20^{\circ} 04^{\prime} \mathrm{N}$. and transits at 01.01. Opposition with the sun occurs on December 1, when the planet rises at sunset and is visible all night. For the elongations of Saturn's satellites, at sunset and is visible all night.

Uranus on the 15 th is in R.A. 04 h 04 m , Decl. $20^{\circ} 36^{\prime} \mathrm{N}$. and transits at 00.29 .
Neptune on the 15 th in is R.A. 12 h 07 m , Decl. $00^{\circ} 39^{\prime}$ N. and transits at 08.31 .
Pluto-For information in regard to this planet, see p. 30.

[^3]
THE SKY FOR DECEMBER, 1942

The times of transit are given in local mean time, 0 h at midnight; to change to Standard Time, see p. 10. Estimates of altitude are for an observer in latitude $45^{\circ} \mathrm{N}$.

The Sun-During December the sun's R.A. increases from 16 h 26 m to 18 h 42 m and its Decl. changes from $21^{\circ} 40^{\prime} \mathrm{S}$. to a minimum of $23^{\circ} 27^{\prime} \mathrm{S}$. on the 22 nd and then increases to $23^{\circ} 05^{\prime} \mathrm{S}$. at the end of the month. The equation of time changes from +11 m 16 s to -03 m 06 s (see p. 7). At 06 h 40 m E.S.T. on December 22 winter commences as the sun reaches its most southerly position and enters Capricornus. The days are then shortest in the northern hemisphere, but the length of the day changes very little at this time (see p. 11).

The Moon-For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page.

Mercury on the 15 th is in R.A. 18 h 00 m , Decl. $25^{\circ} 23^{\prime} \mathrm{S}$. and transits at 12.31. As it passes farthest from the earth in superior conjunction with the sun on November 30, the planet is not suitably placed for observation this month.

Venus on the 15 th is in R.A. 17 h 57 m , Decl. $24^{\circ} 00^{\prime} \mathrm{S}$. and transits at 12.26. It is gradually moving away from the sun in the evening sky, but is still hard to observe.

Mars on the 15 th is in R.A. 15 h 49 m , Decl. $19^{\circ} 58^{\prime}$ S. and transits at 10.17. It can now be glimpsed in the south-east, about 15° above the horizon at sunrise, an object between third and fourth magnitudes.

Jupiter on the 15 th is in R.A. 07 h 42 m , Decl. $21^{\circ} 36^{\prime} \mathrm{N}$. and transits at 02.08. Rising about two hours after sunset, of stellar magnitude -2.2 , it is the brightest object of the night sky. It continues to move slowly westward among the stars. For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 56.

Saturn on the 15 th is in R.A. 04h 26 m , Decl. $19^{\circ} 45^{\prime} \mathrm{N}$. and transits at 22.49. The planet is now visible most of the night and sets about two hours before sunrise.

Uranus on the 15 th is in R.A. 03 h 59 m , Decl. $20^{\circ} 22^{\prime} \mathrm{N}$. and transits at 22.22 . Neptune on the 15 th is in R.A. 12 h 09 m , Decl. $00^{\circ} 27^{\prime} \mathrm{N}$. and transits at 06.35 .
Pluto-For information in regard to this planet, see p. 30.

Explanation of symbols and abbreviations on p. 4, of time on p. 8 .

PHENOMENA OF JUPITER'S SATELLITES, 1942

E-eclipse, O-occultation, T-transit, S-shadow, D-disappearance, R-reappearance, I-ingress, e-egress. The Roman numerals denote the satellites. 75 th Meridian Civil Time. (For other times see p. 8).

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{JANUARY} \& \multicolumn{9}{|c|}{FEBRUAR Y-Cont.} \\
\hline \multirow[t]{7}{*}{d} \& \& Sat. \& Phen. \& \& \& m \& \& Phen. \& \& \begin{tabular}{llll}
\hline d \& h \& m \\
\hline 19 \&
\end{tabular} \& \& \& Phen. \& \& \[
\begin{array}{cc}
\mathrm{h} \\
2 \mathrm{~m} \\
\hline
\end{array}
\] \& \& hen. \\
\hline \& 0008 \& \& TI \& 150 \& 0340 \& 40 \& \& Tİ \& \& \(\begin{array}{lll}19 \& 19 \& 04 \\ 20 \& 00 \& 20 \\ 2\end{array}\) \& \& II \& ER \& 24 \& 22 28 \& 1 \& \(\stackrel{\mathrm{Te}}{\mathrm{Se}}\) \\
\hline \& 0042 \& I \& SI \& \& 1750 \& 0 \& III \& SI \& \& \(\begin{array}{ll}21 \& 19 \\ 26\end{array}\) \& 26 \& II \& Se \& 2521 \& 2108 \& I \& ER \\
\hline \& 0218 \& I \& Te \& \& 2029 \& 29 \& III \& Se \& \& 23
22
2 \& 39 \& III \& OD \& 2621 \& 2137 \& II \& OD \\
\hline \& 0218 \& II \& OD \& 160 \& 0056 \& 56 \& I \& OD \& \& 2307 \& 07 \& I \& OD \& 2720 \& 2038 \& III \& Se \\
\hline \& 0254 \& I \& Se \& \& 2207 \& 7 \& \& TI \& \& 240119 \& \& III \& OR \& 2819 \& 1923 \& II \& SI \\
\hline \& 2122 \& I \& OD \& \& 2300 \& 0 \& I \& SI \& \& \(\begin{array}{r}2017 \\ \hline 21\end{array}\) \& \& \& TI \& \& 1924 \& II \& Te \\
\hline \multirow[t]{8}{*}{2} \& 0012 \& I \& ER \& 17 \& 0017 \& 17 \& I \& Te \& \& 213 \& \& I \& SI \& \& 2203 \& II \& Se \\
\hline \& 1834 \& I \& TI \& \& 0112 \& \& I \& Se \& \& \& \& \& \& \& \& \& \\
\hline \& 1911 \& I \& SI \& \& 014 \& \& II \& TI \& \& \& \& \& MAR \& CH \& \& \& \\
\hline \& 2045 \& I \& Te \& \& 0335 \& 35 \& II \& SI \& \& \& \& \& MAR \& CH \& \& \& \\
\hline \& 2103 \& II \& TI \& \& 1923 \& 23 \& I \& OD \& \& d h m \& \& \& Phen. \& d h \& h m \& \& Phen \\
\hline \& 2122 \& I \& Se \& \& 2232 \& 32 \& I \& ER \& \& 32211 \& \& \& TI \& 1319 \& 1928 \& II \& ER \\
\hline \& 2219 \& II \& SI \& 181 \& 184 \& 44 \& I \& Te \& \& \({ }^{2} 229\) \& 29 \& I \& SI \& 20 \& 2040 \& III \& TI \\
\hline \& 2342 \& II \& Te \& \& 1941 \& 41 \& I \& Se \& \& 40023 \& \& I \& Te \& 23 \& 2322 \& III \& Te \\
\hline \multirow[t]{2}{*}{3} \& 0100 \& II \& Se \& \& 2004 \& 04 \& II \& OD \& \& 193 \& \& I \& OD \& 1422 \& 2201 \& II \& TI \\
\hline \& 1841 \& I \& ER \& 19 \& 0036 \& 36 \& II \& ER \& \& 230 \& \& I \& ER \& 1621 \& 2129 \& II \& ER \\
\hline \multirow[t]{4}{*}{4} \& 1925 \& II \& ER \& 20 \& 1936 \& 36 \& II \& Se \& \& 5185 \& \& I \& Te \& 1823 \& 2324 \& \& OD \\
\hline \& 2109 \& III \& OD \& 22 \& 1748 \& 48 \& III \& TI \& \& 5 2010 \& \& I \& Se \& 1920 \& 2033 \& I \& TI \\
\hline \& 2338 \& III \& OR \& \& 2019 \& 19 \& III \& Te \& \& 60013 \& \& II \& OD \& 21 \& 2149 \& I \& SI \\
\hline \& 2349 \& III \& ED \& \& 2150 \& 50 \& III \& SI \& \& - 1917 \& \& III \& Te \& 22 \& 2245 \& I \& Te \\
\hline \multirow[t]{5}{*}{5} \& 0227 \& III \& ER \& 23 \& 0030 \& 30 \& III \& Se \& \& 215 \& \& III \& SI \& 202 \& 2123 \& \& ER \\
\hline \& 0153 \& I \& TI \& \& 024 \& 44 \& I \& OD \& \& 70040 \& \& III \& Se \& 2419 \& 1957 \& III \& ED \\
\hline \& 0237 \& I \& SI \& \& 2355 \& 55 \& I \& TI \& \& 192 \& \& II \& TI \& 522 \& 2247 \& III \& ER \\
\hline \& 0404 \& I \& Te \& 24 \& 0055 \& 55 \& I \& SI \& \& 220 \& \& II \& SI \& 2519 \& 1914 \& II \& Se \\
\hline \& 2308 \& I \& OD \& \& 0205 \& 05 \& I \& Te \& \& 220 \& \& II \& Te \& 2622 \& 2231 \& I \& TI \\
\hline \multirow[t]{6}{*}{9} \& 0207 \& I \& ER \& \& 0307 \& 07 \& I \& Se \& \& 9185 \& 52 \& II \& ER \& 2719 \& 1951 \& I \& OD \\
\hline \& 2020 \& I \& TI \& \& 2111 \& 11 \& I \& OD \& \& 110007 \& 07 \& I \& TI \& 23 \& 2318 \& I \& ER \\
\hline \& 2106 \& I \& SI \& 25 \& 0027 \& 27 \& I \& ER \& \& 2127 \& 27 \& I \& OD \& \(28 \quad 19\) \& 1912 \& I \& Te \\
\hline \& 2230 \& I \& Te \& \& 182 \& 22 \& I \& TI \& \& 12195 \& 53 \& I \& SI \& 20 \& 2025 \& \& Se \\
\hline \& 2317 \& I \& Se \& \& 19 \& 24 \& I \& SI \& \& 2048 \& 48 \& I \& Te \& 3021 \& 2134 \& II \& OD \\
\hline \& 2322 \& II \& TI \& \& 203 \& 33 \& I \& Te \& \& 220 \& \& I \& Se \& 3119 \& 1906 \& III \& OD \\
\hline \multirow[t]{5}{*}{10} \& 0057 \& II \& SI \& \& 2136 \& 36 \& I \& Se \& \& \& \& \& \& \& 2154 \& III \& OR \\
\hline \& 0202 \& II \& Te \& \& 2226 \& 26 \& II \& OD \& \& \& \& \& \& \& \& \& \\
\hline \& 0339 \& II \& Se \& 26 \& 1856 \& 56 \& I \& ER \& \& \& \& \& AP \& RIL \& \& \& \\
\hline \& 1735 \& I \& OD \& 271 \& 1933 \& 33 \& II \& SI \& \& \& \& \& \& \& \& \& \\
\hline \& 2036 \& I \& ER \& \& 200 \& \& II \& Te \& \& d \(\quad \mathrm{h} \quad \mathrm{m}\) \& \& \& Phen. \& \& h m \& \& \\
\hline \multirow[t]{3}{*}{11} \& 1744 \& II \& OD \& \& 221 \& 14 \& II \& Se \& \& 1
1

19 \& \& II \& Te \& 12 \& \& \&

\hline \& 1746
22 \& I \& $\mathrm{Se}_{\text {R }}$ \& 29 \& 2124 \& \& III \& TI \& \& \& \& II \& Te \& 1222 \& 121 \& II \& TI

\hline \& 2200
00 \& III \& ER \& 30 \& 2356 \& 56
51 \& III \& Te \& \& 3215 \& \& ${ }_{\text {I }}$ \& OD \& 1721 \& 21 17 \& II \& ER

\hline \multirow[t]{2}{*}{12} \& 0304 \& III \& OR \& 31 \& 014 \& 44 \& I \& TI \& \& 42008 \& \& I \& SI \& 1820 \& 2039 \& III \&

\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{0350}} \& III \& ED \& \& 0250 \& \& I \& SI \& \& 21 \& \& \& Te \& \& 2158 \& III \& SI

\hline \& \& \& \& \& 2301 \& 01 \& I \& OD \& \& 22.21 \& \& I \& Se \& 1920 \& 2019 \& I \&

\hline \multicolumn{9}{|c|}{\multirow[b]{2}{*}{FEBRUARY}} \& \& 88193 \& \& II \& TI \& - 20 \& 2041 \& I \& Se

\hline \& \& \& \& \& \& \& \& \& \& $\begin{array}{r}819 \\ \hline 16\end{array}$ \& 46 \& II \& SI \& 2719 \& 1929 \& I \& TI

\hline \multicolumn{2}{|l|}{d h m} \& Sat. \& Phen. \& d \& \& \& \& Phen. \& \& | $11 \quad 2212$ |
| :--- |
| |
| |
| 20 | \& \& \& Te \& \& \& I \& Si

\hline , \& 0223 \& I \& ER \& 9 \& 2236 \& 36 \& III \& ER \& \& | 11 | 20 |
| ---: | ---: |
| | |
| | 20 | \& \& III \& TI \& \& 2142

19 \& I \& ER

\hline \& 2012 \& I \& TI \& \& 2247 \& \& I \& ER \& \& 2058 \& \& 1 \& TI \& \& \& 1 \& ER

\hline \& 2119 \& I \& SI \& 10 \& 184 \& 41 \& I \& Te \& \& \& \& \& \& \& \& \&

\hline \& 2222 \& I \& Te \& \& 1955 \& \& I \& Se \& \& \& \& \& \& A \& \& \&

\hline \& 2331 \& I \& Se \& \& 2219 \& \& II \& TI \& \& d h m \& \& \& Phen. \& \& h m \& \& Phen.

\hline \multirow[t]{3}{*}{2} \& 0051 \& II \& OD \& 11 \& 0049 \& \& II \& SI \& \& $\begin{array}{llll}3 & 19 & 5\end{array}$ \& 55 \& II \& \& 132 \& 2015 \& I \&

\hline \& 1835 \& III \& ER \& \& 0059 \& \& II \& Te \& \& 213 \& 35 \& II \& Se \& 20 \& 2056 \& \& Se

\hline \& 2052 \& I \& ER \& 12 \& 214 \& 43 \& II \& ER \& \& 42129 \& \& \& TI \& 2020 \& 2003 \& I \& TI

\hline \multirow[t]{3}{*}{3} \& 1949 \& II \& TI \& 15 \& 235 \& 55 \& I \& TI \& \& 6194 \& 41 \& III \& OR \& 20 \& 2038 \& I \& SI

\hline \& 2211 \& II \& SI \& 16 \& 0110 \& \& I \& SI \& \& 195 \& 58 \& III \& ED \& 212 \& 2010 \& \& ER

\hline \& 2229 \& II \& Te \& \& 1846 \& 46 \& III \& OD \& \& 102000 \& 00 \& II \& TI \& 2619 \& 1959 \& II \& OD

\hline 4 \& 0052 \& II \& Se \& \& 2113 \& \& I \& OD \& \& 12205 \& 51 \& I \& OD \& \& \& \&

\hline 5 \& 1907 \& II \& ER \& \& 212 \& 24 \& III \& OR \& \& \& \& \& \& \& \& \&

\hline 6 \& 0104 \& III \& TI \& \& 235 \& 53 \& III \& ED \& \& Jupiter \& be \& ing \& ear th \& e Sun \& n, ph \& nom \& a of

\hline \multirow[t]{2}{*}{8} \& 0052 \& \& OD \& 17 \& 00 \& 43 \& I \& ER \& \& the Sate \& telli \& tes a \& e not \& given \& from \& Jun \& 1 to

\hline \& 2203 \& I \& TI \& \& 18 \& 23 \& I \& TI \& \& July 16. \& \& \& \& \& \& \&

\hline \& 2314 \& I \& SI \& \& 1939 \& \& I \& SI \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{4}{*}{9} \& 0013 \& I \& Te \& \& 203 \& 34 \& I \& Te \& \& \& \& \& \& LY \& \& \&

\hline \& 0126 \& I \& Se \& \& 2150 \& \& I \& Se \& \& \& \& \& \& \& \& \&

\hline \& 1920 \& I \& OD \& 18 \& 0052 \& 52 \& II \& TI \& \& \& \& \& Phen \& \& \& \&

\hline \& 1952 \& III \& ED \& \& 1912 \& 12 \& I \& ER \& \& $$
28 \quad 04 \quad 33
$$ \& \[

33
\] \& II \& Se \& \& \& \&

\hline
\end{tabular}

METEORS OR SHOOTING STARS

By Peter M. Millman

Meteors are small fragmentary particles of iron or stone, the debris of space, which, on entering the earth's atmosphere at high velocity, ignite and are in general completely vaporized. On a clear moonless night a single observer should see on the average about 7 meteors per hour during the first six months of the year and approximately twice this number during the second half of the year. The above figures are averages over the whole night, however, and it should be noted that meteors are considerably more numerous during the second half of the night at which time the observer is on the preceding hemisphere of the earth in its journey around the sun.

In addition to the so-called sporadic meteors there are well-marked groups of meteors which travel in elliptical orbits about the sun and appear at certain seasons of the year. The meteors of any one group, or shower, move along parallel paths and hence, owing to the laws of perspective, seem to radiate from a point in the sky known as the radiant. The shower is usually named after the constellation in which the radiant is located. The following table lists the chief meteoric showers of the year. The material was collected from different sources, including the publications of Denning and Olivier.

The Chief Annual Meteor Showers for the Northern Hemisphere.

Shower	Approx. Radiant		$\begin{aligned} & \text { Maximum } \\ & \text { Date } \end{aligned}$	Hourly No. (all meteors)	Duration (in days)	Abbreviation
	a	δ				
$\mathrm{Quadrantids}^{\text {Lerids }}$	${ }_{280}^{238}$	$+52^{\circ}$ +37	Jan. 31	20 10	4 4	$\stackrel{\mathrm{Q}}{\mathrm{Y}}$
Eta Aquarids	336	± 1	Apr. ${ }^{\text {May }} 4$	10	8	E
Delta Aquarids	340	-17	July 28	20	3	D
Perseids	47	$+57$	Aug. 12	50	25	P
Orionids	96	$+15$	Oct. 22	20	14	O
Leonids	152	+22 +33	Nov. 16	20 30	14	$\underset{\mathbf{G}}{\text { L }}$
Geminids	110	+33	Dec. 12	30	14	G

The date of maximum given above applies to either morning or evening and is approximate only, as local irregularities in the showers in addition to the effect of leap year may shift it by a day or more. With the exception of the Geminids, all the showers listed are most active well after midnight. It should be noted that large numbers of meteors appeared on June 28, 1916, and on Oct. 9, 1933, and there is the possibility of a return of these showers.

A meteor observer should make as complete a record as he can with efficiency. The most important information to note includes the number of meteors per hour, their magnitudes and positions in the sky, evidences of enduring trains and, where several stations are co-operating, the exact time of the appearance of each meteor. Magnitudes of meteors are generally determined by comparison with stars and the positions of meteor trails may most conveniently be recorded by plotting them as straight lines on gnomonic star maps. The observer should also make sure that the record sheet contains his name, the exact place of observation, the night when the observations were made given as a double date (e.g. the evening of May 4 or the morning of May 5 would be recorded as May 4-5), and finally, a note on the weather conditions.

The first curve shown in the figure below gives the expected hourly rate of meteors for a single observer at different times of the year. It has been drawn from data published by Denning, Olivier, and Hoffmeister. This curve varies somewhat from year to year. The corresponding curve for the southern hemisphere, which is not plotted, lacks the high maximum at P , has its highest maxima at E and D , and best general rates from April through July.

The second curve gives the number of meteor photographs found on all Harvard patrol plates up to Oct. 15, 1936, for each five-day interval throughout the year, taken from a catalogue of meteor photographs published by Miss Hoffleit. Since these plates were exposed on a uniform system the curve gives some indication of the favourable periods for meteor photography. The high photographic efficiency of the Geminid shower is a marked feature.

Of recent years the study of meteors has become increasingly important both because of its cosmic significance and because of its close association with studies of the upper atmosphere. The amateur who does not possess a telescope can render more real assistance in this field than in any other. In particular, all observations of very bright meteors or fireballs should be reported immediately in full. Maps and instructions for meteor observations may be secured from the writer at the Dunlap Observatory, Richmond Hill, Ont., the Canadian headquarters for the collection of meteor data.

For more complete instructions concerning the visual observation of meteors see the Journal of the Royal Astronomical Society of Canada, vol. 31, p. 255, 1937 ; and for meteor photography volume 31, p. 295, 1937.

PRINCIPAL ELEMENTS OF THE SOLAR SYSTEM

ORBITAL ELEMENTS（Jan． $1,0^{\text {h }}, 1938$ ）

Planet	Mean Distance from Sun （a）		Period	Eccen－ tri－ city （e）	In－ clina－ tion （i）	Long． of Node （8）	Long． of Peri－ helion （ π ）	Long． of Planet
		millions of miles	（P）					
					。	－	－	－
Mercury ．	． 387	36.0	88.0 days	． 206	7.0	47.6	76.5	96.3
Venus．	． 723	67.2	224.7	． 007	3.4	76.1	130.7	259.3
Earth．	1.000	92.9	365.3	． 017	．．．．	．．．．．	101.9	99.5
Mars．	1.524	141.5	687.0	． 093	1.9	49.1	334.9	7.3
Jupiter	5.203	483.3	11.86 yrs ．	． 048	1.3	99.8	13.3	311.8
Saturn．	9.54	886.	29.46	． 056	2.5	113.1	91.8	11.5
Uranus．	19.19	1783.	84.0	． 047	0.8	73.7	169.7	46.7
Neptune	30.07	2793.	164.8	． 009	1.8	131.1	44.1	168.6
Pluto．	39.46	3666.	247.7	． 249	17.1	109.5	223.4	148.0

PHYSICAL ELEMENTS

Object	Symbol	Mean Dia－ meter miles	Mass $\oplus=1$	Density water $=1$	Axial Rotation	Mean Sur－ face Grav－ ity $\oplus=1$	Albedo	Magni－ tude at Opposi－ tion or Elonga－ tion
Sun．	\bigcirc	864，000	332，000	1.4	$24^{\mathrm{d}} 7$（equa－ torial）	27.9		－ 26.7
Moon	（1）	2，160	． 0123	3.3	$27^{\text {d }} 7.7^{\text {h }}$	． 16	． 07	-12.6
Mercury	8	3，010	． 056	3.8	$88{ }^{\text {d }}$	． 27	． 07	$0 \pm$
Venus．	¢	7，580	． 82	4.9	$30^{\text {d }}$ ？	． 85	． 59	－4土
Earth	\oplus	7，918	1.00	5.5	$23^{\mathrm{h}} 56^{\mathrm{m}}$	1.00	． 29	
Mars．	σ^{7}	4，220	． 108	4.0	$24^{\text {h }} 37^{\text {m }}$	． 38	． 15	－2土
Jupiter	4	87，000	318.	1.3	$9^{\text {h }} 50^{\text {m }} \pm$	2.6	． 56 ？	－2士
Saturn．	b	72，000	95.	． 7	$10^{\mathrm{b}} 15^{\mathrm{m}} \pm$	1.2	．63？	0土
Uranus．	\bigcirc	31，000	14.6	1.3	$10^{\text {h }} .8 \pm$	． 9	． 63 ？	＋ 5.7
Neptune	Ψ	33，000	17.2	1.3	16^{h} ？	1.0	． 73 ？	＋ 7.6
Pluto．	P	4，000？	＜． 1					＋ 14

SATELLITES OF THE SOLAR SYSTEM

Name	Stellar Mag.	Mean Dist. from Planet		Revolution Period d $\quad \mathrm{h} \quad \mathrm{m}$	DiameterMiles	Discoverer
		" *	Miles			

Satellite of the Earth
Moon $\quad|-12.6| \begin{array}{llllll} & 530 \mid & 238,857 \mid & 27 & 07 & 43 \mid\end{array}$

Satellites of Mars

Phobos	12	8	5,800	0	07	39		
Deimos	13	21	14,600	1	06	18	10?	Hall, 1877
Hall, 1877								

Satellites of Jupiter

V	13	48	112,600	0	11	57	$100 ?$	Barnard, 1892
Io	5	112	261,800	1	18	28	2300	Galileo, 1610
Europa	6	178	416,600	3	13	14	2000	Galileo, 1610
Ganymede	5	284	664,200	7	03	43	3200	Galileo, 1610
Callisto	6	499	$1,169,000$	16	16	32	3200	Galileo, 1610
VI	14	3037	$7,114,000$	250	16		100 ?	Perrine, 1904
VII	16	3113	$7,292,000$	260	01		40 ?	Perrine, 1905
X	18	3116	$7,300,000$	260		15 ?	Nicholson, 1938	
XI	18	5990	$14,000,000$	692		15 ?	Nicholson, 1938	
VIII	16	6240	$14,600,000$	739		$40 ?$	Melotte, 1908	
IX	17	6360	$14,900,000$	758		20 ?	Nicholson, 1914	

Satellites of Saturn

Mimas	12	27	115,000	0	22	37	400 ?	W. Herschel, 1789
Enceladus	12	34	148,000	1	08	53	500 ?	W. Herschel, 1789
Tethys	11	43	183,000	1	21	18	800 ?	G. Cassini, 1684
Dione	11	55	234,000	2	17	41	700 ?	G. Cassini, 1684
Rhea	10	76	327,000	4	12	25	1100 ?	G. Cassini, 1672
Titan	8	177	759,000	15	22	41	2600 ?	Huygens, 1655
Hyperion	13	214	920,000	21	06	38	300 ?	G. Bond, 1848
Iapetus	11	515	$2,210,000$	79	07	56	1000 ?	G. Cassini, 1671
Phoebe	14	1870	$8,034,000$	550			200 ?	W. Pickering, 1898

Satellites of Uranus

Ariel	16	14	119,000	2	12	29	$600 ?$	Lassell, 1851
Umbriel	16	19	166,000	4	03	28	$400 ?$	Lassell, 1851
Titania	14	32	272,000	8	16	56	$1000 ?$	W. Herschel, 1787
Oberon	14	42	364,000	13	11	07	900 ?	W. Herschel, 1787

Satellite of Neptune

(Triton) $|$

*As seen from the sun.
Satellites Io, Europa, Ganymede, Callisto are usually denoted I, II, III, IV, respectively, in order of distance from the planet.

DOUBLE AND MULTIPLE STARS

By Frank S. Hogg

A number of the stars which appear as single to the unaided eye may be separated into two or more components by field glasses or a small telescope. Such objects are spoken of as double or multiple stars. With larger telescopes pairs which are still closer together may be resolved, and it is found that, up to the limits of modern telescopes, over ten per cent. of all the stars down to the ninth magnitude are members of double stars.

The possibility of resolving a double star of any given separation depends on the diameter of the telescope objective. Dawes' simple formula for this relation is $d^{\prime \prime}=4.5 / A$, where d is the separation, in seconds of arc, of a double star that can be just resolved, and A is the diameter of the objective in inches. Thus a one-inch telescope should resolve a double star with a distance of $4^{\prime \prime} .5$ between its components, while a ten-inch telescope should resolve a pair $0^{\prime \prime} .45$ apart. It should be noted that this applies only to stars of comparable brightness. If one star is markedly brighter than its companion, the glare from the brighter makes it impossible to separate stars as close as the formula indicates. This formula may be applied to the observation of double stars to test the quality of the seeing and telescope.

It is obvious that a star may appear double in one of two ways. If the components are at quite different distances from the observer, and merely appear close together in the sky the stars form an optical double. If, however, they are in the same region of space, and have common proper motion, or orbital motion about one another, they form a physical double. An examination of the probability of stars being situated sufficiently close together in the sky to appear as double shows immediately that almost all double stars must be physical rather than optical.

Double stars which show orbital motion are of great astrophysical importance, in that a careful determination of their elliptical orbits and parallaxes furnishes a measure of the gravitational attraction between the two components, and hence the mass of the system.

In the case of many unresolvable close doubles, the orbital motion may be determined by means of the spectroscope. In still other doubles, the observer is situated in the orbital plane of the binary, and the orbital motion is shown by the fluctuations in light due to the periodic eclipsing of the components. Such doubles are designated as spectroscopic binaries and eclipsing variables.

The accompanying table provides a list of double stars, selected on account of their brightness, suitability for small telescopes, or particular astrophysical interest. The data are taken chiefly from Aitken's New General Catalogue of Double Stars, and from the Yale Catalogue of Bright Stars. Successive columns give the star, its 1900 equatorial coordinates, the magnitudes and spectral classes of its components, their separation, in seconds of arc, and the approximate distance of the double star in light years. The last column gives, for binary stars of well determined orbits, the period in years, and the mean separation of the components in astronomical units. For stars sufficiently bright to show colour differences in the telescope used, the spectral classes furnish an indication of the colour. Thus O and B stars are bluish white, A and F white, G yellow, K orange and M stars reddish.

A good reference work in the historical, general, and mathematical study of double stars is Aitken's The Binary Stars.

REPRESENTATIVE DOUBLE STARS

Star	a 1900	δ	Mag. and Spect.	d	D	Remarks
				'	L.Y.	
π And	0031.5	+33 10	4.4B3; 8.5	36	410	
Cas	0043.0	+57 17	3.6F8; 7.2M0	8	18	479y; 66AU
a UMi	0122.6	+88 46	var. F8; 8.8	19	270	Polaris
γ Ari	0148.1	+18 48	4.8A0; 4.8A0	8.3	200	
a Pis	0156.9	+02 17	5.2A2; 4.3A2	2.4	162	$\dagger \dagger$
γ And	0157.8	+4151	2.3K0; 5.4A0; 6.6	10, 0.7	220	5.5y; 23AU
6 Tri	0206.6	+29 50	5.4G4; 7.0F3	3.6	270	
η Per	0243.4	+55 29	$3.9 \mathrm{~K} 0 ; 8.5$	28	360	
32 Eri	0349.3	-03 15	5.0A; 6.3G5	6.7	330	
β Ori	0509.7	-08 19	0.3B8; 7.0	9	540	\dagger
θ Ori	0530.4	-05 27	5.4;6.8; 6.8; 7.9; 0	13, 17	1100	Trapezium
β Mon	0624.0	-06 58	4.7B2; 5.2; 5.6	7, 25	330	\dagger
12 Lyn	0637.4	+59 33	5.3A2; 6.2; 7.4	1.7, 8	190	
a CMa	0640.7	-16 35	-1.6A0; 8.5F	11		50y; 20AU
$\delta \mathrm{Gem}$	0714.2	+22 10	3.5F0; 8.0M0	6.8	58	
a Gem	0728.2	+3206	2.0A0; 2.8A0; 9M10	4,70		340y; 79AU
ζ Cnc	0806.5	+1757	5.6G0; 6.0;6.2	1,5	71	$60 \mathrm{y} ; 21 \mathrm{AU}$
$\boldsymbol{\gamma}$ Leo	1014.5	+20 21	2.6K0; 3.8G5	4	140	
$\boldsymbol{\xi}$ UMa	1112.9	+3206	4.4G0; 4.9G0	2	23	$\dagger \dagger 60 \mathrm{y}$; 20AU
ι Leo	1118.7	+11 05	4.1F3; 6.8F3	2	57	
$\boldsymbol{\gamma}$ Vir	1236.6	-00 54	3.6F0; 3.7F0	6	38	178y; 42AU
a CVn	1251.4	+38 51	2.9A0; 5.4A0	20	130	\dagger
ζ UMa	1319.9	+55 27	2.4A2; 4.0A2	14	76	
π Boo	1436.0	+1651	4.9A0; 5.1A0	6	200	\dagger
ϵ Boo	1440.6	+2730	2.7K0; 5.1A0	3	180	
ξ Boo	1446.8	+19 31	4.8G5; 6.7	3	21	151y; 31AU
$\delta \mathrm{Ser}$	1530.0	+10 52	4.2F0; 5.2F0	4	130	
$\boldsymbol{\xi}$ Sco	1558.9	-1106	5.1F3; 4.8; 7G7	1, 7	86	44.7 y ; 19AU
a Her	17.10 .1	+14 30	var.M5; 5.4G	5	470	
δ Her	1710.9	+24 57	3.2A0; 8.1G2	11	91	\dagger Optical
$\epsilon \mathrm{Lyr}$	1841.0	+39 32	5.1, 6.0A3; 5.1, 5.4A5	3, 2	230	Pairs 207"
β Cyg	1926.7	+27 45	$3.2 \mathrm{K0} 05.4 \mathrm{~B} 9{ }^{\text {a }}$	34	220	
a Cap	2012.3	-12 50	3.8G5; 4.6G0	376		Optical
γ Del	2042.0	+15 46	4.5G5; 5.5F8	10	96	
61 Cyg	2102.4	+38 15	5.6K5; 6.3K5	23	11	
β Cep	2127.4	+70 07	var.B1; 8.0A3	14	410	\dagger
$\zeta \mathrm{Aqr}$	2223.7	-00 32	4.4F2; 4.6F1	3	120	
δ Cep	2225.5	+5754	var.G0; 7.5A0	41	650	
8 Lac	2231.4	+39 07	5.8B3; 6.5B5	22		\dagger
σ Cas	$\mid 23 \quad 53.9$	+55 12	5.1B2; 7.2B3	3	650	

\dagger or $\dagger \dagger$, one, or two of the components are themselves very close visual double or, more generally, spectroscopic binaries.

THE BRIGHTEST STARS

Their Magnitudes, Types, Proper Motions, Distances and Radial Velocities

By W. E. Harper

The accompanying table contains the principal facts regarding 259 stars brighter than apparent magnitude 3.51 which it is thought may be of interest to our amateur members. The various columns should be self-explanatory but some comments may be in order.

The first column gives the name of the star and if it is preceded by the sign !! such means that the star is a visual double and the combined magnitude is entered in the fourth column. Besides the 48 thus indicated there are 12 others on the list with faint companions but for these it is not thought that there is any physical connection. In the case of the 20 stars variable in light this fourth column shows their maximum and minimum magnitudes. The 19 first magnitude stars are set up in bold face type.

In the fifth column are given the types as revised at various observatoriesprincipally at our own, but omitting the s and n designations descriptive of the line character. The annual proper motion follows in the next column and this may not necessarily be correct to the third decimal place.

The parallaxes are taken from the Yale Catalogue of Stellar Parallaxes 1935, the mean of the trigonometric and spectroscopic being adopted. The few negative trigonometric parallaxes were adjusted by Dyson's tables before being combined with the spectroscopic. The distance is given also in light years in the eighth column as to the lay mind that seems a fitting unit. The absolute magnitudes in the ninth column are the magnitudes the stars would have if all were at a uniform distance of 32.6 light years $\left(\pi=0 .{ }^{\prime \prime} 1\right)$. At that distance the sun would appear as a star of magnitude 4.8.

The radial velocities in the last column have been taken from Vol. 18 of the Lick Publications. An asterisk * following the velocity means that such is variable. In these cases the velocity of the system, if known, is given; otherwise a mean velocity for the observations to date is set down.

Of the 258 stars or star systems here listed 146 are south and 113 north of the equator. This is to be expected from the fact that the northern half of the sky includes less of the Milky Way than the southern.

The number in each spectral class, apart from the one marked peculiar, is as follows: $\mathrm{O}, 3 ; \mathrm{B}, 74$ A, $55 ; \mathrm{F}, 22$; G, $43, \mathrm{~K}, 42$ and $\mathrm{M}, 19$. The B -stars are intrinsically luminous and appear in this list out of all proportion to their total number. The stars in Classes A and K are by far the most numerous but the revision of types throws many originally labelled K back into the G group.

From the last column we see that 98 velocities are starred, indicating that 38 per cent of the bright stars, or at least one in every three, are binary in character. For visual binaries the proportion has usually been listed as one in nine. Our list shows one in six but it is only natural to expect that we would observe a higher proportion among the nearby stars, such as these are on the average.

Other relationships can be established from the list if our amateur members care to study it.

Star		$\begin{aligned} & \stackrel{8}{0} \\ & \underset{\sim}{0} \\ & \dot{0} \\ & \stackrel{0}{0} \end{aligned}$	$\sum_{\sum_{1}^{00}}^{\text {io }}$	$\stackrel{\otimes}{\circ}$				$\begin{aligned} & \dot{00} \\ & \sum_{\substack{0}}^{\dot{\omega}} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \dot{0} \\ & \stackrel{0}{\sim} \\ & \text { ت゙ } \end{aligned}$	
	h m				"	"			km./sec.	
$a \mathrm{Andr}$	03	+28 32	2.2	A1	. 217	. 034	96	-0.1	-13.0*	
β Cass	4	+5836	2.4	F2	. 561	. 080	41	1.9	+11.4	
$\boldsymbol{\gamma}$ Pegs	8	+1438	2.9	B2	. 015	. 005	652	-3.6	+ 5.0*	
β Hydi	20	-77 49	2.9	G0	2.243	. 162	21	4.0	+22.8	
a Phoe.	21	-4251	2.4	G5	. 448	. 040	81	0.4	+74.6*	
δ Andr	34	+30 19	3.5	K3	. 167	. 026	125	0.6	-7.1*	
a Cass	35	+55 50	2.2-2.8	G8	. 062	. 018	181	-1.5	-3.8	
β Ceti	39	-1832	2.2	G7	. 233	. 052	63	0.8	+13.1	
11γ Cass	51	+6011	2.2	B0e	. 031	. 035	93	-0.1	-6.8	
$\\| \beta$ Phoe	12	-47 15	3.4	G4	. 043	. 020	163	-0.1	-1.2	
β Andr	4	+35 5	2.4	M0	. 219	. 041	79	0.5	+ 0.1	
δ Cass.	19	+59 43	2.8-2.9	A3	. 308	. 050	65	1.3	+ 6.8	
$\\| a \mathrm{U} . \mathrm{Min}$	23	+88 46	2.3-2.4	F7	. 043	. 008	407	-3.4	-17.4*	
γ Phoe	24	-4350	3.4	M1	. 223	. 008	407	-2.1	+25.7*	
a Erid	34	-5744	0.6	B9	. 093	. 046	71	-1.1	+19.	
ϵ Cass.	47	+6311	3.4	B5	. 043	. 011	296	-1.4	-8.1	
β Arie.	49	+20 19	2.7	A3	. 150	. 066	49	1.8	- 0.6*	
a Hydi	56	$\begin{array}{ll}-62 & 3\end{array}$	3.0	A7	. 255	. 080	41	2.5	+ 7.0*	
11γ Andr.	58	+4151	2.3	K0	. 073	. 020	163	-1.2	-11.7	
\boldsymbol{a} Arie	22	+22 59	2.2	K2	. 242	. 045	72	0.5	-14.3	
β Tria	4	+34 31	3.1	A6	. 161	. 029	112	0.4	+10.4*	
110 Ceti	14	-326	1.7-9.6	M6e	. 239	. 013	251	-2.7	+57.8*	
$\\| \theta$ Erid.	54	-4042	3.4	A'2	. 068	. 032	102	0.9	+11.9*	
a Čet	57	+ 342	2.8	M1	. 080	. 018	181	-0.9	-25.7	
$\boldsymbol{\gamma}$ Pers.	58	+53 7	3.1	F9	. 012	. 017	192	-0.7	+ 1.0*	
ρ Pers.	59	+38 27	3.3-4.1	M6	. 176	. 024	136	0.3	+28.2	
β Pers	32	+40 34	2.1-3.2	B8	. 011	. 033	99	-0.3	+ 5.7*	
a Pers	17	+4930	1.9	F4	. 041	. 017	192	-2.0	-2.4	
δ Pers	36	+4728	3.1	B5	. 047	. 012	272	-1.5	-10.	
$\\| \eta$ Taur	41	+23 48	3.0	B5p	. 053	. 014	233	-1.3	$+10.3$	
ζ Pers.	48	+3135	2.9	B1	. 023	. 008	407	-2.6	+20.9	
γ Hydi	49	-7433	3.2	M3	. 124	. 008	407	-2.3	+16.0	
$\\| \epsilon$ Pers.	51	+39 43	3.0	B2	. 041	. 006	543	-3.1	- 6	
γ Erid.	53	-13 47	3.2	M0	. 133	. 012	272	-1.6	+61.7	
λ Taur.	55	+12 12	3.8-4.2	B3	. 015	. 008	407	-2.2	+13.0*	
a Reti.	413	-62 43	3.4	G5	. 070	. 016	204	-0.6	+35.6	

Star	$\begin{aligned} & 8 \\ & \stackrel{8}{2} \\ & \dot{\sim} \\ & \text { - } \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { O} \\ & \dot{0} \\ & \dot{0} \end{aligned}$	$\sum_{幺}^{\text {io }}$	$\stackrel{\otimes}{\lambda}$						
	hm				'	"			km./sec.	
a Taur	430	+16 18	1.1	K8	. 205	. 060	54	0.0	+54.1	
a Dora	32	-5515	3.5	A0p					+25.6	
π^{3} Orio	44	+ 647	3.3	F5	. 474	. 124	26	3.8	+24.6	
ι Auri.	50	+33 0	2.9	K4	. 030	. 020	163	-0.6	+17.6	
ϵ Auri	55	+43 41	3.1-3.8	F2	. 015	. 006	543	-2.7	-4.1	
η Auri.	50	+41 6	3.3	B3	. 082	013	251	-1.1	$+7.8$	
$\boldsymbol{\epsilon}$ Leps.	1	-22 30	3.3	K5	. 074	. 016	204	-0.7	+ 1.0	
β Erid.	3	-513	2.9	A1	. 117	. 055	59	1.6	- 7	
μ Leps.	8	-16 19	3.3	A0p	. 053	. 020	163	-0.2	+27.7	
\|	a Auri.	9	+45 54	0.2	G1	. 439	. 078	42	-0.3	+30.2
$\\| \beta$ Orio	10	-8.19	0.3	B8p	. 005	. 006	543	-5.8	+23.6*	
$\\| \eta$ Orio	19	-229	3.4	B0	. 009	. 006	543	-2.7	+19.5*	
γ Orio	20	+ 616	1.7	B2	. 019	. 015	217	-2.4	+18.0	
β Taur	20	+28 31	1.8	B8	. 180	. 028	116	-1.0	+8.0	
β Leps.	24	-2050	3.0	G2	. 095	. 018	181	-0.7	-13.5	
$\\| \delta$ Orio	27	-022	2.4-2.5	B0	. 006	. 007	466	-3.4	+19.9*	
\boldsymbol{a} Leps.	28	-1754	2.7	F6	. 006	. 012	272	-2.1	+24.7	
¢ Orio.	31	-559	2.9	O8	. 007	. 021	155	-0.5	+21.5*	
ϵ Orio	31	-116	1.8	B0	. 004	. 008	407	-3.7	+25.8	
ζ Taur	32	+21 5	3.0	B3e	. 028	. 010	326	-2.0	+16.4*	
$\\| \zeta$ Orio.	36	-20	1.8	B0	. 012	. 011	296	-3.0	+18.8	
a Colm	36	-34 8	2.8	B8	. 036	. 022	148	-0.6	+34.6	
κ Orio.	43	-942	2.2	B0	. 009	. 006	543	-3.9	+20.1	
β Colm.	47	-3548	3.2	K0	. 397	. 026	125	0.3	+89.4	
a Orio	50	+ 723	0.5-1.1	M2	. 032	. 012	272	-4.1	+21.0*	
β Auri.	52	+44 56	2.1-2.2	A0p	. 046	. 052	63	0.7	-18.1*	
$\\| \theta$ Auri	53	+37 12	2.7	A1	. 106	. 029	112	0.0	+28.6	
η Gemi.	69	+22 32	3.2-4.2	M2	. 062	. 014	233	-1.1	+21.4*	
$\zeta \mathrm{C} \mathrm{Maj}$	16	-30 01	3.7	B3	. 012	. 013	251	-0.7	+33.1*	
μ Gemi.	17	+2234	3.2	M3	. 129	. 016	204	-0.8	+54.8	
β C Maj	18	-1754	2.0	B1	. 003	. 014	233	-2.3	+34.4*	
a Cari.	22	-5238	-0.9	F0	. 022	. 005	652	-7.4	+20.5	
$\boldsymbol{\gamma}$ Gemi.	32	+1629	1.9	A2	. 066	. 050	65	0.4	-11.3*	
ν Pupp	35	-436	3.2	B8	. 021	. 023	148	0.0	+28.2*	
$\boldsymbol{\epsilon}$ Gemi.	38	+25 14	3.2	G9	. 020	. 009	362	-2.0	+ 9.9	
$\boldsymbol{\xi}$ Gemi.	40	+13 0	3.4	F5	. 230	. 054	60	2.1	+25.1	
$\\| \boldsymbol{a} \mathbf{C M a j}$	41	-1635	-1.6	A2	1.315	. 386	8	1.3	-7.5^{*}	
a Pict...	47	-6150	3.3	A5	. 271				+20.6	

Star	+		$\sum_{\sum=100}^{\substack{00}}$	$\stackrel{\sim}{2}$				$\begin{gathered} \dot{80} \\ \sum_{i}^{00} \\ \dot{\sim} \\ \dot{4} \end{gathered}$	® - ® \%	
	h m	- ,			"	'			km./sec	
$\boldsymbol{\tau}$ Pupp	647	-5030	2.8	G8	. 091	. 025	130	-0.2	+36.4*	
$\\| \epsilon$ C Maj	55	-2850	1.6	B1	. 005	. 010	326	-3.4	+27.4	
ζ Gemi	58	+20 43	3.7-4.3	G0p	. 007	. 005	652	-2.8	+ 6.7*	
$\mathbf{0}^{\mathbf{2}} \mathrm{C}$ Maj	59	-23 41	3.1	B5p	. 006	. 007	466	-2.7	+48.6	
δ C Maj	74	-26 14	2.0	G4p	. 003	. 006	543	-4.1	+34.3*	
L^{2} Pupp	10	-44 29	3.4-6.2	M5e	. 332	. 018	181	-0.3	+53.0	
π Pupp.	14	-3655	2.7	K5	. 004	. 018	181	-1.0	+15.8	
η C Maj	20	-29	2.4	B5p	. 007	. 012	272	-2.2	+40.4	
β C Min	22	+ 829	3.1	B8	. 063	. 022	148	-0.2	+23	
σ Pupp.	26	-436	3.3	M0	. 191	. 016	204	-0.7	+88.1*	
a_{2} Gemi.	28	+32 6	2.0	A2	. 201	. 074	44	1.4	+ 6.0*	
a_{1} Gemi	28	+32 6	2.8	A0	. 209	. 074	44	2.2	- 1.2*	
Ha C Min	34	+ 529	0.5	F5	1.242	. 316	10	3.0	- 3.0*	
β Gemi.	39	+28 16	1.2	G9	. 623	. 105	31	1.3	+ 3.3	
ξ Pupp	45	-2437	3.5	K1	. 004	. 006	543	-2.6	+ 3.7*	
ζ Pupp.	80	-39 43	2.3	08	. 032	. 004	815	-4.7	-24.	
ρ Pupp	3	-241	2.9	F6	. 097	. 025	130	-0.1	+46.6	
$1 / \gamma$ Velr	6	-47 3	2.2	OW9	. 002				+ 3.5	
$\\| \epsilon$ Cari	20	-5911	1.7	K0	. 030	. 010	326	-3.3	+11.5	
- U Maj	22	+61 3	3.5	G2	. 166	. 014	283	-0.8	+19.8	
$\\| \epsilon$ Hyda	41	+ 647	3.5	F9	. 193	. 012	272	-1.1	+36.8*	
$\\| \delta$ Velr	42	-5421	2.0	A0	. 093	. 030	109	-0.6	+2.2	
ζ Hyda	50	+ 620	3.3	G7	. 101	. 026	125	0.3	+22.6	
$\\| \iota \mathrm{U} \mathrm{Maj}$	52	+4826	3.1	A4	. 500	. 060	54	2.0	+12.6	
λ Velr	94	$\begin{array}{ll}-43 & 2\end{array}$	2.2	K4	. 024	. 016	204	-1.8	+18.4	
β Cari	12	-69 18	1.8	A0	. 192				- 5.	
ι Cari	14	-5851	2.2	F0	. 023				+13.3	
\boldsymbol{a} Lync	15	+34 49	3.3	K8	. 214	. 022	148	0.0	+37.4	
κ Velr.	19	-5435	2.6	B3	. 017	. 017	192	-1.2	+21.7*	
a Hyda.	23	-814	2.2	K4	. 036	. 018	181	-1.5	-4.4	
θ U Maj	26	+52 8	3.3	F7	1.096	. 072	45	2.6	+15.8	
N Velr	28	-5636	3.4-4.2	K5	. 038	. 022	148	0.1	-13.9	
ϵ Leon	40	+24 14	3.1	G0	. 045	. 009	362	-2.1	+ 5.1	
$\\| v$ Cari.	45	-6436	3.1	F0	. 019				+13.6	
a Leon	103	+12 27	1.3	B6	. 244	. 046	71	-0.4	$+2.6$	
q Cari.	14	-60 50	3.4	K5	. 043	. 014	233	-0.9	+8.6	

Star			$\sum_{i=1}^{\dot{80}}$	$\stackrel{\sim}{\sim}$				$\begin{aligned} & \dot{\text { ojo }} \\ & \sum_{\dot{\circ}}^{\dot{\omega}} \\ & \dot{\sim} \end{aligned}$	-	
	h m	${ }^{\circ}$				1	"		km./sec.	
$1 / \gamma$ Leo	1014	+20 21	2.3	G8	. 347	. 024	136	-0.8	-36.8	
$\mu \mathrm{U}$ Maj	16	+42 0	3.2	K4	. 082	. 031	105	0.7	-20.3*	
θ Cari.	39	-63 52	3.0	B0	. 022	. 007	466	-2.8	+24. ${ }^{*}$	
η Cari.	41	-59 10	1.0-7.4	Pec	. 007				-25.0	
$1!\mu$ Velr.	42	-48 54	2.8	G5	. 079	. 033	99	0.4	+ 6.9	
ν Hyda	45	-15 40	3.3	K3	. 218	. 020	163	-0.2	-1.0	
$\beta \mathrm{U}$ Maj	56	+56 55	2.4	A3	. 089	. 045	72	0.7	-12.1*	
\boldsymbol{a} U Maj.	58	+62 17	2.0	G5	. 137	. 036	91	-0.2	-8.6*	
ψ U Maj	114	+45.2	3.2	K0	. 067	. 035	93	0.9	-3.6	
δ Leon	9	+21 4	2.6	A2	. 208	. 058	56	1.4	-23.2	
θ Leon	9	+15 59	3.4	A2	. 103	. 025	130	0.4	+ 7.8	
λ Cent	31	-62 28	3.3	B9	. 045	. 031	105	0.8	+ 7.9	
β Leon	44	+15 8	2.2	A2	. 507	. 084	39	1.8	-2.3	
$\gamma \mathrm{U}$ Maj	49	+54 15	2.5	A0	. 095	. 035	93	0.2	-11.1	
δ Cent	123	-50 10	2.9	B3e	. 040	. 015	217	-1.2	$+9$.	
ϵ Corv	5	-22 4	3.2	K2	. 063	. 024	136	0.1	+ 4.9	
δ Cruc.	10	-5812	3.1	B3	. 045	. 017	192	-0.7	+26.4	
δ U Maj	10	+5735	3.4	A0	. 113	. 050	65	1.9	-12.	
γ Corv	11	-16 59	2.8	B8	. 159	. 024	136	-0.3	-4.2*	
a^{1} Cruc	21	-62 33	1.6	B1	. 048	. 022	148	-1.7	$-12.2 *$	
a^{2} Cruc	21	-62 32	2.1	B3	. 048	. 022	148	-1.2	+ 0.3 *	
11δ Corv	25	-15 58	3.1	A0	. 249	. 026	125	0.2	+8.7	
γ Cruc	26	-5633	1.5	M4	. 270				+21.3	
β Corv	29	-22 51	2.8	G5	. 059	. 027	121	0.0	-7.7	
a Musc	31	-68 35	2.9	B5	. 040	. 015	217	-1.2	+18.	
$1 / \gamma$ Cent	36	-48 24	2.4	A0	. 200	. 032	102	-0.1	-7.5	
$\\| \gamma$ Virg.	36	- 054	2.9	F0	. 561	. 080	41	2.4	-19.6	
$\\| \beta$ Musc	40	-6734	3.3	B3	. 039	. 011	296	-1.5	+42.	
β Cruc.	42	$\begin{array}{ll}-59 & 9\end{array}$	1.5	B1	. 054	. 007	466	-4.3	-20.	
$\epsilon \mathrm{U}$ Maj	50	+56 30	1.7	A2	. 117	. 067	49	0.8	-11.9^{*}	
$\\| a^{2} \mathrm{C}$. Ven	51	+38 51	2.8	A1	. 233	. 030	109	0.2	-3.5	
ϵ Virg.	57	$+1130$	3.0	G6	. 270	. 037	88	0.8	-14.0	
$\boldsymbol{\gamma}$ Hyda	1313	-22 39	3.3	G7	. 085	. 028	116	0.5	-5.4	
ι Cent	15	-3611	2.9	A2	. 351	. 049	67	1.4	+ 0.1	
$\\| \zeta^{1} \mathrm{U} . \mathrm{Maj}$.	20	+55 27	2.4	A2p	. 131	. 042	78	0.5	-9.9*	
a Virg.	20	-1038	1.2	B2	. 051	. 018	181	-2.5	+ 1.6*	
ζ Virg.	30	-0 5	3.4	A2	. 285	. 038	86	1.3	-13.1	

Star	$\begin{aligned} & 8 \\ & 0 \\ & \dot{8} \\ & \dot{4} \end{aligned}$		$\sum_{i=10}^{\sum_{0}^{0}}$	$\stackrel{\sim}{2}$		-		-	- \sim - ® \%	
	h m				"	"			km./sec.	
ϵ Cent	1334	-5257	2.6	B2	. 039	. 012	272	-2.0	- 5.6	
η U. Maj	44	+49 49	1.9	B3	. 116	. 015	217	-2.2	-10.9	
μ Cent.	44	-4159	3.3	B3e	. 026	. 009	362	-1.9	+12.6	
ζ Cent	49	-46 48	3.1	B3	. 080	. 013	251	-1.3	*	
η Boot	50	+18 54	2.8	G1	. 370	. 100	33	2.8	$-0.2 *$	
β Cent	57	-5953	0.9	B3	. 039	. 026	125	-2.0	-12.*	
π Hyda	$14 \quad 1$	-26 12	3.5	K3	. 164	. 037	88	1.3	+27.2	
θ Cent.	1	$-35 \quad 53$	2.3	G8	. 745	. 056	58	1.0	+ 1.3	
a Boot	11	+19 42	0.2	K0	2.287	. 102	32	0.2	-5.1	
$\boldsymbol{\gamma}$ Boot	28	+38 45	3.0	A3	. 182	. 063	52	2.0	-35.5	
η Cent	29	-4143	2.6	B3	. 046	. 012	272	-2.0	-0.2*	
$1 \\| a$ Cent	33	-6025	0.1	G0	3.682	. 768	4	4.5	$-22.2 *$	
a Circ	34	-6432	3.4	F0	. 308	. 063	52	2.4	+ 7.4	
a Lupi.	35	-46 58	2.9	B2	. 033	. 009	362	-2.3	+ 7.3*	
$\\| \epsilon$ Boot	41	+2730	2.7	G8	. 045	. 019	172	-0.9	-16.4	
$\\| a^{2}$ Libr.	45	-1538	2.9	F1	. 128	. 056	58	1.6	-10.	
β U. Min	51	+74 34	2.2	K4	. 028	. 030	109	-0.4	+16.9	
β Lupi.	52	-42 44	2.8	B3	. 067	. 012	272	-1.8	-0.3*	
κ Cent	53	-41 42	3.4	B2	. 034	. 011	296	-1.4	+ 9.1*	
σ Libr	58	-2453	3.4	M4	. 091	. 020	163	-0.1	-4.3	
ζ Lupi.	$15 \quad 5$	-5143	3.5	G5	. 125	. 027	121	0.7	-9.7	
$\boldsymbol{\gamma} \mathrm{Tr} . \mathrm{Au}$	10	$\begin{array}{lll}-68 & 19\end{array}$	3.1	A0	. 064				0.	
β Libr.	12	-981	2.7	B8	. 100	. 015	217	-1.4	-37. *	
δ Lupi.	15	-4017	3.4	B3	. 031	. 012	272	-1.2	+ 1.6	
$\boldsymbol{\gamma}$ U. Min	21	+72 11	3.1	A2	. 016	. 022	148	-0.2	- 3.9*	
ι Drac	23	+59 19	3.5	K3	. 010	. 030	109	0.9	-11.1	
$\\| \gamma$ Lupi.	28	-4050	3.0	B3	. 038	. 013	251	-1.4	+ 6 .	
a Cor. B	30	+27 3	2.3	A0	. 160	. 054	60	1.0	+ 1.0*	
\boldsymbol{a} Serp	39	+ 644	2.8	K3	. 142	. 043	76	1.0	$+3.0$	
β Tr. Au	46	$\begin{array}{ll}-63 & 7\end{array}$	3.0	F0	. 436	. 096	34	2.9	-0.3	
π Scor.	53	-25 50	3.0	B3	. 037	. 012	272	-1.6	- 3.0*	
δ Scor.	54	-2220	2.5	B1	. 039	. 011	296	-2.3	-16.	
$\\| \beta$ Scor.	160	-19 32	2.8	B3	. 029	. 016	204	-1.2	$-9.3 *$	
δ Ophi.	9	- 326	3.3	K8	. 159	. 030	109	0.7	-19.8	
$\boldsymbol{\epsilon}$ Ophi.	13	- 427	3.3	G9	. 088	. 031	105	0.8	-10.3	
$\\| \sigma$ Scor.	15	-25 21	3.1	B1	. 033	. 009	362	-2.1	- 0.4*	
$\\| \eta$ Drac.	23	+6144	2.9	G5	. 062	. 038	86	0.8	-14.3	

Star	$\begin{aligned} & \text { O} \\ & \text { O } \\ & \text { ¿ } \\ & \text { ~ } \end{aligned}$		$\dot{\sum_{i}^{0}}$	$\stackrel{0}{\circ}$		$\begin{gathered} \text { 栄 } \\ \stackrel{\pi}{\pi} \\ \end{gathered}$		$\begin{aligned} & \dot{\infty} \\ & \sum_{\infty}^{\infty} \\ & \dot{\omega} \\ & \dot{\alpha} \end{aligned}$	-	
	h m	-			"	"			km./sec.	
\\|a Scor	1623	-26 12	1.2	M1	. 032	. 019	172	-2.4	- 3.2*	
β Herc	26	+21 42	2.8	G4	. 104	. 020	163	-0.7	-25.8*	
$\boldsymbol{\tau}$ Scor	30	$\begin{array}{ll}-28 & 1\end{array}$	2.9	B1	. 037	. 009	362	-2.3	+ 0.6	
ζ Ophi	32	-1022	2.7	B0	. 023	. 008	407	-2.8	$-19 . *$	
$\\| \zeta$ Herc	38	+31 47	3.0	G0	. 601	. 105	31	3.1	-70.8*	
a Tr. Au	38	-6851	1.9	K5	. 031	. 025	130	-1.1	-3.7	
ϵ Scor	44	$\begin{array}{ll}-34 & 7\end{array}$	2.4	G9	. 665	. 038	86	0.3	-2.5	
μ^{1} Scor	45	-3753	3.1	B3p	. 030	. 011	296	-1.7	*	
ζ Arae.	50	-5550	3.1	K5	. 046	. 028	116	0.3	-6.0	
κ Ophi.	53	+ 932	3.1-4.0	K3	. 290	. 042	78	1.2	-55.6	
$\\| \eta$ Ophi.	$17 \quad 5$	-15 36	2.6	A2	. 095	. 047	69	1.0	-1.0	
η Scor	5	-436	3.4	A7	. 294	. 066	49	2.5	-28.4	
ζ Drac.	8	+65 50	3.2	B8	. 023	. 028	116	0.4	-14.1	
$\\| a^{1}$ Herc.	10	+14 30	3.1-3.9	M7	. 030	. 008	407	-2.4	-32.5	
δ Herc.	11	+24 57	3.2	A2	. 164	. 036	91	1.0	-39.	
π Herc.	12	+36 55	3.4	K3	. 021	. 018	181	-0.3	-25.7	
θ Ophi.	16	-24 54	3.4	B2	. 031	. 008	407	-2.1	-3.6	
β Arae	17	-5526	2.8	K1	. 036	. 023	142	-0.4	-0.4	
v Sco	24	-3713	2.8	B3	. 042	. 010	326	-2.2	+18. *	
a Arae	24	-49 48	3.0	B3e	. 090	. 015	217	-1.1	-2.2	
λ Scor	27	-37	1.7	B2	. 036	. 016	204	-2.3	0.	
β Drac.	28	+52 23	3.0	G0	. 012	. 007	466	-2.8	-20.1	
θ Scor	30	-42 56	2.0	F0	. 012	. 024	136	-1.1	$+1.4$	
a Ophi	30	+1238	2.1	A0	. 264	. 060	54	1.0	+15.	
κ Scor	36	-3858	2.5	B3	. 028	. 009	362	-2.7	-10.	
β Ophi.	38	+ 437	2.9	K2	. 157	. 030	109	0.3	-11.9	
${ }^{1}$ Scor	41	$-40 \quad 5$	3.1	F8	. 004	. 008	407	-2.4	-27.6*	
11μ Herc.	43	+27 47	3.5	G5	. 817	. 114	28	3.8	-16.1	
G Scor	43	$\begin{array}{ll}-37 & 1\end{array}$	3.2	K2	. 069	. 029	112	0.5	+24.7	
ν Ophi.	54	- 946	3.5	G7	. 118	. 022	148	0.2	+12.4	
$\boldsymbol{\gamma}$ Drac.	54	+5130	2.4	K5	. 026	. 026	125	-0.5	-27.8	
$\boldsymbol{\gamma}$ Sgtr .	59	-3026	3.1	K0	. 202	. 030	109	0.5	+22.3*	
η Sgtr.	1811	-36 48	3.2	M4	. 216	. 030	109	0.6	$+0.5$	
δ Sgtr.	15	-29 52	2.8	K4	. 052	. 033	99	0.4	-20.0	
η Serp.	16	- 255	3.4	G9	. 898	. 050	65	1.9	+ 8.9	
$\epsilon \mathrm{Sgtr}$.	18	-34 26	2.0	A0	. 139	. 020	163	-1.5	-10.8	
λ Sgtr.	22	-25 29	2.9	K1	. 196	. 036	91	0.7	-43.3	
a Lyra..	34	+38 41	0.1	A1	. 348	. 140	23	0.8	-13.8	

Star			$\begin{aligned} & \dot{80} \\ & \sum_{i}^{\pi} \end{aligned}$	$\underset{\hat{\lambda}}{\stackrel{0}{\lambda}}$					-	
	h m				11	"			km./sec.	
ϕ Sgtr	1839	-27 6	3.3	B8	. 150	. 015	217	-0.8	+21.5*	
H β Lyra	46	+33 15	3.4-4.1	B2p	. 011	. 006	543	-2.7	-19.0*	
$\boldsymbol{\sigma}$ Sgtr	49	-2625	2.1	B3	. 067	. 021	155	-1.3	-10.7	
$\boldsymbol{\gamma}$ Lyra	55	+32 33	3.3	B9p	. 008	. 016	204	-0.7	-21.5*	
HY Sgtr.	56	$\begin{array}{ll}-30 & 1\end{array}$	2.7	A2	. 019	. 035	93	0.4	+22.1	
\boldsymbol{r} Sgtr	191	-27 49	3.4	K0	. 268	. 036	91	1.2	+45.4*	
ζ Aqil	1	+13 43	3.0	A0	. 103	. 038	86	0.9	-25. ${ }^{*}$	
π Sgtr	4	-21 11	3.0	F2	. 041	. 017	192	-0.8	- 9.8	
δ Drac	13	+6729	3.2	G8	. 135	. 028	116	0.4	+24.8	
δ Aqil	21	+255	3.4	A3	. 267	. 052	63	2.0	-32.3*	
$\\| \beta^{1}$ Cygn	27	+27 45	3.2	K0	. 010	. 010	326	-1.8	-23.9*	
γ Agil.	42	+10 22	2.8	K3	. 018	. 018	181	-0.9	-2.0	
$\\| \delta$ Cygn	42	+44 53	3.0	A1	. 067	. 023	116	0.2	-20.	
a Aqil.	46	$+836$	0.9	A2	. 659	. 184	18	2.2	-26.1	
θ Aqil.	206	-17	3.4	A0	. 035	. 018	181	-0.3	-28.6*	
$\\| \beta$ Capr	15	$-15 \quad 6$	3.2	F8	. 042	. 022	148	-0.1	-19.0*	
a Pavo	18	$\begin{array}{ll}-57 & 3\end{array}$	2.1	B3	. 087	. 014	233	-2.2	+ 1.8*	
γ Cygn	19	+39 56	2.3	F8	. 006	. 008	407	-3.2	- 7.6	
a Indi	31	-4738	3.2	G2	. 072	. 034	96	0.9	-1.1	
a Cygn	38	+44 55	1.3	A2p	. 004	. 002	1630	-7.2	-6.3*	
ϵ Cygn.	42	+33 36	2.6	G7	. 485	. 040	81	0.6	$-10.5 *$	
ζ Cygn	219	+29 49	3.4	G6	. 061	. 018	181	-0.3	+16.9*	
a Ceph	16	+62 10	2.6	A2	. 163	. 076	43	2.0	- 8.	
β Aqar.	26	-6 61	3.1	G1	. 020	. 008	407	-2.4	+ 6.7	
β Ceph	27	+70 7	3.3-3.4	B1	. 013	. 006	543	-2.8	-7.2	
ϵ Pegs.	39	+ 925	2.5	K2	. 028	. 014	233	-1.8	+ 5.2	
δ Capr.	42	-1635	3.0	A3	. 395	. 062	53	2.0	- 6.4*	
γ Grus..	48	-37.50	3.2	B8	. 114	. 020	163	-0.3	-2.1	
a Aqar.	$22 \quad 1$	-048	3.2	G0	. 019	. 006	543	-2.9	+ 7.6	
a Grus	2	-47 27	2.2	B5	. 202	. 036	91	0.0	+11.8	
a Tucn	12	-6045	2.9	K5	. 088	. 019	172	-0.7	+42.2*	
β Grus	37	-47 24	2.2	M6	. 131	. 010	326	-2.8	+ 1.6	
η Pegs.	38	+29 42	3.1	G1	. 039	. 016	204	-0.9	+ 4.4*	
\boldsymbol{a} Psc. A	52	$\begin{array}{ll}-30 & 9\end{array}$	1.3	A3	. 367	. 118	28	1.7	+ 6.5	
β Pegs.	59	+2732	2.6	M3	. 235	. 020	163	-0.9	+ 8.6	
a Pegs.	59	+14 40	2.6	A0	. 077	. 033	99	0.2	- 4 .	
γ Ceph.	2335	+77 4	3.4	K1	. 167	. 062	53	2.4	-42.0	

STAR CLUSTERS AND NEBULAE

Prepared by J. F. Heard

The amateur who possesses a telescope will find great interest in the observation and identification of star clusters and nebulae. Such objects, of course, have been extensively catalogued and classified. The most frequently quoted catalogue is Dreyer's New General Catalogue (N.G.C.) containing 7,840 objects, extended by the Index Catalogue (I.C.) containing 5,386 more. The most interesting catalogue historically, however, and one which is still quoted for reference to the more conspicuous objects is Messier's Catalogue (M) which contains 103 objects. It was drawn up in 1781 by Charles Messier for his own convenience in identifying comets.

Messier's Catalogue as given below is adapted from a publication by Shapley and Davis (Pub. A.S.P., XXIX, 178, 1917). It includes the Messier number, the N.G.C. number, the 1900 position, the classification of the object and, under remarks, the name of the object (if any).

The classification is not that of Messier; it is the new classification based on modern knowledge of these objects. The clusters are classified as open clusters, which are loose irregular aggregates usually of a few scores of stars, or as globular clusters which are compact aggregates of probably hundreds of thousands of stars in spherical formation. The nebulae are classified as diffuse, planetary or spiral. The diffuse nebulae are great clouds of gas and "star-dust" rendered luminous by nearby stars and the planetaries are compact atmospheres of the same materials surrounding a single star. The spirals, on the other hand, are self-luminous and quite outside our stellar system and must be thought of as island universes or other galaxies like our own.

MESSIER'S CATALOGUE OF CLUSTERS AND NEBULAE

Messier	N.G.C.	$\begin{gathered} \text { R.A. } \end{gathered}$	$\begin{gathered} \text { Dec. } \\ (1900) \end{gathered}$	Type of Object	Remarks
1	1952	$\begin{array}{cc} \mathrm{h} & \mathrm{~m} \\ 5 & 28.5 \end{array}$	\circ +2157	Diffuse nebula	The Crab nebula in Taurus
2	7089	2128.3	-116	Globular cluster	
3	5272	1337.6	+2853	Globular cluster	
4	6121	1617.5	-2617	Globular cluster	
5	5904	1513.5	+227	Globular cluster	
6	6405	1733.5	-32 9	Open cluster	
7 8	6475	17 17 17.6	-3447 -2423	Open cluster Diffuse nebula	
8 9	6523	17 17 17.6	-2423 -1825	Difuse nebula	-very large
9 10	63333	$\begin{array}{ll}17 & 13.3 \\ 16 & 51.9\end{array}$	-1825 -357	Globular cluster Globular cluster	
11	6705	1845.7	- 623	Open cluster	
12	6218	1642.0	- 146	Globular cluster	
13	6205	1638.1	+36 39	Globular cluster	The Hercules cluster -best example

MESSIER'S CATALOGUE OF CLUSTERS AND NEBULAE-continued

Messier	N.G.C.	$\begin{gathered} \text { R.A. } \\ (1900) \end{gathered}$	$\begin{gathered} \text { Dec. } \\ (1900) \end{gathered}$	Type of Object	Remarks
		h m	$\bigcirc \quad 1$		
14	6402	1732.4	-311	Globular cluster	
15	7078	2125.2	+1144	Globular cluster	
16	6611	1813.2	-13 49	Open cluster	
17	6618	1815.0	-16 13	Diffuse nebula	The Horseshoe or Omega nebulabright
18	6613	1814.1	-17 10	Open cluster	
19	6273	1656.4	-267	Globular cluster	
20	6514	1756.3	-23 2	Diffuse nebula	The Trifid nebulabright
21	6531	1758.6	-22 30	Open cluster	
22	6656	1830.3	-23 59	Globular cluster	
23	6494	1751.0	-19 0	Open cluster	
24	6603	1812.6	-18 27	Open cluster	
25	I.C. 4725	1825.8	-19 19	Open cluster	
26 27	6694	1839.8	-930	Open cluster	
27	6853	1955.3	+22 27	Planetary nebula	The Dumb-bell nebula
28	6626	1818.4	-24 55	Globular cluster	
29	6913	2020.3	+3812	Open cluster	
30	7099	2134.7	-23 38	Globular cluster	
31	224	037.3	+40 43	Spiral nebula	The Andromeda ne-bula-largest spiral
32	221	037.2	+40 19	Spiral nebula	Very close to M31 much smaller
33	598	128.2	+30 9	Spiral nebula	
34	1039	235.6	+4221	Open cluster	
35	2168	${ }_{6}^{6} 2.7$	+2421	Open cluster	
36	1960	529.5	+34 4	Open cluster	
37	20,99	545.8	+3231	Open cluster	
38	1912	522.0	+35 45	Open cluster	
39	7092	2128.6	+48 0	Open cluster	
40		$\begin{array}{lll}12 & 17.4\end{array}$	+58 40		Two faint stars mistaken for a nebula by Messier
41	2287	642.7	-20 38	Open cluster	
42	1976	530.4	-527	Diffuse nebula	The Orion nebulavery bright
43	1982	530.6	-520	Diffuse nebula	
44	2632	834.3	+20 20	Open cluster	Praesepe or the Beehive cluster
45		341.5	+23 48	Open cluster	The Pleiades
46	2437	737.2	-1435	Open cluster	
47	2478	7 8 8	$\begin{array}{ll} -15 & 9 \end{array}$	Open cluster	
48		$\begin{array}{rr}8 & 9.0 \\ 12 & 24.7\end{array}$	1 +839 +833	Open cluster	
49 50	44323	1224.7 658.2	+833 +812	Spiral nebula Open cluster	
51	5194	1325.7	+4743	Spiral nebula	The Whirlpool nebula
52	7654	2319.8	+61 3	Open cluster	
53	5024	138.0	+1842	Globular cluster	
54	6715	1848.7	-3036	Globular cluster	

SIER'S CATALOGUE			CLUSTERS AND		NEBULAE-continued
Messier	N.G.C.	$\begin{gathered} \hline \text { R.A. } \\ (1900) \end{gathered}$	$\begin{gathered} \text { Dec. } \\ (1900) \end{gathered}$	Type of Object	Remarks
		h m	- '		
55	6809	1933.7	-31 10	Globular cluster	
56	6779	1912.7	+30 0	Globular cluster	
57	6720	1849.9	+3254	Planetary nebula	The Ring nebula in Lyra
58	4579	1232.7	+12 22	Spiral nebula	
59	4621	1237.0	+12 12	Spiral nebula	
60	4649	1238.6	+12 6	Spiral nebula	
61	4303	1216.8	+ 52	Spiral nebula	
62	6266	1654.8	-2958	Globular cluster	
63	5055	1311.3	+4234	Spiral nebula	
64	4826	1251.8	+22 13	Spiral nebula	
65	3623	1113.7	+13 38	Spiral nebula	
66	3627	1115.0	+13 32	Spiral nebula	
67	2682	845.8	+12 11	Open cluster	
68	4590	1234.2	-26 12	Globular cluster	
69	6637	1824.8	-32 25	Globular cluster	
70	6681	1836.7	-32 23	Globular cluster	
71	6838	1949.3	+1831	Open cluster	
72	6981	2048.0	-1255	Globular cluster	
73	6994	2053.5	-131	Open cluster	
74	628	131.3	+15 16	Spiral nebula	
75	6864	$20 \quad 0.2$	-22 12	Globular cluster	
76	650	136.0	+51 4	Planetary nebula	
77	1068	237.6	-026	Spiral nebula	
78	2068	541.6	+ 01	Diffuse nebula	
79	1904	520.1	-24 37	Globular cluster	
80	6093	1611.1	-22 44	Globular cluster	
81	3031	947.3	+69 32	Spiral nebula	
82	3034	${ }^{9} 47.5$	+70 10	Spiral nebula	
83	5236	1331.4	-29 21	Spiral nebula	
84	4374	1220.0	+1326	Spiral nebula	
85	4382	1220.4	+1845	Spiral nebula	
86	4406	1221.1	+13 30	Spiral nebula	
87	4486	1225.8	+1257	Spiral nebula	
88	4501	1226.9	+1458	Spiral nebula	
89 90	4552	1230.6	+13 6	Spiral nebula	
90 91	4569	1231.8	+13 43	Spiral nebula	
91		1236.0	+13 50		Not confirmedprobably comet
92	6341	1714.1	+4315	Globular cluster	
93	2447	740.5	-2338	Open cluster	
94	4736	1246.2	+4140	Spiral nebula	
95	3351	1038.7	+12 14	Spiral nebula	
96	3368	1041.5	+12 21	Spiral nebula	
97	3587	119.0	+55 34	Planetary nebula	The Owl nebula
98	4192	$\begin{array}{ll}12 & 8.7\end{array}$	+15 27	Spiral nebula	
99	4254	1213.8	+1458	Spiral nebula	
100	4321	1217.9	+1623	Spiral nebula	
101	5457	1359.6	+54 50	Spiral nebula	
102	5866?	15	+56 9	Spiral nebula	
103	581	126.6	+6011	Open cluster	

The above map represents the evening sky at

Midnigh 11 p.m.	$\begin{array}{lr} \text { eb. } \\ \\ & 6 \\ 21 \end{array}$
10 "	Mar. 7
9	22
8	Apr. 6
7	21

The centre of the map is the zenith, the circumference the horizon. To identify the stars hold the map so that the part of the horizon you are facing is down.

The above map represents the evening sky at

Midnight	May 8
11 p.m.	24
10 "	June 7
9 ،	" 22
8 "	July

The centre of the map is the zenith, the circumference the horizon. To identify the stars hold the map so that the part of the horizon you are facing is down.

The above map represents the evening sky at

Midnigh 11 p.m.	$\begin{aligned} & \text { Aug. } \quad 5 \\ & 21 \end{aligned}$
10 "	Sept. 7
9 "	" 23
8 "	.Oct. 10
7 ،	26
6	.Nov. 6
5 "	21

The centre of the map is the zenith, the circumference the horizon. To identify the stars hold the map so that the part of the horizon you are facing is down.

The above map represents the evening sky at

Midnigh	Nov.
11 p.m.	21
10 "	Dec. 6
9 "	21
8 "	Jan. 5
7	20
6	Feb.

The centre of the map is the zenith, the circumference the horizon. To identify the stars hold the map so that the part of the horizon you are facing is down.

CHIEF STARS USED IN AERIAL NAVIGATION

No. Name	Pronunciation	Constellation Name	Mag.	$\begin{aligned} & \text { R.A. } \\ & \text { h m. } \end{aligned}$	$1900 \text { Dec. }$
1 Achernar	á'ker-när	a Eridani	0.6	0134	S 5744
2 Acrux	ă'krŭks	a Crucis	1.1	1221	S 6233
3 Aldebaran	ăl-děb'ä-răn	a Tauri	1.1	0430	N 1618
4 Alpheratz	ăl-fér răts	a Andromedae	2.2	0003	N 2832
5 Altair	ăl-tà̉ ${ }^{\text {rr }}$	a Aquilae	0.9	1946	N 0836
6 Antares	ăn-ta'rēz	a Scorpii	1.2	1623	S 2612
7 Arcturus	ärk-tư'rŭs	a Bootis	0.2	1411	N 1942
8 Betelgeuse	bět-ël-gûz'	a Orionis	0.8*	0550	N 0723
9 Canopus	ka-nö'-pûs	a Argus	-0.9	0622	S 5238
10 Capella	kä-pěl'ä	a Aurigae	0.2	0509	N 4554
11 Deneb	děn'ěb	a Cygni	1.3	2038	N 4455
12 Dubhe	dōōb'hě	a Ursae Majoris	2.0	1058	N 6217
13 Fomalhaut	fō'măl-hôt	a Piscis Australis	1.3	2352	S 3009
14 Peacock	pékŏk	a Pavonis	2.1	2018	S 5703
15 Pollux	pol'ưks	β Gemini	1.2	0739	N 2816
16 Procyon	prō'sǐ-ŏn	a Canis Minoris	0.5	0734	N 0529
17 Regulus	rěg'ū-lūs	a Leonis	1.3	1003	N 1227
18 Rigel	ri'gèl, ríjěl	β Orionis	0.3	0510	S 0819
19 Rigil Kent.	r. kĕn-tô'rŭs	a Centauri	0.1	1433	S 6025
20 Sirius		a Canis Majoris	-1.6	0641	S 1635
21 Spica	spīkä	a Virginis	1.2	1320	S 1038
22 Vega	vē'gä	a Lyrae	0.1	1834	N 3841
47 Polaris	pō-lā'rı̌s	a Ursae Minoris	2.3	0123	N 8846

Pronunciation Key

in fate	$\overline{\mathrm{e}}$ as in we	${ }^{1}$ as in ice	go	$\overline{\mathbf{u}}$ as in unite
" fat	ě " met		ŏ " odd	ŭ " up
" arm	ë " water		ô	$\hat{\mathrm{u}}$ " urn
			ōō	

Temperature and Precipitation at Canadian and United States Stations

Prepared by Andrew Thomson.

Station.	Mean Temperature, Fahrenheit. Average Annual. Jan. Feb. Ma. Ap. May Ju. Jul. Aug. Sep. Oc. No. De. $M^{H} \quad$ L														
Victoria, B.C	39	40	44	49	53	57	60	60	56	51	45	41	49	86	19
Vancouver, B.C	36	39	43	48	53	60	63	63	57	50	43	38	50	86	
Edmonton, Alta	6	12	22	40	51	57	62	59	50	41	26	14	37		
Calgary, Alta	11	14	25	40	49	56	61	59	50	42	26	20	38		-34
Regina, Sask.	-4	2	14	37	50	59	64	61	51	39	21	8	33		- 38
Winnipeg, Man		2	16	38	52	62	62	64	54	4	22	6	35		38
Toronto, Ont.	23	22	30	42	53	63	69	67	60	48	37	27	45		-12
Ottawa, Ont.	12	13	25	42	55	65	69	66	59	46	33	17	42		-24
Montreal, Que	14	15	26	41	55	65	70	67	59	47	33	20	43		18
Halifax. N.S.	23	23	30	39	49	58	65	64	58	49	39	28	44		-9
Churchill, Ma	19	17	-6	15	29	42	53	52	41	26		-10	18		-46
Aklavik, N.W.	8		12	8	31	49	56	50	38	19	-4	4	16		-52
St. John's, Nfld.	23	22	28	35	43	51	59	60	54	45	37	29	41		-6
New York, N.Y.	31	31	37	49	60	68	73	73	56	56	44	35	52	95	
Washington, D.C	33	35	42	53	64	72	76	75	68	57	45	36	55		
Chicago, Ill	25	28	36	48	59	68	74	73	66	55	41	30	50		-10
Denver, Colo	29	32	39	47	57	67	72	71	63	51	39	32	50		-13
San Francisco	50	51	53	54	56	57	57	58	60	59	55	51	55		37

M, H and L are the mean and the averages of the highest and of the lowest temperatures each year at the station, over the total time since the station was installed.

Station	M					(Unit =one tenth of an inch)							Year.		
	Jan				May				Sep.				M	W	D
Victoria, B.C.	45	30	23	12	10	9	4	6	15	28	43	47		510	173
Vancouver, B.C	88	57	52	32	28	23	13	16	38	58	85	86	575	676	378
Edmonton, Alta.	9	7	7	9	17	31	33	24	13	7	7	8	171	278	82
Calgary, Alta	5	6	5	7	24	32	26	27	13	7	7	5		346	79
Regina, Sask	4	3	5	7	20	32	25	19	12	7	5	4	141	272	101
Winnipeg, Man	9	8	11	13	22	31	31	23	23	15	11	9	206	302	2
Toronto, Ont	28	25	25	25	29	27	30	29	30	24	28	26		436	176
Ottawa, Ont.	30	25	26	22	28	32	33	30	27	28	25	29		444	232
Montreal, Que	37	32	35	25	30	35	37	35	35	33	35	37	407	530	292
Halifax, N.S.	56	45	50	45	42	37	39	45	36	53	54	54	555	678	388
Churchill, Ma	6	10	11	10	10	20	18	25	26	13	12	9	168		
Aklavik, N.W.T	7	8	6	7	8	7	16	14	10	8	10	5	105	50	98
St. John's, Nfld.	54	51	45	42	36	36	37	36	38	54	61	49	538	691	427
New York, N.Y	36	41	35	33	32	34	42	43	34	35	30	35	430	587	331
Washington, D.C	35	35	37	33	36	42	46	39	33	28	24	32	2		
Chicago, Ill	19	23	26	28	35	34	33	32	32	25	24	20	327	461	244
Denver, Colo		-	10	21	22	14	17	14	10	11	6	7	141	228	79
San Francisco	44	42	31	17	8	2	0	0	4	11	24	39	220	390	91

M, W and D indicate the mean, the greatest and the least total precipitation in one year from Jan. 1 to Dec. 31 recorded at a station, records being available for varying periods from 30 to 50 years.

Temperature and Precipitation at European and Asiatic Stations Prepared by Andrew Thomson

The weather plays such a large role in modern warfare that accurate data on average weather conditions prevailing in the war zone will be of interest during the coming year. The climatological averages in the following tables are based on from 30 to 100 years' observations:

Temperatures in Degrees Fahrenheit

	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	Average
Bergen Oslo. London	$\begin{aligned} & 34 \\ & 25 \\ & 39 \end{aligned}$	$\begin{aligned} & 34 \\ & 26 \\ & 40 \end{aligned}$	$\begin{aligned} & 36 \\ & 30 \\ & 42 \end{aligned}$	$\begin{aligned} & 42 \\ & 40 \\ & 47 \end{aligned}$	$\begin{aligned} & 49 \\ & 51 \\ & 53 \end{aligned}$	$\begin{aligned} & \hline 55 \\ & 60 \\ & 59 \end{aligned}$	$\begin{aligned} & 58 \\ & 63 \\ & 62 \end{aligned}$	$\begin{aligned} & \hline 57 \\ & 60 \\ & 62 \end{aligned}$	$\begin{aligned} & \hline 52 \\ & 52 \\ & 57 \end{aligned}$	$\begin{aligned} & 46 \\ & 42 \\ & 50 \end{aligned}$	$\begin{aligned} & 39 \\ & 33 \\ & 44 \end{aligned}$	$\begin{aligned} & 35 \\ & 26 \\ & 40 \end{aligned}$	$\begin{aligned} & 45 \\ & 42 \\ & 50 \end{aligned}$
Berlin Paris. Vienna	$\begin{aligned} & 32 \\ & 37 \\ & 29 \end{aligned}$	$\begin{aligned} & 34 \\ & 39 \\ & 33 \end{aligned}$	$\begin{aligned} & 39 \\ & 43 \\ & 40 \end{aligned}$	$\begin{aligned} & 47 \\ & 49 \\ & 50 \end{aligned}$	$\begin{aligned} & 57 \\ & 56 \\ & 59 \end{aligned}$	$\begin{aligned} & 63 \\ & 62 \\ & 65 \end{aligned}$	$\begin{aligned} & 66 \\ & 65 \\ & 68 \end{aligned}$	$\begin{aligned} & 64 \\ & 64 \\ & 67 \end{aligned}$	$\begin{aligned} & 58 \\ & 58 \\ & 60 \end{aligned}$	$\begin{aligned} & 48 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 40 \\ & 42 \\ & 39 \end{aligned}$	$\begin{aligned} & 34 \\ & 38 \\ & 32 \end{aligned}$	$\begin{aligned} & 48 \\ & 50 \\ & 49 \end{aligned}$
Bucharest Warsaw. Leningrad	$\begin{aligned} & 26 \\ & 26 \\ & 18 \end{aligned}$	$\begin{aligned} & 30 \\ & 28 \\ & 18 \end{aligned}$	$\begin{aligned} & 41 \\ & 35 \\ & 24 \end{aligned}$	$\begin{aligned} & 52 \\ & 46 \\ & 36 \end{aligned}$	$\begin{aligned} & 62 \\ & 57 \\ & 48 \end{aligned}$	$\begin{aligned} & 69 \\ & 63 \\ & 58 \end{aligned}$	$\begin{aligned} & 73 \\ & 66 \\ & 63 \end{aligned}$	$\begin{aligned} & 72 \\ & 64 \\ & 60 \end{aligned}$	$\begin{aligned} & 64 \\ & 56 \\ & 51 \end{aligned}$	$\begin{aligned} & 53 \\ & 46 \\ & 40 \end{aligned}$	$\begin{aligned} & 40 \\ & 36 \\ & 30 \end{aligned}$	$\begin{aligned} & 31 \\ & 30 \\ & 22 \end{aligned}$	$\begin{aligned} & 51 \\ & 46 \\ & 39 \end{aligned}$
Moscow. Kiev. Odessa	$\begin{aligned} & 12 \\ & 21 \\ & 26 \end{aligned}$	$\begin{aligned} & 16 \\ & 24 \\ & 29 \end{aligned}$	$\begin{aligned} & 23 \\ & 31 \\ & 36 \end{aligned}$	$\begin{aligned} & 38 \\ & 44 \\ & 47 \end{aligned}$	$\begin{aligned} & 53 \\ & 58 \\ & 60 \end{aligned}$	$\begin{aligned} & 60 \\ & 63 \\ & 68 \end{aligned}$	$\begin{aligned} & 64 \\ & 67 \\ & 73 \end{aligned}$	$\begin{aligned} & 60 \\ & 65 \\ & 71 \end{aligned}$	$\begin{array}{r} 50 \\ 56 \\ 62 \end{array}$	$\begin{aligned} & 39 \\ & 45 \\ & 52 \end{aligned}$	$\begin{aligned} & 27 \\ & 33 \\ & 40 \end{aligned}$	$\begin{aligned} & 18 \\ & 26 \\ & 32 \end{aligned}$	$\begin{aligned} & 38 \\ & 44 \\ & 50 \end{aligned}$
Tripoli. *Godthaab \uparrow Stykkisholm	$\begin{aligned} & 54 \\ & 14 \\ & 29 \end{aligned}$	$\begin{aligned} & 56 \\ & 14 \\ & 28 \end{aligned}$	$\begin{aligned} & 60 \\ & 18 \\ & 29 \end{aligned}$	$\begin{aligned} & 65 \\ & 25 \\ & 34 \end{aligned}$	$\begin{aligned} & 69 \\ & 33 \\ & 41 \end{aligned}$	$\begin{aligned} & 74 \\ & 40 \\ & 48 \end{aligned}$	$\begin{aligned} & 79 \\ & 44 \\ & 51 \end{aligned}$	$\begin{aligned} & 80 \\ & 43 \\ & 50 \end{aligned}$	$\begin{aligned} & 78 \\ & 38 \\ & 46 \end{aligned}$	$\begin{aligned} & 74 \\ & 30 \\ & 39 \end{aligned}$	$\begin{aligned} & 65 \\ & 24 \\ & 33 \end{aligned}$	$\begin{aligned} & 57 \\ & 18 \\ & 30 \end{aligned}$	$\begin{aligned} & 68 \\ & 28 \\ & 38 \end{aligned}$
Vladivostok Hong Kong Tokyo	$\begin{array}{r} 7 \\ 60 \\ 37 \end{array}$	$\begin{aligned} & 14 \\ & 59 \\ & 39 \end{aligned}$	26 63 44	40 70 54	49 77 62	57 81 69	$\begin{aligned} & 64 \\ & 82 \\ & 76 \end{aligned}$	$\begin{aligned} & 69 \\ & 82 \\ & 78 \end{aligned}$	$\begin{aligned} & 62 \\ & 80 \\ & 71 \end{aligned}$	$\begin{aligned} & 49 \\ & 76 \\ & 60 \end{aligned}$	$\begin{aligned} & 31 \\ & 69 \\ & 50 \end{aligned}$	$\begin{aligned} & 15 \\ & 63 \\ & 41 \end{aligned}$	40 72 57

Precipitation in Inches

	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	Total
Berg	61	5.24	4.76	3.78	3.50	3.50	4.65	6.26	7.64	8.07	7.01	7.13	68.15
Oslo	1.26	1.10	1.22	1.26	1.50	1.89	2.68	3.23	2.36	2.40	1.73	1.57	22.21
London	1.89	1.54	1.61	1.61	1.85	2.01	2.40	2.32	2.09	2.68	2.24	2.01	24.25
Berlin	1.65	1.42	1.61	1.54	1.89	2.32	2.95	2.28	1.69	1.73	1.65	1.93	22.68
Paris.	1.50	1.38	1.61	1.73	1.89	2.13	2.20	2.09	1.93	2.28	1.89	2.05	22.68
Vienna	1.46	1.30	1.81	2.05	2.80	2.72	3.11	2.72	1.97	1.85	1.77	1.81	25.35
Bucharest	1.34	1.10	1.65	1.73	2.48	3.46	2.68	2.01	1.57	1.69	1.89	1.57	23.19
Warsaw.	1.34	0.94	1.26	1.57	1.97	2.40	3.42	2.59	1.77	1.61	1.46	1.42	21.77
Leningrad	. 1.06	0.98	0.90	1.22	1.61	2.13	2.32	3.27	2.36	1.81	1.42	1.30	20.39
Moscow	1.34	1.22	1.38	1.38	1.77	2.64	3.19	3.07	2.16	2.09	1.73	1.57	23.54
Kiev. .		1.18	1.73	1.73	2.01	2.95	3.19	2.24	1.81	1.93	1.61	1.54	23.31
Odessa.		0.87	1.06	0.94	1.14	2.24	1.73	1.38	1.22	1.46	1.06	1.8	15.43
*Godthaab	. 1.46	1.81	1.77	1.10	1.65	1.30	2.32	3.11	3.27	2.48	1.89	1.57	23.74
\dagger Stykkisholm	2.80	2.60	1.97	1.50	1.38	1.54	1.50	1.61	2.72	3.07	2.52	2.52	25.67
Valdivostok													
Hong Kong	1.30	1.61	2.71	5.35	11.65	15.94	13.82	22.01	9.84	4.88	1.85	1.14	82.12
Tokyo.. .	. 2.20	2.80	4.41	4.92	5.67	6.50	5.32	5.75	8.70	7.36	4.25	2.13	59.99

THE ROYAL ASTRONOMICAL SOCIETY OF CANADA 1890-1941

The Society was incorporated in 1890 under the name of The Astronomical and Physical Society of Toronto, and assumed its present name in 1903.

For many years the Toronto organization existed alone, but now the Society is national in extent, having active Centres in Montreal, P.Q.; Ottawa, Toronto, Hamilton and London, Ontario.; Winnipeg, Man.; Edmonton, Alta.; Vancouver and Victoria, B.C. As well as about 700 members of these Canadian Centres, there are over 200 members not attached to any Centre, mostly resident in other nations, while some 300 additional institutions or persons are on the regular mailing list for our publications.

The Society publishes a monthly Journal containing about 500 pages and a yearly Observer's Handbook of 80 pages. Single copies of the Journal or Handbook are 25 cents, postpaid. In quantities of 10 or more copies, the price is 20 cents a copy.

Membership is open to anyone interested in astronomy. Annual dues, $\$ 2.00$; life membership, $\$ 25.00$. Publications are sent free to all members or may be subscribed for separately. Applications for membership or publications may be made to the General Secretary, 198 College St., Toronto.

The Society has for Sale:
Reprinted from the Journal of the Royal Astronomical Society, 1936-1941.
The Physical State of the Upper Atmosphere, (revised 1941) by B. Haurwitz, 96 pages; Price 75 cents postpaid.

General Instructions for Meteor Observing, (revised 1940) by Peter M. Millman, 24 pages; Price 15 cents postpaid.

Two Inexpensive Drives for Small Telescopes, by H. Boyd Brydon, 12 pages; Price 10 cents postpaid.
A. H. Young's Simple Mounting for the 6-inch Reflector, by H. Boyd Brydon, 16 pages; Price 10 cents postpaid.

The Visual Photometry of Variable Stars, by H. Boyd Brydon, 64 pages; Price 50 cents postpaid.
The Anniversary Number of the Journal, containing articles on the history of the Society (Fiftieth Anniversary), and on the founding of the Toronto Magnetic Observatory and the Canadian Meteorological Service (Hundredth Anniversary); 80 pages; price 25 cents.

In quantities of ten or more copies, a discount of 20 per cent will be allowed. Send Money Order to 198 College St., Toronto.

[^0]: Explanation of symbols and abbreviations on p. 4, of time on p. 8.

[^1]: Explanation of symbols and abbreviation on p. 4, of time on p.8.

[^2]: Explanation of symbols and abbreviations on p. 4, of time on p. 8.

[^3]: Explanation of symbols and abbreviations on p. 4, of time on p. 8.

