THE Observer's Handbook For 1935

PUBLISHED BY

The Royal Astronomical Society of Canada

EDITED BY C. A. CHANT

TWENTY-SEVENTH YEAR OF PUBLICATION

TORONTO 198 College Street Printed for the Society 1935

CI	1 4	FI	VI I	1	2	R
1	TT	1.1				12

1935

-		n	0	
		u	3	Ŀ
	L	U	υ	×.

5 24	IA	NU	AR	v	-	F	EB	RI	IAH	1			M	AR	СН				A	PR	IL		
Sun. Mon. Tues. Wed Thur. Fri. Sat		6 7 8 9 10 11				Sun. Mon. Tues. Wed. Thur. Fri. Sat.	1	3456780	10 11 12 13 14 15	17 18 19	24 25 26 27 28	Sun Mon Tues. Wed. Thur. Fri. 1 Sat 2	345678	$ \begin{array}{r} 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \end{array} $	17 18 19 20 21 22 23		31	Sun. Mon. Tues Wed. Thur. Fri. Sat	12345	7 8 9 10 11 12 13	14 15 16 17 18 19	21 22 23 24 25 26 27	28 29 30
	-	MA	Y				1	UN	IE			1300	3	UL	Y.	10		10.20	AL	JGI	JST		
Sun Mon. Tues Wed. Thur Fri Sat	1234	8 9 10	12 13 14 15 16 17 18	19 20 21 22 23 24 25	26 27 28 29 30 31	Sun. Mon. Tues. Wed. Thur. Fri. Sat 1	2345678	9 10 11 12 13 14 15	16 17 18 19 20 21 22	23 24 25 26 27 28 29		Sun Mon. Tues. Wed Thur Fri. Sat	123456	7 9 10 11 12 13	14 15 16 17 18 19 20	21 22 23 24 25 26 27	28 29 30 31 	Sun. Mon. Tues. Wed. Thur Fri Sat	123	45 67 89 10	11 12 13 14 15 16 17	18 19 20 21 22 23 24	25 26 27 28 29 30 31
SE	P	TER	MB	ER		0	oci	ru1	BEI	2		NO	ov	EM	IBE	ER		D	EC	EN	1 BI	ER	
Sun. Mon. Tues. Wed. Thur Fri. Sat	1 2 3 4 5 6 7	8 9 10 11 12 13	15 16 17 18 19 20 21	22 23 24 25 26 27 28	29 30 	Sun. Mon. Tues. Wed. Thur. Fri. Sat	12345	6 7 8 9 10 11 12	13 14 15 16 17 18 19	20 21 22 23 24 25 26	27 28 29 30 31	Sun. Mon.	•••••12	3456789	$10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 16 \\ 16 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$	17 18 19 20 21 22 23	24 25 26 27 28 29 30	Sun. Mon. Tues. Wed. Thur Fri. Sat.	1234567	8 9 10 11 12 13 14	15 16 17 18 19 20 21	22 23 24 25 26 27 28	29 30 31

JULIAN DAY CALENDAR, 1935

J. D. 2,420,000 plus the following

Jan.	1	7804	May	1	7924	Sept.	1	8047
Feb.	1	7835	June	1	7955	Oct.	1	8077
Mar.	1	7863	July	1	7985	Nov.	1	8108
Apr.	1	7894	Aug.	1	8016	Dec.	1	8133

THE Observer's Handbook For 1935

PUBLISHED BY

The Royal Astronomical Society of Canada

Edited by C. A. CHANT

TWENTY-SEVENTH YEAR OF PUBLICATION

TORONTO 198 College Street Printed for the Society 1935

CONTENTS

Preface	-	-	-	-	-	•	-	3
Anniversaries	and Fe	stivals	-	-	-	-	-	3
Symbols and	Abbrevi	ations	-	-	-		-	4
Solar and Side	ereal Ti	me	-	-	-	-	-	5
Ephemeris of	the Sun	l -	-	-	-	-	-	б
Phases and D	istance	of the I	Moon	-		-	-	7
Abbreviations	for the	e Conste	llations	-	-	-	-	8
Times of Suni	rise and	Sunset	-	-	-		-	9
Planets for th	e Year	-	-	-	-	- '	-	22
Eclipses in 19	35	-	-	-	-	-	-	2 9
The Sky and	Astrono	mical P	henome	na for e	ach Mo	nth	-	30
Phenomena of	f Jupiter	's Satel	lites	-	-	-	•	54
Meteors and S	Shooting	g Stars	-	-	-	-	-	56
Elements of t	he Solar	System	ı	-	-	-	-	57
Satellites of th	he Solar	System	l -	-	-	-	-	58
Double Stars,	with a	short lis	st	-	-	-	-	59
Variable Stars	s, with a	ı short l	ist	-	- "		-	61
Distances of t	he Star	s	-	-	-	-	-	63
The Brightest	Stars, t	heir ma	gnitude	s, types,	, proper	motion	s,	
distances ar	nd radia	l velocit	ties	-	•. •	-	-	65

In the present issue of the HANDBOOK the list of stars occulted by the mo has been omitted, but any person who is able and willing to observe occultations will be supplied with the necessary information.

No star maps are included in the HANDBOOK, but the following are recommended: Four circular maps, 9 inches in diameter, roughly for the four seasons, obtainable from the Director of University Extension, University of Toronto, for one cent each. A set of 12 circular maps, 5 inches, in diameter with brief explanation, is supplied by *Polular Astronomy*, Northfield, Minn., for 15 cents. Young's Uranography, contains four maps with good descriptions of the con-stellations, suitable for small telescopes (Ginn and Co., 72 cents). Norton's Star Atlas and Telescopic Handbook is larger and excellent. (Gall and Inglis, price 12s. 6d.; supplied also by Eastern Science Supply Co., Boston). In the preparation of this HANDBOOK the Editor has been assisted by Mr.

H. Boyd Brydon, Victoria, who supplied much of the "copy" and read the proofs; Mr. W. E. Harper, M.A., of the Dominion Astrophysical Observatory, Victoria, B.C.; Dr. R. J. McDiarmid, of the Dominion Observatory, Ottawa; Mr. W. S. Armstrong, M.A.; and his colleague Dr. R. K. Young, of the University of Toronto.

The minima of Algol have been computed from an observation by Stebbins (Ap. J., vol. 53, 1921), J. D. 2422619.7866 with the period 2.86731077, given by Hellerick (A. N., vol. 209, p. 227, 1919). THE EDITOR. TORONTO, December, 1933.

ANNIVERSARIES AND FESTIVALS 1935

New Year's Day	Jan. 1
Epiphany	Jan. 6
Septuagesima Sunday	Feb. 17
Quinquagesima (Shrove)	
Sunday	. Mar. 3
Ash Wednesday	Mar. 6
St. David	
St. Patrick	Mar. 17
Palm Sunday	Apr. 14
Annunciation (Lady Day)	Mar. 25
Good Friday	Apr. 19
Passover, First Day	Apr. 18
Easter Sunday	Apr. 21
Mohammedan New Year	
(1354)	Apr. 4
St. George	Apr. 23
Rogation Sunday	May 26
Accession of King George V	
(1910)	
Ascension Day	
Pentecost (Whit Sunday)	June 9
Empire (Victoria) Day	May 24
Birthday of Queen Mary	
1867)	May 26

Trinity SundayJune 16 Corpus ChristiJune 20 Birthday of King George V
(1865)June 3 Birthday of Prince of Wales
(1894)June 23 St. John Baptist (Midsummer
Day)June 24
Dominion DayJuly 1
Labour DaySept. 2
Jewish New Year (5696) (Rosh
Hashanah)Sept. 28
Day of Atonement (Jewish). Oct. 7
Tabernacles (Jewish)Oct. 12
St. Michael (Michaelmas DaySept. 29
All Saint's Day Nov. 1
Armistice DayNov. 11
St. Andrew
First Sunday in Advent Dec. 1
Christmas Day
•

Thanksgiving Day, date set by Proclamation

SYMBOLS AND ABBREVIATIONS

SIGNS OF THE ZODIAC

Υ Aries 0°	Ω Leo120°	オ Sagittarius240 [€]
∀ Taurus30°	MP Virgo 150°	で Capricornus 270°
¤ Gemini60°	\simeq Libra180°	🛲 Aquarius
\odot Cancer	M Scorpio 210°	\mathcal{H} Pisces

SUN. MOON AND PLANETS

\odot The Sun.	• The Moon generally.	2 Jupiter.
New Moon.	g Mercury.	b Saturn.
🛇 Full Moon.	Q Venus.	ㅎ or 쁐 Uranus
First Quarter	\oplus Earth.	Ψ Neptune.
C Last Quarter.	♂ Mars.	•

ASPECTS AND ABBREVIATIONS

 σ' Conjunction, or having the same Longitude or Right Ascension \mathcal{O} Conjunction, or having the same Longitude or Right Ascension \mathcal{O} Opposition, or differing 180° in Longitude or Right Ascension \Box Quadrature, or differing 90° in Longitude or Right Ascension Ω Ascending Node; \Im Descending Node. *a* or A.R., Right Ascension; δ Declination. h, m, s, Hours, Minutes, Seconds of Time. "", Degrees, Minutes, Seconds of Arc.

THE GREEK ALPHABET

Α, α,	Alpha.	Ί,ι,	Iota.	Ρ,ρ,	Rho.
Β, β,	Beta.	Κ, κ,	Kappa.	Σ, σ, ς,	Sigma
Γ,γ,	Gamma.	Λ,λ,	Lambda.	Τ, τ,	Tau.
Δ,δ,	Delta.	Μ, μ,	Mu.	$\Upsilon, v,$	Upsilon
Ε,ε,	Epsilon.	Ν, ν,	Nu.	$\Phi, \phi,$	Phi.
Ζ,ζ,	Zeta.	$\Xi, \xi,$	Xi.	Χ, χ,	Chi
Η, η,	Eta.	0,0,	Omicron.	Ψ,ψ,	Psi.
θ,θ,ϑ,	Theta.	Π,π,	Pi.	Ω, ω,	Omega

In the Configurations of Jupiter's Satellites (pages 29, 31, etc.), O represents the disc of the planet, d signifies that the satellite is on the disc, * signifies that the satellite is behind the disc or in the shadow. Configurations are for an inverting telescope.

SOLAR AND SIDEREAL TIME

In practical astronomy three different kinds of time are used, while in ordinary life we use a fourth.

I. *Apparent Time*—By apparent noon is meant the moment when the sun is on the meridian, and apparent time is measured by the distance in degrees that the sun is east or west of the meridian. Apparent time is given by the sun-dial.

2. Mean Time—The interval between apparent noon on two successive days is not constant, and a clock cannot be constructed to keep apparent time. For this reason mean time is used. The length of a mean day is the average of all the apparent days throughout the year. The real sun moves about the ecliptic in one year; an imaginary mean sun is considered as moving uniformly around the celestial equator in one year. The difference between the times that the real sun and the mean sun cross the meridian (*i. e.* between apparent noon and mean noon) is the equation of time. (See next page).

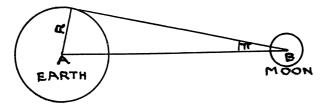
3. Sidereal Time—This is time as determined from the stars. It is sidereal noon when the Vernal Equinox or First of Aries is on the meridian. In accurate time-keeping the moment when a star is on the meridian is observed and the corresponding mean time is then computed with the assistance of the Nautical Almanac. When a telescope is mounted equatorially the position of a body in the sky is located by means of the sidereal time.

4. Standard Time-In everyday life we use still another kind of time. A moment's thought will show that in general two places will not have the same mean time; indeed, difference in longitude between two places is determined from their difference in time. But in travelling it is very inconvenient to have the time varying from station to station. For the purpose of facilitating transportation the system of *Standard Time* was introduced in 1883. Within a certain belt approximately 15° wide, all the clocks show the same time, and in passing from one belt to the next the hands of the clock are moved forward or backward one hour.

In Canada we have six standard time belts, as follows; —60th meridian or Atlantic Time, 4h. slower than Greenwich; 75th meridian or Eastern Time, 5h.; 90th meridian or Central Time, 6h.; 105th meridian or Mountain Time, 7h.; 120th meridian or Pacific Time, 8h.; and 135th meridian or Yukon Time, 9h. slower than Greenwich.

1935 EPHEMERIS OF THE SUN AT 0h. GREENWICH CIVIL TIME

Date	Apparent R.A.	Equation of Time	Apparent Dec.	Date	Apparent R.A.	Equation of Time	Apparent Dec.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} h & m & s \\ 18 & 41 & 59 \\ 18 & 55 & 13 \\ 19 & 08 & 24 \\ 19 & 21 & 31 \\ 19 & 47 & 30 \\ 20 & 03 & 22 \\ 20 & 13 & 03 \\ 20 & 25 & 40 \\ 20 & 38 & 10 \\ 20 & 38 & 10 \\ 20 & 38 & 10 \\ 20 & 38 & 10 \\ 21 & 50 & 37 \\ 22 & 02 & 48 \\ 21 & 14 & 56 \\ 21 & 26 & 57 \\ 22 & 11 & 4 & 56 \\ 21 & 26 & 57 \\ 22 & 12 & 50 \\ 21 & 50 & 37 \\ 22 & 22 & 13 \\ 50 & 22 & 25 \\ 11 & 4 & 56 \\ 21 & 26 & 57 \\ 22 & 22 & 13 \\ 50 & 22 & 25 \\ 11 & 4 & 56 \\ 22 & 22 & 13 \\ 22 & 51 & 72 \\ 22 & 20 & 21 \\ 3 & 50 \\ 22 & 24 \\ 11 & 22 & 55 \\ 23 & 17 & 41 \\ 23 & 39 & 44 \\ 23 & 30 & 44 \\ 23 & 30 & 44 \\ 23 & 30 & 44 \\ 23 & 30 & 44 \\ 23 & 30 & 44 \\ 23 & 30 & 44 \\ 23 & 30 & 44 \\ 23 & 30 & 44 \\ 1 & 07 & 137 \\ 0 & 24 & 22 \\ 0 & 24 & 8 \\ 2 & 50 & 11 \\ 1 & 51 & 30 \\ 2 & 25 & 22 \\ 2 & 48 & 20 \\ 2 & 55 & 27 \\ 3 & 59 & 11 \\ 3 & 32 & 24 \\ 3 & 59 & 12 \\ 3 & 59 & 12 \\ 3 & 59 & 12 \\ 3 & 59 & 12 \\ 4 & 48 & 04 \\ 5 & 50 & 27 \\ 3 & 6 \\ 27 & 36 \\ \end{array} $	$\begin{array}{c} \text{m} \text{s} \\ + 3 06.4 \\ + 4 31.3 \\ 06.4 \\ + 4 31.3 \\ 06.4 \\ + 4 31.3 \\ 06.4 \\ + 5 52.9 \\ + 7 10.2 \\ + 15 20.4 \\ + 15 20.4 \\ + 11 23.3 \\ + 11 23.3 \\ + 112 10.4 \\ + 113 23.6 \\ + 113 23.6 \\ + 113 23.6 \\ + 114 19.0 \\ + 114 19.0 \\ + 114 19.5 \\ + 114 19.5 \\ + 114 19.5 \\ + 114 19.5 \\ + 113 30.9 \\ + 112 42.2 \\ + 113 30.3 \\ + 12 42.2 \\ + 111 26.8 \\ + 10 43.2 \\ + 9 56.5 \\ + 8 10 22.2 \\ + 9 56.5 \\ + 8 4 4 36.4 \\ + 4 4 24.9 \\ + 5 31.6 \\ - 1 39.7 \\ - 2 12.3 \\ - 3 34.8 \\ - 3 34.8 \\ - 3 346.5 \\ -$	$\begin{array}{c} \circ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$ \begin{array}{c} July & 2 \\ & & 8 \\ & & 11 \\ & & 14 \\ & & 17 \\ & & 20 \\ & & 26 \\ & & 26 \\ & & 26 \\ & & 26 \\ & & 26 \\ & & 26 \\ & & 26 \\ & & 26 \\ & & 26 \\ & & & 26 \\ & & & 26 \\ & & & 10 \\ & & & 10 \\ & & & 10 \\ & & & 10 \\ & & & 10 \\ & & & 25 \\ & & & 31 \\ & & & 16 \\ & & & 27 \\ & & & 31 \\ & & & 16 \\ & & & 22 \\ & & & 15 \\ & & & 11 \\ & & & 24 \\ & & & 27 \\ & & & 30 \\ & & & 6 \\ & & & 9 \\ & & & 15 \\ & & & 11 \\ & & & 24 \\ & & & 27 \\ & & & 30 \\ & & & 6 \\ & & & 9 \\ & & & 15 \\ & & & 18 \\ & & & 21 \\ & & & 24 \\ & & & 27 \\ & & & 30 \\ & & & 15 \\ & & & 11 \\ & & & 12 \\ & & & 27 \\ & & & 30 \\ & & & & 11 \\ & & & 12 \\ & & & & 27 \\ & & & & 30 \\ & & & & 27 \\ & & & & 30 \\ & & & & 27 \\ & & & & & 15 \\ & & & & & 21 \\ & & & & & 27 \\ & & & & & 30 \\ & & & & & & 21 \\ & & & & & 27 \\ & & & & & & 30 \\ & & & & & & 21 \\ & & & & & & 27 \\ & & & & & & 30 \\ & & & & & & & 21 \\ & & & & & & & 21 \\ & & & & & & & 21 \\ & & & & & & & 21 \\ & & & & & & & 21 \\ & & & & & & & 21 \\ & & & & & & & 21 \\ & & & & & & & 21 \\ & & & & & & & 21 \\ & & & & & & & & 21 \\ & & & & & & & & 21 \\ & & & & & & & & 21 \\ & & & & & & & & & 21 \\ & & & & & & & & & & & & \\ & & & & & $	$ \begin{array}{c} h & m & s \\ 6 & 40 & 02 \\ 6 & 52 & 25 \\ 7 & 04 & 46 \\ 7 & 17 & 03 \\ 7 & 29 & 16 \\ 8 & 05 & 29 \\ 8 & 17 & 24 \\ 8 & 29 & 14 \\ 8 & 20 & 52 \\ 8 & 17 & 24 \\ 8 & 40 & 58 \\ 8 & 52 & 36 \\ 9 & 40 & 09 \\ 9 & 15 & 37 \\ 9 & 38 & 16 \\ 9 & 94 & 29 \\ 9 & 15 & 37 \\ 9 & 38 & 16 \\ 9 & 94 & 29 \\ 9 & 13 & 37 \\ 10 & 11 & 41 \\ 10 & 33 & 38 \\ 10 & 44 & 32 \\ 10 & 55 & 23 \\ 11 & 06 & 12 \\ 11 & 38 & 31 \\ 10 & 65 & 23 \\ 11 & 106 & 12 \\ 11 & 27 & 45 \\ 11 & 38 & 31 \\ 10 & 65 & 23 \\ 11 & 106 & 12 \\ 11 & 27 & 45 \\ 11 & 38 & 31 \\ 10 & 52 & 23 \\ 11 & 106 & 12 \\ 11 & 27 & 45 \\ 11 & 38 & 31 \\ 12 & 10 & 51 \\ 12 & 21 & 40 \\ 12 & 22 & 43 \\ 26 & 12 \\ 12 & 43 & 26 \\ 12 & 54 & 23 \\ 13 & 16 & 30 \\ 13 & 38 & 56 \\ 13 & 35 & 17 \\ 14 & 13 & 20 \\ 14 & 36 & 50 \\ 14 & 48 & 45 \\ 15 & 50 & 17 \\ 14 & 13 & 20 \\ 14 & 36 & 50 \\ 15 & 37 & 43 \\ 15 & 50 & 17 \\ 14 & 11 & 20 \\ 14 & 36 & 50 \\ 15 & 44 & 84 \\ 15 & 12 & 59 \\ 15 & 37 & 43 \\ 15 & 50 & 17 \\ 14 & 01 \\ 16 & 54 & 44 \\ 17 & 07 & 53 \\ 17 & 21 & 06 \\ 16 & 41 & 40 \\ 16 & 54 & 42 \\ 17 & 47 & 40 \\ 18 & 01 & 01 \\ 8 & 14 & 19 \\ 18 & 27 & 39 \\ \end{array}$	$\begin{array}{c} \textbf{m} \textbf{s} \\ + \textbf{3} \textbf{36.3} \\ + \textbf{4} \textbf{10.3} \\ + \textbf{10} \textbf{31} \\ + \textbf{5} \textbf{08.8} \\ + \textbf{5} \textbf{51.7} \\ + \textbf{6} \textbf{06.3} \\ + \textbf{6} \textbf{21.5} \\ + \textbf{6} \textbf{06.3} \\ + \textbf{6} \textbf{21.5} \\ + \textbf{6} \textbf{04.5} \\ + \textbf{5} \textbf{25.8.8} \\ + \textbf{3} \textbf{36.6.9} \\ + \textbf{5} \textbf{221.2} \\ + \textbf{10} \textbf{39.8} \\ + \textbf{34} \textbf{88.5} \\ + \textbf{34} \textbf{88.8} \\ + \textbf{34} \textbf{88.5} \\ + \textbf{34} \textbf{88.8} \\ + \textbf{34} \textbf{88.5} \\ + \textbf{34} \textbf{88.8} \\ + \textbf{34} \textbf{88.5} \\ + \textbf{34} \textbf{88.5} \\ + \textbf{34} \textbf{88.5} \\ + \textbf{34} \textbf{88.8} \\ + \textbf{34} \textbf{88.5} \\ + \textbf{34} \textbf{38.8} \\ + \textbf{348.6} \\ - \textbf{11128} \\ - \textbf{111221.0} \\ - \textbf{13} \textbf{39.7} \\ - \textbf{13} \textbf{39.4} \\ - \textbf{11221.0} \\ - \textbf{13} \textbf{39.7} \\ - \textbf{13} \textbf{39.7} \\ - \textbf{15} \textbf{37.3} \\ - \textbf{16} \textbf{122.1} \\ - \textbf{16} \textbf{122.1} \\ - \textbf{16} \textbf{122.1} \\ - \textbf{16} \textbf{123.4} \\ - \textbf{15} \textbf{37.3} \\ - \textbf{16} \textbf{122.4} \\ - \textbf{15} \textbf{30.8} \\ - \textbf{15} \textbf{30.8} \\ - \textbf{16} \textbf{30.8} \\ - \textbf{16} \textbf{30.8} \\ - \textbf{17} \textbf{300.8} \\ - \textbf{17} \textbf{300.8} \\ - \textbf{17} \textbf{26.84} \\ - \textbf{17} \textbf{26.63} \\ - \textbf{17} \textbf{26.84} \\ - \textbf{17} \textbf{26.63} \\ - \textbf{12} \textbf{26.84} \\ - \textbf{14} \textbf{30.8} \\ - \textbf{16} \textbf{33.1} \\ - \textbf{33.1} \\$	$\begin{array}{c} \circ & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$


To obtain the R.A. of Mean Sun, subtract the Equation of Time from the Right Ascension; adding 12h to this gives the Sidereal Time at 0h G.C.T.

In the equation of Time the Sign + means the watch is faster than the Sun, - that it is slower. To obtain the Local Mean Time, in the former case add the Equation of Time to and in the latter case subtract it from, apparent or sun-dial time.

THE MOON'S PHASES AND DISTANCE

The times of the moon's phases and of its least distance (perigee) and greatest distance (apogee) from the earth are given in the astronomical phenomena for each month.

The moon's distance at any time can be found to the nearest 50 miles from the moon's horizontal parallax π , which is given for every 12 hours in the *Nautical Almanac* and the *American Ephemeris*, by means of a simple formula.

In the figure it will be seen that $\sin \pi$ is equal to R, the earth's radius (3963.34 miles), divided by the distance AB between the centres of the earth and moon; whence

Distance
$$AB = R/\sin \pi$$

At apogee and perigee the change of π in 12 hours does not exceed 2".5 and a change of 1" is equivalent to about 50 miles. For more accurate distances interpolation formulae are necessary.

	Perigee		Apogee				
Date		Distance	Date	Distance			
d Jan. 6	h 06.6	miles 223,450	d Jan. 20	h 17.0	miles 252,400		
Feb. 3	18.4	226,950	Feb. 17	18.2	252,500		
Mar. 4	06.9	222,300	Mar. 16	23.6	252,250		
Apr. 1	15.2	224,400	Apr. 13	14.8	251,700		
Apr. 29	11.0	227,550	May 11	09.3	251,200		
May 25	11.5	229,650	Jun. 8	04 . 2	251,150		
Jun. 20	05.1	227,950	July 5	22.0	251,650		
July 17	21.7	224,850	Aug. 2	13.1	252,250		
Aug. 15	03.1	223,100	Aug. 29	21.3	252,750		
Sept. 12	13.1	221,750	Sept. 25	23.6	252,600		
Oct. 10	23.6	222,800	Oct. 23	08.4	252,100		
Nov. 8	05.8	225,500	Nov. 20	01.0	251,550		
Dec. 5	17.1	228,950	Dec. 17	21.7	251,300		
Dec. 30	10.4	229,500					

ABBREVIATIONS FOR THE CONSTELLATIONS

medice vinitio		THE CONSTELLATIONS	
AndromedaAnd	Andr	LibraLib	Libr
AntliaAnt	Antl	LupusLup	
ApusAps	Apus	LynxLyn	Lupi
Aquarius Aqr	Agar	LyraLyr	Lync
Aquila	Aqil	Menso Mar	Lyra
Ara Ara	Arae	Mensa	Mens
AriesAri	Arie	MicroscopiumMic	Micr
Auriga Aur	Auri	Monoceros Mon	Mono
BootesBoo		Musca Mus	Musc
Caelum	Boot	NormaNor	Norm
CaelumCae	Cael	OctansOct	Octn
CamelopardalisCam	Caml	Ophiuchus Oph	Ophi
CancerCnc	Canc	Orion Ori	Orio
Canes VenaticiCVn	CVen	PavoPav	Pavo
Canis MajorCMa	CMaj	PegasusPeg	Pegs
Canis MinorCMi	CMin	Perseus Per	Pers
CapricornusCap	Capr	PhoenixPhe	Phoe
Carina Car	Cari	PictorPic	Pict
CassiopeiaCas	Cass	PiscesPsc	Pisc
CentaurusCen	Cent	Piscis AustralisPsA	PscA
CepheusCep	Ceph	PuppisPup	Pupp
CetusCet	Ceti	PyxisPyx	Pyxi
Chamaeleon	Cham	ReticulumRet	Reti
CircinusCir	Circ	SagittaSge	
ColumbaCol	Colm	Sagittarius	Sgte
Coma BerenicesCom	Coma	SagittariusSgr	Sgtr
Corona Austrina CrA	CorA	ScorpiusScr	Scor
Corona BorealisCrB	CorB	SculptorScl	Scul
CorvusCrv	Corv	ScutumSct	Scut
Crater Crt	Crat	SerpensSer	Serp
CruxCru		SextansSex	Sext
	Cruc	TaurusTau	Taur
CygnusCyg	Cygn	Telescopium	Tele
DelphinusDel	Dlph	TriangulumTri	Tria
Dorado Dor	Dora	Triangulum AustraleTrA	TrAu
DracoDra	Drac	Tucana	Tucn
EquuleusEqu	Equl	Ursa MajorUMa	UMaj
EridanusEri	Erid	Ursa Minor UMi	UMin
FornaxFor	Forn	VelaVel	Velr
GeminiGem	Gemi	VirgoVir	Virg
Grus Gru	Grus	VolansVol	Voln
Hercules Her	Herc	VulpeculaVul	Vulp
HorologiumHor	Horo	production of the second se	vurp
HydraHya	Hyda		
HydrusHyi	Hydi	The 4-letter abbreviations a	are in
IndusInd	Indi	tended to be used in cases w	hore c
Lacerta Lac	Lacr	maximum saving of space is not	nere a
LeoLeo	Leon	sarv.	neces
Leo MinorLMi	LMin	From Transactions of the	T A TT
LepusLep	Leps	Vol. IV., 1932.	г.н. О.,
	Lopo	· · · · · · · · · · · · · · · · · · ·	

TIMES OF SUNRISE AND SUNSET

In the tables on pages 10 to 21 are given the times of sunrise and sunset for places in latitudes 44°, 46°, 48°, 50° and 52°, which cover pretty well the populated parts of Canada. The times are given in Mean Solar Time, and in the table on the page following this, are given corrections to change these times to the Standard or Railroad times of the cities and towns named, or for places near them.

How the Tables are Constructed

The time of sunrise and sunset at a given place, in mean solar time, varies from day to day, and depends principally upon the declination of the sun. Variations in the equation of time, the apparent diameter of the sun and atmospheric refraction at the points of sunrise and sunset also affect the final result. These quantities, as well as the solar declination, do not have precisely the same values of corresponding days from year to year, and so it is impossible to give in any general table the exact time of sunrise and sunset day by day.

With this explanation the following general table has been computed, giving the rising and setting of the upper limb of the sun, corrected for refraction, using the values of the solar declination and equation of time given in the Nautical Almanac for 1899; these are very close average values and may be accepted as approximately correct for years. It must also be remembered that these times are computed for the sea horizon, which is only approximately realised on land surfaces, and is generally widely departed from in hilly and mountainous localities. The greater or less elevation of the point of view above the ground must also be considered, to get exact results.

The Times for Any Station

In order to find the time of sunrise and sunset for any place on any day, first from the list below find the approximate latitude of the place and the correction, in minutes, which follows the name. Then find in the monthly table the time of sunrise and sunset for the proper latitude, on the desired day, and apply the correction.

44 [°]		46°		48'	>	50°		520	
m	nins.	n	nns.]	mins.	1	mins.	m	ins.
Barrie	+ 17	Charlotte-		Port Arth	ur + 57	Brandon	+40	Calgary	+ 36
Brantford	+21	town	n + I 3	Victoria	+ 13	Indian		Edmon-	•
Chatham	+ 29	Fredericton	+ 26		-	Head	- 5	ton	+34
Goderich	+ 27	Montreal	- 6			Kamloops	+ 2	Prince	•
Guelph	+21	Ottawa	+ 3			Kenora	+ 18	Albert	+ 4
Halifax	+ 14	Parry Sound	l + 20			Medicine		Saska-	
Hamilton	+ 20	Quebec	- 15			Ha	t + 22	toon	+ 6
Kingston	+ 6	Sherbrooke	- 12			Moosejaw	+ 2		
London	+ 25	St. John,				Moosomin	+40		
Orillia	+ 18	N.B	. + 24	1		Nelson	- 11		
Owen Sound	1+24	Sydney	+ I			Portage La	ı		
Peterboro	+13	Three River	s - 10			Prairie	+ 33		
Port Hope	+14					Regina	- 2		
Stratford	+ 24	}				Vancouver	+ 12		
Toronto	+ 18					Winnipeg	+ 28		
Windsor	+ 32								
Woodstock	+23								
Yarmouth	+ 24								

Example.—Find the time of sunrise at Owen Sound, also at Regina, on February 11.

In the above list Owen Sound is under "44°", and the correction is + 24 min. On page 11 the time of sunrise on February 11 for latitude 44° is 7.05; add 24 min. and we get 7.29 (Eastern Standard Time). Regina is under "50°", and the correction is -2 min. From the table the time is 7.18 and subtracting 2 min. we get the time of sunrise 7.16 (Central Standard Time).

	Latitu	de 44°	Latitu	de 46°	Latitu	de 48°	Latitu	de 50 °	Latitu	de 52°
Day of Month	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset
	h. m. 7 35	h. m. 4 33	h. m. 7 42	h. m. 4 26	h. m. 7 50	h. m. 4 18	h. m.	h. m.	h.m. 8 q	h. m.
2	7 35	4 34	7 42	4 26	7 50	4 10	7 59	4 9 4 10	898	3 59 4 0
3	7 35	4 35	7 42	4 27	7 50	4 19	7 59	4 10	8 8	4 0
4	7 35	4 36	7 42	4 28	7 50	4 21	7 58	4 12	8 7	4 3
5	7 35	4 37	7 42	4 29	7 50	4 22	7 58	4 13	8 7	4 4
6	7 35	4 38	7 42	4 30	7 49	4 23	7 58	4 14	8 6	4 6
7	7 35	4 39	7 42	4 32	7 49	4 24	7 58	4 16	8 6	4 7
8	7 34	4 40	7 41	4 33	7 49	4 25	7 57	4 17	8 5	4 8
9	7 34	4 4 1	7 41	4 34	7 49	4 26	7 57	4 18	8 5	4 9
10	7 34	4 42	7 41	4 35	7 48	4 27	7 56	4 19	8 4	4 11
11	7 34	4 43	7 40	4 36	7 48	4 29	7 56	4 21	8 4	4 12
I 2	7 33	4 4 4	7 40	4 38	7 47	4 30	7 55	4 22	8 3	4 14
13	7 33	4 45	7 39	4 39	7 47	4 3 I	7 55	4 23	8 2	4 15
14	7 32	4 46	7 39	4 40	7 46	4 33	7 54	4 25	8 I	4 17
15	7 32	4 48	7 38	4 4 1	7 45	4 34	7 53	4 26	8 0	4 19
16	7 31	4 49	7 38	4 42	7 45	4 36	7 52	4 28	8 o	4 21
17	7 30	4 50	7 37	4 44	7 44	4 37	7 52	4 29	7 59	4 22
18	7 30	4 52	7 36	4 45	7 43	4 38	7 51	4 3 ¹	7 58	4 24
19	7 29	4 53	7 35	4 47	7 42	4 40	7 50	4 32	7 57	4 26
20	7 28	4 54	7 34	4 48	7 41	4 41	7 49	4 34	7 56	4 27
21	7 28	4 55	7 34	4 49	7 40	4 43	7 48	4 36	7 55	4 29
22	7 27	4 57	7 33	4 5 ¹	7 40	4 44	7 46	4 37	7 54	4 31
23	7 26	4 58	7 32	4 52	7 39	4 46	7 45	4 39	7 52	4 32
24	7 25	4 59	7 31.	4 54	7 38	4 47	7 44	4 4 1	7 51	4 34
25	7 25	5 I	7 30	4 55	7 36	4 49	7 43	4 42	7 50	4 36
26	7 24	5 2	7 29	4 56	7 35	4 50	7 42	4 44	7 49	4 38
27	7 23	5 3	7 28	4 58	7 34	4 52	7 40	4 46	7 47	4 39
28	7 22	55	7 27	4 59	7 33	4 54	7 39	4 47	7 46	4 41
29	7 21		7 26	5 I	7 32	4 55	7 38	4 49	7 45	4 43
30	7 20	58	7 25	53	7 30	4 57	7 36	4 51	7 43	4 44
31	7 18	59	7 23	54	7 29	4 58	7 35	4 52	7 42	4 46

JANUARY

	La	titu	de 4	44°	La	titud	le 4	46°	La	titua	le	48°	La	titu	de :	50°	La	titud	e i	52°
'ay of Month	Su	nrise	Su	nset	Sur	ırise	Su	nset	Su	nrise	Su	nset	Sur	rıse	Su	nset	Su	nrise	Su	nset
	h.	m.		m.	h.	m.	h.	m.	h.	m.	h.	m.	h.	m.	h.	m.	h .	m.		m.
I	7	17	5	10	7	22	5	5	7	28	5	0	7	33	4	54	7	40		48
2	7	16	5	12	7	21	5	7 8	7	26	5	I	7	32	4	56	7	38		50
3 4	777	15 14	5	13 14	7	20 19	5	8 10	7	25 24	5	3	777	30	4	58	7	36 34		52 54
5	7	13	5	15	7	18	5	11	7	24 22	5 5	5 6	7	29 27	4 5	59 1	777	34 33		54 56
6	7	I 2	5	17	7	17	5	12	7	21	5	8	7	26	5	3	7	31	4	57
7	7	10	5	18	7	15	5	14	7	19	5	9	7	24	5	5 6	7	29	4	59
8	777	9 8	5	20 2 I	7	13 12	5	15	7	18 16	5	11	7	23	5	6 8	7	27 27	5	I
9 10	7	6	5 5	23	777	12	5 5	17 18	7 7	15	5 5	13 14	777	21 19	5 5	0 10	777	25 23	5 5	3 5
11	7	5	5	24	7	10	5	19	7	13	5	16	7	18	5	11	7	21	5	7
12	7	3	5	25	7	8	5	21	7	I 2	5	17	7	16	5	13	7	19	5	9
13	777	2 I	5	27 28	7	6	5	23	7	10 8	5	19	7	14 12	5	15	7	18 16	5	10 12
14 15	6	59	5 5	20 29	777	4 3	5 5	24 26	7 7	6	5 5	2 I 22	777	10	5 5	17 18	7	14	5 5	14
16	6	58	5	31	7	I	5	27	7	5	5	24	7	9	5	20	7	I 2	5	16
17	6	56	5	32	7	0	5	29	7	3	5	26	7	7	5	22	7	10	5	18
18	6	55	5	34	6	58	5	30	76	I	5	27	7	5	5	23	7	. 9	5	19
19 20	6	53 52	5	35 36	6	56 54	5 5	32 33	6	59 58	5	29 30	777	3 1	5	25 27	777	7 5	5 5	21 23
21	6	50	5	38	6	53	5	35	6	56	5	32	6	59	5	29	7	3	5	25
22	6		5	39	6	51	5	36	6	54	5	33	6	57	5		17	ο	5	27
23	6	• • •	5		6		5	38	6	52	5	35	6	55	5	32	6	58	5	29
24	6		5		6	· · ·	5	39	6	50	5	36	6	53	5	34	6	5	5	31
25	6	44	5	43	6	46	5	4 I	6	49	5	38	6	51	5	35	6	54	5	33
26	6		5		6		5	42	6		5		6		5		6	5	5	34
27	6		5		6		5	43	6			41	6		5		6			36
28	6	38	5	47	6	41	5	45	6	43	5	42	10	45	<u> </u>	40	10	47) 5	38

FEBRUARY

MARCH

	Latitu	de 44°	Latitue	de 46°	Latituo	le 48°	Latitu	de 50°	Latitu	de 52°
Day of Month	Sunrise	Sunset	Sunrise	Sunset	Sunt se	Sunset	Sunrise	Sunset	Sunrise	Sunset
1 2 3 4	h m 6 37 6 35 6 34 6 32	h m 5 48 5 49 5 50 5 5 ²	h m 6 39 6 37 6 35 6 33	h m 5 46 5 47 5 49 5 50	h m 6 41 6 39 6 37 6 35	h m 5 44 5 45 5 47 5 48	h m 6 43 6 41 6 39 6 37	h m 5 42 5 44 5 45 5 47	h m 6 43 6 42 6 40 6 38	h m 5 4 ¹ 5 4 ² 5 44 5 45
4 5 6 7	6 30 6 28 6 26	5 52 5 53 5 55 5 56	6 30 6 28	$5 5^{2}$ 5 52 5 53 5 54	6 33 6 31 6 29	5 50 5 51 5 53	6 35 6 33 6 31	5 48 5 50 5 52	6 36 6 34 6 32	5 47 5 49 5 51
8 9 10	6 25 6 23 6 21	5 57 5 58 6 0	6 26 6 24 6 22	5 56 5 56 5 57 5 59	6 27 6 25 6 23	5 54 5 54 5 56 5 57	6 28 6 26 6 24	5 53 5 55 5 56	6 29 6 27 6 25	5 52 5 54 5 56
11 12 13 14 15	6 19 6 18 6 16 6 14 6 12	6 I 6 2 6 4 6 5 6 6	6 20 6 18 6 16 6 15 6 13	6 0 6 1 6 3 6 4 6 5	6 21 6 19 6 17 6 15 6 13	5 59 6 0 6 2 6 3 6 5	6 22 6 20 6 18 6 15 6 13	5 58 6 0 6 2 6 3 6 5	6 23 6 21 6 19 6 16 6 14	5 57 5 59 6 I 6 3 6 4
16 17 18 19 20	6 10 6 8 6 7 6 5 6 3	6 7 6 8 6 10 6 11 6 12	6 11 6 9 6 7 6 5 6 3	6 7 6 8 6 9 6 11 6 12	6 11 6 9 6 7 6 5 6 3	6 6 6 8 6 9 6 11 6 12	6 11 6 9 6 7 6 5 6 3	6 6 6 8 6 9 6 11 6 13	6 II 6 9 6 7 6 4 6 2	6 6 6 8 6 10 6 12 6 13
21 22 23 24 25	6 1 5 59 5 58 5 56 5 54	6 13 6 14 6 16 6 17 6 18	6 I 5 59 5 57 5 55 5 53	6 14 6 15 6 16 6 17 6 19	6 I 5 59 5 56 5 54 5 52	6 14 6 15 6 17 6 18 6 20	$\begin{array}{ccc} 6 & 0 \\ 5 & 58 \\ 5 & 56 \\ 5 & 54 \\ 5 & 5^2 \end{array}$	6 14 6 16 6 17 6 19 6 20	$\begin{array}{cccc} 5 & 59 \\ 5 & 57 \\ 5 & 55 \\ 5 & 5^2 \\ 5 & 5^0 \end{array}$	6 15 6 17 6 19 6 20 6 22
26 27 28 29 30	5 5 ² 5 5 ⁰ 5 48 5 47 5 45	6 19 6 21 6 22 6 23 6 24	5 51 5 49 5 47 5 46 5 44 5 44	6 20 6 22 6 23 6 24 6 25	5 50 5 48 5 46 5 44 5 42	6 21 6 23 6 24 6 26 6 27	5 50 5 47 5 45 5 43 5 41	6 22 6 24 6 25 6 27 6 28	5 48 5 46 5 43 5 41 5 39	6 24 6 26 6 27 6 29 6 31
31	5 43	6 25	5 42	6 27	5 40	6 28	5 38	6 30	5 36	6 32

	(Latitue	de 44°	Latituc	le 46 °	Latitu	ide 48°	Latitude 5	0° Latitu	de 52°
Day ॳ Monty	1	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise Sun	set Sunrise	Sunset
1 2 3 4 5	h. m. 5 41 5 39 5 38 5 36 5 36 5 34	h. m. 6 27 6 28 6 29 6 30 6 32	h. m. 5 40 5 38 5 36 5 34 5 32	h. m. 6 28 6 30 6 31 6 32 6 33	h. m. 5 38 5 36 5 34 5 32 5 30	h. m. 6 30 6 31 6 33 6 34 6 36	5 36 6 3 5 34 6 3 5 32 6 3 5 30 6 3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	h. m. 6 34 6 36 6 37 6 39 6 41
6 7 8 9 10	5 32 5 30 5 29 5 27 5 25	6 33 6 34 6 35 6 36 6 37	5 30 5 28 5 26 5 24 5 23	6 34 6 36 6 37 6 39 6 40	5 28 5 26 5 24 5 22 5 20	6 37 6 38 6 40 6 41 6 43	5 24 6 4 5 21 6 4 5 19 6 4	9 5 23 1 5 21 2 5 19 4 5 16 6 5 14	6 43 6 44 6 46 6 48 6 49
11 12 13 14 15	5 24 5 22 5 20 5 18 5 17	6 38 6 40 6 41 6 42 6 43	5 21 5 19 5 17 5 15 5 14	6 41 6 43 6 44 6 45 6 46	5 18 5 16 5 14 5 12 5 10	6 44 6 45 6 47 6 48 6 50	5 13 6 4 5 11 6 5 5 9 6 5	7 5 11 9 5 9 0 5 7 2 5 5 3 5 3	6 51 6 53 6 54 6 56 6 58
16 17 18 19 20	5 15 5 13 5 11 5 10 5 8	6 45 6 46 6 47 6 48 6 49	5 12 5 10 5 8 5 6 5 5	6 48 6 49 6 50 6 52 6 53	5 8 5 6 5 5 5 3 5 1	6 51 6 53 6 54 6 55 6 57	5 2 6 5 5 1 6 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 0 7 1 7 3 7 5 7 6
21 22 23 24 25	5 7 5 5 5 3 5 2 5 0	6 50 6 52 6 53 6 54 6 56	5 3 5 1 4 59 4 58 4 56	6 54 6 56 6 57 6 58 7 0	4 59 4 57 4 55 4 54 4 52	6 58 7 0 7 1 7 3 7 4	$\begin{array}{cccc} 4 & 55 & 7 \\ 4 & 53 & 7 \\ 4 & 5^{\circ} & 7 \\ 4 & 49 & 7 \\ 4 & 47 & 7 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 8 7 10 7 11 7 13 7 14
26 27 28 29 30	4 59 4 57 4 56 4 54 4 53	6 57 6 58 6 59 7 0 7 1	4 54 4 53 4 51 4 50 4 48	7 1 7 2 7 3 7 5 7 6	4 50 4 48 4 47 4 45 4 43	7 5 7 7 7 8 7 10 7 12	4 43 7 1 4 41 7 1 4 39 7 1	$\begin{array}{c cccc} 0 & 4 & 40 \\ 2 & 4 & 38 \\ 3 & 4 & 36 \\ 5 & 4 & 34 \\ 6 & 4 & 32 \end{array}$	7 16 7 18 7 19 7 21 7 22

APRIL

Latitude 44° Latitude 46° Latitude 48° Latitude 50° Latitude 52° Day of Month Sunrise Sunset Sunrise Sunset Sunrise Sunset Sunrise Sunset Sunrise Sunset h. h. m. m. h. m. h. m. h. m. h. h. m, m. h. h. m. m. h. m. I 4 5¹ 7 3 4 47 7 7 4 42 7 12 4 36 7 18 4 30 7 24 2 4 50 7 7 9 4 40 7 14 4 28 4 4 45 4 34 7 20 26 7 4 48 56 7 10 4 38 7 3 77 15 4 43 4 32 7 21 4 26 7 27 4 47 II 7 7 4 37 17 7 7 29 4 4 42 4 31 23 4 24 8 7 18 4 46 7 7 13 4 35 5 4 41 4 29 7 24 4 22 7 31 6 4 44 4 27 7 9 4 39 7 14 4 34 7 19 7 26 4 21 7 33 7 8 7 4 38 7 15 7 16 4 26 4 43 10 4 32 7 21 7 27 4 19 7 7 34 4 36 4 4 2 7 11 7 7 4 31 22 4 24 7 29 4 17 36 4 40 7 12 7 17 9 4 35 4 29 7 7 7 4 15 23 4 22 30 7 38 4 28 10 4 39 7 13 4 34 7 19 7 25 4 21 32 4 13 7 39 II 4 38 20 4 26 26 4 20 7 14 4 32 7 7 7 II 7 4¹ 33 4 4 37 16 21 28 4 18 12 7 4 31 7 4 25 7 7 34 4 10 7 42 4 24 4 16 7 36 13 4 36 17 4 30 7 23 7 29 8 7 4 7 44 18 14 4 35 7 24 4 22 4 15 7 37 7 4 49 7 30 4 7 7 45 4 28 7 31 15 4 34 7 19 7 25 4 21 4 14 7 39 4 5 7 47 16 4 32 20 4 26 7 26 4 20 7 33 7 34 7 48 7 4 12 7 40 4 4 7 50 7 51 7 52 4 25 4 18 17 4 31 7 21 7 27 11 77777 4 4 42 3 4 17 35 36 38 18 4 30 22 28 7777 7 4 24 7 10 43 4 4 I 4 16 8 19 4 30 23 7 30 7 4 23 44 46 ο 4 4 7 24 58 20 7 31 4 29 4 22 4 15 4 7 3 7 54 21 4 28 7 25 4 21 7 32 4 14 6 57 56 7 39 4 7 55 56 58 47 77778 3 26 7 4 13 3 56 3 55 22 4 27 7 4 20 33 7 40 4 5 7 48 26 27 7 34 4 4 23 4 7 4 19 4 12 7 41 7777 49 32 4 18 7 7 4 25 28 24 7 35 4 II 43 4 51 3 53 59 7 36 7 44 4 24 7 29 4 17 4 10 25 4 52 3 52 I 26 4 24 30 4 16 7 37 7 38 7 39 9 8 45 46 4 ο 8 7 4 7777 3 51 2 77777 53 3 59 3 58 3 58 3 58 3 57 3 50 3 49 3 47 4 16 59 58 54 56 8 8 8 27 4 23 7 31 4 3 7 7 6 47 48 28 4 22 4 56 32 4 15 777 58 29 4 22 33 7 40 4 57 58 4 14 8 8 30 4 21 34 7 5 7 4 14 41 4 49 3 46 31 4 21 7 34 4 13 7 42 4 5 7 50 3 56 7 59 8 3 45 9

MAY

	Latitud	de 44°	Latitud	le 46 °	Latitue	le 48°	Latituo	le 50°	Latitu	de 52°
Nay of Jonth	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset
	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.
I	4 20	7 35	4 12	7 43	4 4	7 51	3 56	8 o	3 45	8 10
2	4 19	7 36	4 12	7 44	4 4	7 52	3 55	8 і	3 44	8 11
3	4 19	7 37	4 11	7 44	4 3	7 52	3 54	8 2	3 44	8 11
4	4 18	7 38	4 1 1	7 45	4 3	7 53	3 54	8 3	3 43	8 12
5	4 18	7 39	4 10	7 46	4 2	7 54	3 53	84	3 43	8 13
6	4 17	7 39	4 10	7 47	4 2	7 55	3 52	8 4	3 43	8 14
7	4 17	7 40	4 10	7 48	4 1	7 56	$3 5^{-1}$		3 42	8 15
8	4 17	7 41	4 9	7 48	4 I	7 57	$3 5^2$	8 5 8 6	3 42	8 15
9	4 17	7 41	4 9	7 49	4 I	7 57	3 51	8 7	3 41	8 16
10	4 16	7 42	4 9	7 49	4 O	7 58	3 51	8 8	3 41	8 17
11	4 16	7 42	4 9	7 50	4 0	7 59	3 50	88	3 41	8 18
12	4 16	7 43		7 51	4 0	7 59	3 50	8 9	3 41	8 18
13	4 16	7 43	4 9 4 8	7 51	4 0	8 0	3 50	8 10	3 40	8 19
14	4 16	7 44	4 8	7 52	4 0	80	3 50	8 10	3 40	8 19
15	4 16	7 44	4 8	7 5 2	4 ⁰	8 I	3 50	8 11	3 40	8 20
16	4 16	7 45	4 8	7 53	4 0	8 і	3 50	8 11	3 40	8 21
17	4 17	7 45	4 8	7 53	4 0	8 2	3 50	8 12	3 40	8 21
18	4 17	7 45	4 8	7 54	4 0	82	3 50	8 12	3 39	8 22
19	4 17	7 46	4 8	7 54	4 0	82	3 50	8 12	3 39	8 23
20	4 17	7 46	4 8	7 54	4 0	83	3 50	8 13	3 39	8 23
21	4 17	7 46	4 8.	7 54	4 0	8 3	3 50	8 13	3 39	8 23
22	4 18	7 46	4 9	7 55	4 0	83	3 50	8 13	3 39	8 23
23	4 18	7 46	4 9	7 55	4 I	83	3 51	8 13	3 40	8 23
24	4 18	7 47	4 10	7 55	4 I	83	3 51	8 13	3 40	8 23
25	4 18	7 47	4 10	7 55	4 I	8 3	3 51	8 13	3 40	8 23
26	4 19	7 47	4 10	7 55	4 2	83	3 52	8 13	3 41	8 23
27	4 19	7 47	4 11	7 55	4 2		3 52	8 13	3 41	8 23
28	4 19	7 47	4 11	7 55	4 3	8 3 8 3	3 53	8 13	3 42	8 23
29	4 20	7 47	4 12	7 55	4 3	8 3	3 53	8 13	3 42	8 23
30	4 20	7 47	4 12	7 54	4 4	8 3	3 54	8 13	3 43	8 23

JUNE

JULY

	Latitu	de 44°	Latituo	le 46 °	Latitu	de 48°	Latitu	de 50°	Latitu	ide 52°
Day of Month	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset
1 2 3 4 5	h. m. 4 21 4 21 4 22 4 22 4 22 4 23	h. m. 7 47 7 46 7 46 7 46 7 46 7 46	h. m. 4 13 4 14 4 14 4 15 4 15	h. m. 7 54 7 54 7 54 7 54 7 54 7 53	h. m. 4 4 4 5 4 6 4 6 4 7	h. m. 8 3 8 2 8 2 8 2 8 2 8 2 8 2	h. m. 3 55 3 56 3 56 3 56 3 57 3 58	h. m. 8 12 8 12 8 12 8 12 8 11 8 11	h. m. 3 44 3 45 3 46 3 47 3 48	h. m. 8 23 8 22 8 22 8 21 8 21
6 7 8 9 10	4 24 4 24 4 25 4 26 4 27	7 45 7 45 7 45 7 45 7 44 7 43	4 16 4 17 4 18 4 18 4 18 4 19	7 53 7 53 7 52 7 52 7 52 7 51	4 8 4 9 4 10 4 10 4 11	8 1 8 1 8 0 8 0 7 59	3 59 4 0 4 0 4 1 4 2	8 10 8 10 8 9 8 9 8 8	3 48 3 49 3 50 3 51 3 52	8 20 8 20 8 19 8 19 8 18
11 12 13 14 15	4 28 4 29 4 29 4 30 4 31	7 43 7 42 7 42 7 41 7 40	4 20 4 21 4 22 4 23 4 24	7 50 7 50 7 49 7 48 7 48 7 48	4 12 4 13 4 14 4 15 4 16	7 59 7 58 7 57 7 56 7 56 7 56	4 3 4 4 4 5 4 6 4 7	8 7 8 7 8 6 8 5 8 4	3 53 3 54 3 56 3 57 3 58	8 17 8 16 8 15 8 14 8 13
16 17 18 19 20	4 32 4 33 4 34 4 34 4 34 4 36	7 40 7 39 7 38 7 38 7 38 7 37	+ 25 4 26 4 27 4 28 4 29	7 47 7 46 7 45 7 44 7 43	4 17 4 18 4 19 4 20 4 21	7 55 7 54 7 53 7 5 ² 7 5 ¹	4 8 4 10 4 11 4 12 4 13	8 3 8 2 8 1 8 0 7 59	3 59 4 0 4 2 4 3 4 4	8 12 8 11 8 10 8 9 8 8
21 22 23 24 25	4 37 4 38 4 39 4 40 4 40	7 36 7 35 7 34 7 33 7 32	4 30 4 31 4 32 4 33 4 34	7 42 7 41 7 40 7 39 7 38	4 23 4 24 4 25 4 26 4 27	7 50 7 49 7 48 7 47 7 46	4 15 4 16 4 17 4 18 4 20	7 58 7 57 7 56 7 54 7 53	4 5 4 7 4 8 4 10 4 11	8 7 8 5 8 4 8 2 8 1
26 27 28 29 30	4 41 4 42 4 44 4 45 4 46	7 31 7 30 7 29 7 28 7 27	4 35 4 36 4 38 4 39 4 40	7 37 7 36 7 35 7 34 7 33	4 28 4 30 4 31 4 32 4 33	7 44 7 43 7 42 7 40 7 39	4 21 4 22 4 24 4 25 4 26	7 5 ² 7 5 ⁰ 7 49 7 47 7 46	4 12 4 14 4 15 4 17 4 18	8 o 7 5 ⁸ 7 57 7 55 7 54
31	4 47	7 26	4 41	7 32	4 35	7 38	4 28	7 44	4 20	7 52

AUGUST

	Latitu	de 44°	Latitu	le 46°	Latitud	le 48°	Latitu	de 50°	Latitu	de 52°
Day of Month	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	S unrise	S unset	S unrise	Sunset
	h m	h m	h m	h m	h m	h m	h m	h m	h in	n m
1	4 48	7 24	4 42	7 30	4 36	7 36	4 29	7 43	4 21	750 749
2	4 49	7 23	4 44	7 ² 9 7 ² 7	4 37	7 35	4 32	7 40	4 24	7 47
3 4	4 51	7 21	4 46	7 26	4 40	7 32	4 33	7 38	4 20	7 45
5	4 52	7 19	4 47	7 24	4 4 I	7 30	4 35	7 37	4 28	7 43
6	4 53	7 18	4 48	7 23	4 43	7 29	4 36	7 35	4 29	7 41
7	4 54	7 17	4 49	7 22	4 4 4	7 27	4 38	7 33	4 31	7 40
8	4 56	7 15	4 5 ¹	7 20	4 45	7 26	4 39	7 32	4 32	7 38
9	4.57	7 14	4 52	7 19	4 46 4 48	7 24	4 40 4 42	7 30 7 28	4 34 4 36	7 36 7 34
10	4 58	7 12	4 53	1 .1	4 40	/	4 4-	7 -0		
IΙ	4 59	7 11	4 54	7 16	4 49	7 21	4 44	7 26	4 37	7 32
I 2	5 0	7 9 7 8	4 56	7 14	4 51	7 19 7 17	4 45 4 47	7 25 7 23	4 39 4 40	7 30 7 28
13	5 2 5 3	7876	4 57 4 58	7 12 7 11	$ \begin{array}{c} 4 5^{2} \\ 4 53 \end{array} $	7 17	4 47	7 21	4 42	7 26
14 15	53 54	7 5	4 59	7 9	4 55	7 14	4 50	7 19	4 44	7 24
16	5 5	7 3	5 1	7 8	4 56	7 1 2	4 51	7 17	4 45	7 22
17	5 6	7 2	5 2	7 6	4 57	7 10	4 53	7 15	4 47	7 20
18	5 7	7 0	5 3	74	4 59	79	4 54	7 13	4 48	7 18
19	5 8	6 59	5 4	7 3	5 0	77	4 55	7 12	4 50	7 16
20	5 10	6 57	5 6	7 I	5 2	75	4 57	79	4 52	7 14
2 I	5 11	6 55	5 7	6 59	53	73	4 59	7 7	4 53	7 12
22	5 12	6 54	58	6 57	54 56	7 I	5 0	7 5	4 55	7 IO 7 8
23	5 13	6 52 6 50	5 9	6 56 6 54	56 57	659 657	5 2 5 3	73 71	4 5 ⁶ 4 58	78 76
24 25	5 14	6 50 6 49	5 11 5 12	6 52	5 7	6 56	5 3	7 0	5 0	7 4
23	5.5	0 49	3		Ũ					
2 6	5 16	6 47	5 13	6 50	5 10	6 54	56 58	657 655	5 1	72 70
27	5 18	6 45	5 14	6 48 6 46	5 11 5 12	6 52 6 50	58 59	6 55 6 53	53 54	6 58
28 29	5 19 5 20	6 44 6 42	5 16 5 17	6 45	5 I2 5 I4	6 48	5 9	6 51	5 6	6 56
29 30	5 21	6 40	5 18	6 43	5 15	6 46	5 12	6 49	58	6 54
31	5 22	6 38	5 19	6 41	5 17	6 44	5 14	6 47	5 10	6 51

SEPTEMBER

	Latitu	de 44°	Latitud	le 46°	Latitu	de 48°	Latitu	de 50°	Latitu	de 52°
Day of Month	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset
I 2 3 4 5	h. m. 5 23 5 24 5 25 5 27 5 28	h. m. 6 36 6 35 6 33 6 31 6 29	h. m. 5 20 5 22 5 23 5 24 5 26	h. m. 6 39 6 37 6 35 6 33 6 31	h. m. 5 18 5 19 5 21 5 22 5 23	h. m. 6 42 6 40 6 38 6 36 6 34	h. m. 5 15 5 16 5 18 5 20 5 21	h. m. 6 45 6 43 6 40 6 38 6 36	h. m. 5 11 5 13 5 15 5 17 5 19	h. m. 6 49 6 46 6 44 6 42 6 39
ճ 7 8 9 10	5 29 5 30 5 31 5 32 5 33	6 28 6 26 6 24 6 22 6 20	5 27 5 28 5 3 ⁰ 5 3 ¹ 5 3 ²	6 29 6 27 6 26 6 24 6 22	5 25 5 26 5 27 5 29 5 30	6 32 6 30 6 28 6 26 6 24	5 23 5 24 5 25 5 27 5 28	6 34 6 32 6 30 6 28 6 25	5 20 5 22 5 24 5 26 5 27	6 37 6 34 6 32 6 30 6 27
11 12 13 14 15	5 34 5 36 5 37 5 38 5 39	6 19 6 17 6 15 6 13 6 11	5 33 5 34 5 36 5 37 5 38	6 20 6 18 6 16 6 14 6 12	5 31 5 33 5 34 5 36 5 37	6 22 6 20 6 17 6 15 6 13	5 30 5 31 5 33 5 34 5 36	6 23 6 21 6 19 6 17 6 14	5 29 5 30 5 32 5 33 5 33 5 35	6 25 6 23 6 21 6 18 6 16
16 17 18 19 2 0	5 40 5 41 5 42 5 44 5 45	6 9 6 8 6 6 6 4 6 2	5 39 5 41 5 42 5 44 5 45	6 10 6 8 6 6 6 4 6 2	5 38 5 40 5 41 5 42 5 44	6 11 6 9 6 7 6 5 6 3	5 38 5 39 5 41 5 42 5 43	6 12 6 10 6 8 6 5 6 3	5 36 5 38 5 39 5 41 5 42	6 14 6 11 6 9 6 7 6 4
21 22 23 24 25	5 46 5 47 5 48 5 49 5 50	6 0 5 58 5 56 5 55 5 53	5 46 5 47 5 48 5 50 5 5 ¹	6 0 5 58 5 56 5 54 5 52	5 45 5 47 5 48 5 50 5 51	6 1 5 59 5 56 5 54 5 52	5 45 5 46 5 48 5 50 5 51	6 I 5 59 5 56 5 54 5 52	5 44 5 46 5 48 5 49 5 51	6 2 6 0 5 58 5 55 5 53
26 27 28 29	5 52 5 53 5 54 5 55 5 56 5 56 5 56 5 56 5 56 5 56 5 56 5 56 5 56 5 56 5 56 5 57 5 56	5 51 5 49 5 47 5 45 5 43	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 50 5 48 5 46 5 44 5 43	5 52 5 54 5 55 5 57 5 58	5 50 5 48 5 46 5 44 5 42	5 52 5 54 5 55 5 57 5 58	5 50 5 48 5 46 5 44 5 41	5 53 5 54 5 56 5 58 5 59	5 51 5 48 5 46 5 44 5 41

	Latitu	de 44°	Latitu	le 46°	Latitu	de 48°	Latitu	ıde 50°	Latitu	de 52°
Day of Month	Sunrise	Sunset	Sunrise	Sunset	S unrise	Sunset	S unrise	Sunset	Sunrise	Sunset
1 2 3 4 5	h m 5 58 5 59 6 0 6 1 6 2	h m 5 41 5 40 5 38 5 36 5 36 5 34	h m 5 58 6 0 6 1 6 2 6 4	h m 5 41 5 39 5 37 5 35 5 33	h m 5 59 6 1 6 2 6 4 6 5	h m 5 40 5 38 5 36 5 34 5 32	h m 6 0 6 2 6 3 6 5 6 6	h m 5 39 5 37 5 35 5 33 5 33 5 31	h m 6 1 6 3 6 5 6 6 6 8	h m 5 39 5 37 5 35 5 32 5 30
6 7 8 9 10	6 4 6 5 6 6 6 8 6 9	5 3 ² 5 3 ¹ 5 29 5 27 5 25	6 5 6 6 6 8 6 9 6 10	5 31 5 30 5 28 5 26 5 24	6 7 6 8 6 9 6 11 6 12	5 30 5 28 5 26 5 24 5 22	6 8 6 10 6 11 6 12 6 14	5 28 5 26 5 24 5 22 5 20	6 10 6 11 6 13 6 15 6 16	5 28 5 25 5 23 5 21 5 19
11 12 13 14 15	6 10 6 11 6 12 6 13 6 15	5 24 5 22 5 20 5 19 5 17	6 12 6 13 6 14 6 16 6 17	5 22 5 20 5 18 5 16 5 14	6 14 6 15 6 17 6 18 6 20	5 20 5 18 5 16 5 14 5 12	ού 16 6 17 6 19 6 21 6 22	5 18 5 16 5 14 5 12 5 10	6 18 6 19 6 21 6 23 6 24	5 17 5 15 5 13 5 10 5 8
16 17 18 19 20	6 16 6 17 6 19 6 20 6 21	5 15 5 13 5 12 5 10 5 9	6 18 6 20 6 21 6 22 6 24	5 13 5 11 5 9 5 8 5 6	6 21 6 22 6 24 6 25 6 27	5 10 5 8 5 6 5 5 5 3	6 24 6 26 6 27 6 28 6 30	5 7 5 5 5 3 5 2 5 0	6 26 6 27 6 29 6 31 6 33	5 6 5 4 5 1 4 59 4 57
21 22 23 24 25	6 22 6 24 6 25 6 26 6 28	5 7 5 6 5 4 5 2 5 I	6 25 6 27 6 28 6 30 6 31	5 4 5 2 5 1 4 59 4 57	6 28 6 30 6 31 6 33 6 34	5 1 4 59 4 58 4 56 4 54	6 32 6 34 6 35 6 37 6 38	4 57 4 56 4 54 4 52 4 5 ² 4 5 ⁰	6 35 6 37 6 39 6 40 6 42	4 55 4 53 4 51 4 48 4 46
26 27 28 29 30	6 29 6 30 6 32 6 33 6 34	4 59 4 57 4 56 4 55 4 55 4 54	6 32 6 34 6 35 6 37 6 38	4 56 4 54 4 52 4 51 4 49	6 36 6 38 6 39 6 41 6 42	4 5 ² 4 5 ⁰ 4 48 4 47 4 45	6 40 6 42 6 43 6 45 6 47	4 48 4 46 4 44 4 42 4 41	6 44 6 46 6 48 6 50 6 52	4 44 4 42 4 40 4 38 4 36
31	6 35	4 52	6 40	4 48	6 44	+ 44	6 48	4 39	6 53	4 35

OCTOBER

						<u></u>				
Day of	Latitu	de 44°	Latitud	le 46 °	Latitu	ide 48°	Latitu	de 50°	Latitu	de 52°
Month	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset
I 2 3 4 5 6	h. m. 6 37 6 38 6 40 6 41 6 42 6 43	h. m. 4 51 4 49 4 48 4 47 4 45	h. m. 6 41 6 42 6 44 6 45 6 47 6 48	h. m. 4 46 4 45 4 44 4 42 4 41	h. m. 6 45 6 47 6 48 6 50 6 51 6 53	h. m. 4 42 4 41 4 39 4 38 4 36	h. m. 6 50 6 52 6 53 6 55 6 57 6 57	h. m. 4 37 4 36 4 34 4 32 4 31	h. m. 6 55 6 57 6 59 7 1 7 2	h. m. 4 33 4 31 4 20 4 27 4 26
7 8 9 10	6 44 6 46 6 47 6 49	4 44 4 43 4 42 4 41 4 40	6 43 6 49 6 51 6 52 6 54	4 39 4 38 4 37 4 36 4 35	6 53 6 54 6 56 6 58 6 59	4 35 4 33 4 32 4 30 4 29	6 58 7 0 7 2 7 3 7 5	4 29 4 28 4 26 4 25 4 23	7 4 7 6 7 8 7 9 7 11	4 24 4 22 4 21 4 13 4 18
11 12 13 14 15	6 50 6 51 6 53 6 54 6 55	4 38 4 37 4 36 + 35 4 34	6 55 6 56 6 58 6 59 7 I	4 33 4 3 ² 4 3 ¹ 4 3 ⁰ 4 ² 9	7 I 7 2 7 4 7 5 7 7	4 28 4 26 4 25 4 24 4 23	7 7 7 8 7 10 7 11 7 3	4 22 4 20 4 19 4 18 4 16	7 13 7 15 7 16 7 18 7 20	4 16 4 15 4 13 4 12 4 10
16 17 18 19 20	$\begin{array}{ccc} 6 & 57 \\ 6 & 58 \\ 6 & 59 \\ 7 & 0 \\ 7 & 2 \end{array}$	4 33 4 32 4 32 4 31 4 30	7 2 7 4 7 5 7 6 7 8	4 28 4 27 4 26 4 25 4 24	7 8 7 10 7 12 7 13 7 14	4 21 4 20 4 19 4 18 4 17	7 15 7 16 7 18 7 20 7 21	4 15 4 14 4 13 4 11 4 10	7 21 7 23 7 25 7 26 7 28	4 9 4 7 4 6 4 5 4 4
21 22 23 24 25	7 3 7 4 7 6 7 7 7 8	4 29 4 28 4 28 4 27 4 26	7 9 7 10 7 12 7 13 7 14	4 23 4 22 4 22 4 21 4 20	7 15 7 17 7 19 7 20 7 21	4 17 4 16 4 15 4 14 4 13	7 23 7 24 7 26 7 28 7 29	4 9 4 8 4 7 4 6 4 5	7 30 7 32 7 33 7 35 7 37	4 3 4 2 4 0 3 59 3 58
26 27 28 29 30	7 9 7 10 7 12 7 13 7 14	4 26 4 25 4 25 4 24 4 24	7 16 7 17 7 18 7 19 7 21	4 19 4 19 4 18 4 18 4 18 4 17	7 23 7 24 7 25 7 27 7 28	4 12 4 12 4 11 4 10 4 10	7 31 7 32 7 33 7 35 7 36	4 4 4 4 4 3 4 2 4 2	7 38 7 40 7 41 7 43 7 44	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

NOVEMBER

	Latitu	de 44°	Latitu	de 46°	Latitud	le 48°	Latitu	de 50°	Latitude 52		
Day of Month	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	Sunrise	Sunset	S unrise	Sunset	
I	h m 7 15	h m 4 23	h m 7 22	h m 4 16	h m 7 29	h m 4 9	h m 7 37	hm 4I 4I	h m 7 46 7 47	n 3 54 3 53	
2 3 4	7 16 7 17 7 18	4 23 4 23 4 23	7 23 7 24 7 25 7 26	4 16 4 16 4 16 4 15	7 31 7 32 7 33 7 34	4 9 4 8 4 8 4 8	7 39 7 40 7 41 7 42	4 1 4 0 4 0 3 59	7 47 7 48 7 50 7 51	3 53 33 352 3 52 3 51	
5 6 7 8 9 10	7 19 7 20 7 21 7 22 7 23 7 24	4 22 4 22 4 22 4 22 4 22 4 22 4 22	7 27 7 29 7 30 7 30 7 31	4 15 4 15 4 15 4 15 4 15 4 15 4 15	7 34 7 35 7 36 7 37 7 37 7 38	4 8 4 7 4 7 4 7 4 7 4 7	7 43 7 45 7 46 7 47 7 48	3 59 3 59 3 59 3 59 3 58 3 58 3 58	7 53 7 54 7 55 7 56 7 57	3 51 3 50 3 50 3 50 3 50 3 50	
11 12 13 14 15	7 25 7 26 7 26 7 27 7 28	4 22 4 22 4 22 4 22 4 22 4 23	7 32 7 33 7 34 7 35 7 36	4 15 4 15 4 15 4 15 4 15 4 15	7 40 7 41 7 42 7 43 7 44	4 7 4 7 4 7 4 7 4 7 4 7	7 49 7 50 7 5 ¹ 7 5 ² 7 53	3 58 3 58 3 58 3 58 3 58 3 58 3 58	7 58 7 59 7 59 8 0 8 1	3 50 3 50 3 49 3 49 3 49 3 49	
16 17 18 19 20	7 29 7 30 7 30 7 31 7 31 7 31	4 23 4 23 4 24 4 24 4 24 4 24	7 36 7 37 7 38 7 38 7 38 7 39	4 15 4 16 4 16 4 16 4 17	7 44 7 45 7 46 7 46 7 46 7 47	4 7 4 8 4 8 4 8 4 8 4 9	7 53 7 54 7 55 7 55 7 55 7 56	3 58 3 59 3 59 3 59 3 59 4 0	8 2 8 3 8 4 8 4 8 5	3 49 3 49 3 50 3 50 3 50 3 51	
21 22 23 24 25	7 32 7 32 7 33 7 33 7 33 7 34	4 25 4 25 4 26 4 27 4 27 4 27	7 39 7 40 7 40 7 41 7 41 7 41	4 17 4 18 4 18 4 19 4 20	7 47 7 48 7 48 7 49 7 49 7 49	4 9 4 10 4 10 4 11 4 12	7 56 7 57 7 57 7 58 7 58 7 58	4 0 4 I 4 I 4 2 4 3	8 5 8 6 8 6 8 7 8 7	3 51 3 52 3 52 3 53 3 53 3 53	
26 27 28 29 30	7 34 7 34 7 34 7 35 7 35	4 28 4 28 4 29 4 30 4 31	7 42 7 42 7 42 7 42 7 42 7 42 7 42	4 20 4 21 4 22 4 22 4 23	7 50 7 50 7 50 7 50 7 50 7 50	4 I2 4 I3 4 I4 4 I5 4 I6	7 58 7 59 7 59 7 59 7 59 7 59	4 3 4 4 4 5 4 6 7	8 8 8 8 8 8 8 8 8 8 8 8	3 54 3 54 3 55 3 56 3 57	
31	7 35	4 32	7 42	4 24	7 50	4 I7	7 59	4 8	88	3 58	

DECEMBER

THE PLANETS, 1935

By R. J. McDiarmid

MERCURY

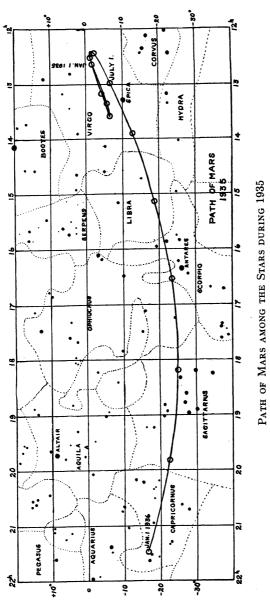
Mercury is the smallest, least massive, and swiftest in its orbital motion of the nine major planets. It also has the most eccentric orbit, with the greatest inclination to the ecliptic. Since it is the planet whose orbit is closest to the sun it never appears in the sky very far removed from that body. For this reason Mercury is the least seen of any of the planets visible to the naked eye, though its observation, if attempted at the right time, is not nearly as difficult as many people suppose.

Its apparent separation from the sun is never great, the maximum value ranging from 18° to 28°. During 1935, Mercury reaches a maximum apparent separation from the sun six times. When Mercury is at eastern elongation it may be seen as a ruddy first magnitude star, low in the west shortly after sunset, its light almost eclipsed by the evening twilight. At western elongation it is visible in the eastern morning sky just before sunrise.

The maximum eastern elongations of Mercury for 1935 are on February 1, $18^{\circ} 20'$; May 26, $22^{\circ} 51'$, and September 23, $26^{\circ} 18'$.

During the spring the ecliptic runs most nearly vertical at sunset, and hence the elongation on February 1 is the most favourable at which to look for Mercury in the evening sky.

The maximum western elongations of Mercury during 1935 are on March 15, $27^{\circ} 37'$; July 14, $20^{\circ} 46'$, and November 2, $18^{\circ} 44'$. Since the ecliptic is most nearly vertical at sunrise in September, the elongations on July 14 and November 22 will be equally suitable for observing Mercury in the morning sky.


The six elongations of Mercury which occur in 1935 are none of them extremely favourable for the observation of this planet.

VENUS

Venus is the planet whose orbit lies next outside that of Mercury. It is by far the brightest and most conspicuous of all in our skies. It is nearly the earth's twin in respect to magnitude, density, and general constitution, if not in other physical conditions.

The orbit of Venus lies just inside that of the earth and hence it comes closer to us than any other body with the exception of the moon, one or two of the minor planets, and an occasional comet. Its mean distance from the sun is 67 million miles, and its distance from the earth ranges from 26 million to 160 million miles.

It is so brilliant that it is easily seen with the naked eye in the daytime for several weeks when near its greatest elongation. At the beginning of 1935, Venus is about five times brighter than Sirius, setting an hour after the sun, and as it is moving eastward among the stars with respect to the sun, it continues as an

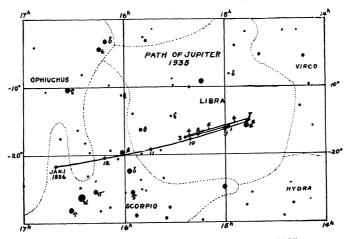
evening star all summer, passing eastern elongation $45^{\circ} 26'$ east of sun, June 30; attains greatest brilliancy August 3, about 15 times brighter than Sirius. September 8 it is in inferior conjunction with the sun and becomes a morning star. By October 15 it has again attained its greatest brilliancy, magnitude -4.3. Its apparent separation from the sun gradually increases westward and on November 18 Venus has its greatest elongation west of the sun, $46^{\circ} 41'$. It continues as a morning star the remaining part of 1935.

For a map showing the path of Venus among the stars, see p. 3 of cover.

MARS

Mars, whose orbit lies just outside that of the earth, is the second smallest of the major planets, with a diameter of only 4200 miles. It does not approach quite as close as Venus, but when it is nearest to us, its daylight hemisphere is towards the earth, while the reverse is true for Venus, so that we know more about the surface features of Mars than we do of any other planet.

At the beginning of 1935, Mars is a red star of first magnitude, rising about midnight. It appears a little later each week; by April 6 it is in opposition (*i.e.*, 180° from the sun) and is visible all night. April 12, Mars is nearest the earth and is in good position for observation, magnitude -1.2, nearly as bright as Sirius. The apparent angular separation between Mars and the sun gradually decreases and by July 16 the planet is in quadrature (90° from the sun) and is visible as an evening star, and continues to be till the end of the year. It gradually decreases in brightness and its distance from the earth increases; by early fall it is a first magnitude star again. Mars has two satellites, Phobos and Deimos.


JUPITER

Jupiter is the largest and most massive planet of the solar system and though it does not approach the earth as closely as do Venus and Mars, it is by far the easiest planetary object for observers with small telescopes because of its relatively large disk. An indication of this disk may be seen with a power of ten, and with good seeing, a power of twenty on a two-inch telescope will reveal several dark bands lying on either side of the planet's equator. These are known as cloud belts and change slightly in form from month to month.

Jupiter is known to possess nine moons. The four brightest may be seen with a good pair of prism binoculars (two of them larger than Mercury), but the others are extremely faint bodies and require the most powerful instruments to detect them.

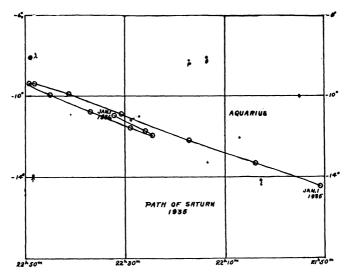
During the greater part of 1935, Jupiter is in the constellation Libra. It is visible as a morning star, magnitude -1.4, at the beginning of the year. February 11 its apparent angular separation from the sun is 90°, and it is a conspicuous object rising shortly after midnight. By May 9, it is in opposition (180° from the sun) and is visible all night. August 7, Jupiter is again in quadrature (90° from the sun) and is visible as an evening star for a short time, gradually approaching the sun, passing conjunction November 27.

Jupiter is not visible during December.

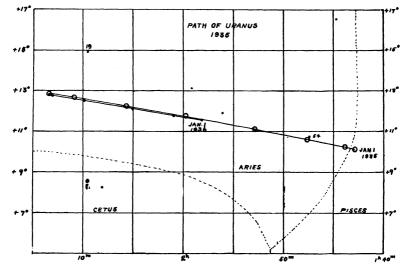
PATH OF JUPITER AMONG THE STARS DURING 1935

The position of the planet on the first of each month are numbered from 1 to 12. From March to July the planet is regreding.

SATURN


Saturn has a system of rings which makes it a unique object for telescopic observation. These rings may be seen with a good two-inch glass. It has ten satellites, the brightest of these being conspicuous in a small telescope.

At the beginning of the year it is just visible low in the southwest in the early part of the evening. Saturn rapidly approaches the sun and is in conjunction with it on February 20, and enters the morning sky, but is too near the sun to be well seen for a month or two. It starts to retrograde June 22, and is in opposition to the sun August 31. Saturn is in the constellation of Aquarius all year and is a bright yellow star shining with a steady light in the southern sky all summer and autumn. The ring system is well placed for observation.


URANUS

Uranus was discovered by Sir William Herschel in 1781. Before that time Saturn's path was considered the outermost boundary of the solar system, and when the planet was first seen by Herschel he thought it must be a comet. A year later its true nature was recognized. The planet has four satellites, two discovered by Herschel a few years after his discovery of Uranus. In 1851, Lassell rediscovered and observed these two satellites, Oberon and Titania, and independently discovered and observed the two fainter satellites, Ariel and Umbriel. The satellites are very faint, about magnitude 14.

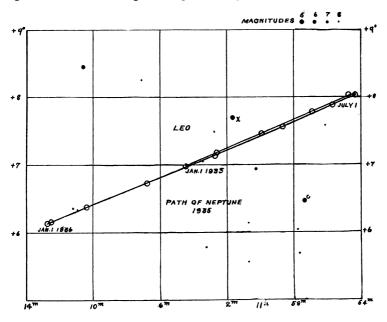
The period of Uranus about the sun is 84 years, and consequently its motion in the heavens is slow. Its period of rotation is 10-3/4 hours. It is of the sixth magnitude, a difficult object to recognize with the naked eye and better observed

PATH OF SATURN AMONG THE STARS DURING 1935 The position of the planet is indicated on the first of each month.

PATH OF URANUS AMONG THE STARS DURING 1935

The position of the planet are shown on the first of each month by open circles when the motion is forward and by filled circles when the planet is regreding. with a field glass. A large telescope is necessary to show an appreciable disk.

Uranus is in the constellation Aries during 1935. It is in conjunction with the sun on April 22, and a few months later may be observed in the morning sky. Opposition to the sun occurs October 27, at which time the planet is visible all night.


NEPTUNE

Neptune was discovered in 1846 as the result of the mathematical discussion of the planet Uranus, which, for some unknown reason, was not following the path predicted for it. The discovery is one of the most interesting romances in the history of astronomy.

Neptune appears as an eighth magnitude star and hence can be seen only with a telescope. It has a single satellite, with a magnitude of about 13. The satellite was discovered by Lassell a few months following the discovery of the planet.

Neptune, until two years ago, was considered the most distant planet of the solar system, being 2,800 millions of miles from the sun, and requiring 165 years to complete a revolution. The discovery of a new member of the solar system, Pluto, at Flagstaff observatory, Arizona, in 1930, has robbed Neptune of this distinction.

Neptune is in the constellation Leo and in opposition to the sun on March 4, being visible most of the night during the first part of the year. Conjunction

PATH OF NEPTUNE AMONG THE STARS DURING 1935 The position of the planet are shown on the first of each month.

with the sun takes place September 7, and the planet will be too near the sun for observation several months before and after that date.

PLUTO

Pluto was discovered about the beginning of the year 1930 by the staff of the Lowell Observatory, at Flagstaff, Arizona. It was found to be within five degrees of the position predicted for it by Percival Lowell through his mathematical treatment of slight irregularities in the motion of Uranus. In the discovery of this planet history seems to have repeated itself though recently some doubt has been raised as to the possibility of Pluto causing large enough perturbations in the motion of Uranus to allow of its position being calculated. Even should this be so, however, it in no way detracts from the tribute due the late Percival Lowell without whose pioneer work the planet would not have been found. He it was who instituted the search for this planet and it was discovered by the observatory which he founded.

The image of Pluto has been found on plates dating back as far as 1914 and these have greatly facilitated the refinement of its computed orbit. It revolves about the sun once in 248 years at a mean distance of 3700 million miles from that body, and hence its motion among the stars is very slow. Just at present it is in the constellation Gemini, a few degrees south of Castor and Pollux, and visible all winter in the evening sky. Its visual magnitude is 15, however, so that it can be seen only in the largest telescopes. Latest results seem to indicate that its mass is between one- and two-tenths that of the earth.

The approximate position of Pluto at the beginning of 1935, is $\alpha = 7h$ 51m, $\delta + 22^{\circ}$ 38'. Some idea of the remoteness of this planet may be had from the fact that the light from it requires approximately a quarter of a day to reach the earth.

ECLIPSES, 1935

In the year 1935 there will be seven eclipses, five of the Sun and two of the Moon.

I. A Partial Eclipse of the Sun January 5, visible only in extreme southern latitudes. Greatest eclipse will be 0.001 of the Sun's diameter.

II. A Total Eclipse of the Moon January 19, invisible at Toronto. The beginning visible generally in eastern Europe, Asia, Australia, the eastern part of the Indian Ocean, the Pacific Ocean, and Western North America; the ending visible generally in Europe, Africa, except the extreme western part, the Indian Ocean, Australia, the western part of the Pacific Ocean and the extreme northe western part of North America.

Circumstances of the Ecupse 75th Meridia		Time		
	m	d	h	m
Moon enters penumbraJ	anuary	19	7	39
Moon enters umbra	"	19	8	53
Total Eclipse begins	"	19	10	03
Middle of the Eclipse		19	10	47
Total Eclipse ends	"	19	11	31
Moon leaves umbra	"	19	12	41
Moon leaves penumbra	**	19	13	55
Magnitude of the eclipse 1 355 (Moon's		-1.0		

Circumstances of the Eclipse 75th Meridian Civil Time

Magnitude of the eclipse 1.355 (Moon's diam. = 1.0)

III. A Partial Eclipse of the Sun February 3, visible in North America except the extreme north western part.

Circumstances of the Eclipse 75th Meridian Civil Time

					Long.	Lat.		
	m	d	h	m	۰ ،	• /		
Eclipse begins	.February	3	9	30	116 05 W.	24 48 N.		
Greatest Eclipse					115 19 W.	62 33 N.		
Eclipse ends					35 53 W.	64 37 N.		
Magnitude of greatest eclipse 0.739 (Sun's diam. = 1.0)								

IV. A Partial Eclipse of the Sun June 30, invisible in North America.

Circumstances of the Eclipse	75tl	ı M	erid	ian Civil Time		
				Long.]	Lat.
m	d	h	m	• /	٥	'
Eclipse begins June	30	13	34	124 35 E.	59	56 N.
Greatest Eclipse"				39 18 E.	65	14 N.
Eclipse ends				23 19 W.	46	43 N.
Magnitude of greatest eclipse				's diam. =1.0)		

V. A Total Eclipse of the Moon July 15-16. The beginning visible generally in Africa except the extreme northwestern part, southwestern Europe, the Atlantic Ocean, North America except the northwestern part, South America and the eastern part of the Pacific Ocean; the ending visible generally in the Atlantic Ocean, North America except the extreme northern part, South America and the eastern part of the Pacific Ocean.

Circumstances of the Eclipse 75th Meridian Civil Time

	m	dhm
Moon enters penumbra	July	$15 \ 21 \ 15$
Moon enters umbra		$15 \ 22 \ 12$
Total Eclipse begins	**	$15 \ 23 \ 09$
Middle of the Eclipse		$16 \ 00 \ 00$
Total Eclipse ends		$16 \ 00 \ 50$
Moon leaves umbra		16 01 47
Moon leaves penumbra		$16 \ 02 \ 43$
Magnitude of the eclipse 1.761 (Moon's diam. $=1.0$)		

VI. A Partial Eclipse of the Sun July 30, invisible in North America.

Circumstances of the Eclipse 75th Meridian Civil Time

Circumstances of the Ecupse	100	1 141	ICI IC	nan civii rime		
				Long.		
m	d	h	m	• /	0	'
Eclipse beginsJuly	30	3	02	10 20 W.	43	10 S.
Greatest eclipse	30	4	16	5 49 W.	62	58 S.
Eclipse ends	30	5	30	35 58 E.	70	55 S.
Magnitude of greatest eclipse	0.23	1 (Sun	's diam. =1.0)		

VII. An Annular Eclipse of the Sun December 25, invisible in North America. Circumstances of the Eclipse 75th Meridian Civil Time

	-					Lat.
	m	d	h	m	o /	0./
Eclipse begins	. December	25	10	42	165 11 W.	39 12 S.
Central eclipse begins	. "	25	12	18	134 59 E.	62 18 S.
Central Eclipse ends	. "	25	13	41	25 06 E.	53 14 S.
Eclipse ends	• "	25	15	17	21 31 W.	26 55 S.

THE SKY FOR JANUARY, 1935

Prepared by W. S. ARMSTRONG

The times of transit are given in Local Mean Time, 0h at midnight; to change to Standard Time, see p. 9. Estimates of altitude are for an observer in latitude 45° N.

The Sun—During January the sun's R.A. increases from 18h 42m to 20h 55m, and its Decl. changes from 23° 06' S. to 17° 25' S. The equation of time (see p. 6) increases from 3m 6s to 13m 33s. Owing to this rapid rise in value the time of mean noon appears, for the first ten days of the month, to remain at the same distance from sunrise, that is, the forenoons as indicated by our clocks are of the same length. On the 20th of the month the sun enters Aquarius, the second winter zodiacal sign. On the 2nd the earth is in perihelion. There is a partial eclipse of the sun on January 5, invisible in North America (see p. 28).

The Moon—For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see p. 7 and opp. page. There is a total eclipse of the moon on the 19th (see p. 28).

Mercury on the 15th is in R.A. 20h 24m, Decl. $21^{\circ} 26'$ S. and transits at 12.53. During this month Mercury continually separates from the sun until February 1, when it has its greatest eastern elongation. Hence it should be visible for a few days at the end of the month, setting a little over an hour after the sun. Read about Mercury on p. 22.

Venus on the 15th is in R.A. 20h 42m, Decl. 19° 45' S. and transits at 13.08. It is an evening star all month, setting about one hour after the sun. At sunset on the 15th it will be seen in the southwest at an altitude of 10°. Its stellar magnitude is -3.4.

Mars on the 15th is in R.A. 13h 0m, Decl. $3^{\circ} 51'$ S. and transits at 5.25. It is a morning star, rising about midnight at the first of the month. It is a red star, of magnitude 0.8, in the constallation Virgo not far from Spica. See statement on page 24.

Jupiter on the 15th is in R.A. 15h 8m, Decl. $16^{\circ} 28'$ S. and transits at 7.32. From the map on p. 25 it is seen that Jupiter is in Libra most of the year. During this month it is a brilliant morning star, rising 4-1/2 hours before the sun. For the configuration of its satellites see next page, and for their eclipses, etc., see p. 54.

Saturn on the 15th is in R.A. 21h 57m, Decl. $13^{\circ} 59'$ S. and transits at 14.20. From the map on p. 26 it is seen that this planet is in Capricornus at the beginning of the year, but on January 22 passes into Aquarius where it remains for the remainder of the year. It is low in the southwest at sunset and is not suitably placed for observation.

Uranus on the 15th is in R.A. 1h 43m, Decl. 10° 06' N. and transits at 18.05. Neptune on the 15th is in R.A. 11h 4m, Decl. 7° 02' N. and transits at 3.28. Pluto—For information regarding this planet, see p. 28.

JANUARY ASTRONOMICAL PHENOMENA 75th Meridian Civil Time	Minima of Algol Configurations of Jupiter's Satellites at 6h 30m	
	······································	<u> </u>
dhm	• /	h m
Tues. 1 3 40 $\sigma' 24$ (6 19 N.	4 10 31204
Wed. 2 3 \oplus In Perihelion		32014
Thur. 3 23 In Aphelion		3024*
Fri. 4 16 \therefore Q In Aphelion \ldots		1 00 10234
Sat. 5 0 20 🖤 New Moon		20134
\ldots \odot Partial Eclipse \ldots		
6 03 ර ຊි Cຊ	046S.	
$20 31 \circ 9 \mathbb{C}$	0 49 S.	
Sun. 6 6 40 🕚 In Perigee		21 50 1034*
9 👌 Stationary in R.A.		
Mon. 7 21 29 of b 🕼b	3 55 S.	dO124
Tues. 8		31204
Wed. 9		18 40 32401
Thur. 10		43102
Fri. 11 15 55 D First Quarter		d4O32
Sat. 12 4 & Greatest Hel. Lat. S		15 30 42013
7 58 of 8 C8	6 14 S.	
Sun. 13		412O3
Mon. 14		40312
Tues. 15		12 20 d4310
Wed. 16		34201
Thur. 17		34102
Fri. 18 9 🗆 👌 Ο		9 10 O1342
Sat. 19 🕼 Total Eclipse		2034*
10 44 🕲 Full Moon.		
Sun. 20 17 C In Apogee		21034
Mon. 21		6 00 O3124
Tues. 22		31024
Wed. 23 11 11 \checkmark Ψ $$	5 07 N.	32014
Thur. 24		2 50 31024
Fri. 25		O3142
Sat. 26 11 22 of of C	8 24 N.	23 30 24O3*
12 of \$ \$ \$	0 38 N.	
Sun. 27 5 Q Greatest Hel. Lat. S		42103
14 59 🔇 Last Quarter.		
Mon. 28 19 45 of 24 C	6 15 N.	40132
Tues. 29		20 20 43102
Wed. 30		43201
Thur. 31 4 $\sigma \notin b$	1 27 N.	4310*
5 ⊈ In Ω.		-
7	0 10 S.	
	1 46 N.	
Explanation of symbols and abbreviation		. 4

Explanation of symbols and abbreviations on page 4

THE SKY FOR FEBRUARY, 1935

The times of transit are given in Local Mean Time, 0h at midnight; to change to Standard Time, see p. 9. Estimates of altitude are for an observer in latitude 45° N.

The Sun—During February the sun's R.A. increases from 20h 55m to 22h 44m, and its Decl. changes from 17° 25' S. to 8° 01' S. The equation of time reaches a maximum value of 14m 23s on the 12th (see p. 6). For changes in the length of the day see p. 11. On the 19th the sun enters Pisces, the third winter sign of the zodiac. There is a partial eclipse of the sun on February 3, visible throughout North America except in Alaska and other northerly portions (see p. 29).

The Moon—For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see p. 7 and opp. page.

Mercury on the 15th is in R.A. 22h 4m, Decl. $8^{\circ} 07'$ S. and transits at 12.22. On the 1st it has its greatest eastern elongation, after which it approaches the sun and comes to inferior conjunction on the 17th. For the remainder of the month it is a morning star, but is too near the sun for observation.

Venus on the 15th is in R.A. 23h 12m, Decl. 6° 40' S. and transits at 13.36. It is an evening star of magnitude -3.3, visible about 20° above the horizon at sunset.

Mars on the 15th is in R.A. 13h 32m, Decl. 6° 37' S. and transits at 3.54. As it rises about 10 p.m., it can be observed for the greater part of the night.

Jupiter on the 15th is in R.A. 15h 21m, Decl. 17° 18' S. and transits at 5.44. On the 11th it is in quadrature with the sun and rises at midnight. For the configuration of its satellites, see next page, and for their eclipses, etc., see p. 54.

Saturn on the 15th is in R.A. 22h 11m, Decl. $12^{\circ} 45'$ S. and transits at 12.32. The planet is in conjunction with the sun on the 20th and hence is too near the sun for observation during this month.

Uranus on the 15th is in R.A. 1h 45m, Decl. $10^{\circ} 21'$ N. and transits at 16.03. Neptune on the 15th is in R.A. 11h 1m, Decl. $7^{\circ} 19'$ N. and transits at 1.24. Pluto—For information regarding this planet, see p. 28.

						F	EBRUARY				of		ons 's at
	ASTRONOMICAL PHENOMENA										inima c	Algoi	onfiguration of Jupiter's Satellites at 5h 15m
	75th Meridian Civil Time								Mir	4	Conf of Sate		
	d	h	m					0	'		h	m	
Fri.	1	15			ĝ		Greatest elong. E	18	20		17	10	43012
Sat.	2												412O3
Sun.	3				\odot		Partial Eclipse						24013
		11	27		۲		New Moon.						
		18	24		Œ		In Perigee.						
Mon.	4	13	14	б	þ	C	b	4	13	S.	14	00	01243
		18	22	б	ĝ	Ø	<u></u>	1	47	S.			
		19			ĝ		In Perihelion.						
		21	57	б	Q	Ø		4	51	S.			
Tues.	5												13024
Wed.	6												32014
Thur.		12					Stationary in R.A				10	50	31204
Fri.	8	15	43	б	ð	Œ	ô	6	12	S.			30124
Sat.	9												d1O34
Sun.	10	4	25		Ð		First Quarter				7	40	20143
Mon.	11	16			21	\odot							O234*
Tues.	12												413O2
Wed.	13	5		б	ĝ	þ	<u></u> ξ	4	59	N.	4	30	43201
Thur.	14												43120
Fri.	15	2			ĝ		Greatest Hel. Lat. N						43012
Sat.	16										1	20	41023
Sun.	17	1					Inferior						42013
		18	12		Œ		In Apogee.						
Mon.	18	6	17		Ċ		Full Moon				22	10	41023
Tues.	19	15	56	б	Ψ	Ø	Ψ	5	02	N.			d4O32
Wed.	20	1		б	þ	\odot							32041
Thur.	21										18	50	32104
Fri.	22			Ì									30124
Sat.	23	3	34	б	ď	Œ		8	40	N.			10234
Sun.											15	40	20134
Mon.	25	6	40			Œ		6	06	N			10234
Tues.	26	5	14	-	¢	-	Last Quarter						01324
Wed.					ð		Stationary in R.A				12	2 30	32014
Thur	. 28												32104

Explanation of symbols and abbreviations on page 4

THE SKY FOR MARCH, 1935

The times of transit are given in Local Mean Time, 0h at midnight; to change to Standard Time, see p. 9. Estimates of altitude are for an observer in latitude 45° N.

The Sun—During March the sun's R.A. increases from 22h 44m to 0h 38m, and its Decl. changes from 8° 01' S. to 4° 06' N. The equation of time decreases from 12m 42s to 4m 18s (see p. 6). For changes in the length of the day, see p. 12. On the 21st at 13h 18m (G.C.T.) the sun enters Aries, the first spring sign of the zodiac, and spring begins. On that day the sun crosses the equator going north.

The Moon—For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see p. 7 and opp. page.

Mercury on the 15th is in R.A. 21h 54m, Decl. $13^{\circ} 36'$ S. and transits at 10.27. During the entire month Mercury is a morning star, reaching its greatest western elongation of over 27° (see opp. page), but the spring is not a good time to observe Mercury as a morning star for the reason given on p. 22.

Venus on the 15th is in R.A. 1h 18m, Decl. 7° 44' N. and transits at 13.52 It continues as an evening star, being about 25° above the horizon at sunset.

Mars on the 15th is in R.A. 13h 30m, Decl. 6° 13' S. and transits at 2.02. The planet continues to improve its position for observation and, at the end of the month, is visible nearly all night. It is increasing in brightness, being of magnitude -0.7 and will be found just north of Spica.

Jupiter on the 15th is in R.A. 15h 25m, Decl. 17° 26' S. and transits at 3.57. The planet rises about 9 p.m. in the evening and is a prominent object in the constellation Libra from that time until dawn. For the configuration of its satellites see next page, and for their eclipses, etc., see p. 54.

Saturn on the 15th is in R.A. 22h 23m, Decl. 11° 34' S. and transits at 10.54. The planet is now a morning star, but is not well placed for observation.

Uranus on the 15th is in R.A. 1h 50m, Decl. 10° 46' N. and transits at 14.18. Neptune on the 15th is in R.A. 10h 59m, Decl. 7° 37' N. and transits at 23.27. Pluto—For information regarding this planet, see p. 28.

							MARCH				of		ons 's at
			A	ST	RO	NON	MICAL PHENOMENA				Minima o	Algol	guratic upiter Ilites a
					7 5	th M	eridian Civil Time				Min	4	Confi of J Sate
	d		m					0	'		h	m	
Fri.	1		• •				Stationary in R.A						34012
Sat.	2			• • •		-		~	~~	~		20	41032
Sun.	. 3	-	41			Q	§		06				42013
Mon.	4		13		-	Œ	b	4	32	S.			4103*
		-	54		Œ	\sim	In Perigee.						
				-	-	\odot	NT N.						
æ	-	21	40		0		New Moon.						
Tues.	5	~ 1		• • ;	••••			0	10	~		10	40132
Wed.		21	41	Q	ę			6	13	S.			4320*
Thur.	7	~		• ;	• • •			0	~~	~			d4320
Fri.	8	2	40				âô	6	03	S.	3	00	34012
Sat.	9	~		• •							~~		1042*
Sun.	10	3 13	•••		∙4 ⊈		Stationary in R.A In °C.				23	50	20134
Mon.	11	19	30		Ð		First Quarter						12034
Tues.	12												01324
Wed.	13			• •							20	40	d3104
Thur.	14												d32O4
Fri.	15	14			ĝ		Greatest elong. W	27	37				30124
Sat.	16	23	36		Ø		In Apogee				17	30	1024*
	17												24013
Mon.	18	20	37	ď.	Ψ	¢.	Ψ	4	58	N.			41203
Tues.	19										14	10	40123
Wed.	20	0	31		Ø		Full Moon						41302
		19			ĝ		In Aphelion.						
Thur.	21	8	18		\odot		In Aphelion. Enters γ , Spring com						43201
Fri.	22	2		б	Q	ð		0	24	N.	11	00	4302*
		3	09	б	ď	C	······································	8	35	N.			
		4		б	₿	þ		0	19	S.			
Sat.	23												43102
Sun.	24	12	06	б	24	Ø		5	59	N.			42013
		14			Q		In B.						
Mon. 1	25			• •							7	50	21403
Tues.	26												01423
Wed.	27	15	51		C		Last Quarter						13024
Thur.	28						~				4	40	32014
	29												3024*
Sat.	30												31024
		21	49			Œ	b	4	57	S.	1		20134
	-					•	of symbols and abbreviation						

THE SKY FOR APRIL, 1935

The times of transit are given in Local Mean Time, 0h at midnight; to change to Standard Time, see p. 9. Estimates of altitude are for an observer in latitude 45° N.

The Sun—During April the sun's R.A. increases from 0h 38m to 2h 29m, and its Decl. changes from 4° 06' N. to 14° 43' N. The equation of time changes from +4m 18s to -2m 48s (see p. 6). For changes in the length of the day, see p. 13. On the 21st the sun enters Taurus, the second spring sign of the zodiac.

The Moon—For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see p. 7 and opp. page.

Mercury on the 15th is in R.A. 0h 44m, Decl. $2^{\circ} 33'$ N. and transits at 11.17. It is a morning star at the beginning of the month, but too close to the sun for observation. On the 27th it is in superior conjunction with the sun, after which it becomes an evening star.

Venus on the 15th is in R.A. 3h 44m, Decl. $20^{\circ} 52'$ N. and transits at 14.16. It is about 30° above the western horizon at sunset and sets about 3 hrs. after the sun.

Mars on the 15th is in R.A. 12h 51m, Decl. $2^{\circ} 54'$ S. and transits at 23.16. On the 6th it is in opposition to the sun and rises as the sun sets. This month is a good one to observe Mars as it reaches its maximum brilliancy (Mag. -1.2) on the 9th and is nearest the earth on the 12th (see p. 24).

Jupiter on the 15th is in R.A. 15h 17m, Decl. $16^{\circ} 54'$ S. and transits at 1.47. The planet is still improving its position for observation, and at the end of the month is visible nearly all night. For the configuration of its satellites see next page, and for their eclipses, etc., see p. 54.

Saturn on the 15th is in R.A. 22h 36m, Decl. $10^{\circ} 25'$ S. and transits at 9.05. The planet is a morning star, rising about 1-1/4 hours before the sun, but on account of its southerly declination, is not well placed for observation.

Uranus on the 15th is in R.A. 1h 56m, Decl. $11^{\circ} 22'$ N. and transits at 12.24. Neptune on the 15th is in R.A. 10h 56m, Decl. $7^{\circ} 54'$ N. and transits at 21.22. Pluto—For information regarding this planet, see p. 28.

APRIL		of	s's at
ASTRONOMICAL PHENOMENA		Minima o Algol	gurativ upiter llites a 15m
75th Meridian Civil Time		Min A	Configuration of J Sate Sate 2h
dhm	o /	h m	
Mon. 1 15 12 🔮 In Perigee			21034
21 34 of \$ C\$	7 02 S.		
Tues. 2		$22 \ 20$	01243
Wed. 3 7 11 🖤 New Moon			14032
Thur. 4 15 25 of ô Cô	5 52 S.		43201
Fri. 5 19 06 ♂ ♀ €♀	4 14 S.	19 10	4310*
Sat. 6 13 $\circ^{\rho} \circ^{\gamma} \odot$			43012
Sun. 7			42O3*
Mon. 8		16 00	42103
Tues. 9			40123
Wed. 10 4 & Greatest Hel. Lat. S			41032
12 42 D First Quarter.			
Thu. 11		12 50	32041
Fri. 12 0 σ^{\uparrow} Nearest \oplus		•	31204
Sat. 13			30124
Sun. 14		940	dO34*
Mon. 15 2 19 \checkmark Ψ \textcircled{C} Ψ	5 02 N.		21034
Tues. 16			01234
Wed. 17 15 04 ♂♂ €	7 45 N.	6 20	10324
Thur. 18 16 10 🕲 Full Moon			32014
Fri. 19 14 48 C In Apogee			31204
Sat. 20 14 00 of 24 @	5 58 N.	3 10	34012
Sun. 21			41032
Mon. 22 7 ♂ ᢒ ⊙			d42O3
Tues. 23		0 00	40123
Wed. 24			41032
Thur. 25 1 of \$ \$\$	0 14 S.	20 50	43201
23 20 🕼 Last Quarter.			
Fri. 26			43210
Sat. 27 2 9 In Perihelion			34012
7♂₿⊙ Superior.			
Sun. 28 10 18 of b C	5 27 S.	17 40	13024
Mon. 29 4 β In Ω			20134
11 In Perigee.			
Tues. 30			O234*

The times of transit are given in Local Mean Time, 0h at midnight; to change to Standard Time, see p. 9. Estimates of altitude are for an observer in latitude 45° N.

The Sun—During May the sun's R.A. increases from 2h 29m to 4h 32m, and its Decl. changes from $14^{\circ} 43'$ N. to $21^{\circ} 54'$ N. The equation of time decreases from -2m 48s to a minimum of -3m 46s on the 15th and then increases to -2m 32s at the end of the month (see p. 6). For changes in the times of sunrise and sunset see p. 14. On May 22nd the sun enters Gemini, the third spring sign of the zodiac.

The Moon—For its phases, perigee and apogee times and distances and its conjunctions with the planets, see p. 7 and opp. page.

Mercury on the 15th is in R.A. 4h 39m, Decl. $24^{\circ} 22'$ N. and transits at 13.14. On the 26th it reaches its greatest eastern elongation and at sunset should be seen about 20° above the western horizon.

Venus of the 15th is in R.A. 6h 16m, Decl. $25^{\circ} 40'$ N. and transits at 14.49. It is an evening star about 30° above the western horizon on the 15th at sunset, and setting three hours after the sun.

Mars on the 15th is in R.A. 12h 24m, Decl. 1° 27' S. and transits at 20.53. It continues to be suitable for observation, being visible most of the night, but its magnitude is decreasing (-0.6 on the 15th). It will be found about 40° above the southeastern horizon at sunset.

Jupiter on the 15th is in R.A. 15h 3m, Decl. $15^{\circ} 57'$ S. and transits at 23.30. On the 9th it is in opposition to the sun and rises as the sun sets. As it is at its maximum brilliancy (mag. -2.0) throughout the month, this is a good time for its observation. For the configuration of its satellites, see next page, and for their eclipses, etc., see p. 54.

Saturn on the 15th is in R.A. 22h 45m, Decl. $9^{\circ} 37'$ S. and transits at 7.16. It is a morning star of magnitude 1.3 about 25° above the southeastern horizon at sunrise, rising about three hours before the sun.

Uranus on the 15th is in R.A. 2h 3m, Decl. $11^{\circ} 57'$ N. and transits at 10.33. Neptune on the 15th is in R.A. 10h 54m, Decl. $8^{\circ} 02'$ N. and transits at 19.23. Pluto—For information regarding this planet, see p. 28.

							MAY						s s at
			A	ST	RO	NOI	MICAL PHENOMENA				iima of	Algol	guratic lupiter' ellites a 1 45m
	75th Meridian Civil Time										Minima Algol		Confi of J Sate 0
	_		m					0	,		h	m	
Wed.	1			• •	••••	•••	••••••				14	30	10324
Thur.		16	36		0)	ô New Moon.			S.			23014
Fri.	3	7 19		ď	ζ₽ ₽	Œ	ÿ In Perihelion.	3	58	S.			32104
Sat.	4										11	20	30124
Sun.	5	18	05	б	Ŷ	Ø	Ŷ	0	38	S.			13024
Mon.	6												24013
Fues .	7										8	10	41203
Wed.	8												d4O23
Thur.	9	20	÷.,	62	40	• • • •							42301
Fri.	10	6	54		Ð		First Quarter In ApogeeΨ				5	00	43210
Sat.	11	9	15		Œ		In Apogee						43021
Sun.	12	9	26	б	Ψ	Ø	\dots, ψ	5	14	N.			41302
Mon.	13			• •		• • • •					1	40	42013
lues.	14						Greatest Hel. Lat. N						12403
		10	56	б	ð	C	·····ď	6	30	N.			
Ned.	15					• • • •					22	30	01423
Chur.	16			• •									dd014
	17	15	29	б	-	_		6	04	N.			32104
	18	4	57								19	20	30214
Sun. 1	19	1											31024
		2			ę		Greatest Hel. Lat. N.						
Aon. 2	20			• •									20314
ues. 2				• •			•••••••••••				16	10	21034
Ved. 2	22												01423
Thur. 2	23												4023*
fri. 2	24	3	• •		Ψ						13	00	43210
at. 2	25	4 11	44 30		C C		Last Quarter In Perigee.						43O21
		19	20	б	þ	Ø	_	5	55	S.			
un. 2					ĝ	-	Greatest elong. E	22					43102
Aon. 2	27							-			9	50	42031
ues. 2	28										•	- •	42103
Ved. 2		12	22					5	51	S.			40123
Thur. 8								-		~.	6	40	41023
	81										ĩ	-•	d23O4

The times of transit are given in Local Mean Time, 0h at midnight; to change to Standard Time, see p. 9. Estimates of altitude are for an observer in latitude 45° N.

The Sun—During June the sun's R.A. increases from 4h 32m to 6h 36m, and its Decl. from 21° 54' N. to its maximum value of 23° 27' N. on the 22nd and then drops to 23° 12' N. at the end of the month. On the 22nd the sun reaches summer solstice and enters Cancer, the first summer zodiacal sign, and summer commences. The duration of daylight is now at its longest and does not change appreciably for some days, see p. 15. For changes in the equation of time, see p. 6. The increase in this quantity at the end of the month taken with the shortening of daylight causes the local mean time of sunset to appear almost constant at the end of June and the beginning of July. There is a partial eclipse of the sun on June 30, visible in the region of the North Pole.

The Moon—For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see p. 7 and opp. page.

Mercury on the 15th is in R.A. 6h 12m, Decl. 21° 09' N. and transits at 12.39. On the 21st it is in inferior conjunction with the sun.

Venus on the 15th is in R.A. 8h 43m, Decl. $20^{\circ} 27'$ N. and transits at 15.13. It continues to separate from the sun until the 30th when it reaches its greatest elongation east. It will be easily found in the western sky immediately after sunset at an altitude of about 30° .

Mars on the 15th is in R.A. 12h 39m, Decl. 4° 11'S. and transits at 19.06. It is approaching quadrature with the sun and will be found just west of the meridian shortly after sunset. It sets about 4-1/2 hours after the sun.

Jupiter on the 15th is in R.A. 14h 49m, Decl. $15^{\circ} 05'$ S. and transits at 21.15. On the 15th its magnitude is -1.9 and it is about 25° above the southeastern horizon at sunset. For the configurations of its satellites see next page, and for their eclipses, etc., see p. 55.

Saturn on the 15th is in R.A. 22h 49m, Decl. 9° 19' S. and transits at 5.18. It is in quadrature with the sun on the 1st, when it rises about midnight.

Uranus on the 15th is in R.A. 2h 9m, Decl. 12° 28' N. and transits at 8.37. Neptune on the 15th is in R.A. 10h 55m, Decl. 7° 58' N. and transits at 17.22. Pluto—For information regarding this planet, see p. 28.

							JUNE				of		s s at
			A	ST	RO	NON	AICAL PHENOMENA					Algol	igurations Jupiter's ellites at \$h 30m
					7 5t	h M	eridian Civil Time				Mi	•	of Sat
	d		m					0	1		h	m	
Sat.	1		52		ի (10)	\odot	New Moon.						31024
Sun.	2	20	37	б	ĝ	\mathbb{Q}	₿	0	55	S.	3	30	2014*
Mon.	3	3			Ψ	\odot							21034
Tues	. 4	20	39	б	Ŷ	Œ	Q	2	55	N.			01234
Wed.	5				•••••						0	20	10234
Thur		12			ĝ		In 😗						23014
Fri.	7						·····				21	00	3204*
Sat.	8		12		Œ		In Apogee						34102
		17	41	б	Ψ	Ø	Ψ	5	26	N.			
		21	• •		ĝ		Stationary in R.A.						
Sun.	9	0	49		Ð		First Quarter						42301
Mon.	10										17	50	42103
Tues.	. 11	1	13	б	ď	Œ	· · · · · · · · · · · · · · · · · · ·	5	40	N.			40213
Wed.													41023
Thur	. 13	19	13	୪				6	12	N.	14	40	42301
Fri.	14	12			ď		In 안						43210
Sat.	15												341Q2
Sun.	16	15	20		٢		Full Moon				11	30	32014
		19	••		ĝ		In Aphelion.						
Mon.	17												21034
Tues.	18												O2134
Wed.	19										8	20	10234
Thur.	20	5	06		Ø		In Perigee						23014
Fri.	21	13		б	ĝ	\odot	Inferior						32104
Sat.	22	2	00	б	þ	Ø	b	6	14	S.	5	10	d3O24
		3	38		\odot		Enters 🞯 , Summer com.						
		9	• •		þ		Stationary in R.A.						
Sun.	23	9	21		Œ		Last Quarter						d3O14
Mon.							••••						214O3
Tues.	25	22	32	б	ô	Œ		5	56	S.	2	00	40213
Wed.	26			• •									41023
Thur.	27			• •							22	50	42301
Fri.	28			• •			• • • • • • • • • • • • • • • • • • • •						43210
Sat.	29	15	44	б	₿	Ø	β	6	59	S.			43012
~~~	00				0		Partial Eclipse				10	40	43102
Sun.	30		•••		$\sim$						10	τU	43102
	30		•••		ç		Greatest elong. E	46	25		15	10	43102

The times of transit are given in Local Mean Time, 0h at midnight; to change to Standard Time, see p. 9. Estimates of altitude are for an observer in latitude 45° N.

The Sun—During July the sun's R.A. increases from 6h 36m to 8h 41m, and its Decl. decreases from  $23^{\circ} 12'$  N. to  $18^{\circ} 19'$  N. The equation of time increases from 3m 24s on the 1st to 6m 22s on the 27th, and then drops to 6m 16s at the end of the month. On the 23rd the sun enters Leo, the second summer sign of the zodiac. For changes in the length of day, see p. 16. On the 4th the earth is in Aphelion at a distance of 94,450,000 miles from the sun. There is a partial eclipse of the sun on July 30th, invisible in North America.

The Moon—For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see p. 7 and opp. page. A total eclipse of the moon, visible at Toronto, occurs on July 15-16, for the circumstances of which see p. 29.

Mercury on the 15th is in R.A. 6h 4m, Decl.  $20^{\circ}$  53' N. and transits at 10.37. It is a morning star throughout the month, reaching its greatest elongation west on the 14th but is not favourably situated for observation.

Venus on the 15th is in R.A. 10h 31m, Decl. 9° 12' N. and transits at 15.03. It continues as an evening star of magnitude -4.0, readily visible at sunset, but is slowly approaching the sun. It sets about two hours after the sun on the 15th.

Mars on the 15th is in R.A. 13h 22m, Decl.  $9^{\circ} 22'$  S. and transits at 17.52. It is in quadrature with the sun on the 16th, when it is seen very close to Spica as a red star of magnitude 0.4. The motion of the planet relative to the fixed star will be interesting to observe at this time.

Jupiter on the 15th is in R.A. 14h 45m, Decl.  $14^{\circ}$  54' S. and transits at 19.14. It is approaching quadrature with the sun and is just east of the meridian at sunset. For the configuration of its satellites see next page, and for their eclipses, etc., see p. 55.

Saturn on the 15th is in R.A. 22h 48m, Decl. 9° 34' S. and transits at 3.19. It rises about two hours after sunset.

Uranus on the 15th is in R.A. 2h 12m, Decl.  $12^{\circ} 47'$  N. and transits at 6.44. Neptune on the 15th is in R.A. 10h 57m, Decl.  $7^{\circ} 45'$  N. and transits at 15.26. Pluto—For information regarding this planet, see p. 28.

								JULY	L	i		ons 's at
		1	٩S	TF	20	NO	MI	CAL PHENOMENA		inima o	<b>Ngol</b>	gurati upiter Ilites
				,	75t	h I	Mer	idian Civil Time		MIN	4	Confi of J Sate
d		n	-					0 /		h	m	
Mon. 1												42103
Tues. 2				•••		•••						4013*
Wed. 3	21		•		₿ ⊕			stationary in R.A n Aphelion.	1	.6	20	10423
	18			5	Ŷ	C		······································	٧.			20314
Fri. 5	22	0	)		Œ		J	n Apogee				32104
Sat. 6	2	2 2	2	S	Ψ	Œ		Ψ 5 34 1	N. 1	3	10	30124
Sun. 7		3.			ĝ		(	Greatest Hel. Lat. S				31024
Mon. 8	17	72	8		₽		]	First Quarter				d2O34
Tues. 9		51	3 (	൪	ð	Ø			N. 1	.0	00	20134
Wed. 10	)			· · ·								10423
Thur. 11	2	2 2				Œ			N.			42031
				-	21			Stationary in R.A.	••			2001
Fri. 12										6	50	43210
Sat. 13										Ŭ	00	43012
Sun. 14		3.			ĝ			Greatest elong. W 20 46				43102
		3.			ç			n °.				10102
Mon. 15										3	40	4201*
Tues. 16	0	0	)		Ð			full Moon		Č	10	4203*
					Ĩ			Total Eclipse.				1200
					_	$\odot$						
Wed. 17					đ	-		n Perigee				41023
Thur. 18			-		<i>ч</i> т					ሰ	30	42013
Fri. 19	7	5	י ה ג	 √	ь.					U	00	<b>23104</b>
Sat. 20	•	0		-		_				1	20	30214
Sun. 21									2	1	20	310214
Mon. 22	14	4			Œ.	•••		ast Quarter				2014*
Tues. 23		5 0			_	Ø		~	C 1	0	10	2014 2034*
Wed. 24	ر	, 0							<b>5</b> . 1	0	10	10234
Thur. 25	1					Ψ		······································	-			
Fri. 26				ر	₹	¥		• • • •			00	dO134
Sat. 27	ð	•••						n Ω	- 1	0	00	23104
Sun. 27												30421
Mon. 29	1	10				 C			т <b>т</b>	1	50	34102
Tues. $30$				_		-		· · · · · · · · · · · · · · · · · · ·	N. 1	1	90	
1 ues. 30	(	•		_	ð	0		Dential Daliana				42103
		96	-		$\odot$			Partial Eclipse				
		32			<b>()</b>			New Moon.				
Wed. 31	19	•			ţ			n Perihelion.				40105
												40123

The times of transit are in Local Mean Time, 0h at midnight; to change to Standard Time, see p. 9. Estimates of altitude are for an observer in latitude  $45^{\circ}$  N.

The Sun—During August the sun's R.A. increases from 8h 41m to 10h 37m, and its Decl. decreases from  $18^{\circ} 19'$  N. to  $8^{\circ} 43'$  N. The equation of time decreases from 6m 16s to 0m 21s, see p. 6. The sun enters Virgo, the third summer zodiacal sign, on the 24th. For changes in the length of day, see p. 17.

The Moon—For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see p. 7 and opp. page.

Mercury on the 15th is in R.A. 9h 57m, Decl. 14° 20' N. and transits at 12.30. On the 9th it is in superior conjunction with the sun.

Venus on the 15th is in R.A. 11h 25m, Decl. 1° 50' S. and transits at 13.52. On the 2nd it attains its maximum brilliancy of -4.2 and during the month it continues to approach the sun. Being so bright it is easily seen in the west immediately after sunset, but it is not very high above the horizon. It sets a little over an hour after the sun on the 15th. During the latter part of the month it is too near the sun for observation.

Mars on the 15th is in R.A. 14h 26m, Decl.  $15^{\circ} 40'$  S. and transits at 16.55. It is an evening star and is  $20^{\circ}$  above the southwestern horizon at sunset. On the 27th it is in conjunction with Jupiter (see opp. page), being  $2^{\circ}$  south of the latter and much fainter, Jupiter being over eight times as bright as Mars.

Jupiter on the 15th is in R.A. 14h 52m, Decl.  $15^{\circ} 31'$  S. and transits at 17.19. It is in quadrature with the sun on the 7th, of magnitude -1.7. On the 27th it is in conjunction with Mars (see above). For the configurations of its satellites, see next page, and for their eclipses, etc., see p. 55.

Saturn on the 15th is in R.A. 22h 42m, Decl.  $10^{\circ}$  19' S. and transits at 1.11. On the 30th it is in opposition with the sun and rises just at sunset. It is in the constellation Aquarius and well placed for observation throughout the month. Its magnitude at this time is 0.7.

Uranus on the 15th is in R.A. 2h 14m, Decl.  $12^{\circ} 53'$  N. and transits at 4.42. Neptune on the 15th is in R.A. 11h 0m, Decl.  $7^{\circ} 23'$  N. and transits at 13.31. Pluto—For information regarding this planet, see p. 28.

							AUGUST				44		ons s at
			A	ST	RC	)NO	MICAL PHENOMENA				Minima of	Algol	figuratic Jupiter' ellites a Ih 00m
					75	th N	Ieridian Civil Time				Mi		Oon Sat 22
	d		m					0	'			n m	
Thur.				•								3 30	4023*
Fri.	2		) 53 6 06		ų Q	) (l	In Apogee. $\Psi$	5	5 35	5 N.	•		42130
			41	-		Œ	Greatest Brilliancy.	1	41	N.			
Sat.	3						• • • • • • • • • • • • • • • • • • • •						4301*
Sun.	4										5	20	314O2
Mon.	5												32041
Tues.	-	16	43	6	ੱਠ	٦ '	······ď	4	19	) N.			21034
Wed.	7		23		D		First Quarter				2	2 10	01234
						. € . ⊙		5	59	) N.			
Thur.	8												O234*
Fri.	9	20		б	ĝ	$\odot$	Superior				23	00	d2104
Sat.	10	1	••		ĝ		Greatest Hel. Lat. N						32014
Sun.	11	13			ô		Stationary in R.A						31024
Mon.	12										19	50	32014
Tues.	13												21043
Wed.	14	7	44										40123
Thur.	15	3	06		Œ		In Perigee				16	40	41023
			• •		ę		Stationary in R.A.						
		14	38	б	þ	Œ	b	6	16	S.			
Fri.	16			• •			•••••						d42O3
Sat.		12	• •		ę		In Aphelion						43201
	18						•••••				13	30	43102
Mon.				-	-	-	••••••	<b>5</b>	51	S.			d43O1
Tues.		22	17		-		2						42103
Wed.							••••••				10	20	40213
Thur.							• • • • • • • • • • • • • • • • • • • •						10423
	23												20134
	24	4	• •	-		Ψ	<u></u>	0	09	N.	7	10	3204*
Sun.		10						_					31024
Mon.							ġ			N.			30214
Tues.				Q	-	4	•	2	12	S.	4	00	21034
Wed.					•		New Moon						0134*
Thur.	29			_/	®	Æ	In Apogee		<u> </u>	~			10423
Fa:	90	23 16				C			00		~	40	01010
Fri.	30		30			-	ξ	5	28	N.	0	40	24013
Sat.	31	<i>4</i> 0	••	•		$\odot$							94109
<u></u>	01						of symbols and abbreviation						24103

#### THE SKY FOR SEPTEMBER, 1935

The times of transit are given in Local Mean Time, 0h at midnight; to change to Standard Time, see p. 9. Estimates of altitude are for an observer in latitude 45° N.

The Sun—During September the sun's R.A. increases from 10h 37m to 12h 25m, and its Decl. decreases from  $8^{\circ}$  43' N. to  $2^{\circ}$  44' S. The equation of time decreases from +0m 21s to -9m 55s. For changes in the length of the day, see p. 18. On the 23rd the sun crosses the equator going south and enters Libra, the first autumnal sign of the zodiac.

The Moon—For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see p. 7 and opp. page.

Mercury on the 15th is in R.A. 12h 57m, Decl. 7° 54' S. and transits at 13.25. It is an evening star throughout the month and reaches its greatest elongation east, being 26° 18' from the sun; but is not in a favourable position for observation (see p. 22).

Venus on the 15th is in R.A. 10h 37m, Decl.  $0^{\circ}$  18'S. and transits at 11.01. On the 8th it is in inferior conjunction with the sun and after this date becomes a morning star. It is too close to the sun for observation throughout the month.

Mars on the 15th is in R.A. 15h 46m, Decl.  $21^{\circ}$  17' S. and transits at 16.13. It is an evening star, about  $20^{\circ}$  above the southwestern horizon at sunset, setting almost three hours after the sun.

Jupiter on the 15th is in R.A. 15h 8m, Decl.  $16^{\circ} 46'$  S. and transits at 15.33. It is an evening star and is  $15^{\circ}$  above the southwestern horizon at sunset, and sets  $2 \cdot 1/2$  hours after the sun. For the configuration of its satellites see next page, and for their eclipses, etc., see p. 55.

Saturn on the 15th is in R.A. 22h 33m, Decl.  $11^{\circ} 12'$  S. and transits at 22.56. During the month it can be seen for the greater part of the night. At sunset on the 15th it has an altitude of about  $10^{\circ}$  above the eastern horizon.

Uranus on the 15th is in R.A. 2h 12m, Decl.  $12^{\circ} 43'$  N. and transits at 2.38. Neptune on the 15th is in R.A. 11h 5m, Decl.  $6^{\circ} 57'$  N. and transits at 11.30. Pluto—For information regarding this planet, see p. 28.

SEPTEMBER	f f
ASTRONOMICAL PHENOME	A Minima of Algol onfiguration onfiguration f Jupiter's atellites at 19h 45m
75th Meridian Civil Time	Min A Confi O of J Sate
d h m	°′hm
Sun. 1	
Mon. 2 12 🖞 In 🗞	
15 $\sigma' \notin \Psi$	♀ 10 09 S.
Tues. 3	· · · · 4213O
Wed.       4       0       54 of 21 €	
8 10 of of C	ð ¹ 3 07 N.
First Quarter	41023
Fri. 6	
Sat. 7 17 $\sigma \Psi \odot$	
Sun. 8 3 $\sigma \notin \odot$ Inferior	
Mon. 9 0 00 $\varphi$ Greatest Hel. Lat. S	
Tues. 10	
Wed. 11 22 11 of b C	
Thur. 12 13 06 C In Perigee	10234
15 18 🕲 Full Moon.	
18 월 In Aphelion. Fri. 13	
Sat. 14 Sun. 15 19 33 イ ô C	
3.6 1.0	
Mon. 16	
Wed. 18	
Thur. 19 9 23 C Last Quarter	
Fri. 20	
Sat. 21	
Sun. 22	
Mon. 23 6 & Greatest elong. E	
18 39 ⊙ Enters≏, Autumn c	
Tues. 24	
Wed. 25 3 50 ♂ ♀ €	
23 36 <b>(</b> In Apogee.	+ 0 02 5. 20134
Thur. 26 3 11 $\sigma$ $\Psi$ $\P$	Ψ 5 <b>39</b> N. 10 <b>234</b>
Fri. 27 12 29 W New Moon	
15 9 Stationary in R.A.	10 00 02104
Sat. 28	21034
Sun. 29 19 58 of \$ C	
Mon. 30	

#### THE SKY FOR OCTOBER, 1935

The times of transit are given in Local Mean Time, 0h at midnight; to change to Standard Time, see p. 9. Estimates of altitude are for an observer in latitude 45° N.

The Sun—During October the sun's R.A. increases from 12h 25m to 14h 21m, and its Decl. changes from 2° 44' S. to 14° 04' S. On the 24th the sun enters Scorpio, the second autumnal sign of the zodiac. The equation of time decreases from -9m 55s to -16m 18s. For changes in the length of the day, see p. 19.

The Moon—For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see p. 7 and opp. page.

Mercury on the 15th is in R.A. 13h 40m, Decl.  $12^{\circ}$  54' S. and transits at 12.04. On the 18th it is in inferior conjunction with the sun, after which it is a morning star. It continually separates from the sun until November 2 and hence should be visible during the last days of the month.

Venus on the 15th is in R.A. 10h 44m, Decl. 4° 41' N. and transits at 9.13. On this date it attains greatest brilliancy and during the month it continues to separate from the sun. Because of its brilliancy (mag. -4.3) it can be seen in the southeast just before sunrise. It rises about 3-1/2 hours before the sun.

Mars on the 15th is in R.A. 17h 16m, Decl.  $24^{\circ} 33'$  S. and transits at 15.45. It sets about three hours after the sun but is not easy to observe because of its southerly declination.

Jupiter on the 15th is in R.A. 15h 30m, Decl. 18° 15' S. and transits at 13.57. On the first of the month it may be seen as an evening star of magnitude -1.3 about 15° above the horizon in the southwest at sunset. It is approaching the sun and toward the end of the month is not favourably placed for observation.

Saturn on the 15th is in R.A. 22h 26m, Decl.  $11^{\circ} 49'$  S. and transits at 20.52. It is an evening star visible for most of the night. At sunset it will be seen in the southeast about  $15^{\circ}$  above the horizon. It has a stellar magnitude of 0.9 and is in the constellation Aquarius.

Uranus on the 15th is in R.A. 2h 8m, Decl.  $12^{\circ} 22'$  N. and transits at 0.36. Neptune on the 15th is in R.A. 11h 9m, Decl.  $6^{\circ} 33'$  N. and transits at 9.36. Pluto—For information regarding this planet, see p. 28.

OCTOBER		of ions at at
ASTRONOMICAL PHENOMENA		Minima o Algol onfiguratio of Jupiter Satellites
75th Meridian Civil Time	Min P Confi of J Sate Sate	
d h m	0 /	h m
Tues.       1       14       59 of 24 €	5 01 N.	
Wed.         2           Thur.         3         2         2         Greatest Hel. Lat. S		204**
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 32 N.	10 30 41023
Fri. 4	1 52 N.	40123
Sat. 5 8 40 D First Quarter		40123
Sun. 6 1 § Stationary in R.A		7 20 43201
Mon. 7		43102
Tues. 8		43201
Wed. 9 5 54 of b Cb	6 06 S.	4 10 42130
Thur. 10 23 36		d4O23
Fri. 11 23 39 1 Full Moon		40123
Sat. 12		1 00 21034
Sun. 13 4 32 of 3 C	5 36 S.	
Mon. 14		21 50 31024
Tues. 15 7 Q Greatest Brilliancy		d3O14
Wed. 16		21304
Thur. 17		18 40
Fri. 18 0 of ₿ ⊙ Inferior.		
Sat. 19 0 36 C Last Quarter.		
Sun. 20		15 <b>20</b>
Mon. 21		
Tues. 22 $3 \ldots \notin In \Omega$ .		
Wed. 23 8 24 $(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		12 10
$9 22 \circ \varphi \mathbb{C}$	2 58 N.	
$11 36 \circ \Psi \mathbb{C} \qquad \dots \Psi$	5 50 N.	
Thur. 24 20 $\sigma \Leftrightarrow \Psi$ $\varphi$	2 35 S.	
Fri. 25		
Sat. 26 3 11 of § C	6 39 N.	9 00
11 & Stationary in R.A.		
$18 \dots $ ^{$\beta$} In Perihelion.		
Sun. 27 5 15 W New Moon.		
16 o ^o ô ⊙		
Mon. 28 $\qquad \qquad \qquad$	4 00 11	<b>z z</b> o
Tues. 29       6       49 ♂       24 €	4 28 N.	5 50
	0.00.0	
<u>Thur. 31 22 08 ♂ ♂ €</u>		
Jupiter being near the Sun, phenomena of the Satell		ot given from
October 17 to December 17 Explanation of symbols and abbreviation		4

#### THE SKY FOR NOVEMBER, 1935

The times of transit are given in Local Mean Time, 0h at midnight; to change to Standard Time, see p. 9. Estimates of altitude are for an observer in latitude 45° N.

The Sun—During November the sun's R.A. increases from 14h 21m to 16h 24m, and its Decl. decreases from  $14^{\circ} 04'$  S. to  $21^{\circ} 38'$  S. On the 23rd the sun enters Sagittarius, the third autumn zodiacal sign. The equation of time decreases from -16m 18s to a minimum value of -16m 22s on the 4th and then increases to -11m 21s at the end of the month (see p. 6). For changes in the length of the day, see p. 20.

The Moon—For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see p. 7 and opp. page.

Mercury on the 15th is in R.A. 14h 23m, Decl.  $12^{\circ} 28'$  S. and transits at 10.51. On the 2nd it reaches its greatest elongation west, being about  $19^{\circ}$  from the sun. At sunrise it will be about  $20^{\circ}$  above the horizon in the southeast.

Venus on the 15th is in R.A. 12h 20m, Decl.  $1^{\circ}$  01'S. and transits at 8.48. It continues to separate from the sun until the 18th when it reaches its greatest elongation west. At this time it is interesting to observe the planet before sunrise and then continue to follow it into full daylight. It rises over four hours before the sun.

Mars on the 15th is in R.A. 18h 57m, Decl. 24° 16' S. and transits at 15.24. It is still an evening star, but low and faint in the western sky at sunset.

Jupiter on the 15th is in R.A. 15h 57m, Decl.  $19^{\circ} 47'$  S. and transits at 12.22. It is an evening star until the 27th, when it comes into conjunction with the sun, after which it is a morning star. It is too close to the sun for observation throughout the month.

Saturn on the 15th is in R.A. 22h 25m, Decl.  $11^{\circ}$  56' S. and transits at 18.48. It is an evening star throughout the month, being in quadrature with the sun on the 26th, when it will be found about 2h east of the meridian at sunset at an altitude of 30° in the southeast.

Uranus on the 15th is in R.A. 2h 3m, Decl. 11° 57' N. and transits at 22.26. Neptune on the 15th is in R.A. 11h 12m, Decl. 6° 15' N. and transits at 7.37. Pluto—For information regarding this planet, see p. 28.

NOVEMBER		f
ASTRONOMICAL PHENOMENA		Minima of Algol Sonfiguration of Jupiter's Satellites
75th Meridian Civil Time		Min A Config of J Sat
d h m	o /	h m
Fri, 1		2 40
Sat. 2 17 $\therefore$ $\emptyset$ Greatest elong. W	18 44	
Sun. 3 18 12 First Quarter		23 30
Mon. 4 7 $\therefore$ $\varphi$ In $\Im$ .		
Tues. 5 13 02 of b Cb	6 14 S.	
Wed. 6 0 $\[mathcal{B}\]$ Greatest Hel. Lat. N		20 20
Thur. 7		
Fri. 8 4 b Stationary in R.A.		
5 48 C In Perigee.		
Sat. 9 13 27 0 8 C	5 37 S.	17 10
Sun. 10 9 42 ⁽¹⁾ Full Moon.		
Mon. 11		
Tues. 12		14 00
Wed. 13		
Thur. 14		
Fri. 15		10 40
Sat. 16		
Sun. 17 19 36 C Last Quarter.		
Mon. 18 11 $\ldots$ of Greatest Hel. Lat. S		7 30
$20 \dots Q$ Greatest elong. W	46 41	
Mon. 18 11       ♂       Greatest Hel. Lat. S         20       ♀       Greatest elong. W         Tues. 19 20 26 ♂ ♥ €	6 07 N.	
wed. 20 1 00 @ In Apogee.		
Thur. 21		4 20
	722 N.	
Sat. 23		
Sun. 24		1 10
Mon. 25 6 54 $\sigma' \notin \mathbb{Q}$ $\xi$	4 28 N.	
21 36 🖤 New Moon.		
Tues. 26 0 39 ♂ 24 €	3 57 N.	22 00
19 🗆 b 💿		
Wed. 27 $0 \ldots \sigma 24 \odot$		
Thur. 28		
Fri.         29 11         β         In ° ⁰		18 50
20 02 of o ⁷ (fo ⁷	2 29 S.	
Sat. 30		

Jupiter being near the Sun, phenomena of the Satellites are not given from October 17 to December 17 Explanation of symbols and abbreviations on page 4

# THE SKY FOR DECEMBER, 1935

The times of transit are given in Local Mean Time, 0h at midnight; to change to Standard Time, see p. 9. Estimates of altitude are for an observer in latitude  $45^{\circ}$  N.

The Sun—During December the sun's R.A. increases from 16h 24m to 18h 41m and its Decl. changes from 21° 38' S. to its maximum southerly value of 23° 27' on the 22nd. The sun is then at the winter solstice; it enters Capricornus and winter begins. From this date the sun moves slowly northward. The length of daylight is at its minimum and changes very slightly for several days (see p. 21). The equation of time is -11m 21s at the beginning of the month and increases to zero on the 25th (see p. 6) and to +3m 1s at the end of the month. There is an annular eclipse of the sun on December 25, invisible in North America (see p. 29).

The Moon—For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see p. 7 and opp. page.

Mercury on the 15th is in R.A. 17h 37m, Decl. 24° 52' S. and transits at 12.08. It is a morning star until the 10th when it is in superior conjunction with the sun, after which it is an evening star—too close to the sun for observation.

Venus on the 15th is in R.A. 14h 23m, Decl.  $11^{\circ} 32'$  S. and transits at 8.52. It is a morning star about 30° above the horizon at sunrise on this date and rising nearly four hours before the sun.

Mars on the 15th is in R.A. 20h 35m, Decl.  $20^{\circ} 00'$  S. and transits at 15.04. It is a faint evening star and is found in the constellation Capricornus, setting about three hours after the sun.

Jupiter on the 15th is in R.A. 16h 25m, Decl.  $21^{\circ} 02'$  S. and transits at 10.52. It is a morning star throughout the month of magnitude -1.3 and at sunrise on the 15th is about 10° above the southeastern horizon.

Saturn on the 15th is in R.A. 22h 29m, Decl.  $11^{\circ} 27'$  S. and transits at 16.55. It continues as an evening star of magnitude 1.1 during this month. On the 20th it is close to the meridian at sunset and can be seen in the southern sky about  $30^{\circ}$  above the horizon.

Uranus on the 15th is in R.A. 1h 59m, Decl. 11° 38' N. and transits at 20.24. Neptune on the 15th is in R.A. 11h 13m, Decl. 6° 08' N. and transits at 5.40. Pluto—For information regarding this planet, see p. 28.

					]	DECEMBER				ч.	s s at
		A	ST	RO	NO	MICAL PHENOMENA				linima o Algol	guratic upiter Ilites
				75	th N	1eridian Civil Time				Min A	Confi of J Sate 8h
-	1 h	m					0	1		h m	
Mon. 2	2 13	·	ď	ĝ	2	<u>\$</u>				15 40	)
_	19	59	0	þ	Œ	þ	6	25	S.		
Tues. 3	3 2	28		Ð		b First Quarter.					
Wed. 4			• •	•••	• • •						
Thur. 5	17	06		Œ	-	In Perigee				$12 \ 30$	)
		47	' ơ	ð	€£	ô	5	44	S.		
	, 			•••	•••	· · · · · · · · · · · · · · · · · · ·					
Sun. 8				Ŷ	~	In Perihelion				9 20	
Mon. 9				Ψ	$\odot$						
		·		ĝ		In Aphelion. Full Moon.					
<b>T</b> 10		10		9	~	Full Moon.					
						Superior.					
Wed. 11										6 10	
Thur. 12			••		•••						
		• •				In Perihelion.					
Sat. 14						• • • • • • • • • • • • • • • • • • • •				3 00	
Sun. 15 Mon. 16						•••••••••••••••••••••••••••••••••••••••				09 40	
Tues 17	. 5	19			••••		c	10	NT	23 40	
1 ues. 17	0 16	10 57	0	¥	Ű	Ψ Last Quarter.	0	19	1.		
	10 91	10		۵ ۵		In Apogee.					
Wed 18											30412
Thur. 19										20 20	30412 32104
						Stationary in R.A				20 30	32104 32014
Sat. 21											10324
		16	~	0	Ø	0	7	11	N	17 20	
Sun. 22	13	37	0	$\stackrel{+}{\odot}$	Ψ.	Enters 🍿 Winter com.	•	11	14.	11 20	UO201
Mon 23	20	09	2	้อเ	Ø		3	29	N		20134
m 04											
Wed. 25			• •			Annular Felinse				14 10	30124
		49		ø		New Moon.				11 10	00121
Thur, 26					đ	ξ	<b>2</b>	12	S.		32104
Fri. 27						•••••••••••••••••••	-		2.		43201
	19	03	ഗ	∂ ⁷	Ø.	······	4	28	S.	11 00	41032
Sun. 29	19			Q		Greatest Hel. Lat. N.		-			40123
Mon. 30	1	• •		ĝ		Greatest Hel. Lat. S					4203*
	4	35	б	þ	Œ	Greatest Hel. Lat. S	6	34	S.		
	10	24	2	Ø	-	In Perigee.			-		
Tues. 31						•				7 50	4103*
						un phonomena of the Satal					

Jupiter being near the Sun, phenomena of the Satellites are not given from October 17 to December 17

# PHENOMENA OF JUPITER'S SATELLITES, 1935

E—Eclipse, O—occultation, T—transit, S—shadow, D—disappearance, R—reappearance I—ingress, e—egress. The Roman numerals denote the satellites. 75th Meridian Civil Time.

			JANUAR	Y						APRIL			
d 3 4	h m 5 07 4 25	I	Phen. d ED 19 Se Te 20	h m 3 22 6 41 3 48	Sat. 1 I I	Phen. ED OR Te	d 3	h m 0 4 a 2 3 a 3 a 3 a 3 a 3 a 3 a 3 a 3 a 3 a	5 III	Phen. d SI 15 Se 20	h m 23 09 22 41	Sat. I I III	Phen. OR ED
6 7	$5 25 \\ 5 47 \\ 5 31$	I II III	ED 22 TI 24		II II	SI	5		5 III		$     \begin{array}{c}       0 & 35 \\       0 & 44     \end{array}   $	III III	ER OD
8 11	$5 31 \\ 5 27 \\ 4 09$	II	Te 25 SI			OD OR	6	$     \begin{array}{c}       2 & 4 \\       3 & 3     \end{array} $		SI TI	$\begin{smallmatrix}2&03\\2&06\end{smallmatrix}$	II III	SI OR
11	$514 \\ 618$	Î	TI 26 Se 27	$5 1\overline{5} \\ 3 3\overline{5}$	I	ËD TI		$\begin{array}{cc} 4 & 5 \\ 22 & 2 \end{array}$	5 II	Se TI	$\begin{array}{ccc} 2 & 57 \\ 3 & 53 \end{array}$	II I	TI ED
$^{12}_{14}$	4 45 5 14	Î	OR SI	$     \begin{array}{c}       4 & 33 \\       5 & 44     \end{array}   $	Ī	Se Te	7	$\begin{smallmatrix}23&2\\0&0\end{smallmatrix}$	6 I	Se ED 22	$\begin{smallmatrix}4&27\\1&05\end{smallmatrix}$	I	Se SI
$1\overline{5}$	$     \begin{array}{c}       3 & 32 \\       5 & 45     \end{array}   $	II II	SI 28 TI 31	$\begin{array}{c}3&06\\2&47\end{array}$	I II	OR ED		$\begin{smallmatrix} 0 & 4 \\ 2 & 5 \end{smallmatrix}$	8 I	Te OR	$\begin{array}{c}1&31\\3&15\end{array}$	I	TI Se
18	5 55 6 03	II	Se SI	$5 \ 11 \ 5 \ 14$	II II	ER OD		$   \begin{array}{cccc}     22 & 0 \\     23 & 2 \\     \end{array} $	7 I	TI Se Te	$\begin{array}{c} 3 & 39 \\ 22 & 21 \\ 23 & 45 \end{array}$	I I II	Te ED OR
		F	EBRUA	RY				$     \begin{array}{c}       0 & 0 \\       4 & 4 \\       4 & 3     \end{array} $	3 II			I	OR Se
d 1	h m 3 09		Phen. d ED 16	h m	Sat. II	Phen. TI	13	$\begin{array}{r}4&3\\&4&4\\22&4\end{array}$	3 I	SI		Î	Te ED
1	$5 03 \\ 2 45$	İİİ	ER 18 Te	$5 32 \\ 2 07 \\ 5 23 \\ 2 32$	ÎÎ I	OR ED	14		0 II	SI TI 29		ÎÎ	SI SI
ĩ		Î	SI 19 TI	252	I III	SI Se		$15 \\ 15 \\ 15$	4 II	Se ED	$\begin{array}{r}3&15\\23&09\end{array}$	I II	TI ED
4	$\begin{smallmatrix}6&26\\5&00\end{smallmatrix}$	I I	Se OR	$\begin{array}{c}3&46\\4&41\end{array}$	I			$\frac{3}{4}$	3 I	Te 30 OR	$\begin{smallmatrix} 0 & 14 \\ 2 & 02 \end{smallmatrix}$	I I I	
5 7	$\begin{smallmatrix}2&07\\5&21\end{smallmatrix}$	I II	Te ED	554 607	Î I I	Te TI		$\begin{array}{ccc} 23 & 1 \\ 23 & 4 \end{array}$	6 I	SI TI	$\begin{smallmatrix}&2&37\\&21&28\end{smallmatrix}$	Į	OR SI
9	$\begin{array}{ccc} 2 & 54 \\ 2 & 58 \end{array}$	II	Se 20 TI 23	$   \begin{array}{c}     3 & 14 \\     5 & 38 \\     0 & 12   \end{array} $	I	OR SI	15	$12 \\ 15$	5 I	Se Te	$   \begin{array}{ccccccccccccccccccccccccccccccccccc$	I	TI Se
10	$5 20 \\ 6 11 \\ 3 30$	II	Te 25 SI ED	$     \begin{array}{r}       2 & 13 \\       2 & 16 \\       4 & 40     \end{array} $	II II II	ER OD OR	=	21 2	8 11	OR	23 50	I	Te
$\frac{11}{12}$	1 53	I I III	TI 26		I III	SI				MAY			
	$   \begin{array}{ccc}     2 & 10 \\     2 & 48 \\     3 & 47   \end{array} $	I I III	Se Te 27	$538 \\ 144$	I	ŤÎ ED	d 1	h n 20 1	7 II	Phen. d Se 16	h m = 0.34	III	Phen. SI
16	$     4 01 \\     3 04   $	Î	Te SI 28		Î	OR		$\begin{array}{c} 20 & 3 \\ 21 & 0 \end{array}$	3 I	Te OR ED	$     \begin{array}{r}       0 & 40 \\       1 & 05 \\       1 & 25     \end{array} $	I II II	ER Te Se
	5 27	ĪĪ	Se	2 13	I	Se Te	7	1 4 2 0 4 1	8 I		$     \begin{array}{c}       1 & 25 \\       1 & 38 \\       2 & 28     \end{array} $		Te Se
		<u></u>	MARCH		Sat.	Phen.		42		OR SI	$     \begin{array}{c}       2 \\       19 \\       45 \\       21 \\       44     \end{array} $	Î	ŠĬ Te
d 2 4 6	h m 1 31 2 23	Sat. III II	Phen. d OR 16 ED 20	h m 4 47 2 34	III 11	ER SI	8		5 I	ŤÍ Se 17	$     \begin{array}{ccc}       21 & 55 \\       20 & 08     \end{array}   $	Ī II	Se ER
4 6	$     \begin{array}{ccc}       2 & 23 \\       2 & 06 \\       3 & 37     \end{array} $	II	Te ED ED		ÎÎ II	TÎ Se		1 3	4 Î 6 II	Te 22 SI	$\begin{smallmatrix}2&54\\3&11\end{smallmatrix}$	I I	TI SI
7	$     \begin{array}{c}       0 & 47 \\       1 & 56     \end{array} $	Î	SI 21	$\hat{4}$ $\hat{34}$ 5 $\hat{34}$	Î	ŠĬ TI		20 3	1 II 6 II		0 58	I II	OD TI
		Ī	Se 22 Te	$\begin{smallmatrix}1&16\\1&51\end{smallmatrix}$	II I	OR ED		20 5			$     \begin{array}{c}       1 & 33 \\       2 & 34 \\       \hline       4     \end{array} $	II I	SI ER
8 9	$\begin{array}{c}1&23\\0&50\end{array}$	I III	OR ER	$\begin{smallmatrix}&4&59\\23&02\end{smallmatrix}$	I I	OR SI		$\begin{array}{ccc} 22 & 2 \\ 22 & 2 \end{array}$	9 II:	[ Se	$\begin{array}{r} 3 & 19 \\ 3 & 26 \\ 21 & 20 \end{array}$	II III I	Te TI TI
	$\begin{array}{ccc} 3 & 44 \\ 5 & 13 \end{array}$	III III	OD 23 OR	$\begin{smallmatrix} 0 & 01 \\ 1 & 11 \end{smallmatrix}$	I	TI		$   \begin{array}{ccc}     22 & 4 \\     22 & 5 \\     22 & 5   \end{array} $	1 II	OR Se	$     \begin{array}{c}       21 & 20 \\       21 & 39 \\       23 & 29     \end{array} $	I I I	SI Te
$11 \\ 13$	$\begin{array}{c}4&58\\0&01\end{array}$	II II	ED SI	$     \begin{array}{c}       2 & 09 \\       23 & 26 \\       45     \end{array} $	I	Te OR	9	$   \begin{array}{ccc}     22 & 5 \\     20 & 0 \\     20 & 0   \end{array} $	0 I	Te Te Se 24	$   \begin{array}{ccccccccccccccccccccccccccccccccccc$	Î	Se ER
	$   \begin{array}{ccc}     2 & 12 \\     2 & 24 \\     4 & 22   \end{array} $		TI 27 Se	$     \begin{array}{r}       0 & 45 \\       2 & 08 \\       5 & 07     \end{array} $	III III II	TI Te SI	14	$20 \ 0 \ 3 \ 5 \ 4 \ 1$	6 I	OD OD 30	$   \begin{array}{r}     21 & 02 \\     22 & 45 \\     1 & 50   \end{array} $	İI	ER
14	$\begin{array}{r} 4 & 32 \\ 5 & 30 \\ 2 & 40 \end{array}$	II I I	Te ED 28 SI 29	$5 07 \\ 23 27 \\ 3 39$		ED OR	15		9 I		$   \begin{array}{cccc}     23 & 05 \\     23 & 34   \end{array} $	I I	TI SI
14	$     \begin{array}{r}       2 & 40 \\       3 & 46 \\       4 & 49     \end{array} $	I	TI Se 30	$     3 45 \\     0 55   $	Î	ED SI			8 I	Te 31 Se	$\begin{smallmatrix}1&14\\1&44\end{smallmatrix}$	I I	Te Se
15	$     \begin{array}{r}             4 & 49 \\             23 & 58 \\             3 & 12         \end{array} $	Î	ED OR	$     1 48 \\     3 05   $	Î	T I Se		$\begin{array}{ccc} 22 & 2\\ 22 & 4 \end{array}$	2 I 4 II		$\begin{array}{ccc} 20 & 16 \\ 21 & 53 \end{array}$	I II	
16	$     \begin{array}{c}       0 & 21 \\       2 & 53     \end{array}   $	Î	Te ED 31	$     \begin{array}{c}       3 & 56 \\       1 & 13     \end{array}   $	Ī	Ťe OR	16	$\begin{array}{ccc} 23 & 0 \\ 0 & 1 \end{array}$		SI	22 56	I	ER

JUNE	AUGUST
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SEPTEMBER d h m Sat. Phen. d h m Sat. Phen. 1 19 58 I Tel4 20 15 III SI 4 19 49 II OD 16 18 52 I OD 8 19 46 I TI 17 19 26 I Se 9 20 11 I ER 20 19 29 II TI 9 20 11 I ER 20 19 29 II TI
JULY	13 18 55 II SI 22 19 09 II ER 19 14 II Te 24 19 12 I SI
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Jupiter being near the Sun, phenomena of the Satellites are not given from September 25 to December 22.
22 06 I SI 24 20 26 I SI 23 08 I Te 21 21 I Te 9 0 16 I Se 22 35 I Se 21 26 I ER 25 22 16 II TI	DECEMBER
22         58         II         DD 27         22         10         II         III         IIII         IIII         IIII         IIII         III         IIII         IIII         IIII         IIII         IIII         IIII         IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	d h m Sat. Phen. d h m Sat. Phen. 23 6 51 I OR 31 6 04 I Te 30 6 06 I ED

_

#### **METEORS AND SHOOTING STARS**

On almost any clear night any one observing the sky for a few minutes will see one or more shooting stars. They are particularly numerous during the autumn months and on account of the rotation of the earth are better seen during the early morning hours than in the evening.

At certain times there are striking displays, located in particular portions of the sky. These are considered to be due to *meteor swarms*. The principal ones are given in the following table.

Name of Shower	Duration	Greatest Display		adiant A.	Poin De	
<u> </u>		T	h	m	1	0
Quadrantids	Dec. 28-Jan. 9	Jan. 3	15	20	+	53
Aurigids	Feb. 7-23	Feb. 10	5	0	+	41
Lyrids	April 16-22	April 21	18	4	+	33
$\eta$ Aquarids	April 29 May 8	May 4-6	22	32	-	2
Herculids	May 13-29	May 24	16	36	+	30
Scorpiids	May-June-July	June 4	16	48	-	21
Sagittids	June-July	July 28	20	12	+	24
Capricornids	July-Aug.	July 22	20	20	-	12
<b>∂</b> Aquarids	July 18-Aug. 12	July 28-31	22	36	-	11
<b>α β</b> Perseids	July-AugSept.	Aug. 16	3	12	+	43
Perseids	July 8-Aug. 25	Aug. 11-12	3	4	+	57
Draconis	Aug. 18-25	Aug. 23	19	24	+	61
e Perseids	AugSept.	Sept. 15	4	8	+	35
A	(AugSept. Oct.	Sept. 21	2	4	+	19
Arietids	SeptOct.	Oct. 15	2	4	+	9
Orionids	Oct. 9-29	Oct. 19	6	4 8	+	15
µ Ursids Maj.	OctNovDec.	Nov. 16-25	10	16	+	41
Taurids	November	Nov. 21	4	12	+	23
Leonids	Nov. 9 20	Nov. 14-15	ıo	ο	+	23
Andromedes	Nov. 20-30	Nov. 20-23	I	40	+	43
Geminids	Dec. 1-14	Dec. 11	7	12	+	33

Of these the chief ones are the Perseids, the Leonids and the Andromedes.

The Perseids furnish an annual display of considerable strength, and are perhaps the best known of all. The swarm appears to have an orbit identical with that of the great Comet 1862 III., the period of which is 120 years.

The Leonids follow in the orbit of Tempel's Comet of 1866, of period 33 years.

The Andromedes are thought to be remnants of Biela's Comet. They were especially numerous in 1872, 1885, 1898, but in recent years have not been so prominent.

The above table was prepared for the HANDBOOK by Mr. W. F. Denning, F.R.A.S., of Bristol, England; and for further interesting information regarding this subject (and almost any other subject in which the amateur is interested) reference may be made to his *Telescopic Work for Starlight Evenings*.

	Mean 1 from	Mean Distance from Sun	Sidereal Period	Period	Mean	Mass	Density Volume	Volume	Avia I
Name	⊕ =1	Millions of Miles	Mean Solar Days	Years	ter Miles	⊕ =1	Water =1	⊕ = <b>1</b>	Rotation
§ Mercury	0.387	36.0	87.97	0.24	3009	0.0556	4.7(?)	0.055	88d
Q Venus	0.723	67.2	224.70	0.62	7575	0.817	4.94	0.88	30d (?)
⊕ Earth	1.000	92.9	365.26	1.00	7917.8	1.000	5.55	1.000	23h 56m 4s
o [*] Mars	1.524	141.5	686.97	1.88	4216	0.108	3.92	0.151	24h 37m 23s
24 Jupiter	5.203	483.3	4332.58	11.86	86728	318.4	1.32	1314	9h 55m ±
b Saturn	9.539	886.1	10759.2	29.46	72430	95.2	0.72	765	10h 14m ±
<b>Ô</b> Uranus	19.191	1782.8	30685.9	84.02	30878	14.6	1.22	59	10h 45m ±
₩ Neptune	30.071	2793.4	60187.6	164.79	32932	16.9	1.11	72	16 h
PL Pluto	39.60	3700	:	247.7		1 (?)	:	: : :	:
• Sun	:	:	•		864392	333400	1.39	1301100	25d 7h 48m±
G Moon		From ⊕238,857 mls.	27.32	0.075	2160	0.0123	3.39	0.020	27d 7h 43m 11.5s

PRINCIPAL ELEMENTS OF THE SOLAR SYSTEM

# SATELLITES OF THE SOLAR SYSTEM

NAME	STELLAR MAGNITUDE.	Mean Distance in Miles	Sidereal Period d. h. m. s.	Discoverer	Date
		TH	IE EARTH		

The Moon	238,840  27	7 43 11	

## MARS

1	Phobos{	14	5,850	7	30	15	Asaph H	เป็น เ	A 11 m 1	17	1877
	Deimos				17	54	Asaph H	all	Aug. J	1,	1877

# JUPITER

5. (Nameless).	13	112,500	11 57 23	Barnard   Sept. 9,	1892
1. Io	$6\frac{1}{2}$	261,000		Galileo Jan. 7,	1610
2. Europa	$6\frac{1}{2}$	415,000	$3 \ 13 \ 13 \ 42$	Galileo Jan. 8,	1610
3. Ganymede .			7 3 42 33	Galileo Jan. 7,	1610
4. Callisto	7	1,167,000	$16 \ 16 \ 32 \ 11$	Galileo Jan. 7,	1610
6. (Nameless).				Perrine Dec.	1904
7. (Nameless).	16	7,567,900	276 [.] 67 d.	Perrine Jan.	1905
8. (Nameless).	17	15,600,000	789 d.	Melotte Jan.	1908
9. (Nameless).	19	18,900,000	3 years	Nicholson July	1914

#### SATURN

1. Mimas		117,000	1	22	37	6	W. Herschel	July 18, 1789
2. Enceladus.	14	157,000	1	8	53	7	W. Herschel	Aug. 29, 1789
3. Tethys	11	186,000	1	21	18	26	J. D. Cassini	Mar. 21, 1684
4. Dione	11	238,000	2	17	41	9	J. D. Cassini	Mar. 21, 1684
5. Rhea	10	332,000	4	12	25	12	J. D. Cassini	Dec. 23, 1672
6. Titan	9	771,000	15	22	41	23	Huygens	Mar. 25, 1655
7. Hyperion	16	934,000	21	6	39	27	G. P. Bond	Sept. 16, 1848
3. Iapetus	11	2,225,000	79	7	54	17	J. D. Cassini	Oct. 25, 1671
9. Phoebe	17	8,000,000		540	3.5	d.	W.H.Pickering	1898
10. Themis	17	906,000	20	20	24	0	W.H.Pickering	1905

#### URANUS

1. Ariel 15 2. Umbriel 16	167.000 4 3	27 37	Lassell	Oct 24, 1851
3. Titania 13 4. Oberon 14	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$   56 29 \\   7 6 $	W. Herschel W. Herschel	Jan 11, 1787 Jan. 11, 1787
	NEPT	UNE		
1. Triton   13	221,500   5 21	2 44	Lassell	. Oct. 10, 1846

#### **DOUBLE STARS**

Close scrutiny of the sky reveals the fact that many of the stars are composed of two or more components, that is, they are *double* or *multiple* stars. Over 15,000 such objects have been discovered.

A star may appear double in two ways. First, one may just happen to be nearly in line with the other as seen from the earth. Second, the two bodies may be physically connected, each revolving about their common centre of gravity. The former are called *optical doubles*, the latter *binary stars*. In the course of time the binaries exhibit a change in the distance between the components and also in the direction of the line joining them, that is, in the position angle.

While the close pairs require a large instrument for their detection, there are many within the range of small instruments. Such observations also allow one to determine the quality of the instrument employed. It has been found that a telescope having an objective 1 inch in diameter should be able to distinguish two stars 4''.56 apart, and the resolving power is inversely proportional to the diameter of the objective. Thus a telescope of 3-inch aperture should separate stars 1/3 of 4''.56, or 1''.52 apart; for one of aperture 10 inches, stars 1/10 of 4''.56, or 0''.45 apart should be seen separate; and so on. With the Yerkes refractor, of aperture 40 inches, a double star with distance 0''.11 can be detected.

In choosing a double star for testing a telescope care should be taken not to select a binary, with varying distance between its components.

The stars in the following short lists can be identified from almost any star atlas, and observation of them will prove of great interest to the amateur.

Star	Mags.	Dist.	Star	Mags.	Dist.
$\begin{array}{c} \text{Mizar}\\ \text{Castor}\\ \gamma \text{ Virginis .}\\ \gamma \text{ Arietis}\\ \zeta \text{ Aquarii} \end{array}$	2.4, 4.0 2.5, 3.0 3.0, 3.2 4.2, 4.5 3.5, 4.4	$14.5 \\ 5.6 \\ 5.0 \\ 8.9 \\ 3.5$	$\begin{array}{c} \gamma \text{ Leonis} \\ \beta \text{ Scorpii} \\ \theta \text{ Serpentis.} \\ 44i \text{ Boötis} \\ \pi \text{ Boötis} \end{array}$	$\begin{array}{c} 2.5, 4.0\\ 2.5, 5.5\\ 4.4, 6.0\\ 5.0, 6.0\\ 4.3, 6.0\end{array}$	3.0 13.0 21.0 4.8 6.0

I. THE MOST LUMINOUS PAIRS

Star	Magnitudes	Distance	Colors
γ Andromedæ	2.2, 5.5	10	Orange, Green.
a CanumVenat.	3.2, 5.7	20	Golden, Lilac.
$\beta$ Cygni	3.3, 5.5	34	Golden, Sapphire.
ε Boötis	2.4, 6.5	2.9	Golden, Sapphire.
95 Herculis	5.5, 5.8	6	Golden, Azure.
a Herculis	4, 5.5	4.7	Ruby, Emerald.
$\gamma$ Delphini	3.4, 5	11	Golden, Bluish Green.
32 Eridani	4.7, 7	6.7	Topaz, Bright Green.
ε Hydræ	3.5, 7.5	3.5	Yellow, Blue.
ζ Lyræ	4.5, 5.5	44	Yellow, Green.
1 Cancri	4.5, 5	30	Pale Orange, Blue.
o Cygni	4.3, 7.5, 5.5	337.8,106.8	Yellow, Blue.
24 Coma Beren	5.6, 7	21	Orange, Lilac.
• Cephei	5.4, 8	2.5	Golden, Azure.
94 Aquarii	5.5, 7.5	11	Rose, Greenish.
39 Ophiuchi	5.7, 7.5	12	Yellow, Blue.
41 Aquarii	5.8, 8.5	4.8	Yellow Topaz, Blue.
2 Canum Venat		11	Golden, Azure
52 Cygni	4.6, 9	7	Orange, Blue.
55 Piscium	6, 9	6	Orange, Blue.
κ Geminorum	3.8, 9	9	Grange, Blue.
$\rho$ Orionis	5.1, 9	6.8	Orange, Blue.
54 Hydræ	5.2, 8	9	Yellow, Violet.
$\eta$ Persei	4.2, 8.5	28	Yellow, Blue.
$\phi$ Draconis	4.8, 6	31	Yellow, Lilac.
• Draconis	4.7, 8.5	32	Golden, Lilac.
η Cassiopeiæ	4.7, 7	5.7	Golden, Purple.
23 Orionis	5.4, 7	32	White, Blue.
δ Herculis	3.6, 8	18	White, Violet.
• Capricorni	6.3, 7	22	Bluish.
17 Virginis	6.5, 7	20	Rose.
۶ Boötis	4.5, 6.5	4.2	Reddish Yellow.

## **II, THE FINEST COLORED PAIRS**

The colors given above are according to Flammarion. For slight variations and also for a much longer list consult Webb's "Celestial Objects."

### VARIABLE STARS

#### By FRANK S. HOGG

Of the naked eye stars visible to a northern observer, nearly a hundred are known to undergo variations in their light. With field glasses or a small telescope the number of variables is enormously increased. Thus there is no dearth of material with which an inquisitive amateur may satisfy himself as to the reality and nature of the fluctuations of the light of stars. Further this curiosity may be turned to real scientific value, in that the study of variable stars is one of the best organized and most fruitful fields of research for amateur observers. For years the professional astronomer has entrusted the visual observation of many of the most important variable stars entirely to amateurs, as organized into societies in England in 1890, America in 1911, and France in 1921. The American Association of Variable Star Observers has charts of the fields of 350 of these stars, and in general supervises the work of amateur observers. The Recorder is Mr. Leon Campbell, at the Harvard Observatory, Cambridge, Massachusetts. New observers are welcomed, and supplied with charts.

In our galaxy there are already known about 5,000 variables, while in globular clusters and outside systems there are some 3,000 more. Almost all those which have been sufficiently studied may be conveniently classified, according to their light variation into ten groups, by Ludendorff's classification. His classes, with their typical stars, are listed as follows:

- I. New or temporary stars: Nova Aquilae 3, 1918.
- II. Nova-like variables: T Pyxidis, RS Ophiuchi.
- III. R Coronae stars: R Coronae Borealis. Usually at constant maximum, with occasional sharp minima.
- IV. U Geminorum stars: U Geminorum. Usually at constant minimum, with occasional sharp maxima.
- V. Mira stars: oCeti. Range of several magnitudes, fairly regular period of from 100 to 600 days.
- VI.  $\mu$ Cephei stars:  $\mu$ Cephei. Red stars with irregular variations of a few tenths of a magnitude.
- VII. RV Tauri stars: RV Tauri. Usually a secondary minimum occurs between successive primary minima.
- VIII. Long period Cepheids: δCephei. Regular periods of one to forty-five days. Range about 1.5 magnitudes.
  - IX. Short period Cepheids: RR Lyrae. Regular periods less than one day. Range about a magnitude.
  - X. Eclipsing stars:  $\beta$ Persei. Very regular periods. Variations due to covering of one star by companion.

REPRESENTATIVE BRIGHT VARIABLE STARS

N	lame	Design.	Max.	Min.	Sp.	Period	Type	Date	Discoverer
 N  U	Aql Aql Aur Cep Cep	$\begin{array}{r} 194700 \\ 184300 \\ 045443 \\ 222557 \\ 005381 \end{array}$	$ \begin{array}{r} 3.7 \\ -0.2 \\ 3.3 \\ 3.6 \\ 6.8 \end{array} $	$\begin{array}{r} 4.3 \\ 10.9 \\ 4.1 \\ 4.3 \\ 9.2 \end{array}$	G4 Q F5p G0 A0	7.17668 Irr. 9900. 5.36640 2.49293	VIII I X VIII X	$1918 \\ 1821 \\ 1784$	Pigott Bower Fritsch Goodricke W. Ceraski
ŘR R P	Cet ¹ Cet CrB Cyg Cyg	$\begin{array}{c} 0214 o_{3} \\ 012700 \\ 154428 \\ 194632 \\ 201437a \end{array}$	$ \begin{array}{c} 2.0\\ 8.4\\ 5.8\\ 4.2\\ 3.5 \end{array} $	$9.6 \\ 9.0 \\ 13.8 \\ 13.4 \\ 6.0$	M5e F0 Goe M7e B1qk	329.5 0.55304 Irr. 408.3 Irr.	V IX III V II	1906 1795 1686	Fabricius Oppolzer Pigott Kirch Blaeu
SS XX  R	Cyg Cyg Gem Gem Gem	213843 200158 065820 060822 070122a	11.4 3.7 3.3	$12.0 \\ 12.1 \\ 4.1 \\ 4.2 \\ 13.5$	Pec. A cG1 M2 Se	Irr. 0.13486 10.15353 235.15 370.1		1904 1847 1865	Wells L. Ceraski Schmidt Schmidt Hind
U R R	Gem Her Hya Leo Lyr	074922 171014 1324 <i>22</i> 094211 184633	8.8 3.1 3.5 5.0 3.5	$13.8 \\ 3.9 \\ 10.1 \\ 10.5 \\ 4.1$	Pec. M5 M7e M7e B5e	Irr. Irr. 413.6 310.3 12.90801	IV VI V X	1795 1670 1782	Hind W. Herschel Montanari Koch Goodricke
RR Ü 	Lyr Ori² Ori Per² Per	$\begin{array}{c} 192242\\ 054907\\ 054920\\ 030140\\ 025838\end{array}$	$\begin{array}{c c} 7.1 \\ 0.2 \\ 5.4 \\ 2.3 \\ 3.3 \end{array}$	$7.8 \\ 1.2 \\ 12.2 \\ 3.5 \\ 4.1$	A5 M2 M7e B8 M4	0.56684 Irr. 376.1 2.86731 Irr.	VI V	$\begin{array}{c c} 1840 \\ 1885 \\ 1669 \\ \end{array}$	Fleming J. Herschel Gore Montanari Schmidt
R R RV SU	Sge Sct Tau Tau Tau UMi ⁴	$\begin{array}{c} 200916 \\ 1842 o_5 \\ 035512 \\ 044126 \\ 054319 \\ 012288 \end{array}$	8.4 4.5 3.8 8.7 9.5 2.3	$10.4 \\ 9.0 \\ 4.2 \\ 11.8 \\ 15.4 \\ 2.4$	cG7 K5e B3 K0 G0e cF7	70.84 141.5 3.95294 78.60 Irr. 3.96815	VII III	1795 1848 1905 1908	Baxendell Pigott Baxendell L. Ceraski Cannon Hertzsprung

¹OCet (Mira); ²aOri (Betelgeuse); ³. Per (Algol); ⁴aUMi (Polaris).

Most of the data in this Table are from Prager's 1931 Katalog und Ephemeriden Veranderlicher Sterne. The stars are arranged alphabetically in order of constellations. The second column, the Harvard designation, gives the 1900 position of the star. The first four figures of the designation give the hour and minute of right ascension, the last two the declination in degrees, italicised for stars south of the equator. Thus the position of the fourth star of the list, .Cephei, is R.A. 22h 25m, Dec. +57, (222557). The remaining columns give the maximum and minimum magnitudes, spectral class, the period in days and decimals of a day, the classification on Ludendorff's system, and the discoverer and date. In the case of eclipsing stars, the spectrum is that of the brighter component.

#### THE DISTANCES OF THE STARS

The measurement of the distances of the stars is one of the most important problems in astronomy. Without such information it is impossible to form any idea as to the magnitude of our universe or the distribution of the various bodies in it.

The parallax of a star is the apparent change of position in the sky which the star would exhibit as one would pass from the sun to the earth at a time when the line joining earth to sun is at right angles to the line drawn to the star; or, more accurately, it is the angle subtended by the semi-major axis of the earth's orbit when viewed perpendicularly from the star. Knowing the parallax, the distance can be deduced at once.

For many years attempts were made to measure stellar parallaxes, but without success. The angle to be measured is so exceedingly small that it was lost in the unavoidable instrumental and other errors of observation. The first satisfactory results were obtained by Bessel, who in 1838, by means of a heliometer, succeeded in determining the parallax of 61 Cygni, a 6th magnitude star with a proper motion of 5'' a year. On account of this large motion the star was thought to be comparatively near to us, and such proved to be the case. At about the same time Henderson, at the Cape of Good Hope, from meridian-circle observations, deduced the parallax of Alpha Centauri to be 0".75. For a long time this was considered to be the nearest of all the stars in the sky, but in 1913 Innes, director of the Union Observatory, Johannesburg, South Africa, discovered a small 11th mag. star, 2° 13' from Alpha Centauri, with a large proper motion and to which, from his measurements, he assigned a parallax of 0".78. Its brightness is only 1/20,000 that of Alpha Centauri. In 1916 Barnard discovered an 11th mag. star in Ophiuchus with a proper motion of 10" per year, the greatest on record, and its parallax is about  $0^{\prime\prime}$ .53. It is believed to be next to Alpha Centauri in distance from us.

The distances of the stars are so enormous that a very large unit has to be chosen to express them. The one generally used is the light-year, that is, the distance travelled by light in a year, or  $186,000x60x60x24x365\frac{1}{2}$  miles. A star whose parallax is 1" is distant 3.26 light years; if the parallax is 0".1, the distance is 32.6 l.-y.; if the parallax is 0".27 the distance is  $3.26 \div .27 = 12$  l.-y. In other words, the distance is inversely proportional to the parallax. In recent years the word *parsec* has been introduced to express the distances of the stars. A star whose distance is 1 parsec is such that its *par*-allax is 1 *sec*-ond. Thus 1 parsec is equivalent to 3.26 l.-y., 10 parsecs = 32.6 l.-y., etc.

In later times much attention has been given to the determination of parallaxes, chiefly by means of photography, and now several hundred are known with tolerable accuracy.

### THE SUN'S NEIGHBOURS-STARS NEARER THAN FIVE PARSECS

This table includes all stars known to be nearer than five Parsecs = 16.3 l-y. The apparent magnitudes m, and type are taken from Luyten's Study of the Nearby Stars, H.A. 85, 73. The parallaxes,  $\pi$ , and proper motions,  $\mu$ , are taken from Schlesinger's Catalogue of Parallaxes. M is the absolute magnitude and L the luminosity, the Sun being taken as unity. Sirius A, Procyon A and Altair are the only giant stars, the remainder being dwarfs. Wolf 359, the fifth star nearest the Sun, is intrinsically the faintest star known. It is also noteworthy that fifty per cent. of the stars are members of binary systems.

Name	(19	900)a	(190	)δ	m	Type	π	μ	М	L
	h		0	,			"	"		
Sun	11	m			-26.7	Go			4.8	1.00
Sun	14	00.0	60	15	-20.7 11.2		0.765	3.76	15.6	.00005
	14 14	$\frac{22.8}{32.8}$	$-62 \\ -60$	$\frac{15}{25}$	0.3	G2	.758	3.68	4.7	1.10
				$\frac{20}{25}$	1.7	K3	.760	3.68	6.1	0.30
aCen. B		32.8	-00	$\frac{20}{25}$		Mb	.538	10.30	13.3	.0004
	17	52.9			9.7	M4e	. 338	10.50	16.5	.00004
	10	51.6		36	13.5			1 70	10.5 10.6	.00002
	10	57.9		38	7.6	Mb	.392	4.78		28.
Sirius A	6	40.7		35	-1.6	A0	.371	1.32	1.2	
Sirius B	6	40.7	-16	35	8.4	F	.371	• • • • • •	11.2	.0028
B.D12.4523		24.8		24	9.5	M5	.349		12.2	.001
	11	12.0		02	12		.340	2.69	14.7	.0001
C.Z 5h243	5	7.7		59	9.2	K2	.317	8.75	11.7	.002
$\tau$ Cet	1	39.4		28	3.6	K0	.315	1.92	6.1	.30
Procyon A	7	34.1		29	0.5	F5	.312	1.24	3.0	5.2
Procyon B	7	34.1		29	12.5		.312		15.0	.00008
εEri	3	28.2		48	3.8	K0	.310	.97	6.3	.25
	21	02.4		15	5.6	K7	.300	5.20	8.0	.052
	<b>21</b>	02.4		15	6.3	K8	.300	5.20	8.7	.028
	22	59.4		26	7.1	Ma	.292	6.90	9.4	.014
	18	41.7	+59	29	9.3	Mb	.287	2.31	11.6	.002
	18	41.7	59	29	10.0	Mb	.287		12.3	.001
Grmb 34A	0	12.7		27	8.1	Ma	.282	2.89	10.3	.006
Grmb 34B	0	12.7		27	10.7	Mb	.282		12.9	.0006
<b>ε</b> Indi	21	55.7	-57	12	4.7	K5	.281	4.70	6.9	.14
Kruger 60A	22	24.4		12	9.6	Mb	.257	.87	11.6	.002
Kruger 60B	22		+57	12	11.3				13.3	.0004
van Maanen	0	43.9	+4	55	12.3	Fo	.255	3.01	14.3	.0002
Lac 8760	21	11.4		15	6.6	Ma	.253	3.53	8.6	.030
Anon	2	50.3	+52	05	9.2	1	.239	0.49	11.1	.003
Gould 32416.	23	59.5		15	8.2	Ma	.220	6.11	9.9	.009
Oe. Arg. 17415	17	37.0	+68	26	9.1	Mb	.213	1.33	10.7	.004
	10		+20	22	9.2	Ma	.207	.49	10.8	.004
	19	45.9		36	0.9	A5	.204	.66	2.4	9.1
o²Eri A	4	10.7		49	4.5	G5	.203	4.08	6.0	.33
o²Eri B	4	10.7		49		Ao	.203	4.08	11.2	.003
o²Eri C	4	10.7		49	10.8	Mb	.203	4.08	12.3	.001
							-			

#### THE BRIGHTEST STARS

Their Magnitudes, Types, Proper Motions, Distances and Radial Velocities

#### By W. E. HARPER

The accompanying table contains the principal facts regarding 257 stars brighter than apparent magnitude 3.51 which it is thought may be of interest to our amateur members. The various columns should be self-explanatory but some comments may be in order.

The first column gives the name of the star and if it is preceded by the sign || such means that the star is a visual double and the combined magnitude is entered in the fourth column. Besides the 44 thus indicated there are 12 others on the list with faint companions but for these it is not thought that there is any physical connection. In the case of the 13 stars variable in light this fourth column shows their maximum and minimum magnitudes. The 20 first magnitudes stars are set up in bold face type.

In the fifth column are given the types as revised at various observatories principally at our own, but omitting the s and n designations descriptive of the line character. The annual proper motion follows in the next column and these may not necessarily be correct to the third decimal place.

The parallaxes are taken from Schlesinger's Catalogue of Bright Stars, 1930. The distance is given also in light years in the eighth column as to the lay mind that seems a fitting unit. In only one case (a Cygni) was the parallax negative and it was entered as formerly as ".005. The absolute magnitudes in the ninth column are the magnitudes the stars would have if all were at a uniform distance of 32.6 light years ( $\pi = 0$ ."1). At that distance the sun would appear as a star of magnitude 4.8.

The radial velocities in the last column have been taken from Vol. 18 of the Lick Publications. An asterisk * following the velocity means that such is variable. In these cases the velocity of the system, if known, is given; otherwise a mean velocity for the observations to date is set down.

Of the 257 stars or star systems here listed 144 are south and 113 north of the equator. This is to be expected from the fact that the northern half of the sky includes less of the Milky Way than the southern.

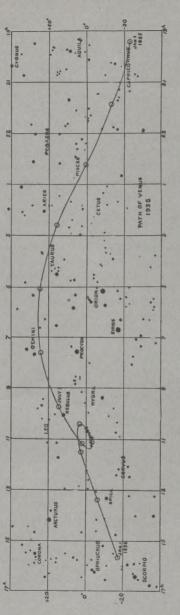
The number in each spectral class, apart from the one marked peculiar, is as follows: O, 3; B, 72; A, 55; F, 22; G, 43; K, 42 and M, 19. The B-stars are intrinsically luminous and appear in this list out of all proportion to their total number. The stars of Classes A and K are by far the most numerous but the revision of types throws many originally labelled K back into the G group.

From the last column we see that 92 velocities are starred, indicating that 36 per cent. of the bright stars, or at least one in every three, are binary in character. For visual binaries the proportion has usually been listed as one in nine. Our list shows one in six but it is only natural to expect that we would observe a higher proportion among the nearby stars, such as these are on the average.

Other relationships can be established from the list if our amateur members care to study it.

Star	R.A. 1900		Decl. 1900			Mag.		Type	Ann. Proper Motion	Parallax	Distance in Light Years	Abs. Mag.	Rad. Vel.
<ul> <li>a Andromedae</li> <li>β Cassiopeiae</li> <li>γ Pegasi</li> <li>β Hydri</li> <li>a Phoenicis</li> <li>δ Andromedae</li> <li>a Cassiopeiae</li> <li>β Ceti</li> <li>γ Cassiopeiae</li> </ul>	0	4 8 20 21 34 35 39	$^{\circ}$ +28 +58 +14 -77 -42 +30 +55 -18 +60	38 49 51 19 59 32	2.	2.2 2.4 2.9 2.9 2.4 3.5 2-2 2.2 2.2	.8	A1 F2 B2 G0 G5 K3 G8 G7 B0e	$\begin{array}{c} ''\\ .217\\ .561\\ .010\\ 2.243\\ .446\\ .167\\ .062\\ .230\\ .031\\ \end{array}$	.045 .028 .017	46 326 23 72 116 192 81	$ \begin{array}{c} -2.1 \\ 3.6 \\ 0.7 \\ 0.7 \\ -1.6 \\ 0.3 \end{array} $	$\begin{array}{c} \text{km./sec.} \\ -13.0^{*} \\ +11.4 \\ +5.0^{*} \\ +22.8 \\ +74.6^{*} \\ -7.1^{*} \\ -3.8 \\ +13.1 \\ -6.8 \end{array}$
$  \beta Phoenicis  \beta Andromedae  \delta Cassiopeiae    a Ursae Minoris  \gamma Phoenicis  a Eridani  \epsilon Cassiopeiae\beta Arietisa Hydri  \gamma Andromedæ$		19 23 24 34 47 49	$+63 \\ +20 \\ -62$	$5 \\ 43 \\ 46 \\ 50 \\ 44 \\ 11 \\ 19 \\ 3$		3.4 2.4 2.8 2.1 3.4 0.6 3.4 2.7 3.0 2.3	: ; ; ;	G4 M0 A3 F7 M1 B9 B5 A3 A7 K0	.042 .219 .306 .043 .222 .093 .043 .150 .256 .073	.030 .012 .024 .045 .013 .066 .067	74 109 272 136 72 251 49 49	$ \begin{array}{c} 0.6\\ 0.2\\ -2.3\\ 0.3\\ -1.1\\ -1.0\\ 1.8\\ 2.2 \end{array} $	$\begin{array}{c} -1.2 \\ +0.1 \\ +6.8 \\ -17.4^{*} \\ +25.7^{*} \\ +19 \\ -8.1 \\ -0.6^{*} \\ +7.0^{*} \\ -11.7 \end{array}$
a Arietis β Trianguli   o Ceti   θ Eridani a Ceti γ Persei ρ Persei		58	- 3	31 26 42 42 7	1.	3.4 2.8 3.1	.6	K2 A6 M6e A2 M1 F9 M6	.242 .161 .239 .071 .080 .012 .176	.027 .013 .022 .017 .017	121 251 148 192 192	$ \begin{array}{r} 0.2 \\ -2.7 \\ 0.1 \\ -0.1 \\ -0.8 \end{array} $	-14.3 +10.4* +59.8* +11.9* -25.7 + 1.0* +28.2
β Persei α Persei δ Persei   η Tauri ζ Persei γ Hydri   ε Persei γ Eridani λ Tauri		36 41 48 49 51 53	+40 +49 +47 +23 +31 -74 +39 -13 +12	30 28 48 35 33 43 47		1.9 3.1 3.0 2.9 3.2 3.0 3.2		F4 B5 B5p B1 M3 B2 M0	.047 .053 .023 .128 .041 .133	.020 .015 .013 .006	163 217 251 543 272 543 155	-1.6 -1.0 -1.5 -3.2 -1.4 -3.2 -0.2	$+ 5.7^{*} - 2.4 - 10.0^{*} + 10.3 + 20.9 + 16.0 - 6.^{*} + 61.7 + 13.0^{*}$

	1	1		1			1	1		1
Star	R.A. 1900	Decl. 1900		Mag.	Type	Ann. Proper Motion	Parallax	Distance in Light Years	Abs. Mag.	Rad. Vel.
									1	
<b>-</b> .	h m		'							km./sec.
a Tauri	4 30				K8	.205		57	-0.1	+54.1
a Doradus	32			1	A0p	.003				
$\pi^{3}$ Orionis	1	+ 6		3.3	F5		.124			+24.6
ι Aurigae		+33	0		K4	.030		1		+17.6
$\epsilon$ Aurigae	55	+43	41	3.4-4.1	F2	.015	.006	543	-2.8	- 4.1*
η Aurigae	5 0	+41	6	3.3	B3	.082	.012	272	-1.3	+ 7.8
$\epsilon$ Leporis	1	-22	30	3.3	K5	.074	.026	125	0.4	+ 1.0
$oldsymbol{eta}$ Eridani	3	-5	13	2.9	A1	.117	.052	63	1.5	- 7.
$\mu$ Leporis	8	-16	19	3.3	A0p	.053	.030	109	0.7	+27.7
a Aurigae	9	+45	54	0.2	G1	.439	.068	48	-0.6	+30.2*
$  \beta$ Orionis	10	- 8	19	0.3	B8p	.005	.006	543	-5.8	+23.6*
$  \eta$ Orionis	19	-2	29	3.4	B0	.009	.007	466	-2.3	+19.5*
$\gamma$ Orionis	20	+ 6	16	1.7	B2	.019	.017	192	-2.2	+18.0
eta Tauri	20	+28	31	1.8	B8	.180	.035	93		+ 8.0
$\beta$ Leporis	24	-20	50	3.0	G2	.095	.021	155	-0.4	-13.5
δ Orionis	27	- 0	<b>22</b>	2.4	B0	.006	.009	362	-2.8	+19.9*
a Leporis	28	-17	54	2.7	F6	.006	.017	192	-1.2	+24.7
ι Orionis	31	- 5	59	2.9	08	.007	.007	466	-2.9	+21.5*
$\epsilon$ Orionis	31	- 1	16	1.8	B0	.004	.008	407	73	+25.8
ζ Tauri	32	+21	5	3.0	B3e	.028	.014	233		+16.4*
ζ Orionis	36	-2	0	1.8	B0	.012	.008	407	-3.4	+18.0
a Columbae	36	-34	8	2.8	B8	.040	.022	148		+34,6
к Orionis	43	- 9	42	2.2	B0	.009	.013	251	-2.2	+20.1
$\beta$ Columbae	47	-35	48	3.2	K0	.397	.019	172	-0.4	+89.4
a Orionis	50	+ 7	<b>23</b>	0.5-1.1	M2		.012			+21.0*
$\beta$ Aurigae	52	+44	56	2.1	A0p	.046	.029	112	-0.4	-18.1*
$\theta$ Aurigae	53	+37	12	2.7	A1	. 106	.032	102		+28.6
$\eta$ Geminorum	69	+22	32	3.2-4.2	M2	.062	.013	251	-12	+21.4*
$\mu$ Geminorum	17	+22	1	3.2	M3				1	+54.8
$\beta$ Canis Majoris	18		- 1	2.0	B1		.012	1		+34.4*
a Carinae	22			-0.9	FO		.016			+20.5
$\gamma$ Geminorum		+16		1.9	A2	.022	1	69		$-11.3^*$
$\nu$ Puppis		-43	6	3.2	B8					+28.2*
ε Geminorum		+25		3.2	G9		.010			+ 9.9
ξ Geminorum		+13	0	3.4	F5	.230		68		+25.1
a Canis Majoris	41	•	- 1	-1.6	A2	1.315		9		$-7.5^{*}$
a Pictoris	47			3.3	A5	.271		- 1		+20.9
		51	50	0.0	. 10	1	••••	••••	•••••	20.0
	l									


	1	1	1	1		1	0		
Star	R.A. 1900	Decl. 1900	Mag.	Type	Ann. Proper Motion	Parallax	Distance in Light Years	Abs. Mag.	Rad. Vel.
<ul> <li>τ Puppis</li> <li>  ε Canis Majoris</li> <li>ζ Geminorum</li> <li>o² Can. Majoris</li> </ul>	h m 6 47 55 58 59	$ \begin{array}{r} -50 & 30 \\ -28 & 50 \\ +20 & 43 \end{array} $	2.8 1.6	G8 B1 G0p B5p	.005 .007	" .031 .012 .004 .007	105 272 815	$-3.0 \\ -3.3$	$\begin{array}{r} \text{km./sec.} \\ +36.4^{*} \\ +27.4 \\ +6.7^{*} \\ +48.6 \end{array}$
δ Can. Majoris L ² Puppis π Puppis β Can. Minoris σ Puppis $a_2$ Geminorum $a_1$ Geminorum   a Can. Minoris β Geminorum ξ Puppis	$egin{array}{cccc} 7 & 4 & & & 10 \ & 14 & & & 22 \ & 266 & & & 28 \ & 288 & & & & 34 \ & & & & 39 \ & & & & 45 \end{array}$	$\begin{array}{r} -44 & 29 \\ -36 & 55 \\ + & 8 & 29 \\ -43 & 6 \\ +32 & 6 \\ +32 & 6 \\ + & 5 & 29 \\ +28 & 16 \end{array}$	$\begin{array}{c} 2.0\\ 3.4-6.2\\ 2.7\\ 3.1\\ 3.3\\ 2.0\\ 2.8\\ 0.5\\ 1.2\\ 3.5 \end{array}$	G4p M5e K5 B8 M0 A2 A0 F5 G9 K1	.192 .201 .209 1.242 .623	 .023 .024 .027 .074 .074 .310	$\begin{array}{c} \dots \\ 142 \\ 136 \\ 121 \\ 44 \\ 44 \\ 10 \\ 30 \end{array}$	$ \begin{array}{c} -0.4 \\ 0.0 \\ 0.4 \\ 1.4 \\ 2.2 \\ 2.9 \\ 1.4 \end{array} $	$\begin{array}{r} +34.3^{*} \\ +53.0 \\ +15.8 \\ +23. \\ +88.1 \\ +6.0^{*} \\ -1.2^{*} \\ -3.0^{*} \\ +3.3 \\ +3.7^{*} \end{array}$
<ul> <li>ζ Puppis</li> <li>ρ Puppis</li> <li>  γ Velorum</li> <li>  ε Carinae</li> <li>ο Urs. Majoris</li> <li>  ε Hydrae</li> <li>δ Velorum</li> <li>ζ Hydrae</li> <li>ι Urs. Majoris</li> </ul>	$egin{array}{cccc} 8 & 0 & & 3 & & & & & & & & & & & & & & &$	$\begin{array}{rrrr} -24 & 1 \\ -47 & 3 \\ -59 & 11 \\ +61 & 3 \\ + & 6 & 47 \\ -54 & 20 \\ + & 6 & 20 \end{array}$	2.3 2.9 2.2 1.7 3.5 3.5 2.0 3.3 3.1	O8 F6 OW9 K0 G2 F9 A0 G7 A4	.166 .193 .093 .101	.016 .014 .011 .024 .030 .016 .070	204 233 296 136 109 204	-2.5 -1.3 0.4 -0.6 -0.7	$\begin{array}{r} -24. \\ +46.6 \\ +35. \\ +11.5 \\ +19.8 \\ +36.8^* \\ +2.2 \\ +22.6 \\ +12.6 \end{array}$
$\begin{array}{l} \lambda \ \text{Velorum} \\ \beta \ \text{Carinae} \\ \iota \ \text{Carinae} \\ a \ \text{Lyncis} \\ \kappa \ \text{Velorum} \\ a \ \text{Hydrae} \\ \theta \ \text{Urs. Majoris} \\ \text{N} \ \text{Velorum} \\ \epsilon \ \text{Leonis} \\    \upsilon \ \text{Carinae} \end{array}$	$ \begin{array}{c c} 14\\ 15\\ 19\\ 23\\ 26\\ 28\\ 40\\ \end{array} $	$\begin{array}{c} -69 & 18 \\ -58 & 51 \\ +34 & 49 \\ -54 & 35 \\ -8 & 14 \\ +52 & 8 \end{array}$	3.1	K4 A0 F0 K8 B3 K4 F7 K5 G0 F0	.192 .023 .214 .017 .036 1.096 .041 .045	.023 .015 .016	 142 217 204 54 84	0.1 -1.5 -1.8 2.2 1.4	+18.4 - 5. +13.3 +37.4 +21.7* - 4.4 +15.8 -13.9 + 5.1 +13.6
<b>α Leonis</b> q Carinae   γ Leonis	14	+12 27 -60 50 +20 21	1	B6 K5 G8	.045	.055 .012 .024	272		+ 2.6 + 8.6 -36.8

μ Urs. Majoris 10 θ Carinae η Carinae μ Velorum ν Hydrae β Urs. Majoris	$39 \\ 41 \\ 42 \\ 45$	$^{+42}_{-63}_{-59}$	′ 0 52	3.2	K4	<i>"</i>	"			km./sec.
<ul> <li>θ Carinae</li> <li>η Carinae</li> <li>μ Velorum</li> <li>ν Hydrae</li> <li>β Urs. Majoris</li> </ul>	$39 \\ 41 \\ 42 \\ 45$	$-63 \\ -59$		3.2	121					
η Carinae μ Velorum ν Hydrae β Urs. Majoris	$41 \\ 42 \\ 45$	-59	52			.082	.033	99	0.8	
μ Velorum ν Hydrae β Urs. Majoris	$\begin{array}{c} 42 \\ 45 \end{array}$	-		3.0	B0	.023	. 008	407	-2.4	+24. *
$\nu$ Hydrae $\beta$ Urs. Majoris	45			1.0-7.4		.007		••••		-25.0
$\beta$ Urs. Majoris				2.8	G5					+ 6.9
-		-15		3.3	K3		.033	99		-10
	56	•		${f 2}$ . ${f 4}$	A3		.043	76		$-12.1^{*}$
a Urs. Majoris	58	+62	17	2.0	G5	.137	.030	109	-0.7	- 8.6
$\psi$ Urs. Majoris	14	+45	2	3.2	K0	.067	.044	74	1.4	- 3.6
δ Leonis	9	+21	4	${f 2}$ . 6	A2	.208	.072	45	1.9	-23.2
$\theta$ Leonis	9	+15	59	3.4	A2	.103	.025	130	0.4	+7.8
λ Centauri	31	-62	28	3.3	B9	.046	.022	148		+7.9
$\beta$ Leonis	44	+15	8	<b>2</b> . $2$	A2	. 507	.095	34	2.1	-2.3
$\gamma$ Urs. Majoris	49	+54	15	2.5	A0	.095	.041	79	0.6	-11.1
δ Centauri 15	2 3	-50	10	2.9	B3e	.044	.018	181	-0.8	+ 9.
e Corvi	5	-22	4	<b>3.2</b>	K2	.063	.027	121		+ 4.9
δ Crucis	10	-58	12	3.1	B3	.051				+26.4
δ Urs. Majoris	10	+57	35	3.4	A0	.113	.044	74	1.7	-12.
γ Corvi	11	-16	59	2.8	B8	.159	.021	155	-0.6	- 4.2*
a ¹ Crucis	<b>21</b>	-62	33	1.6	B1	.048	.015	217	-2.5	$-12.2^{*}$
a ² Crucis	<b>21</b>	-62	32	2.1	B3	.048	.015	$21\dot{7}$	-2.0	$+ 0.3^{*}$
δ Corvi	25	-15	58	3.1	A0	.249	.030	109	0.5	+ 8.7
$\gamma$ Crucis	<b>2</b> 6	-56	33	1.5	M4	.270				+21.3
β Corvi	<b>29</b>	-22	51	2.8	G5	.061	.020	163	-0.6	- 7.7
a Muscae	31	-68	35	<b>2</b> .9	B5	.038	.012	272	-1.7	+18.
γ Centauri	36	-48	24	<b>2</b> .4	A0	.200	.032	102	-0.1	- 7.5
$  \gamma$ Virginis	36	- 0	54	${f 2}$ . ${f 9}$	F0	. 561	.085	38	<b>2</b> . 6	-19.6
$\beta$ Muscae	40	-67	34	3.3	B3	.041	.014	233		+42. *
$\beta$ Crucis	42	-59	9	1.5	B1	.054	.011	296	-3.3	+20.0
ε Urs. Majoris	50	+56	30	1.7	A2	.117	.045	72		-11.9*
a Can. Venat.	51	+38	51	2.8	A1	. 233	.025	130	-0.1	- 3.6*
e Virginis	57	+11	30	3.0	G6	.270	. 034	96	0.6	-14.0
$\gamma$ Hydrae 1:	3 13	-22	39	3.3	G7	.085	.017	192	-0.5	- 5.4
ι Centauri	15			2.9	A2	. 351				+ 0.1
ζ ¹ Urs. Majoris		+55		2.4	A2p	.131	043	76	1	- 9.9*
a Virginis	20	•	38	1.2	B2	.051	.017			$+ 1.6^{*}$
ζ Virginis	30		5	3.4	A2	.285	.036	91	1.2	

Star	R.A. 1900	Decl. 1900	Mag.	Type	Ann. Proper Motion	Parallax	Distance in Light Years	Abs. Mag.	Rad. Vel.
	h n	0 /	1 1				i —		km./sec
ε Centauri	13 34		2.6	B2	.040	.013	251	-1.9	· ·
η Urs. Majoris	44	+49 49	1.9	<b>B</b> 3	.116			-2.5	-10.9
μ Centauri	44	-41 59	3.3	B3e	.030	. <b>.</b>			+12.6
ζ Centauri	49	-46 48	3.1	B3	.079	.010	326	-1.9	*
η Boötis	5	1.		G1	.370	. 100		2.8	
eta Centauri	5	7 - 59 53	3 0.9	B3	.039	.020	163	-2.6	+12.0*
$\pi$ Hydrae	14	$-26\ 12$	2 3.5	K3	.165	036	91	-1.3	+27.2
$\theta$ Centauri	_	-3553		G8	.748	.067	1		+ 1.3
a Boötis	1	1 +19 42	2 0.2	K0	2.287	.085	38	-0.1	- 5.1
$\gamma$ Boötis	2	3 + 38 4!	5 3.0	A3	.182	.058	56	1.8	-35.5
η Centauri	2	9 - 41 43	8 2.6	B3e	.052	.016	204	-1.3	- 0.2
a Centauri	3			G0	3.682				-22.2
a Circini	3			F0	.312				+7.4
a Lupi	3	-		1	.036		362	1	$+ 7.3^*$
le Boötis	4	· ·		G8	.045		181		+16.4
a ² Librae	4				.129		1	1	-10. *
$\beta$ Urs. Minoris	5	1.		K4	.028		1	1	+16.9
β Lupi	5	1		B3 B2	.066		272 362		$-0.3^*$
κ Centauri σ Ulbrae	5				.037		136		$+ 9.1^*$ - 4.3
0 Giorae		5 - 24 5	0.4	INI <del>T</del>	.034	.024	100	0.0	- 1.0
ζ Lupi	15	5 - 51 4	3.5	G5	.132	.017	192	-0.4	- 9.7
$\gamma T$ Australis		0 - 68 1			.064				0.
$\beta$ Librae	1	-	1 2.7		.108		136	-0.4	1
δLupi	1				.032		326	1 .	+1.6
$\gamma$ Urs. Minoris	2	1.			.017			1.3	1
ι Draconis		J •	,	1	.010		105		-11.1
γ Lupi π Cor Borcolio			0 3.0 3 <b>2</b> .3	1	.042		5204 74		+ 6.
a Cor. Borealis a Serpentis		0 + 27 = 3 9 + 6 = 4		1	.160				$(+ 1.0^*)$ (+ 3.0)
$\beta$ T Australis			$\frac{1}{7}$ $\frac{2}{3.0}$		.440			1	$\vec{n} = \vec{0} \cdot \vec{3}$
$\pi$ Scorpii	5			1	.042		2272		$3 - 3.0^*$
δ Scorpii		4 - 22 2	1				296		-16. *
•									
$  \beta$ Scorpii		0 - 19 3			.041	1	5652	1	l − 9.3*
δ Ophiuchi	1	9 - 3 2			.159		9112		-19.8
e Ophiuchi	1				.088		0 109	0.7	1
σ Scorpii				1	.033		7 466	-2.7	1
$  \eta$ Draconis	2	3 +61 4	4 2.9	G5	.062	.038	8 86	0.8	3 -14.3

$\begin{array}{                                    $											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Rad. Vel.	Abs. Mag.	Distance in Light Years	Parallax	Ann. Proper Motion	Type	Mag.		Decl. 1900	R.A. 1900	Star
$\begin{array}{                                    $	km./sec.	1		"	"			1	0	m	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		-2.3	163	.020	.032	M1	1.2	12	-26	6 23	la Scorpii
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-25.8*							- 1			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1				1 .			1 '		•
$\begin{array}{                                    $		1 1									
aT Australis38-68511.9K5.034.030109 $-0.7$ $\epsilon$ Scorpii44 $-34$ 72.4G9.668.04081 $0.4$ $\mu^1$ Scorpii45 $-37$ 533.1B3.032.012272 $-1.5$ $\zeta$ Arae50 $-55$ 503.1K5.047.021155 $-0.3$ $\kappa$ Ophiuchi17 $5$ $-15$ 362.6A2.094.03691 $0.4$ $\eta$ Scorpii $5$ $-43$ 6 $3.4$ A7.294.06947 $2.6$ $\zeta$ Draconis $8$ $+65$ 50 $3.2$ B8.023.026125 $0.3$ $  a$ Herculis10 $+14$ 30 $3.1$ $-3.9$ M7.030.007466 $-2.7$ $-2.7$ $\delta$ Herculis11 $+24$ 57 $3.2$ A2.164.03691 $0.9$ $\pi$ Herculis12 $+36$ 55 $3.4$ K3.021.022148 $0.1$ $\theta$ Ophiuchi16 $-24$ 54 $3.4$ B2.030.009 $362$ $-1.9$ $\phi$ Arae17 $-55$ $26$ $2.8$ K1.035.017 $192$ $-1.0$ $v$ Scorpii24 $-37$ 13 $2.8$ B3.040.010 $326$ $-2.2$ $-2.2$ $a$ Arae24 $-49$ 48 $3.0$ B3e.085.017 $192$ $-0.$	1							1			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1				1 1						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								1			· ·
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							1				•
$\eta$ Scorpii $5$ $-43$ $6$ $3.4$ $A7$ $.294$ $.069$ $47$ $2.6$ $\zeta$ Draconis $8$ $+65$ $50$ $3.2$ $B8$ $.023$ $.026$ $125$ $0.3$ $  a$ Herculis $10$ $+14$ $30$ $3.1-3.9$ $M7$ $.030$ $.007$ $466$ $-2.7$ $-2.7$ $\delta$ Herculis $11$ $+24$ $57$ $3.2$ $A2$ $.164$ $.036$ $91$ $0.9$ $\pi$ Herculis $12$ $+36$ $55$ $3.4$ $K3$ $.021$ $.022$ $148$ $0.1$ $\theta$ Ophiuchi $16$ $-24$ $54$ $3.4$ $B2$ $.030$ $.009$ $362$ $-1.9$ $\rho$ Arae $17$ $-55$ $26$ $2.8$ $K1$ $.035$ $.017$ $192$ $-1.0$ $v$ Scorpii $24$ $-37$ $13$ $2.8$ $B3$ $.040$ $.010$ $326$ $-2.2$ $-2.2$ $a$ Arae $24$ $-49$ $48$ $3.0$ $B3e$ $.085$ $.017$ $192$ $-0.9$ $\lambda$ Scorpii $27$ $-37$ $2$ $1.7$ $B2$ $.040$ $.016$ $204$ $-2.3$ $\beta$ Draconis $28$ $+52$ $23$ $3.0$ $G0$ $.012$ $.008$ $407$ $-2.5$ $-37$ $a$ Arae $24$ $-49$ $48$ $3.0$ $B3e$ $.032$ $.011$ $206$ $-2.3$ $-2.3$ $\beta$ Draconis $28$ $+52$ $23$ $3.0$ $G0$ $.010$ $$ <t< td=""><td>-55.6</td><td>1.3</td><td>88</td><td>.037</td><td>.296</td><td>K3</td><td>3.4</td><td>32</td><td>+ 9</td><td>53</td><td>K Ophiuchi</td></t<>	-55.6	1.3	88	.037	.296	K3	3.4	32	+ 9	53	K Ophiuchi
$\eta$ Scorpii $5$ $-43$ $6$ $3.4$ $A7$ $.294$ $.069$ $47$ $2.6$ $\zeta$ Draconis $8$ $+65$ $50$ $3.2$ $B8$ $.023$ $.026$ $125$ $0.3$ $  a$ Herculis $10$ $+14$ $30$ $3.1-3.9$ $M7$ $.030$ $.007$ $466$ $-2.7$ $-2.7$ $\delta$ Herculis $11$ $+24$ $57$ $3.2$ $A2$ $.164$ $.036$ $91$ $0.9$ $\pi$ Herculis $12$ $+36$ $55$ $3.4$ $K3$ $.021$ $.022$ $148$ $0.1$ $\theta$ Ophiuchi $16$ $-24$ $54$ $3.4$ $B2$ $.030$ $.009$ $362$ $-1.9$ $\rho$ Arae $17$ $-55$ $26$ $2.8$ $K1$ $.035$ $.017$ $192$ $-1.0$ $v$ Scorpii $24$ $-37$ $13$ $2.8$ $B3$ $.040$ $.010$ $326$ $-2.2$ $-2.2$ $a$ Arae $24$ $-49$ $48$ $3.0$ $B3e$ $.085$ $.017$ $192$ $-0.9$ $\lambda$ Scorpii $27$ $-37$ $2$ $1.7$ $B2$ $.040$ $.016$ $204$ $-2.3$ $\beta$ Draconis $28$ $+52$ $23$ $3.0$ $G0$ $.012$ $.008$ $407$ $-2.5$ $-37$ $a$ Arae $24$ $-49$ $48$ $3.0$ $B3e$ $.032$ $.011$ $206$ $-2.3$ $-2.3$ $\beta$ Draconis $28$ $+52$ $23$ $3.0$ $G0$ $.010$ $$ <t< td=""><td>- 1.0</td><td>0.4</td><td>91</td><td>036</td><td>094</td><td>A2</td><td>2.6</td><td>36</td><td>-15</td><td>7 5</td><td>lm Ophiuchi</td></t<>	- 1.0	0.4	91	036	094	A2	2.6	36	-15	7 5	lm Ophiuchi
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						1		1			
$ \begin{array}{                                    $											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1					1	1				•
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						1			1		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						1					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						1	1				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
a Arae $24 - 49 \ 48$ $3.0$ $B3e$ $.085 \ .017 \ 192$ $-0.9 - 1.9 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .017 \ .01$							-				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						-					
a Ophiuchi $30 + 12$ $38$ $2.1$ $A0$ $.264$ $.052$ $63$ $0.7$ $\kappa$ Scorpii $36$ $-38$ $58$ $2.5$ $B3$ $.032$ $.011$ $296$ $-2.3$ $\beta$ Ophiuchi $38 + 4$ $37$ $2.9$ $K2$ $.157$ $.036$ $91$ $0.7$ $\iota^1$ Scorpii $41$ $-40$ $5$ $3.1$ $F8$ $.004$ $.007$ $466$ $-2.6$ $ \mu$ Herculis $43$ $+27$ $47$ $3.5$ $G5$ $.817$ $.112$ $29$ $3.7$	1	-2.5	407	.008			1		1 .	-	· · · ·
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	+ 1.4					-					•
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	1							-	•
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-10. *	-2.3	296	.011	.032	B3	2.5	58		36	κ Scorpii
$  \mu $ Herculis $43 + 27 47 3.5 G5 .817 .112 29 3.7 -$	-11.9	0.7	91	. <b>0</b> 36	.157		2.9	37			
	-27.6	-2.6	466	.007	.004	F8	3.1	5	-40	41	•
G Scorpii 43 - 37 1 3.2 K2 068 028 116 0.5 -	-16.1	3.7	29	.112	.817	G5	3.5	47	+27	43	$  \mu $ Herculis
	+24.7	0.5	116	.028	.068		3.2	1	-37	43	G Scorpii
$\nu$ Ophiuchi 54 - 9 46 3.5 G7 .118 023 142 0.3 -	+12.4	0.3	142	. <b>02</b> 3	.118	G7	3.5	46	- 9	54	ν Ophiuchi
$\gamma$ Draconis 54 +51 30 2.4 K5 .026 028 116 -0.3 -	-27.8	-0.3	116	.028	.026	K5	2.4	30	+51	54	$\gamma$ Draconis
$\gamma$ Sagittarii       59       -30       26       3.1       K0       .206       .041       79       -1.1	+22.3*	-1.1	79	.041	. 206	K0	3.1	<b>2</b> 6	-30	59	$\gamma$ Sagittarii
	+ 0.5							- 1			
	-20.0										-
	+ 8.9	2.3	54	.060	.898						•
	-10.8				.139	1					
						K1	2.9		-		$\lambda$ Sagittarii
a Lyrae 34 + 38 41 0.1 A1 348 123 26 0.6 -	-13.8	0.6	26	. 1 <b>2</b> 3	.348	A1	0.1	41	+38	<b>34</b>	 a Lyrae

Star	R.A. 1900	Decl. 1900	Mag.	Type	Ann. Proper Motion	Parallax	Distance in Light Years	Abs. Mag.	Rad. Vel.
φ Sagittarii    $β$ Lyrae σ Sagittarii γ Lyrae    $ζ$ Sagittarii	$ \begin{array}{c cccc} h & m \\ 18 & 39 \\ 46 \\ 49 \\ 55 \\ 56 \\ \end{array} $	$   \begin{array}{r}     -27 & 6 \\     +33 & 15 \\     -26 & 25 \\     +32 & 33   \end{array} $	3.4-4.1 2.1	B8 B2p B3 B9p A2	".053 .011 .081 .010 .026	.003 .018	1086 181 204	-4.2 -1.6 -0.7	$ \begin{array}{ } \text{km./sec.} \\ +21.5^{*} \\ -19.0^{*} \\ -10.7 \\ -21.5^{*} \\ +22.1 \end{array} $
<ul> <li>τ Sagittarii</li> <li>ζ Aquilae</li> <li>π Sagittarii</li> <li>δ Draconis</li> <li>δ Aquilae</li> <li>β Cygni</li> <li>γ Aquilae</li> <li>δ Cygni</li> <li>a Aquilae</li> </ul>	21 27 42 42	$\begin{array}{c ccc} -21 & 11 \\ +67 & 29 \\ + & 2 & 55 \\ +27 & 45 \\ +10 & 22 \end{array}$	$\begin{array}{c} 3.0 \\ 3.0 \\ 3.2 \\ 3.4 \\ 3.2 \\ 2.8 \\ 3.0 \end{array}$	K0 A0 F2 G8 A3 K0 K3 A1 A2	.103 .041 .135 .267 .010 .018 .067	.032 .057 .020	88 148 102 57 163 142 96	$ \begin{array}{c} 0.9 \\ -0.3 \\ 0.8 \\ 2.2 \\ 0.3 \\ -0.4 \\ 0.6 \end{array} $	$\begin{array}{r} +45.4^{*} \\ -25. & * \\ -9.8 \\ +24.8 \\ -32.3^{*} \\ -23.9^{*} \\ -2.0 \\ -20. \\ -26.1 \end{array}$
<ul> <li>θ Aquilae</li> <li>  β Capricorni</li> <li>a Pavonis</li> <li>γ Cygni</li> <li>a Indi</li> <li>a Cygni</li> <li>ϵ Cygni</li> </ul>	$     \begin{bmatrix}       20 & 6 \\       15 \\       18 \\       19 \\       31 \\       38 \\       42     \end{bmatrix} $	$\begin{vmatrix} -15 & 6 \\ -57 & 3 \\ +39 & 56 \\ -47 & 38 \\ +44 & 55 \end{vmatrix}$	3.2 2.1 2.3 3.2 1.3	A0 F8 B3 F8 G2 A2p G7	.042 .090 .006 .072 .004	.013 .007 .036	$   \begin{array}{c c}     192 \\     251 \\     466 \\     91 \\     652 \\   \end{array} $		$\begin{array}{c} -28.6^{*} \\ -19.0^{*} \\ +1.8^{*} \\ -7.6 \\ -1.1 \\ -6.3^{*} \\ -10.5^{*} \end{array}$
<ul> <li>ζ Cygni</li> <li>α Cephei</li> <li>β Aquarii</li> <li>β Cephei</li> <li>ϵ Pegasi</li> <li>δ Capricorni</li> <li>γ Gruis</li> </ul>		2 +70 7 + 9 25 + 9 25 -16 35	2.6 3.1 3.3 5 2.5 3.0	G6 A2 G1 B1 K2 A3 B8	.020 .013 .028 .395	.078 .006 .008	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c} 2.1 \\ -3.0 \\ -2.2 \\ -1.0 \\ 2.9 \\ \end{array} $	$0 + 6.7 - 7.2^* + 5.2 - 6.4^*$
<ul> <li>a Aquarii</li> <li>a Gruis</li> <li>a Tucanae</li> <li>β Gruis</li> <li>η Pegasi</li> <li>a <b>P Australis</b></li> <li>β Pegasi</li> <li>a Pegasi</li> <li>γ Cephei</li> </ul>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$2 \begin{vmatrix} -47 & 27 \\ -60 & 45 \\ 7 & -47 & 24 \\ 8 & +29 & 42 \\ 2 & -30 & 9 \\ +27 & 32 \end{vmatrix}$	$\begin{array}{c} 2.2 \\ 2.9 \\ 2.2 \\ 3.1 \\ 1.3 \\ 2.6 \\ 0 \\ 2.6 \end{array}$	G0 B5 K5 M6 G1 A3 M3 A0 K1	.132	.028 .023 .015 .013 .122 .020 .034	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} -0.6\\ -0.3\\ -1.9\\ -1.3\\ 1.7\\ -0.9\\ 0.2 \end{array} $	



PATH OF VENUS AMONG THE STARS DURING 1935

The small circles show the positions of the planet at the first of each month. The part of the path which is hatched indicates the interval when the planet is less than one hour of right ascension away from the sun and consequently difficult to observe. The planet will pass about a half a degree north of the bright star Regulus on July 6th.

### THE ROYAL ASTRONOMICAL SOCIETY OF CANADA

This Society was incorporated in 1890 under the name of The Astronomical and Physical Society of Toronto, and assumed its present name in 1903.

The Society has active Centres in Montreal, P.Q.; Ottawa, Toronto, Hamilton, and London, Ont.; Winnipeg, Man.; Edmonton, Alta.; Vancouver and Victoria, B.C.

The Society publishes a monthly JOURNAL containing each year about 500 pages and a yearly OBSERVER'S HANDBOOK of about 80 pages. Single copies of JOURNAL or HANDBOOK are 25 cents.

Membership is open to anyone interested in astronomy. Annual dues, \$2.00; life membership, \$25.00. Publications are free to members, or may be subscribed for separately. Apply to the General Secretary, 198 College St., Toronto, or to the local secretary of a Centre.

Extract from the By-Laws: Candidates who are elected to membership will be attached to a particular Centre, or to a section known as Members at Large. Members of the Society who live outside of Canada, or in a province in which there is no Centre of the Society will be considered Members at Large and not attached to any particular Centre, unless these members are expressly nominated for membership and attachment to a particular Centre. Members may be transferred from one Centre to another, or to the section Members at Large by the Council of the Society if written application for such transfer is made by such member to the Council.

The Society has for Sale:

General Index to the TRANSACTIONS of the R.A.S.C., 1890-1905, and the JOURNAL, Vols. 1 to 25, 1907-31.

Compiled by W. E. Harper, Assistant Director, Dominion Astrophysical Observatory, Victoria, B.C.

Pages, 122; Price, \$1.00, postage 5c. extra.

New Materials for the History of Man—The Festival of the Dead, by R. G. Haliburton.

This is a research into the Year of the Pleiades, first published at Halifax, N.S., in 1863; reprinted by the R.A.S.C. in 1920.

Pages, 126; Price, \$1.00, postage 5c. extra.

Send Money Order to 198 College St., Toronto.